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Diagnosis is one of the cornerstones of medical practice because it enables 

physicians to make a prognosis for the patient and it can guide the choice of 

therapy. In many circumstances, additional testing after history taking and 

physical examination is necessary to reduce the uncertainty about the presence 

or absence of a specific condition. The determination of the performance of a 

test, in terms of its diagnostic accuracy, is therefore an essential step in the 

overall evaluation process of medical tests.  

The designs that have been used to evaluate tests vary largely. Recent 

reviews have shown that suboptimal design choices can lead to invalid test 

results, which can lead to either an over- or underestimation of a test’s 

accuracy. Exaggerated results from poorly designed diagnostic studies can lead 

to overconfidence in test results, triggering premature adoption of the test or 

incorrect decision-making in the care for individual patients. 

 

 

Diagnostic Accuracy Studies 

 

Diagnostic accuracy is defined as the ability of a test to discriminate 

between subjects who have the target condition and those who have not. The 

accuracy of one or more tests under evaluation is studied by comparing the 

results of these index tests with the outcomes of a reference standard on the 

same series of subjects. The reference standard is regarded as the best 

available method to establish the presence or absence of the target condition.  

Within the framework of a diagnostic accuracy study, several important 

choices have to be made, including the sampling method to include patients, 

whether or not to apply specific exclusion criteria, choosing a reference 

standard, defining the verification scheme and degree of blinding. These 

choices can be illustrated by looking at studies designed to answer the 

following study question: What is the diagnostic performance of D-dimer assays 

in the exclusion of pulmonary embolism (PE) in outpatients suspected of PE?  

Hundreds of studies have been completed in the last decades that addressed 

this study objective (1-4). Studies varied in numerous design features, using 

either a cohort or case-control design, prospective or retrospective data-

collection, including patient groups presenting with symptoms only, or with a 

specific clinical probability according to the Wells’ score (5), using different 

reference standards (such as V-Q scans, computed tomography scans, 
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pulmonary angiography, clinical follow-up or a combination of these tests), 

applying partial or differential verification, using double blinded, single blinded 

or not-blinded reading, using different cut-offs and a different handling of 

patient drop-out and non-interpretable test results, and, lastly, focusing on 

different accuracy statistics, such as sensitivity and specificity, predictive 

values, likelihood ratios and detection rates. The variety in research designs 

shows that test evaluation research is not embedded in a fixed frame, where a 

single design fits a specific type of research question.  

In intervention studies, it has been well established that design features, 

such as randomization, can change outcomes of efficacy (6-8). In the area of 

diagnostic accuracy, theoretical evidence for the potential effect of design 

features is available, but the empirical evidence for many features is 

inconsistent or lacking (9). An improved understanding of the mechanisms that 

can lead to bias or variation can guide researchers and readers in the 

evaluation, application and combining of outcomes of diagnostic accuracy 

studies. The work in this thesis was set up to contribute to this objective.  

 

 

Central Theme of the Thesis 

 

The central theme of this thesis is an evaluation of sources of bias and 

variation in diagnostic accuracy studies. Our aim was to document mechanisms 

that explain how sources of bias and variation affect measures of diagnostic 

accuracy, to provide empirical evidence on the impact of these sources using 

meta-epidemiological regression models, and to improve the methodology and 

analysis of reviews and meta-epidemiological research involving diagnostic 

accuracy studies. 

 

Outline of the Thesis 

 

Variety in research designs can be advantageous. Knowledge of the 

performance of a test in different patient groups, for example, can help 

clinicians in their decision to order the test. In Chapter 2 Case-control and two-

gate designs in diagnostic accuracy studies, we discuss design aspects that 

influence the composition of the study group and explain how differences in 

study sampling may affect estimates of diagnostic accuracy.  
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Verification of test results is the hallmark of diagnostic accuracy studies. 

In practice, researchers are sometimes faced with the choice between 

incomplete verification by the preferred reference standard or the use of an 

additional reference standard. The consequences of partial and differential 

verification are discussed in Chapter 3 Partial and differential verification in 

diagnostic accuracy studies. 

In Chapter 4 Sources of variation and bias in studies of diagnostic 

accuracy: a systematic review, we provide an overview of the literature 

examining the impact of design features on estimates of accuracy.  

To increase and extend the available evidence, we conducted a meta-

epidemiologic study evaluating the impact of 15 design characteristics on 

estimates of the diagnostic odds ratio (DOR), using 31 meta-analyses with 487 

test evaluations. The results are described in Chapter 5 Evidence of bias and 

variation in diagnostic accuracy studies. 

Standard methods for meta-analyzing accuracy studies use the diagnostic 

odds ratio as the primary outcome measure, which is convenient but less 

informative than pairs of sensitivity and specificity. Chapter 6 Bivariate 

analysis of sensitivity and specificity produces informative summary measures 

in diagnostic reviews presents a statistic model for jointly meta-analyzing 

estimates of sensitivity and specificity. This bivariate model correctly deals 

with any negative correlation that might exist between sensitivities and 

specificities.  

In Chapter 7 Study design features affect estimates of sensitivity and 

specificity, but effects may vary we use the bivariate model to improve the 

meta-epidemiologic regression approach used in Chapter 5. Our objective was 

to evaluate the impact and the variability of effect of 6 design features on the 

pooled estimates of sensitivities and specificities, using data from the 705 test 

evaluations in 49 meta-analyses. 

In Chapters 2 up to 7, we present theoretical and empirical evidence for 

the potential of bias and variation by design characteristics. One of the 

remaining challenges is the decision how to deal with differences in design 

within a single meta-analysis. An illustration of statistical adjustment for 

design differences is given in Chapter 8 The diagnostic accuracy of D-dimer test 

for the exclusion of venous thromboembolism: a systematic review. 

Complete and accurate reporting is a prerequisite for scoring and 

incorporating design characteristics into a diagnostic review in order to avoid 
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misclassification of design features. Quality of reporting of diagnostic studies is 

not always optimal. The results of a study evaluating the quality of reporting in 

articles published in 2000 can be found in Chapter 9: Quality of reporting of 

diagnostic accuracy studies. The poor quality of reporting led to the STAndards 

for Reporting of Diagnostic accuracy (STARD) initiative in 2001. This initiative 

resulted in the development of a checklist and flow-chart to improve the 

reporting of diagnostic accuracy studies. 
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Abstract 

 

Background: In some diagnostic accuracy studies, the test results of a 

series of patients with an established diagnosis are compared with those of a 

control group. Such case-control designs are intuitively appealing, but they 

have also been criticized for leading to inflated estimates of accuracy.  

Methods: We discuss similarities and differences between diagnostic and 

etiologic case-control studies, as well as the mechanisms that can lead to 

variation in estimates of diagnostic accuracy in studies with separate sampling 

schemes (gates) for diseased (cases) and nondiseased individuals (controls).  

Results: Diagnostic accuracy studies are cross-sectional and descriptive in 

nature. Etiologic case-control studies aim to quantify the effect of potential 

causal exposures on disease occurrence, which inherently involves a time 

window between exposure and disease occurrence. Researchers and readers 

should be aware of spectrum effects in diagnostic case-control studies as a 

result of the restricted sampling of cases and/or controls, which can lead to 

changes in estimates of diagnostic accuracy. These spectrum effects may be 

advantageous in the early investigation of a new diagnostic test, but for an 

overall evaluation of the clinical performance of a test, case-control studies 

should closely mimic cross-sectional diagnostic studies.  

Conclusions: As the accuracy of a test is likely to vary across subgroups of 

patients, researchers and clinicians might carefully consider the potential for 

spectrum effects in all designs and analyses, particularly in diagnostic accuracy 

studies with differential sampling schemes for diseased (cases) and 

nondiseased individuals (controls). 
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Determining the accuracy of a test is an essential step in the overall evaluation 

of medical tests. Diagnostic accuracy is the ability of a test to differentiate 

between patients who have the condition of interest (target condition) and 

those who do not. The accuracy of a test is studied by comparing the results of 

the test under evaluation (index test) with the outcomes of a reference 

standard on the same series of participants. The reference standard is the best 

available method to establish the presence or absence of the target condition. 

For dichotomous test results, the findings can be summarized in a 2x2 table 

and expressed as the test’s sensitivity and specificity. 

Diagnostic tests must be evaluated by an appropriate design and in a 

clinically relevant population. The observation that the accuracy of a test 

varies across patient subgroups complicates the issue of patient selection in 

diagnostic accuracy studies (1–3). The typical approach is to include those 

patients who would also undergo the index test in the relevant clinical 

situation, to perform the index test, and then to verify the results for all 

patients with the reference standard. 

Many variations of this design can be found in the literature. It is not 

always clear under what circumstances these variations in study design can 

bias the estimates of diagnostic accuracy. This uncertainty particularly applies 

to diagnostic case-control studies. In such studies, groups of patients with and 

without the target condition are identified before the index test is performed. 

Strong statements have been made about the bias of diagnostic case-

control studies (1,4–6). Case-control studies have been shown to lead to 2-or3-

fold higher estimates of diagnostic accuracy compared with studies that use 

single series of consecutive patients to evaluate the same test (1,5,6). This 

discrepancy seems to imply that such case-control designs should be avoided. 

Others have pointed out that case-control studies may have practical benefits, 

as they can be less expensive and easier to perform (7). 

In this report, we review how estimates of sensitivity and specificity can 

vary across subgroups of patients and illustrate how these spectrum effects can 

affect diagnostic case-control studies. After discussing some potential problems 

and misconceptions with case-control designs in diagnostic research, we 

provide what we consider a more informative labeling of these studies. Our aim 

is to define conditions under which case-control designs can be trusted to yield 

valid and unbiased estimates of a test’s diagnostic accuracy. We also delineate 

how awareness of the effects of enrolling patients or controls with a limited 
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disease spectrum can be turned in to an advantage for specific research 

questions. 

 

 

Spectrum Effects and Limited Challenge  

 

Ransohoff and Feinstein (8) were among the first to report that the 

performance of a test in day-to-day circumstances may be misrepresented by 

clinical studies that include a too-narrow range of patients with the target 

condition or a too-narrow range of patients without target condition. They 

highlighted several factors that can affect diagnostic accuracy, including 

pathologic, clinical, and comorbid features. Three important underlying 

mechanisms can lead to variation: the severity of the target condition in 

diseased individuals, the alternative conditions in nondiseased individuals, and 

the presence of comorbid conditions in either diseased or nondiseased 

individuals. 

 

Severity of Target Condition 

Most diseases and other target conditions cover a continuum, ranging from 

the first pathologic changes to overt clinical disease. For the majority of tests, 

the ability to detect the target condition will depend on the severity of the 

target condition (8,9); e.g., larger tumors are more easily detected by imaging 

tests than smaller ones; larger myocardial infarctions produce higher 

concentrations of cardiac enzymes than smaller infarctions. Failure of the 

index test to identify the target condition in advanced cases is less frequent, 

yielding fewer false-negatives and more true-positives. This implies that in 

studies with a higher proportion of patients with more advanced stages of the 

target condition, estimates of sensitivities are likely to be more favorable. 

 

Alternative Diagnoses 

The type of alternative diagnosis present in individuals without the target 

condition can also influence the performance of a test. Some alternative 

diseases may produce pathophysiologic changes similar to those induced by the 

target condition, leading to false-positive test results. 

One example is the production of tumor markers by urinary tract infection 

rather than by cancer when these markers are used to identify patients with 
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bladder cancer (10). The exclusion of all patients with fever in a diagnostic 

study designed to evaluate the accuracy of urinary tumor markers in 

diagnosing bladder cancer could lead to a lower false-positive rate and, hence, a 

higher specificity. The exclusion of difficult patients for a particular test is 

known as limited challenge (11). 

 

Comorbid Conditions 

The presence of comorbid conditions can interfere with the performance of 

a test and can be responsible for false-positive or false-negative test results. 

Individuals who do not have the target condition but who suffer from other 

diseases can be expected to produce false-positive results more often than 

otherwise healthy individuals. Advanced age can also lead to changes in body 

composition and metabolism that produce false-positive test results, in 

particular for diagnostic tests that are based on increased concentrations of 

substances that are naturally present in low concentrations in the human body, 

such as hormones and enzyme markers. 

When a test is intended for patients with a broader age range, the 

predominant inclusion of individuals of advanced age could lead to increased 

challenge. An increase in false-positives can also occur when the sampling 

scheme focuses on the inclusion of patients with poor general health status. 

Individuals who do not have the target condition but who suffer from other 

diseases can be expected to produce false-positive results more often than 

healthy individuals. 

Alternatively, comorbid conditions can hinder the detection of the target 

condition by the index test, leading to false-negative results. ELISA tests in 

microbiology aim to detect specific antibodies produced in response to infection. 

False-negative ELISA results can occur if patients are immunocompromised, or 

take corticosteroids, and fail to produce sufficient antibodies when infected. 

Studies that exclude immunocompromised patients may produce more 

favorable sensitivities. Another example is antibiotics administered to 

hospitalized patients with unexplained fever when urinary cultures are used to 

detect urinary tract infection. The frequency of false-negative test results will 

be higher in patients taking antibiotics that reduce the growth of bacteria, 

thereby impairing detection. Studies excluding patients on antibiotics are 

likely to produce more favorable sensitivities compared with studies including 

patients on antibiotics. 
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The mechanisms discussed here explain why diagnostic accuracy is not a 

feature of the test itself but a description of how the test behaves in a 

particular clinical population. We will explore how these issues affect 

diagnostic case-control studies after introducing case-control studies in general. 

 

 

Case-Control Design in Etiologic Studies  

 

In epidemiology, case-control studies are used to answer questions about 

etiology. The typical way of thinking about etiology is from cause to effect; for 

example, to ascertain whether smoking causes lung cancer, one might imagine 

a study that enrolls a large group of apparently healthy men (presumably 

without lung cancer), measures the extent of their exposure (smoking), and 

uses follow-up to determine the incidence of lung cancer. In the analysis, the 

extent of exposure (amount of smoking) is related to the incidence of lung 

cancer to quantify the effect of smoking on the incidence of lung cancer. Such a 

design is known as a cohort study. One sine qua non for causality is 

temporality: the necessity that the cause precedes the disease in time. 

Etiologic case-control studies reverse the order of investigations and start 

at the end: individuals who have developed lung cancer (cases), the disease of 

interest, are compared with a group of individuals who are free of lung cancer 

(controls) and who represent the source population where the cases emerged 

from. For both groups, past exposure (smoking behavior) is determined. In the 

analysis, the relative frequency of exposure among cases and controls is 

compared with the calculation of an odds ratio, which is a measure of the 

relative risk (12). 

Case-control studies can lead to a considerable gain in efficiency compared 

with prospective cohort studies. The main reason is that researchers can 

bypass the time- and money-consuming efforts required by long-term follow-up 

of every person in the cohort to determine whether the event of interest will 

occur. In particular for diseases with a long latency period–a long period 

between first exposure and onset of disease–the savings in time and money can 

be substantial. In addition, case-control studies examine many fewer patients 

but can obtain the same results as cohort studies with only a small loss of 

precision. Especially when the absolute risk for disease occurrence is small, a 

cohort design requires a large cohort to reach adequate numbers of events with 
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sufficient power to estimate the association between exposure and disease, 

whereas a case-control design obtains approximately the same confidence 

interval by using all available cases but only a sample of the excessive number 

of potential controls from the source population. 

The information on past exposures of cases and controls often comes from 

interviews with cases and controls or from existing medical records. Erroneous 

estimation of exposure can occur for many reasons. When recall of exposure 

differs for cases and controls, recall bias, a form of information bias, presents a 

major threat for etiologic case-control studies (13,14). 

Confounding is an important issue in etiologic studies. A confounder is a 

variable responsible for a distorted reflection of the association between the 

exposure of interest and the outcome (12). Gender could be a confounder, for 

example, in the association between smoking and lung cancer. If women smoke 

less and have an inherently lower risk for lung cancer, the gender confounder 

may distort the calculated association between smoking and the occurrence of 

lung cancer. 

Sampling of cases and controls is critical in etiologic case-control studies, 

where a distinction can be biased between population-based and non-

population-based studies. In population-based studies, both cases and controls 

come from a well-defined source population. 

 

 

Case-Control Design in Diagnostic Studies  

 

The logical starting point for a prototypic diagnostic accuracy study is a 

consecutive series of individuals in whom the target condition is suspected. The 

index test is performed first in all participants, and subsequently, the presence 

of the target condition is determined by performing the reference standard (Fig. 

1A). This design resembles the cohort design in epidemiology because 

individuals are enrolled before the final outcome (presence or absence of the 

target condition) is known. 

The label diagnostic case-control studies has been used to refer to studies 

in which the disease status is already known before the index test is performed. 

This distinction explains the rationale for speaking about cases and controls. In 

this analogy, the outcome of interest has already been detected by the reference 

standard, and the index test is the exposure. 
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Unfortunately, this terminology can also lead to confusion, as there are 

some important differences between etiologic and diagnostic case-control 

studies. The fundamental difference between etiologic and diagnostic studies is 

that, unlike etiologic studies, diagnostic accuracy studies are cross-sectional in 

nature (7,15). Their aim is to compare the result of the index test with that of 

the reference standard in the same participant at the same time. In this, they 

differ from etiologic studies, in which there is a time window between exposure 

and the occurrence of disease. 

Etiologic studies want to eliminate confounding when assessing the effect 

of a potential causal exposure. In contrast, diagnostic associations between the 

index test and the reference standard are purely descriptive, without any 

causal connotation. Several important concerns in etiologic case-control studies 

do not transfer to diagnostic studies. An example is recall bias, a major source 

of information bias in case-control approaches within epidemiology, as 

explained above (13,14). 

Because of the cross-sectional nature of diagnostic case-control studies, 

some of the efficiency gains of etiologic research case-control studies do not 

apply in the diagnostic setting. Etiologic case-control studies can bypass the 

costly operation of following participants over time from exposure to occurrence 

of disease. These efficiency gains hardly apply in diagnostic research, where 

ideally, the index test and the reference standard would be performed at the 

same time. In diagnostic accuracy studies, case-control designs can bring other 

benefits, including efficiency gains, as explained below. 

 

 

Types of Case-Control Designs in Diagnostics Studies 

 

Reversed-Flow Designs: the Importance of a Single Gate  

The cross-sectional nature of accuracy studies is highlighted by considering 

a design in which the index test and reference standard are performed in 

reverse order (Fig. 1B). This design has been referred to as retrospective 

sampling, although data collection can be either prospective or retrospective 

(16). Often in such designs the reference test is applied only to a subsample of 

the participants with or without the target condition. Strictly speaking, these 

designs can also be labeled as case-control designs. To reduce confusion, 

however, we propose the label reversed-flow design for this setup. 
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Figure 1. Study designs discussed in this report. 

(A), classic design; (B), reversed-flow design; (C), two-gate design using healthy controls; (D), two-gate 
design using alternative diagnosis. 
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The reversed-flow design indeed bears some similarities to the population-

based case-control design in etiologic epidemiology. In a population-based case-

control design, both cases and controls are sampled from a single source 

population. In a reversed-flow diagnostic accuracy study, cases and controls are 

also sampled from the same patient population. 

Simply reversing the order in which the index test and reference standard 

are performed will not change estimates of diagnostic accuracy, such as 

sensitivity and specificity, as long as the same group of patients is included and 

all participants in the study undergo both the index test and reference 

standard. All patients pass through a single gate: a single set of criteria for 

study admission, typically defined by the clinical presentation. 

A reversed-flow design can have practical advantages, as when researchers 

adjust the order in which they perform the index test and reference standard in 

response to the availability of material and human resources. Another 

potential benefit can be seen in situations in which the prevalence of the target 

condition is low, when the index test is costly, or when this test has potential 

side effects. In these situations, a reversed-flow design enables the researcher 

to balance testing costs by taking a random sample of patients with a negative 

result on the reference standard and performing the index test only for these 

patients as well as for all reference-standard-positive patients (16). 

Smith et al. (17) used a reversed-flow study design to evaluate plasma B-

type natriuretic peptide in detecting left ventricular systolic dysfunction in 

elderly patients. They screened a random sample of 817 individuals from 

general practice with echocardiography. Random sub-samples of participants 

with (n= 12) and without (n= 143) left ventricular systolic dysfunction were 

then asked to undergo venipuncture to assess the concentration of B-type 

natriuretic peptide, the index test under study. 

In a study of second-trimester ultrasound to detect fetuses with Down 

syndrome, Bromley et al. (18) sampled all 53 fetuses with Down syndrome 

karyotypes from 4075 genetic amniocenteses. A subseries of 177 consecutive 

non-Down syndrome fetuses from the same set of amniocenteses served as 

controls. The authors then re-analyzed the previously performed ultrasound 

measurements in these 230 pregnancies only, rather than analyzing all 4075 

images. With random sampling, the estimate of specificity is expected to be 

valid at the expense of a minimal loss in precision for specificity, i.e., a slightly 

broader confidence interval. 
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Two-Gate Designs using Healthy Controls 

A different situation emerges when cases and controls are sampled from 2 

distinct source populations (Fig. 1C). Diseased individuals, for example, are 

sampled from a clinical (hospital) population, whereas young, healthy controls 

are sampled from the general population. We refer to this as a two-gate design 

using healthy controls. Two different sets of inclusion criteria (gates) are used: 

one for the diseased and another for the nondiseased participants. 

For the same test, studies with two-gate design using healthy controls 

have been shown to produce inflated estimates of diagnostic accuracy compared 

with studies using a cohort of consecutive patients (single-gate study) (1,5,6). 

On average, the diagnostic odds ratio was 3-fold higher in two-gate sampling 

using healthy controls vs single-gate studies (5). 

Spectrum effects and limited-challenge bias can explain the inflated 

accuracy measures in studies with two-gate sampling. Inclusion of individuals 

with advanced disease (the sickest of the sick) will generate fewer false-

negative test results than the inclusion of more patients with limited disease. 

Estimates of sensitivity, therefore, are likely to be more favorable. In addition, 

estimates of specificity are probably higher if healthy volunteers are used as 

controls. Most volunteers will be without complaints and, hence, unlikely to 

have alternative diagnoses that generate false-positive results (the fittest of the 

fit). 

Although the results of case-control studies with healthy volunteers may 

have limited applicability to clinically relevant situations, they can be useful in 

the early phase of the development of a test: to screen whether a test is of any 

use (4,7). Disappointing results in early studies with this design can be a 

reason to stop further development of the test. 

Healthy controls were used in the study of Che et al. (19), who evaluated a 

newly developed monoclonal antibody-based capture enzyme immunoassay for 

the detection of severe acute respiratory syndrome (SARS). The assay was 

tested in 13 patients with serologically confirmed SARS and in 1272 healthy 

blood donors. Specificity was high: 99% of the healthy volunteers had a 

negative test result. Because of the low prevalence of SARS worldwide (8422 

total cases) at the time of the study (20), a single-gate (cohort) design would 

have not been feasible. 
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Two-Gate Design with Alternative Diagnosis Controls 

A different form of two-gate sampling includes only control participants 

diagnosed with a specific alternative condition known to produce symptoms 

and signs similar to those of participants with the target condition (Fig. 1D). 

We refer to this design as a two-gate design with alternative diagnosis controls. 

As in any two-gate design, the selection of cases is crucial. An 

overrepresentation of patients with advanced disease will lead to inflated 

estimates of sensitivity, whereas overrepresentation of patients with mild 

disease will underestimate sensitivities. In a review evaluating the accuracy of 

urinary tumor markers in the detection of bladder cancer, Glas et al. (10) found 

that studies including cases with low-grade disease were associated with lower 

sensitivities than studies with single-gate sampling. 

Depending on the type of alternative diagnosis included, specificity may be 

over- or underestimated. In a single-gate design with appropriate sampling, all 

alternative diagnoses will be represented in the group of patients with a 

negative reference standard outcome, with the likelihood of a false-positive test 

result depending on the alternative diagnosis. Sampling patients with a single 

alternative diagnosis may generate more or fewer false-positive results, 

depending on the alternative diagnosis. 

The literature contains numerous examples of two-gate design with 

alternative diagnosis controls. Hoffman et al. (21) included 21 publications in a 

metaanalysis of the diagnostic performance of the ratio of free to total prostate-

specific antigen to detect prostate cancer. This set included 13 studies with a 

two-gate and 11 studies with a single-gate design. Three studies with a two-

gate design used healthy controls (22–24), whereas the other 9 two-gate studies 

used controls with benign prostatic hyperplasia (23–31). One two-gate study 

reported only that the controls had a negative biopsy (32). Although further 

description of the control group was lacking, it is likely that this study used 

controls with benign prostatic hyperplasia as well.  

Two-gate designs are often applied in clinical chemistry, where previously 

stored samples of blood and urine are used to evaluate a new test. In some 

studies, disease status is derived from patient charts. An adequate description 

of the study group is often lacking in the corresponding publications, 

complicating evaluation of the potential for bias (33). 

In general, two-gate designs with alternative diagnosis controls can be 

informative because they provide data on the likelihood of false-positive results 



Case-Control and Two-Gate Designs 

 

 25 

in specific subgroups. The proportion of patients with true-negative index test 

results, however, may not be equal to the specificity of the test. The latter 

equals the prevalence-weighted proportion of true-negatives over all 

alternative diagnoses in the clinical situation in which the test is to be applied. 

 

Two-Gate Design with Representative Sampling 

Estimates of sensitivity and specificity should be valid in a two-gate design 

if the group of cases is sampled in such a way that they match the group of 

reference-standard-positive patients in a single-gate design in terms of the 

spectrum of the target condition and if the group of controls matches the group 

of reference-standard-negative patients in terms of the relative representation 

of alternative conditions. We call this a two-gate design with representative 

sampling. 

The difference between a two-gate design with representative sampling 

and the reversed-flow design is that the two-gate design still has two sets of 

inclusion criteria: one for cases and one for controls. Such a two-gate design 

with representative sampling may be difficult to realize, and we are not aware 

of any examples in the literature. 

 

 

Summary 

 

Diagnostic accuracy studies in which the presence of the target condition is 

known before the index test is performed are typically referred to as diagnostic 

case-control studies. We have highlighted some fundamental differences 

between diagnostic and etiologic case-control studies. Because of the cross-

sectional nature of diagnostic case-control studies and the importance of timing 

in diagnostic research, not all efficiency gains in etiologic case-control studies 

transfer to the diagnostic setting. 

The applicability of findings from diagnostic case-control studies is 

determined by spectrum effects and limited challenge. The guiding principle in 

all epidemiologic studies is to match patient selection to the object of study. 

The same principle applies to diagnostic studies. In etiologic case-control 

studies, a differential selection of cases and controls according to exposure 

history will ruin the study, as cases and controls no longer represent the same 

population. The resulting odds ratio, therefore, will be invalid. The situation is 
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more complex in diagnostic studies because the object of a diagnostic accuracy 

study can vary, depending on the phase of test development. In an early phase 

of development, two-gate sampling studies with healthy controls or controls 

with a specific alternative diagnosis can be used to answer specific questions 

about a test’s potential or to study its behavior in specific subgroups of 

patients. These designs, however, may not provide information about a test’s 

specificity or sensitivity in the clinical setting in which it is to be applied. For 

that purpose, single-gate designs and reversed-flow designs are more 

appropriate. 

In this report, we have focused on issues of patient selection and how they 

can affect measures of diagnostic accuracy in case-control designs. Several 

other factors can also lead to bias or variation in accuracy studies (1). These 

factors include the use of suboptimal reference standards, as well as incomplete 

and differential verification. These types of biases are not specific to particular 

designs, and measures to avoid them can differ among designs. 

Because the accuracy of a test is likely to vary across subgroups of 

patients, researchers and clinicians might carefully consider the potential for 

spectrum effects in all designs and analyses, in particular in studies with two-

gate sampling. Critical appraisal of reports on diagnostic accuracy research can 

help investigators decide whether the evidence about a diagnostic test is valid, 

clinically relevant, and applicable to specific patient groups or individuals. For 

that purpose, investigators need information on the inclusion and exclusion 

criteria, settings and locations of data collections, and methods of participant 

recruitment and sampling (34,35). 
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Abstract 

 

Background: In diagnostic accuracy studies, index test results are verified 

by comparing them with results of the reference standard. In some studies 

there is partial verification, when not all those receiving the index test proceed 

to the reference standard, or differential verification, when more than one 

reference standards is used.  

Objectives and Methods: To explore the mechanisms that can lead to 

changes in accuracy estimates in studies with partial or differential 

verification. To discuss the possible directions of changes in estimates of 

accuracy. To provide practical guidance to researchers and readers when not all 

index test results can be verified by the same reference standard. 

Results: Incomplete verification with the preferred reference standard may 

occur by design, but more commonly occurs because the practitioner or patient 

decides to avoid verification by an invasive test. Incomplete verification is more 

likely to occur in patients in whom the index test is negative and in patients 

with a low prior probability of disease. Omission of unverified index test results 

(partial verification) usually leads to overestimation of sensitivity and 

underestimation of specificity. Use of a second reference standard for the 

initially unverified results (differential verification) leads to changes in 

estimates of accuracy that depend on both the associations between the index 

test and the reference standards and the proportions of people that are verified 

differently. For many likely scenarios, differential verification leads to higher 

estimates of the diagnostic odds ratio. 

Conclusion: When designing a diagnostic accuracy study, researchers 

should avoid partial and differential verification. If that is impossible and 

different reference standards are used, the best approach is to design the study 

so that all patients positive on the index test are verified by one reference 

standard and all patients negative on the index test are verified by the other 

reference standard. Appropriate measures of accuracy are then the positive and 

negative predictive values with the specified reference standards. When that is 

not done, data should be provided separately for each index test-reference 

standard combination.   

 



Partial and Differential Verification 

 

33 

Diagnostic accuracy is the ability of a test to correctly identify patients that 

have and those that do not have the condition of interest (target condition). In 

most cases, diagnostic accuracy is determined by comparing test results with 

results of the reference standard applied to the same patients. The reference 

standard is the best available method to establish the presence or absence of 

the target condition. Dichotomous test results can be summarized in a 2x2 

contingency table and expressed as the test’s sensitivity and specificity (Table 

1). The true positive (TP) and true negative (TN) cells contain the patients 

correctly classified by the index test. The false positive (FP) and false negative 

(FN) cells contain the misclassified patients.  

Verification of index test results by the preferred reference standard may 

be incomplete, especially with an invasive or costly reference standard. 

Omission of unverified patients from the 2x2 table results in partial 

verification. The problem of partial verification and its biasing effects are well 

described (1-4).  

A potential solution to the problem of partial verification is differential 

verification: the use of an additional reference standard to verify patients who 

do not undergo the preferred reference standard. Differential verification 

appears to escape the bias of partial verification, but may lead to estimates of 

diagnostic accuracy that differ from those obtained with full verification by the 

preferred reference standard (1). Differential verification has been shown to 

lead to higher estimates of accuracy than studies using a single reference 

standard (5,6). 

In this paper we discuss why incomplete verification by the preferred 

reference standard may occur and explore the mechanisms by which partial 

and differential verification affect estimates of accuracy. We provide practical 

guidance for researchers and readers for studies in which not all index test 

results can be verified by the same reference standard.  

 

 

Incomplete Verification by the Preferred Reference Standard 

 

Incomplete verification by the preferred reference standard may be 

planned by researchers or decided on an individual basis by the practitioner or 

patient. Incomplete verification can be planned when verification is considered 

infeasible or unethical in patients with a particular test result (7,8). For  
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example, to verify results of Positron Emission Tomography (PET) in staging 

esophageal cancer, only results of patients with PET lesions suggestive of 

distant metastases can be verified by histology. Histology cannot be used in 

PET negative patients. Table 2a2 presents an extreme case of incomplete 

verification by design, where all of the positive but none of the negative test 

results are verified by the preferred reference standard.  

Incomplete verification may also be designed for specific subgroups of 

patients. Consider the verification pattern in a study that aims to evaluate the 

accuracy of ultrasound (US) for the detection of Down syndrome in pregnant 

women. The reference standard amniocentesis is applied in all US positive 

results, in all US negative results if maternal age is above 35 years or if 

previous maternal serum biochemistry testing was positive, and not at all in 

US negative results in the absence of risk factors or previous positive test 

results. This verification pattern is an example of incomplete verification by 

design, where verification is restricted to certain predefined strata, or a 

random sample in these strata. Deliberate incomplete but random verification 

in specific index test strata can be used to improve the efficiency of test 

evaluation studies, in particular screening tests, where prevalence is low (9). 

In some situations where the use of the reference standard in all patients 

is feasible and planned by the researchers, verification may still turn out 
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incomplete. Incompleteness may be random, unrelated to test results or other 

patient characteristics, as could happen with partial unavailability of 

equipment or personnel to apply the reference standard. Table 2b2 is an 

example of incomplete verification occurring at random; 25% of the patients in 

all four cells of the Base Table are not verified by the preferred reference 

standard.  

In most cases, incomplete verification is neither specified in the design nor 

completely random. Triggers to perform the preferred reference standard in 

some patients and not in others include: positivity of index test result, the 

positivity of other test results or risk factors for the condition of interest, and 

comorbidity. The result is a selective pattern of verification, occurring because 

of practitioner or patient decisions. For example, the accuracy of dobutamine-

atropine stress echocardiography for the diagnosis of coronary artery disease 

was assessed using coronary angiography as the reference standard. In one 

study, only a small sample of patients received this reference standard (10) 

because of the practitioners’ decision to refer to angiography depended on the 

patient’s history and test results (11). In a study evaluating the accuracy of 

digital rectal examination (DRE) and prostate specific antigen (PSA) for the 

early detection of prostate cancer, 145 out of 1000 men fulfilled the criterion for 

verification by the reference standard, transrectal ultrasound (TRUS) and 

biopsy. Forty-six of these men did not agree to undergo the reference standard 

and another 9 patients remained unverified for unknown reasons (12). 

In general, patients with negative index test results are less likely to be 

verified by the reference standard than patients with positive test results, as 

they are less likely to have the target condition. In addition, patients with the 

target condition are more likely to be verified than those without the target 

condition among both patients with a positive index test result and patients 

with a negative index test result. This occurs because other results, such as 

patient characteristics or results from previous tests, known to be associated 

with the presence or absence of the target condition, may be available to the 

clinician deciding on who is to be verified by the reference standard. As a 

result, the fraction of non-verified test results is smallest in the group that, if 

tested and verified by the preferred reference standard, would be classified as 

true positives. The non-verified fraction will be larger in those that, if tested 

and verified by the preferred reference standard, would be classified as false 

positives and false negatives, and largest in those that, if tested and verified by 
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Table 2. Continued 
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Faced with incomplete verification by the preferred reference standard, 

researchers have two options to deal with this incompleteness: partial or 

differential verification. Starting with a hypothetical example in which all 

patients receive the preferred reference standard (Table 1), we will explain and 

document changes in accuracy measures that occur due to partial or 
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Formulae to calculate estimates of accuracy are given in Table 1. 
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2a2). From the row with the positive index test results, only the positive 

predictive value can be calculated. This estimate will be unbiased in our 

example, since all positive test results were verified.  

In the scenario leading to Table 2b2, 25% of the patients in each of the 4 

cells was not verified, a case of incomplete but purely random verification. In 

that case, estimates of sensitivity and specificity, predictive values and the 

diagnostic odds ratio (DOR) will be unbiased. The estimates in Table 2b2 are, 

except for their precision, identical to the estimates based on the Base Table. 

A scenario leading to selective partial verification is summarized in Table 

2c2. Compared to the Base Table, there are higher values for both sensitivity 

and positive predictive value, while specificity and negative predictive values 

are lower. In this example, the estimated diagnostic odds ratio is also lower. 

Partial verification, when not completely at random, can prohibit or affect 

the calculation of estimates of accuracy. Estimates of accuracy can be 

mathematically corrected if verification is random within specific patient 

profiles, based on patient characteristics or test results, and verification 

fractions in these strata are known (13-16). 

 

Differential Verification 

Instead of ignoring non-verified results in the analysis, an additional 

reference standard can be used to achieve complete verification: this is called 

differential verification. The second reference standard is usually a test that is 

less invasive, costly or burdensome to patients, for example clinical follow-up.  

The effects of differential verification on estimates of diagnostic accuracy 

will depend on the characteristics of the two reference standards and their 

relation with the index test. In Table 2a2, 2b2 and 2c2, we display 3 

hypothetical fractions of unverified patients, in whom we now apply an 

alternative reference standard. 

Table 2a3 and 2a4 present an example of design-based differential 

verification. No test negatives were verified by the preferred reference 

standard in this extremely design constrained example and an alternative 

standard was used for all index test negative results, as displayed in Table 2a3.   

We now compare results of the index test-alternative standard to results of 

the index test-preferred reference standard combination. Among the index test 

negative patients, 20 false negatives (if evaluated by the preferred reference 

standard) are now labeled as true negatives, as the alternative standard has 
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classified 20 additional patients with a negative index test result as non-

diseased (true negative results).  

In the example of PET for the staging of esophageal cancer, clinical follow-

up could have been used as alternative reference standard in the verification of 

PET negative results. Compared to histology, the preferred reference standard, 

clinical follow-up is likely to have a higher implicit threshold to detect cancer, 

so it will label more patients as non-diseased. In addition, clinical follow-up 

focuses on a different disease manifestation compared to PET. It is therefore 

likely that the miss-rate of cancer by PET is unrelated to the miss-rate by 

clinical follow-up, possibly leading to higher disagreement between the two 

tests. If all PET results were verified by clinical follow-up, rather than with 

histology, estimates of accuracy might have been quite different.  

If we evaluate the results derived with the alternative reference standard 

in table 2a3, only the negative predictive value (NPV) can be calculated, which 

increases from 95% (Base Table) to 97%. We denote all other estimates of 

accuracy as undefined, since they can not be calculated per index test-reference 

standard combinations. 

Complete but differential verification can be achieved by combining the 

results of the two index-reference standard combinations (Table 2a4). 

Combining these results leads to a net increase in sensitivity, specificity and 

NPV. The reduction of the number of false negatives from 40 to 20 has a large 

effect on the DOR, which increases from 36 in the Base Table, to 74 in the 

combined table. Compared to the Base Table, the interpretation of results of 

the combined table is less straightforward. Two reference standards are used 

that may differ in the disease manifestation they aim to detect, and differ in 

the relation they have with the index test results. Although it is appealing to 

look primarily at the sensitivity, specificity or DOR as expressions of the 

diagnostic accuracy of the index test, it is conceptually less appropriate, as 

these statistics are now based on two different standards. Recent management 

studies, evaluating the management of patients with suspected pulmonary 

embolism, have reported detection rates and predictive values instead of 

estimates of sensitivity and specificity (17-21). 

If verification by the first reference standard was completely at random, 

and an alternative reference standard is used to verify the remaining results, 

estimates of diagnostic accuracy will be affected. The upper row in Table 2b3 

shows that, in total, 60 index positive results have been verified by the 
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alternative reference standard. If the preferred standard is histology and the 

alternative standard is clinical follow-up, then some of these patients that 

would have been classified by histology as diseased, would now be labelled non-

diseased. In our example, the net result is that 3 patients move from the TP 

cell towards the FP cell. The lower row shows a shift of 5 patients from the FN 

to the TN cell. In this case, the combination of index test with the alternative 

reference standard gives slightly different results than the combination of the 

index test with the preferred reference standard. The largest difference can be 

observed in the sensitivity (88% versus 80%) and DOR (60 versus 36). 

Consequently, the accuracy estimates with differential verification, combining 

both reference standards, will be different (Table 2b4). The larger the random 

fraction of index test results verified differently, the greater the difference from 

the Base Table. The combined table using both reference standards (Table 2b4) 

shows estimates that are intermediate between the 2 constituent tables 2b2 

and 2b3.  

Our last example is a combination of stratum specific but selective 

differential verification, which is probably the most commonly pattern of 

differential verification (Table 2c4). We now apply an alternative standard to 

the unverified fractions of Table 2c2. As in table 2b, the alternative standard 

has a higher threshold to label patients as diseased compared to the preferred 

reference standard. The results are presented in Table 2c3. The horizontal 

shifts in the upper and lower row indicate that the index-reference standard 

relationship differs for the preferred and the alternative reference standard. 

Some of this difference is due to the different reference standards and some to 

the nature of the populations that are assessed by the different reference 

standards. The net result is that, among index positive results, the alternative 

standard classifies 5 additional patients as non-diseased. The horizontal shift 

of 5 patients from the true positive to the false positive cell causes a drop in the 

PPV. Among index negative results, an additional 15 patients are now 

classified as non-diseased, leading to an increased NPV. As a result of the 

horizontal shifts, the ratio between the cells displayed in the columns of the 

2x2 table changes as well, leading to increased estimates of specificity and 

NPV, whereas the DOR decreases. 

Combining the results of both index-reference standards gives Table 2c4. 

Complete verification is now accomplished, but the table in 2c4 presents 

estimates of accuracy that differ from those in the Base Table. This is 
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particularly noticeable for the DOR, which is considerably higher than the 

DOR for the base table and for both constituent tables (2c2 and 2c3) that were 

combined to create table 2c4. If such tables, based on differential verification, 

are used to calculate test characteristics, all estimates of accuracy, but 

especially the DOR, should be interpreted with caution. The combination of 

patient characteristics and index test results will often drive the referral to 

specific reference standards. Consequently, each subgroup of a summary table 

has a different risk of being diagnosed with the disease. Because of the 

inherent differences in patient characteristics between subgroups, the relation 

between index test and a reference standard will also differ. 

 

 

Discussion  

 

Both partial and differential verification can lead to changes in estimates 

of a test’s diagnostic accuracy. With partial verification, changes in estimates 

occur by ignoring selective non-verification. With differential verification, 

changes in estimates occur through a different system of classifying patients as 

having or not having the target condition.  

We have dealt with partial verification and differential verification from 

the perspective of a prospectively planned cohort study. The same issues can 

occur in retrospectively planned studies but they may be more difficult to 

detect. In these situations there is often limited information on the number, 

reasons and clinical characteristics of partially and/or differentially verified 

patients.  

Verification problems may also arise in prospectively planned diagnostic 

case-control studies, where the disease status is already ascertained before the 

index test result is obtained. Preferential verification, either partial or 

differential, is independent of the index test result, but could have been 

influenced by other factors, like the presence of risk factors or the availability 

of other test results.  

The best method for dealing with verification problems is to avoid them 

altogether, by choosing a reference standard that fits the research question and 

aiming at complete verification with that reference standard. If incomplete 

verification cannot be avoided, the study is prone to produce biased estimates 

of accuracy, which are difficult to correct. Whether verification is partial or 
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differential, it should be reported whether it occurred by design or was 

uncontrolled and open to influence by patient and practitioner choice. The 

interpretation of a test’s accuracy is helped by the presentation of a flow chart 

that illustrates the diagnostic work-up in all patient groups (22-24). 

The problem of incomplete verification can not be solved by the application 

of alternative standards, leading to differential verification. We have shown 

that differential verification may affect estimates of accuracy up- or downwards 

and often may result in higher estimates of the diagnostic odds ratio. When 

complete verification by a single reference standard is not possible, it is 

preferable to use a designed approach, for example by applying one reference 

standard to all index test positive patients and the alternative standard to all 

index test negative patients. This design enables the calculation of predictive 

values for both index test-reference standard combinations. In all cases, data 

should be provided separately for each index test - reference standard 

combination.  
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Abstract 
 

Background: Studies of diagnostic accuracy are subject to different sources 

of bias and variation than studies that evaluate the effectiveness of an 

intervention. Little is known about the effects of these sources of bias and 

variation.  

Purpose: To summarize the evidence on factors that can lead to bias or 

variation in the results of diagnostic accuracy studies.  

Data Sources: MEDLINE, EMBASE, and BIOSIS, and the methodologic 

databases of the Centre for Reviews and Dissemination and the Cochrane 

Collaboration. Methodologic experts in diagnostic tests were contacted.  

Study Selection: Studies that investigated the effects of bias and variation 

on measures of test performance were eligible for inclusion, which was assessed 

by one reviewer and checked by a second reviewer. Discrepancies were resolved 

through discussion.  

Data Extraction: Data extraction was conducted by one reviewer and 

checked by a second reviewer.  

Data Synthesis: The best-documented effects of bias and variation were 

found for demographic features, disease prevalence and severity, partial 

verification bias, clinical review bias, and observer and instrument variation. 

For other sources, such as distorted selection of participants, absent or 

inappropriate reference standard, differential verification bias, and review 

bias, the amount of evidence was limited. Evidence was lacking for other 

features, including incorporation bias, treatment paradox, arbitrary choice of 

threshold value, and dropouts.  

Conclusions: Many issues in the design and conduct of diagnostic accuracy 

studies can lead to bias or variation; however, the empirical evidence about the 

size and effect of these issues is limited.  
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Diagnostic tests are of crucial importance in health care. They are performed to 

reduce uncertainty concerning whether a patient has a condition of interest. A 

thorough evaluation of diagnostic tests is necessary to ensure that only 

accurate tests are used in practice. Diagnostic accuracy studies are a vital step 

in this evaluation process.  

Diagnostic accuracy studies aim to investigate how well the results from a 

test being evaluated (index test) agree with the results of the reference 

standard. The reference standard is considered the best available method to 

establish the presence or absence of a condition (target condition). In a classic 

diagnostic accuracy study, a consecutive series of patients who are suspected of 

having the target condition undergo the index test; then, all patients are 

verified by the same reference standard. The index test and reference standard 

are then read by persons blinded to the results of each, and various measures 

of agreement are calculated (for example, sensitivity, specificity, likelihood 

ratios, and diagnostic odds ratios).  

This classic design has many variations, including differences in the way 

patients are selected for the study, in test protocol, in the verification of 

patients, and in the way the index test and reference standard are read. Some 

of these differences may bias the results of a study, whereas others may limit 

the applicability of results. Bias is said to be present in a study if distortion is 

introduced as a consequence of defects in the design or conduct of a study. 

Therefore, a biased diagnostic accuracy study will produce estimates of test 

performance that differ from the true performance of the test. In contrast, 

variability arises from differences among studies, for example, in terms of 

population, setting, test protocol, or definition of the target disorder (1). 

Although variability does not lead to biased estimates of test performance, it 

may limit the applicability of results and thus is an important consideration 

when evaluating studies of diagnostic accuracy.  

The distinction between bias and variation is not always straightforward, 

and the use of different definitions in the literature further complicates this 

issue. For example, when a diagnostic study starts by including patients who 

have already received a diagnosis of the target condition and uses a group of 

healthy volunteers as the control group, it is likely that both sensitivity and 

specificity will be higher than they would be in a study made up of patients 

only suspected of having the target condition. This feature has been described 

as spectrum bias. However, strictly speaking, one could argue that it is a form  
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Table 1. Description of Sources of Bias and Variation 
Source Bias or 

variation 
Description  

 
Population 
Demographic 
features 

Variation Tests may perform differently in various samples. Therefore, demographic 
features may lead to variations in estimates of test performance. 

Disease Severity Variation Differences in disease severity among studies may lead to differences in 
estimates of test performance. 

Disease 
prevalence 

Variation The prevalence of the target condition varies according to setting and may 
affect estimates of test performance. Context bias, the tendency of interpreters 
to consider test results to be positive more frequently in settings with higher 
disease prevalence, may also affect estimates of test performance. 

Distorted selection 
of participants 

Variation The selection process determines the composition of the study sample. If the 
selection process does not aim to include a patient spectrum similar to the 
population in which the test will be used in practice, the results of the study may 
have limited applicability. 

Test protocol: materials and methods of testing 
Test execution Variation A sufficient description of the execution of index and reference standards is 

important because variation in measures of diagnostic accuracy can be the 
result of differences in test execution. 

Test technology Variation When the characteristics of a diagnostic test change over time as a result of 
technological improvement or to the experience of the operator of the test, 
estimates of test performance may be affected. 

Treatment paradox 
and disease 
progression bias 

Bias Disease progression bias occurs when the index test is performed an unusually 
long time before the reference standard, so the disease is at a more advanced 
stage when the reference standard is performed. Treatment paradox occurs 
when treatment is started based on the basis of the knowledge of the results of 
the index test, and the reference standard is applied after treatment has started. 

Reference standard and verification procedure 
Inappropriate 
reference standard 

Bias Errors of imperfect reference standard or standards bias the measurement of 
diagnostic accuracy of the index test.   

Differential 
verification bias 

Bias Part of the index test results is verified by a different reference standard.  

Partial verification 
bias 

Bias Only a selected sample of patients who underwent the index test is verified by 
the reference standard. 

Interpretation (reading process) 
Review bias Bias Interpretation of the index test or reference standard is influenced by knowledge 

of the results of the other test. Diagnostic review bias occurs when the results of 
the index test are known when the reference standard is interpreted. Test 
review bias occurs when results of the reference standard are known while the 
index test is interpreted. 

Clinical review bias Variation The availability of information on clinical data, such as age, sex and symptoms, 
during interpretation of test results may affect estimates of test performance. 

Incorporation bias Bias The result of the index test is used to establish the final diagnosis. 
 

Observer variability Variation The reproducibility of test results is one of the determinants of diagnostic 
accuracy of an index test. Because of variation in laboratory procedures or 
observers, a test may not consistently yield the same result when repeated.  
In two or more observations of the same diagnostic study, intraobserver 
variability occurs when the same person obtains different results, and 
interobserver variability occurs when two or more people disagree. 

Analysis 
Handling of 
indeterminate 
results 

Bias A diagnostic test can produce an uninterpretable result with varying frequency 
depending on the test. These problems are often not reported in test efficacy 
studies; the uninterpretable results simply removed from the analysis. This may 
lead to the biased assessment of the test characteristics.   

Arbitrary choice of 
threshold value 

Variation The selection of the threshold value for the index test that maximises the 
sensitivity and specificity of the test may lead to overoptimistic measures of test 
performance. The performance of this cutoff in an independent set of patients 
may not be the same as in the original study.  
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of variability; sensitivity and specificity have been measured correctly within 

the study and thus there is no bias; however, the results cannot be applied to 

the clinical setting. In other words, they lack generalizability (2). Others have 

argued that when the goal of a study is to measure the accuracy of a test in the 

clinical setting, an error in the method of patient selection is made that will 

lead to biased estimates of test performance. They use a broader definition of 

bias and take into account the underlying research question when deciding 

whether results are biased. In this paper, we use a more restricted definition of 

bias.  

Our goal is to classify the various sources of variation and bias, describe 

their effects on test results, and provide a summary of the available evidence 

that supports each source of bias and variation (Table 1). For this purpose, we 

conducted a systematic review of all studies in which the main focus was 

examine the effects of one or more sources of bias or variation on estimates of 

test performance. 

 

 

Methods 
 

Literature Searches 

 

We searched MEDLINE, EMBASE, BIOSIS and the methodologic 

databases of the Centre for Reviews and Dissemination and the Cochrane 

Collaboration from database inception to 2001. Search terms included 

sensitivit*, mass-screening, diagnostic-test, laboratory-diagnosis, false 

positive*, false negative*, specificit*, screening, accuracy, predictive value*, 

reference value*, likelihood ratio', sroc, and receiver operat* characteristic*. 

We also identified papers that had cited the key papers. Complete details of the 

search strategy are provided elsewhere (3). We contacted methodologic experts 

and groups conducting work in this field. Reference lists of retrieved articles 

were screened for additional studies.  

All studies with the main objective of addressing bias or variation in the 

results of diagnostic accuracy studies were eligible for inclusion. Studies of any 

design, including reviews, and any topic area were eligible. Studies had to 

investigate the effects of bias or variation on measures of test performance, 

such as sensitivity, specificity, predictive values, likelihood ratios, and 
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diagnostic odds ratios, and indicate how a particular feature may distort these 

measures. Inclusion was assessed by one reviewer and checked by a second 

reviewer; discrepancies were resolved through discussion.  

One reviewer extracted data and a second reviewer checked data on the 

following parameters: study design, objective, sources of bias or variation 

investigated, and the results for each source. Discrepancies were resolved by 

consensus or consultation with a third reviewer.  

We divided the different sources of bias and variation into groups (Table 

1). Table 1 provides a brief description of each source of bias and variation; 

more detailed descriptions are available elsewhere (3). Results were stratified 

according to the source of bias or variation. Studies were grouped according to 

study design. We classified studies that used actual data from one or more 

clinical studies to demonstrate the effect of a particular study feature as 

experimental studies, diagnostic accuracy studies, or systematic reviews. 

Experimental studies were defined as studies specifically designed to test a 

hypothesis about the effect of a certain feature, for example, rereading sets of 

radiographs while controlling (manipulating) the overall prevalence of 

abnormalities. Studies that used models to simulate how certain types of biases 

may affect estimates of diagnostic test performance were classified as modeling 

studies. These studies were considered to provide theoretical evidence of bias or 

variation.  

The funding source was not involved in the design, conduct, or reporting of 

the study or in the decision to submit the manuscript for publication.  

 

 

Data Synthesis 
 

The literature searches identified a total of 8663 references. Of these, 569 

studies were considered potentially relevant and were assessed for inclusion; 

55, published from 1963 to 2000, met inclusion criteria. Nine studies were 

systematic reviews, 16 studies used an experimental design, 22 studies were 

diagnostic accuracy studies, and 8 studies used modeling to investigate the 

theoretical effects of bias or variation.  
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Population 
 

Demographic Features 

Ten studies assessed the effects of demographic features on test 

performance (Table 2) (4,5,7,9,11,14,15,20,22,24). Eight studies were diagnostic 

accuracy studies, and 2 were systematic reviews. All but one study (22) found 

an association between the features investigated and overall accuracy. The 

study that did not find an association investigated whether estimates of 

exercise testing performance differed between men and women; after correction 

for the effects of verification bias, no significant differences were found (22).  

In general, the studies found associations between the demographic factors 

investigated and sensitivity; the reported effect on specificity was less strong. 

Four studies found that various factors, including sex, were associated with 

sensitivity but showed no association with specificity (4,5,11,20). The index 

tests investigated in these studies were exercise testing (5,11,20) to diagnose 

heart disease and body mass index to test for obesity (4). Two additional 

studies of exercise testing also reported an association with sensitivity, but the 

effects on specificity differed. One found that factors that lead to increased 

sensitivity also lead to a decrease in specificity (14); the second reported higher 

sensitivity and specificity in men than in women (16). A study of the diagnostic 

accuracy of an alcohol screening questionnaire found that overall accuracy was 

increased in certain ethnic groups (24). Sex was the most commonly 

investigated variable. Three studies found no association between test 

performance and sex, 9 found significant effects on sensitivity, and 4 found 

significant effects on specificity. Other variables shown to have significant 

effects on test performance were age, race, and smoking status.  

 

Disease Severity 

Six studies looked at the effects of disease severity on test performance 

(Table 2) (5,11,14,19,23,25). Three studies were diagnostic accuracy studies, 2 

were reviews, and one used modeling to investigate the effects of differences in 

disease severity. The modeling study also included an example from a 

diagnostic accuracy study of tests for the diagnosis of ovarian cancer (25). 

Three studies investigated tests for heart disease (5,11,14), one examined 

ventilation–perfusion lung scans for diagnosing pulmonary embolism (23), and  
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Table 2. Population* 

Study, Year 
(Reference) 
 

Design 
 

Index Test 
 

Study Sample 
 

Curtin et al., 1997 (4) Diagnostic accuracy Body mass index 226 white persons 
Detrano et al., 1988 (5)  
Detrano et al., 1988 (6) 
 
 

Review 
 
 
 

Exercise thallium 
 scintigraphy 
 
 
 

56 primary studies 
 
 
 

Detrano et al., 1989 (7)  
 

Review 
 

Exercise 
 electrocardiography 
 

60 primary studies 
 

Egglin and Feinstein, 
1996 (8)  

Experimental 
 

Pulmonary arteriography 
 

24 arteriograms 
 

Hlatky et al., 1984 (9)  
 
 

Diagnostic accuracy 
 
 

Exercise 
 electrocardiography 
 
 

2269 patients 
 
 

Lachs et al., 1992 (10)  Diagnostic accuracy Dipsticks 366 consecutive patients 
Levy et al., 1990 (11)  
 
 
 
 

Diagnostic accuracy 
 
 
 

Electrocardiography 
 
 
 

4684 patients with suspected l
 eft ventricular hypotrophy 
 

Lijmer et al., 1999 (12) 
 
 
 

Review 
 
 
 

Various tests 
 
 
 

184 primary studies of 218 
 tests 
 
 

Melbye and Straume, 
1993 (13) 

Diagnostic accuracy Clinical cues 581 patients with suspected 
 pneumonia 

Moons et al., 1997 (14) 
 
 
 

Diagnostic accuracy 
 
 
 

Exercise test 
 
 
 

295 consecutive patients with 
 heart pain 
 
 

Morise and Diamond, 
1994 and 1995 (15, 16) 

Diagnostic accuracy 
 

Exercise 
 electrocardiography 

4467 patients with suspected  
 coronary disease 

O’Connor et al., 1996 
(17) 

Diagnostic accuracy Magnetic resonance 
 imaging and evoked 
 potentials 

303 patients with suspected  
 multiple sclerosis 

Philbrick et al., 1982 
(18) 

Diagnostic accuracy Graded exercise tests 
 
 

208 consecutive patients 
 evaluated for coronary 
 arterial disease 

Ransohoff and 
Feinstein, 1978 (19)  
 

Review 
 
 

Carcinoembryonic antigen 
 and nitroblue tetrazolium 
 tests 

17 studies of carcino-
 embryonic antigen and 16 
 of nitroblue tetrazolium 

Roger et al., 1997 (20)  Diagnostic accuracy Exercise echocardiography 3679 consecutive patients 
Rozanski et al., 1983 
(21)  

Diagnostic accuracy Exercise radionuclide  
 ventriculograph 

77 angiographically normal 
  patients 

Santana-Boado et al., 
1998 (22)  

Diagnostic accuracy Single-photon emission 
 computed tomography 

702 consecutive patients 
evaluated for coronary disease 

Stein et al., 1993 (23)  Diagnostic accuracy Ventilation/perfusion scan 1050 patients 
Steinbauer et al., 1998 
(24)  

Diagnostic accuracy Screening tests for alcohol 
 abuse 

1333 adut family practice 
 patients 

Taube and Tholander, 
1990 (25)  

Modeling and diagnostic 
accuracy 

Tests for epithelial ovarian 
 cancer 

168 patients with ovarian 
 carcinoma 

van der Schouw et al., 
1995 (26)  

Diagnostic accuracy Ultrasonography 483 consecutive patients; 372 
 included 

Van Rijkom et al., 1995 
(27)  

Review 
 
 

Tests for approximal caries 
 
 

39 sets of sensitivity and  
 specificity data 
 

*NA = not applicable; ↑ = increased; ↓ = decreased. 



Sources of Variation and Bias: a Systematic Review  

 

 53 

Table 2–Continued 

Source of Bias 
or Variation 

Factors Investigated Effect on 
sensitivity 

Effect on 
Specificity 

Effect on 
Overall 
Accuracy 

Demographic features Increased weight; sex (female) ↑ None NA 
Demographic features 
Distorted selection of 
participants 
Disease severity 

Sex, age, and medication use 
Avoidance of limited challenge 
 group 
Inclusion of patients with previous 
 myocardial infarction 

Associated 
None 
↑ 
 

None 
None 
None 
 

NA 
 
NA 
 

Demographic features 
 

Various patient-related 
 characteristics (all are not 
 associated) 

Associated 
 

Associated 
 

NA 
 

Disease prevalence 
 

Context of interpretation: effect of  
 increased disease prevalence 

↑ 
 

None 
 

NA 
 

Demographic features 
 

Exercise heart rate, number of 
 diseased arteries, type of angina, 
 age, and sex 
 

Associated 
 
 

Associated 
 
 

NA 
 
 

Disease prevalence High pretest probability of disease ↑ ↓ NA 
Demographic features 
 
 
Disease severity 

Sex (male), increased age, 
 decreased body mass index, not 
 smoking 
Increased severity of left ventricular 
 hypertrophy 

↑ 
 
↑ 
 

None 
 
None 
 

NA 
 
NA 
 

Distorted selection of 
participants 
 
 

Diagnostic case-control studies  
Nonconsecutive patient enrollment 
Retrospective study design 
Failure to describe patient spectrum 

NA 
NA 
NA 
NA 

NA 
NA 
NA 
NA 

↑ 
None 
None 
↑ 

Disease prevalence 
 

Increased prevalence 
 

↑ 
 

↓ 
 

NA 
 

Demographic features 
 
 
Disease severity 

Sex, workload, diabetes, smoking,  
 cholesterol level (all are not  
 associated) 
Number of diseased vessels 

↑ 
 
 
↑ 

↓ 
 
 
None 

NA 
 
 
NA 

Demographic features 
 

Men 
 

↑ 
 

↑ 
 

NA 
 

Disease prevalence 
 
 

Increased prevalence 
 
 

↑ 
 
 

None 
 
 

NA 
 
 

Distorted selection of 
participants 
 

Exclusion of patients with other 
 clinical conditions 
 

NA 
 
 

NA 
 
 

↑ 
 
 

Disease severity 
 
 

Extensive disease 
 

↑ 
 

None 
 

NA 
 

Demographic features Sex (male) ↑ None NA 
Disease prevalence 
 

Increased prevalence 
 

Not reported 
 

↓ 
 

NA 
 

Demographic features 
 

Sex 
 

None 
 

None 
 

NA 
 

Disease severity Previous pulmonary disease ↑ None NA 
Demographic features 
 

Race and sex 
 

NA 
 

NA 
 

Associated 
 

Disease severity 
 

Clear cases of malignant disease 
 

↑ 
 

Not reported 
 

NA 
 

Disease prevalence 
 

Increased prevalence (inclusion 
 criteria widened) 

↑ 
 

↑ 
 

NA 
 

Distorted selection of 
participants 
 

In vivo studies compared with in 
 vitro studies 
 

NA 
 
 

NA 
 
 

↑ 
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Table 3. Test Protocol: Materials and Methods* 

Study, Year 
(Reference) 
 

Design 
 

Index Test 
 

Study Sample 
 

 
Detrano et al., 1988 (6) 
 
 
 

 
Review 

 
Exercise 
electrocardiography 

 
60 primary studies 
 

Froelicher et al., 1998 (28) Diagnostic accuracy 
 

Electrocardiography and 
angiographic calipers 

814 consecutive patients with 
angina pectoris 

Lijmer et al., 1999 (2) 
 
 

Review Various tests 184 primary studies of 218 
tests 

*NA = not applicable; ↑ = increased; ↓ = decreased. 

 

 

one investigated 2 different laboratory tests (one for cancer and the other for 

bacterial infections) (19). All 6 studies found increased sensitivity with more 

severe disease; 5 found no effect on specificity (5,11,14,19,23), and one did not 

comment on the effects on specificity (25).  

 

Disease Prevalence 

Six studies looked at the effects of increased disease prevalence on test 

performance (Table 2) (8,10,13,17,21,26). One study used an experimental 

design (8); the other studies were all diagnostic accuracy studies. The tests 

investigated in these studies covered a wide range of topics: dipstick for 

diagnosing urinary tract infection (10), magnetic resonance imaging and 

evoked potentials for diagnosing multiple sclerosis (17), exercise testing for 

diagnosing coronary artery disease (21), lung scans for diagnosing pulmonary 

embolism (8), clinical indications for diagnosing pneumonia (13), and 

ultrasonography for diagnosing epididymitis (26). Only 5 of the studies 

reported on the effects of disease prevalence on sensitivity; all found an 

increase in sensitivity with increased disease prevalence (8,10,13,17,26). These 

studies also investigated the effects of increased disease prevalence on 

specificity and found mixed results; 2 found that specificity decreased (10,13), 2 

found no effect (8,17), and one reported increased specificity (26). The 

remaining study looked only at the effects of disease prevalence on specificity, 

which was found to decrease (21).  
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Table 3–Continued 

Source of Bias 
or Variation 

Factors Investigated Effect on 
sensitivity 

Effect on 
Specificity 

Effect on 
Overall 
Accuracy 

 
Test execution 
Test technology 
Disease progression 
 bias 

 
Exercise protocol 
Automation of test 
Maximum interval between 
scintigraphy and angiography 

 
None 
↑ 
None 

 
None 
↓ 
None 

 
NA 
NA 
NA 

Test technology 
 

Computerised readings None None NA 

Test execution Failure to describe index test  
 execution; failure to describe  
 reference standard execution 

NA 
 
NA 

NA 
 
NA 

↑ 
 
↓ 

 

 

Distorted Selection of Participants 

Four studies examined the effects of distorted selection of participants on test 

performance (Table 2) (5,12,18,27). A diagnostic accuracy study of exercise 

testing for heart disease found that overall accuracy was overestimated if 

reasons for exclusion commonly used by researchers were applied (18). The 

other 3 studies were reviews. The first, a review of the clinical and radiologic 

diagnosis of caries, found that in vivo studies gave higher estimates of test 

performance than in vitro studies (27). A review of exercise testing for heart 

disease found that avoiding a limited challenge group (that is, including 

patients with other confounding diseases or patients taking medications 

thought to produce false-positive results) did not have significant effects on 

overall accuracy (5). The final study, which reviewed many different tests, 

found that case–control studies overestimate overall accuracy; it also found 

that nonconsecutive patient enrollment and a retrospective study design did 

not affect the diagnostic odds ratio (12). This review also looked at the effects of 

failure to provide an appropriate description of the patient sample and found 

that this was associated with increased overall accuracy.  

 

 

Test Protocol: Materials and Methods 
 

Test Execution 

We found only 2 studies, both reviews, that specifically looked at the 

effects of differences in test execution (Table 3) (6,12). The first, a review of 

several different tests, found that failure to describe the index test and 
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reference standard execution leads to an overestimation of overall accuracy 

(12). The other found no effect of differences in protocol on overall accuracy in 

exercise testing (6).  

 

Test Technology 

Two studies looked at the effects of a change in the technology of the index 

test on test performance (Table 3) (6,28). A systematic review of exercise 

scintigraphy studies found that automation of the test procedure improved 

sensitivity but decreased specificity (6). The other study, a diagnostic accuracy 

study of the electrocardiographic exercise test, found no effect on test 

performance (28).  

 

Treatment Paradox and Disease Progression Bias 

No studies that provided evidence of the effect of treatment paradox were 

identified. Only one study that looked at the effects of disease progression bias 

on test performance was found. This study, a review of exercise scintigraphy for 

the diagnosis of heart disease, found no evidence of bias (6).  

 

 

Reference Standard and Verification Procedure 
 

Inappropriate Reference Standard 

Eight studies looked at reference standard error bias (Table 4) (6,7,27,29, 

31,34,41,43). Four were systematic reviews, and the other 4 used modeling to 

investigate the theoretical effects of an imperfect reference standard. The 

reviews looked at reference standard error bias from slightly different 

perspectives, but all found evidence of bias. A review of patients who received a 

diagnosis of caries found that weaker validation methods may overestimate 

overall accuracy (27). A review of a hormone test for the diagnosis of depression 

found that different reference standards can provide very different estimates of 

sensitivity (29). A review of exercise scintigraphy for the diagnosis of heart 

disease found that studies that used a specific reference standard (tomographic 

imaging) overestimated sensitivity and specificity compared with other studies 

(6). The last review, which dealt with exercise electrocardiography for heart 

disease, found that comparison with a more accurate test leads to increased 

sensitivity but did not report on the effect on specificity (7).  
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The studies that used modeling to investigate the effects of an imperfect 

reference standard also found evidence of bias. One study suggested that with 

imperfect reference standards, specificity is most accurately estimated at low 

disease prevalence and sensitivity at high disease prevalence; it also suggested 

that considerable errors in estimates exist, even when the reference standard 

has close to perfect performance (31). Two studies found that inaccurate 

reference standards lead to underestimation of index test accuracy when the 

index test errors are statistically independent of the reference standard and 

overestimation when the index test errors are statistically dependent on the 

reference standard (41,43). The final study found that overall accuracy is 

underestimated when the test being evaluated is more accurate than the 

reference standard (34,43).  

 

Differential Verification Bias 

Only 2 studies looked at differential verification bias (Table 4) (12,30). One 

was a review of several different tests (12), and the other was a diagnostic 

accuracy study of the clinical diagnosis of Alzheimer disease (30). Both found 

that differential verification bias leads to higher (inflated) measures of overall 

accuracy.  

 

Partial Verification Bias 

Twenty studies investigated the effects of partial verification bias (Table 4) 

(5,7,12,16,18-22,28,30,32,35-40,42,44). Two studies used models to investigate 

the theoretical effects of verification bias and found that partial verification 

bias increased sensitivity and decreased specificity (35,36). A third study also 

used modeling to investigate the effects of verification bias; in addition, it 

provided an example from a diagnostic accuracy study. This study reported an 

association between overall accuracy and the presence of partial verification 

bias (44).  

All of the remaining studies used actual data to investigate the effects of 

partial verification bias and were either diagnostic accuracy studies or reviews. 

Most of these studies examined some form of exercise testing for the diagnosis 

of heart disease (5,6,16,18,20,21,28,32,38). Other tests that were investigated 

included noninvasive tests for arterial disease (37), clinical diagnosis for 
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Table 4. Reference Standard and Verification Procedure* 

Study, Year 
(Reference) 
 

Design 
 

Index Test 
 

Study Sample 
 

Arana et al., 1990 (29) Review Thyrotropin-releasing  
 hormone stimulation 

10 studies 

Bowler et al., 1998 (30) 
 

Diagnostic accuracy Necropsy 307 patients 

Boyko et al., 1988 (31) Modeling NA Formulas used to model  
 theoretical effects 

Cecil et al., 1996 (32) Diagnostic accuracy Stress single-photon 
emission computed 
tomography thallium testing 

4354 records selected from 
 computerized database 

De Neef, 1987 (34) Modeling New rapid antigen detection  
 tests 

Models used to vary reference 
 standard accuracy 

Detrano et al., 1988 (5, 6) 
 
 

Review Exercise thallium 
scintigraphy 

56 primary studies 

Detrano et al., 1989 (7) 
 
 

Review Exercise 
electrocardiography 

60 primary studies 

Diamond, 1991 (35) Modeling NA Series of computer simulations 
 using the Begg–Greenes
 method† 

Diamond, 1992 (36) Modeling NA Series of computer simulations 
 using Bayes theorem 

Froelicher et al., 1998 (28) Diagnostic accuracy Electrocardiography and  
 angiographic calipers 

814 consecutive patients with 
 angina 

Lijmer et al., 1999 (12) 
 
 

Review Various tests 184 primary studies of 218 tests 
 

Lijmer et al., 1996 (37) Diagnostic accuracy Noninvasive tests 464 consecutive patients with 
 suspected disease 

Miller et al., 1998 (38) Diagnostic accuracy Stress imaging 15 945 low-risk patients 
Mol et al., 1999 (39) Review Nuchal translucency  

 measurement 
25 studies 

Morise and Diamond, 1994 
and 1995 (15, 16) 

Diagnostic accuracy Exercise 
electrocardiography 

4467 patients with suspected 
 coronary disease 

Panzer et al., 1987 (40) Diagnostic accuracy Clinical findings 374 patients with stroke and  
 focal deficits 

Phelps and Hutson, 1995 
(41) 

Modeling NA Monte Carlo studies 

Philbrick et al., 1982 (18) Diagnostic accuracy Graded exercise test 208 consecutive patients 
Ransohoff and Muir, 1982 
(42) 

Review Serum ferritin levels 2 studies 

Ransohoff et al., 1978 (19) Review Carcinoembryonic antigen  
 and nitroblue tetrazolium  
 tests 

17 studies of carcinoembryonic 
 antigen and 16 of nitroblue 
 tetrazolium 

Roger et al., 1997 (20) Diagnostic accuracy Exercise echocardiography 3679 consecutive patients 
Rozanski et al., 1983 (21) Diagnostic accuracy Exercise ventriculography 77 angiographically normal 

 patients 
Santana-Boado et al., 
1998 (22) 

Diagnostic accuracy Single-photon emission  
 computed tomography 

702 consecutive low-risk 
 patients 

Thibodeau, 1981 (43) 
 

Modeling NA Various statistical models 

Van Rijkom and V 
erdonscholt, 1995 (27) 

Review Test for approximal caries 39 sets of sensitivity and 
 specificity 

Zhou, 1994 (44) Modeling and 
Diagnostic accuracy 
 

NA 
 

429 patients 
 

* DSM-III = Diagnostic and Statistical Manual of the American Psychological Association, 3rd edition; NA 
= not applicable; RDC = Research Diagnostic Criteria; ↑ = increased; ↓ = decreased.  
† From Begg and Greenes R (33). 
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Table 4–Continued 

Source of Bias 
or Variation 

Factors Investigated 
 

Effect on 
Sensitivity 

Effect on 
Specificity 

Effect on 
Overall 
Accuracy 

Inappropriate 
reference standard 

DSM-III instead of RDC as the 
 reference test 

 
↓ 

 
Not reported 

 
NA 

Differential and partial 
 verification bias 

Autopsy to confirm the clinical 
 diagnosis 

NA NA “Scope for 
bias” 

Inappropriate 
reference  standard 

Effects of reference standard errors NA NA Associated 

Partial verification bias Effects of partial verification bias using 
the Begg method† 
 

↑ ↓ NA 

Inappropriate 
 reference standard 

Increased sensitivity of the reference 
 standard 

↑ Large errors NA 

Inappropriate 
 reference standard 
Partial verification bias 

Tomographic imaging instead of 
 angiography as reference test 
Presence of partial verification bias 

↑ 
 
None 

↑ 
 
↑ 

NA 

Inappropriate 
 reference standard 
Partial verification bias 

Exercise test thought to be superior 
 in accuracy as reference standard 
Presence of partial verification bias 

Associated 
 
NA 

Not reported 
 
NA 

NA 
 
None 

Partial verification bias 
 
 

Presence of partial verification bias ↑ ↓ NA 

Partial verification bias 
 

Presence of partial verification bias ↑ ↓ NA 

Partial verification bias 
 

Presence of partial verification bias ↑ ↓ NA 

Differential verification 
 bias 
Partial verification bias 

Studies that used different reference 
 standards 
Presence of partial verification bias 

NA 
 
NA 

NA 
 
NA 

↑ 
 
None 

Partial verification bias 
 

Presence of partial verification bias NA NA ↑ 

Partial verification bias Presence of partial verification bias ↑ ↓ NA 
Partial verification bias 
 

Presence of partial verification bias ↑ ↑ NA 

Partial verification bias 
 

Presence of partial verification bias ↑ ↓ NA 

Partial verification bias 
 

Presence of partial verification bias ↑ ↓ NA 

Inappropriate 
 reference standard 

Use of inaccurate “fuzzy” reference 
 standard 

NA NA Associated 

Partial verification bias Presence of partial verification bias ↑ ↓ NA 
Partial verification bias 
 

Presence of partial verification bias ↑ Not reported NA 

Partial verification bias 
 
 

Presence of partial verification bias ↑ Not reported NA 

Partial verification bias Presence of partial verification bias ↑ ↓ NA 
Partial verification bias 
 

Presence of partial verification bias Not reported ↓ NA 

Partial verification bias 
 

Presence of partial verification bias None None NA 

Inappropriate 
 reference standard 

Use of inaccurate reference standard NA NA Associated 

Inappropriate 
 reference standard 

Use of weak validation methods NA NA ↑ 

Partial verification bias 
 
 

Presence of partial verification bias NA NA Associated 
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Alzheimer disease (30), clinical findings for diagnosing hemorrhage in patients 

who had strokes (40), nuchal translucency for diagnosing Down syndrome (39), 

the carcinoembryonic antigen and nitro-blue tests (19), and serum ferritin 

levels for diagnosing hereditary hemochromatosis (42). Seven studies found 

that sensitivity was increased and specificity decreased in the presence of 

partial verification bias (16,18,20,28,32,38,40); one study found that both 

sensitivity and specificity were increased (39), and 2 studies found that 

sensitivity was increased but did not report the effects on specificity (19,42). 

One study found that specificity was increased in the presence of verification 

bias (5) and another study reported that verification bias decreased specificity 

(21). Neither of these studies reported on the effects on sensitivity. Two studies 

did not report on the effects of partial verification bias on sensitivity and 

specificity. One of these found that partial verification bias increased overall 

accuracy (37), and the second reported that there was "scope for verification 

bias" but provided no additional information (30).  

Two more studies found no evidence of bias. One was a systematic review 

of studies of the diagnostic accuracy of exercise electrocardiography (45), and 

the other was a review of systematic reviews of several different tests (12). The 

latter study used the relative diagnostic odds ratio as the summary statistic. If 

partial verification bias tends to increase sensitivity and decrease specificity, as 

is suggested by some of the studies, then no effect on the diagnostic odds ratio 

would be expected. This may explain why this review did not find any evidence 

of partial verification bias.  

 

 

Interpretation (Reading Process) 
 

Review Bias 

Four studies investigated review bias (6,12,19,45), 3 (6,19,45) examined 

diagnostic and test review bias, and one looked only at diagnostic review bias 

(Table 5) (12). A review of exercise testing found no effect of either diagnostic or 

test review bias on sensitivity and specificity (7). A separate review of exercise 

testing reported that both diagnostic and test review bias led to an increase in 

sensitivity but had no effect on specificity (5). A study of carcinoembryonic 

antigen and nitro-blue tests found that failure to avoid review bias may 

overestimate sensitivity and specificity (19). A review of several different tests 
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looked only at diagnostic review bias and found that it increased overall 

accuracy (12).  

 

Clinical Review Variation 

Nine studies looked at the effects of clinical review variation (Table 5) (28, 

46,52,53,55-57,59,61). Most of these studies examined radiography (46,52,56, 

57,61), mammography (55), and myelography and spinal computer tomography 

(53). Eight studies used an experimental design, and one was a diagnostic 

accuracy study (28). One found no difference in overall accuracy between tests 

interpreted with and without clinical history (56). The other studies all found 

evidence of variation; however, the direction of variation differed among 

studies. In general, studies found that providing clinical information improved 

overall accuracy. Six studies reported that sensitivity was increased when 

clinical information was available (28,46,52,53,57,61). The effects of providing 

clinical information on specificity varied among these studies: Two reported 

that specificity decreased (52,53), 2 found no effect on specificity (46,61), and 

the other 2 did not report on the effects on specificity (28,57). The remaining 2 

studies did not report on the effects of providing clinical history on sensitivity 

and specificity, but both found that overall accuracy was improved when 

clinical information was provided (55,59).  

 

Incorporation Bias 

No studies that looked at the effects of incorporation bias were identified.  

 

Observer Variability 

Eight studies looked at observer variation; no studies addressed 

instrument variation (Table 5) (47-51,54,58,60). All studies used an 

experimental design. Most studies were evaluations of imaging techniques: 

radiologic detection of fractures (47), mammography (48,54), and myocardial 

imaging (51). Other techniques that were evaluated were fine-needle aspiration 

biopsy (49), histologic examination (50), cytologic examination (60), and 

bronchial brush specimens (58). All 8 studies found evidence of interobserver 

variability, and 2 found evidence of intra-observer variability (48,50); one of 

these studies reported that interobserver variability was greater than 

intraobserver variability (48). Two studies found that more experienced  
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Table 5. Interpretation (Reading Process)* 

Study, Year 
(Reference) 
 

Design 
 

Index Test 
 

Study Sample 
 

 
Arana et al., 1990 (29)  
 

 
Review 

 
Thyrotropin-releasing 
hormone stimulation 

 
10 studies 

Berbaum et al., 1988 (46)  
 
 

Experimental Radiography 40 radiographs examined with 
and without clinical information 

Berbaum et al., 1989 (47) 
 
 

Experimental Radiography 40 radiographs examined by a 
group of radiologists and a 
group of orthopedic surgeons 

Ciccone et al., 1992 (48)  Experimental Mammography 45 mammograms; 7 
radiologists 

Cohen et al., 1987 (49)  Experimental Fine-needle aspiration 
biopsy 

50 speciments examined by 5 
observers 

Corley et al., 1997 (50)  
 

Experimental Histologic diagnosis of 
pneumonia 

39 lung biopsy samples, 4 
pathologists 

Cuaron et al., 1980 (51)  
 

Experimental TC 99m phosphate 
myocardial imaging 

250 myocardial slides 
evaluated by 6 observers 

Detrano et al., 1988 (5, 6) 
 

Review Exercise thallium 
scintigraphy 

56 primary studies 

Detrano et al., 1989 (7)  
 

Review Exercise 
electrocardiography 

60 primary studies 

Doubilet et al., 1981 (52)  
 

Experimental Radiography 8 test radiographs; 4 with 
suggestive and 4 
nonsuggestive history 

Eldevick et al., 1982 (53)  
 

Experimental Myelography and 
computed tomography 

107 patients assessed with and 
without clinical history 

Elmore et al., 1994 (54)  Experimental Mammography 150 mammograms, 10 
radiologists 

Elmore et al., 1997 (55)  
 

Experimental Mammography 100 radiographs assessed with 
and without clinical history 

Froelicher et al., 1998 (28)  
 

Diagnostic accuracy Electrocardiography and 
angiographic calipers 

814 consecutive patients with 
angina 

Good et al., 1990 (56)  
 

Experimental Chest radiography 247 radiographs assessed with 
and without clinical history 

Lijmer et al., 1999 (12)  
 

Review Various tests 184 primary studies of 218 
tests 

Potchen et al., 1979 (57)  
 

Experimental Chest radiography 3 groups of radiologists; 
different combinations of data 

Raab et al., 1995 (58)  
 

Experimental Bronchial brush specimens 100 bronchial brush specimens 
examined by different 
observers 

Raab et al., 2000 (59)  
 

Experimental Bronchial brush specimens 97 specimens, assessed with 
and without clinical information 

Ransohoff et al., 1978 (19) 
 

Review Carcinoembryonic antigen 
and nitroblue tetrazolium 
tests 

17 studies of carcinoembryonic 
antigen and 16 of nitroblue 
tetrazolium 

Ronco et al. 1996 (60)  
 

Experimental Colpohistologic and 
cytologic screening 

61 samples examined by 
cytologists and experts 

Schreiber, 1963 (61)  
 
 

Experimental Chest radiography 100 chest radiographs 
assessed with and without 
clinical information 
 

* DSM-III = Diagnostic and Statistical Manual of the American Psychological Association, 3rd edition; 
NA = not applicable; RDC = Research Diagnostic Criteria; ↑ = increased; ↓ = decreased.  
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Table 5–Continued 

Source of Bias 
or Variation 

Factors Investigated 
 

Effect on 
sensitivity 

Effect on 
Specificity 

Effect on 
Overall 
Accuracy 

 
Inappropriate 
reference standard 

 
DSM-III instead of RDC as the 
 reference test 

 
↓ 

 
Not reported 

 
NA 

Clinical review bias 
 
Observer variation 

Availability of clinical information 
Difference between radiologists 
and orthopedic surgeons 

↑ 
 
NA 

None 
 
NA 

↑ 
 
Associated 

Observer variation 
 
 

Difference between radiologists 
and orthopedic surgeons 

NA NA Associated 

Observer variation Inter- and intraobserver variation NA NA Associated 
 

Observer variation 
 

Effect of training and experience ↑ ↑ NA 

Observer variation 
 

Inter- and intraobserver variation NA NA None 

Observer variation 
 

Interobserver variation NA NA Associated 

Review bias Lack of blinding, that is, presence 
of review bias 

↑ 
 

Not reported ↑ 
 

Review bias Lack of blinding, that is, presence 
of review bias 

NA NA None 

Clinical review bias 
 
 

Suggestive clinical history ↑ 
 

↓ NA 

Clinical review bias Availability of clinical information ↑ 
 

↓ NA 

Observer variation 
 

Interobserver variation NA NA Associated 

Clinical review bias Availability of clinical information NA 
 

NA ↑ 
 

Clinical review bias Availability of clinical information ↑ 
 

Not reported NA 

Clinical review bias 
 

Availability of clinical information NA NA None 

Review bias Lack of blinding, that is, presence 
of review bias 

NA NA ↑ 
 

Clinical review bias Availability of clinical information ↑ 
 

Not reported NA 

Observer variation 
 
 

Interobserver variation NA NA Associated 

Clinical review bias 
 

Availability of clinical information NA NA ↑ 
 

Review bias 
 
 

Lack of blinding, that is, presence 
of review bias 

↑ 
 

↑ 
 

NA 

Observer variation Effect of training and experience 
(being an “expert”) 

↑ 
 

Not reported NA 

Clinical review bias 
 
 
 

Availability of clinical information ↑ 
 

None NA 
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Table 6. Analysis* 

Study, Year 

(Reference) 

 

Design 

 

Index Test 

 

Study Sample 

 

 
Detrano et al., 1989 (7) 
 

 
Review 
 

 
Exercise 
electrocardiography 

 
60 primary studies 

Philbrick et al., 1982 (18) 
 

Diagnostic accuracy Graded exercise test 208 consecutive patients 
 
 

* NA = not applicable. 

 

 

reviewers, or experts, provided greater sensitivity (49,60), whereas another 

found that experience was not related to interobserver variability (58).  

 

 

Analysis 
 

Handling of Indeterminate Results 

Two studies looked at the effects of uninterpretable test results (Table 6) 

(7,18). One of these studies stated that a large proportion of results would be 

excluded if unsatisfactory test results were excluded but provided no evidence  

on how this may lead to biased estimates of test performance (18). The other 

study found that the treatment of equivocal or nondiagnostic test results was 

not associated with overall accuracy (7).  

 

Arbitrary Choice of Threshold Value 

No studies that provided evidence of the effect of the choice of threshold 

value were identified.  

 

 

Discussion 
 

The searches identified a relatively small number of studies that looked 

specifically at the effects of bias and variation on estimates of diagnostic test 

performance. These studies were concentrated in 7 areas of bias and variation: 

demographic features (10 studies), disease prevalence (6 studies), disease 

severity (6 studies), inappropriate reference standard (8 studies), partial  
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Table 6–Continued 

Source of Bias or 

Variation 

 

Factors Investigated 

 

Effect on 

sensitivity 

Effect on 

Specificity 

Effect on 

Overall 

Accuracy 
 
Handling of indeterminate 
 results 

 
Treatment of equivocal or 
 nondiagnostic tests 

 
NA 
 

 
NA 

 
None 

Handling of indeterminate 
 results 
 

Exclusion of unsatisfactory 
 exercise test results 

NA NA Unclear 

 

 

verification bias (20 studies), clinical review bias (9 studies), and observer 

variation (8 studies). Other sources of bias commonly believed to affect studies 

of diagnostic test performance, such as incorporation bias, treatment paradox, 

arbitrary choice of threshold value, and dropouts, were not considered in any 

studies.  

Population 

The evidence shows that differences in populations affect estimates of 

diagnostic performance. However, the extent and direction of the effect of 

variations in a population can vary, even among studies of the same index test. 

Demographic features have shown strong associations with test performance 

and generally showed a greater effect on estimates of sensitivity than on 

specificity. Studies that observed effects on specificity generally found that 

factors that increased sensitivity also decreased estimates of specificity. There 

was also evidence that both disease severity and prevalence may affect 

estimates of test performance. Sensitivity tended to be increased in populations 

with more severe disease or increased disease prevalence. Disease severity had 

little effect on estimates of specificity, and the effect of disease prevalence on 

specificity varied. The way in which participants are selected for inclusion in 

studies of diagnostic accuracy has also been shown to affect test performance. 

However, the studies that investigated this variable looked at very different 

aspects of patient selection; thus, it is difficult to draw overall conclusions.  

Test Protocol 

Very few studies investigated the effects of biases and sources of variation 

associated with test protocol, and those that did reported mixed results. 

Because of the lack of evidence on the effects of test protocol, it is difficult to 

draw conclusions regarding the effect of this variable on estimates of test 
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performance. The magnitude of the effect of these biases and sources of 

variation is probably linked to the test and condition being investigated. For 

example, the effect of differences in test execution is probably much greater for 

a test that requires some degree of expertise to perform than for a test that is 

very straightforward to perform. Similarly, treatment paradox and disease 

progression bias are more likely to have significant effects on studies of tests 

for acute diseases that may be easily treated (for example, infections) and that 

may change more rapidly than chronic conditions that do not respond well to 

treatment and that may remain in the same stage for longer periods.  

Reference Standard 

The evidence was strong for the effect of biases associated with verification 

procedure on test performance. All studies that looked at the effects of using an 

inappropriate reference standard found that test performance was affected; 

however, the direction of the effect differed among studies. Theoretically, if the 

reference standard is not 100% accurate, the index test may correctly classify 

results that have been incorrectly classified by the reference standard. This 

would be expected to lead to an underestimation of test performance. It is also 

possible that an imperfect reference standard may classify results of the index 

test as being correct when they are actually incorrect. This would be expected 

to lead to overestimation of test performance. Thus, an inaccurate reference 

standard could affect test performance in either way.  

Many studies looked at the effects of verification bias, especially partial 

verification bias. Most reported that verification influenced estimates of test 

performance. In theory, if all of the patients with negative test results are not 

verified by the reference standard and are subsequently omitted from the 2 x 2 

table, estimates of sensitivity would be inflated because patients with false-

negative test results will go undetected. This is supported by the evidence; all 

studies that observed a significant effect on sensitivity found that sensitivity 

was increased in the presence of verification bias. However, as with many other 

biases, the effects on specificity were less clear. 

Interpretation 

Reading processes that involve interpretation of results affect estimates of 

test performance. Both diagnostic and test review biases were found to increase 

sensitivity; however, no effect on specificity was noted. An effect on sensitivity 

would be expected because knowledge of the index test result when 

interpreting the reference standard (or vice versa) probably increases the 



Sources of Variation and Bias: a Systematic Review  

 

 67 

agreement between tests. This in turn leads to a greater number of true-

positives and true-negative results and would be expected to increase estimates 

of both sensitivity and specificity. It is unclear why studies did not find 

significant effects on specificity. Perhaps the effects on specificity are smaller 

and any effect may therefore not reach statistical significance.  

The availability of clinical information to the person interpreting the 

results of the index test was found to increase sensitivity. Although the 

evidence for an effect on specificity was minimal, specificity decreased in 2 

studies. The provision of clinical information probably has different effects 

depending on the test being evaluated. Whether clinical information should be 

available in a particular diagnostic study should be carefully considered in each 

case. It seems that the best 

approach to interpreting the results of a diagnostic accuracy study would be to 

determine whether the clinical information available to those interpreting the 

results of the index test is the same as the clinical information that would be 

available when the test is interpreted in practice.  

All studies that looked at the effects of observer variation found significant 

differences among observers in their estimates of test performance. Therefore, 

the effects of observer variation will inevitably be greater for tests that involve 

a strong degree of subjective interpretation compared with a fully automated 

test.  

Analysis 

Very few studies investigated the effects of biases associated with analysis 

on test performance. The effect of the exclusion of indeterminate results and 

the nonarbitrary choice of threshold value remains unclear from the evidence 

reviewed.  

Limitations 

The main limitation of our review is the difficulty in identifying articles 

that examined specific features of the design and conduct of diagnostic studies. 

Indexing on MEDLINE and other electronic databases focuses on diseases, 

therapies, and test technologies and not on elements of design. There is no 

specific way of indexing studies that relate to the diagnostic accuracy of a test 

(1). In addition, many different names have been used to label the same 

phenomenon in studies of diagnostic accuracy tests. To try to overcome these 

difficulties, very broad searches were performed. However, we may have still 
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missed several relevant papers. The information provided in our paper should 

provide useful examples but may not be comprehensive.  

Ideally, we would have liked to provide a quantitative synthesis to assess 

the magnitude of each of the biases and sources of variation as well as their 

direction. However, because the studies included were very heterogeneous, a 

quantitative synthesis was not possible. The studies also measured the effect of 

the biases and sources of variation in different ways. In particular, diagnostic 

accuracy and experimental studies looked at the effect of biases and sources of 

variation within studies, whereas reviews looked at reasons for differences in 

estimates among studies. It is also likely that different biases and sources of 

variation will be important in different topic areas. For example, observer 

variation is likely to be a problem only for studies that involve some degree of 

subjective interpretation. Also, observer variation is likely to have a greater 

effect with more subjective interpretations.  

Another problem is that sources of bias and variation may act differently 

depending on the study. For example, for partial verification bias, the effects 

may differ when the reference standard is not used in selected groups. The 

group that does not receive verification may, for example, be a random sample 

of patients, a selected subgroup of patients with negative test results, or all 

patients with positive test results. All of these situations are called partial 

verification, but the effects of each situation probably differ. Within a single 

study, there is only one true effect of a feature, but this true effect may differ 

depending on the study. Chance and the effect of other factors may obscure the 

true effect. These factors combine to create difficulty in determining the overall 

effect of a source of bias or variation.  

We included studies that provided both real-life examples of the effects of 

different biases and sources of variation as well as studies that used modeling 

to investigate the effects of different biases or sources of variation. When the 

results of the modeling studies are interpreted, it is important to consider that 

these studies can provide an indication only of the theoretical effect of a source 

of bias or variation. The results from these studies need to be supported by 

additional empirical evidence from real-life examples before more firm 

conclusions can be drawn (12).  
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Conclusions 
 

This paper provides information on the available evidence for the effects of 

each source of bias and variation in diagnostic accuracy studies. The sources of 

bias and variation for which there is the most evidence are demographic 

features, disease prevalence or severity, partial verification bias, clinical review 

bias, and observer or instrument variation. Some evidence was also available 

for the effects of distorted selection of participants, absent or inappropriate 

reference standard, differential verification bias, and review bias. The potential 

effects of these biases and sources of variation should be considered when 

interpreting or designing diagnostic accuracy studies. Additional research 

should be done to investigate potential sources of bias and variation.  
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Abstract 

 

Background: Studies with methodological shortcomings can overestimate 

the accuracy of a medical test. We sought to determine and compare the 

direction and magnitude of a large number of potential sources of bias and 

variability in diagnostic accuracy studies. 

Methods: We identified meta-analyses of the diagnostic accuracy of tests 

through an electronic search in the databases of Medline, Embase, Dare en 

Medion (1999-2002). We included meta-analyses with at least 10 primary 

studies without pre-selection based on design features. Pairs of reviewers 

independently extracted study characteristics and original data from the 

primary studies in each meta-analysis. We used a multivariable meta-

epidemiological regression model to investigate the direction and strength of 

the association between 15 study features on estimates of diagnostic accuracy. 

Results: Thirty-one meta-analyses with 487 test evaluations could be 

included. Only one study had no design deficiencies. Quality of reporting was 

poor in most studies. We found significantly higher estimates of diagnostic 

accuracy in studies with non-consecutive inclusion of patients (Relative change 

in Diagnostic Odds Ratio, RDOR 1.5 [95% CI 1.0 to 2.1] and retrospective data 

collection (RDOR 1.6 [95% CI 1.1 to 2.2]). Studies using referral to the index 

test as the inclusion criterion produced significantly lower estimates of 

diagnostic accuracy (RDOR 0.5 [95% CI 0.3 to 0.9]). The variability across 

meta-analysis of the effect of design features was large to moderate for type of 

design (cohort versus case-control designs), the use of composite reference 

standards, and differential verification, and close to zero for all other design 

features. 

Interpretation: This study confirms that shortcomings in design can affect 

estimates of diagnostic accuracy, but the magnitude of the effect may vary from 

one situation to another. Design features and clinical characteristics of the 

patient group should be carefully considered by researchers when designing 

new studies and by readers when appraising such studies. Unfortunately, 

incomplete reporting hampers the evaluation of potential sources of bias in 

diagnostic accuracy studies. 
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Although the number of test evaluations in the literature is increasing, much 

remains to be desired in terms of methodology. A series of surveys have 

demonstrated that only a small number of diagnostic accuracy studies fulfil 

essential methodological standards. (1-3)   

Shortcomings in design are known to affect clinical trials results. The 

biasing effects of inadequate randomization procedures and differential drop-

out have been discussed and demonstrated in several publications. (4-6) A 

growing understanding of the potential sources of bias and variation has led to 

the development of guidelines to help researchers and readers in the reporting 

and appraisal of randomized trials. (7-8) More recently, similar guidelines have 

been published to assess the quality of reporting and design of diagnostic 

studies. For many of the items in these guidelines, there is no, or only limited, 

empirical evidence available on their potential for bias. (9)  

In principle, such evidence can be collected by comparing studies with 

design deficiencies with studies of the same test without such imperfections. 

Several large meta-analyses have used a meta-regression approach to account 

for differences in study design. (10-12) Lijmer and colleagues examined a 

number of published meta-analyses and showed that studies including non-

representative patients or using different reference standards tended to 

overestimate the diagnostic performance of a test. (13)  

The Lijmer study looked at the influence of six methodological criteria and 

three reporting features on the estimates of diagnostic accuracy in a limited 

number of clinical problems. The purpose of our study was to determine the 

relative importance of fifteen design features on estimates of diagnostic 

accuracy, in a larger and broader set of meta-analyses of diagnostic accuracy. 

 

 

Methods 

 

Data Sources: Systematic Reviews 

An electronic search strategy was developed to identify all systematic 

reviews of diagnostic accuracy studies published between January 1999 and 

April 2002 (Appendix 1) in Medline (OVID and PubMed (14)) and Embase 

(OVID). In addition, we searched the Database of Abstracts of Reviews of Effect 

(DARE) of NHS Centre for Reviews and Dissemination (15) and the MEDION 

database of the University of Maastricht (16). The focus was on recent reviews,  
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Figure 1. Study Flow Chart. 

 

  

  

 

 

 

 

 

  

 

  

   

 

 

 

 

 

   

 

 

 

 

 
Exclusion criteria marked with ‘*’ can overlap 

 

 

as we expected a larger number of studies in these and more variety in terms of 

studies with and without deficiencies.  

Systematic reviews were eligible if at least ten studies of the accuracy of 

the same test were included, if study selection had not been based on one or 

more of the design features that we intended to evaluate, and if sensitivity and 

specificity were provided for at least 90% of the studies in the review (Figure 

1). Languages were restricted to English, German, French, and Dutch. If two or 

more reviews addressed the same index test and target condition combination, 
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Potentially eligible systematic reviews (SR) 
N=191 

157 systematic reviews excluded 
 
Reasons: 
Different scope                 n=60 
Less than 10 original studies included        n=36* 
Selection based partially on design characteristics   n=33* 
Systematic search absent            n=24 
> 10% of studies and summary estimate is missing   n=12* 

SR of head to head comparisons only     n=4 
Pooling of results was not possible      n=3 
References not retrievable          n=2 

 
 

34 systematic reviews 
with 

39 meta analyses 
containing 

678 primary studies 

6 systematic reviews with 8 meta-analyses excluded 
 
Reasons:      
2 by 2 table in majority of studies not reporducible  n=2 
Overlap original studies with other meta-analysis   n=4 

 
28 systematic reviews 

with 
31 meta-analyses 

containing 

554 primary studies 

 
 

31 meta-analyses 
containing 

487 primary studies included 

67 original studies excluded 
 
Reasons:     
2 by 2 table not reproducible            n=19 
Case series; only sensitivity available         n=15 
Not original research, Grey literature, not retrievable    n=13 
Index test or target disorder not comparable       n=8 
Double publication                n=3 
Non English, Spanish, French, Italian, German or Dutch  n=9 
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only the largest one was included to prevent double inclusion of primary 

studies.  

One of the authors (AR) completed the search and performed the initial 

selection based on abstract and titles. Potentially eligible systematic reviews 

were independently assessed by two researchers (AR & NS or AR & MDN).  

Standardized extraction forms and background documents were prepared 

for the eligibility evaluation of systematic reviews and the extraction of data 

and design features from primary studies. All assessors attended a training 

session to become familiar with the use of these forms. No masking for 

authorship or journal name was applied during this or any of the following 

phases of the project. Inclusion criteria were tuned during the data-extraction 

of the first few primary studies. 

 

Data Sources: Primary Studies  

Paper copies of the reports of all primary studies were retrieved once a 

systematic review was included. We excluded primary studies if we were 

unable to reproduce the two by two tables.  

A series of items was extracted from each report, addressing design, 

patient group, verification procedure, test execution and interpretation, 

statistical analysis and quality of reporting (Table 1, 3 and 4). We assembled a 

list of 15 items as potential sources of bias or variation (Table 1). These items 

were selected based on recent systematic reviews of the available literature. 

(9;17-18) Table 4 displays 9 additional items that were selected to evaluate the 

quality of reporting. 

One epidemiologist assessed all articles (AR). A second independent 

assessment was performed by one of a team of five clinicians and trained 

epidemiologists (NS; MDN; JBR; JvR; PB). Disagreements were discussed. If 

necessary, the ruling of a third assessor was decisive (JBR or PB). 

 

Data Analysis and Modeling Strategy 

We used a meta-epidemiological regression approach to evaluate the effect 

of design deficiencies on estimates of diagnostic accuracy across systematic 

reviews. (19-21) Covariates indicating design features were used to examine 

whether, on average, studies that failed to meet certain methodological criteria 

yielded different estimates of accuracy. The diagnostic odds ratio (DOR) was 

used as the summary measure of diagnostic accuracy. 
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Table 1. Sources of Bias and Variation: Definition of Items and Background 
Information. 

Item Label Description 
 Patient group The accuracy of a test may vary between patient groups that differ in  

disease severity, comorbid conditions or alternative diagnoses.  
[9;17;55;56] 

1 Cohort 
 
Severe cases and healthy controls 
 
Other case control designs 

Cohort design where the index test is performed before the reference 
standard. [52;55]  
Case-control design selecting severe cases and healthy controls.  
[13;53;55]  
Case-control designs avoiding selection from the extreme ends of the 
spectrum. [55] 

2 Selection on symptoms / signs 
 
Selection on referral for index test 
Selection on other test results 

Patient selection based on symptoms or signs of the target condition 
only. 
Patients selection based on decision to refer to index test. [52]  
Patient selection based on other test results or referral to the  
reference standard. [52] 

3 No limited challenge 
 
 
Limited challenge 
 
Increased challenge 

No additional criteria to exclude patients with specific features that 
may lead to false negative or false positive index test results. [9;17;55]  
Additional criteria to exclude patients with specific features that may  
lead to false negative or false positive index test results. [9;17;55]  
Preferential inclusion of such difficult patients. 

4 Consecutive  
 
Non-consecutive 
 
Random sample 

Consecutive inclusion of all patients fulfilling the selection criteria.  
[17;53;56]  
Non-consecutive inclusion of patients or cases (case-control design).  
[17;53;56]  
Inclusion of random subsample of patients fulfilling the selection 
criteria. [17;56] 

 Verification procedure Ideally, all index tests results are verified with one, independent  
reference standard. Verification is instant, without intervening  
treatment. [9;57] 

5 Same reference standard 
Differential verification 

All index test results verified with the same reference standard. 
Subset of index test results verified with an alternative reference  
standard. [13;57] 

6 Complete verification 
Partial verification 

All index test results verified with a reference standard. 
Only subset of index test results verified with reference standard.  
[13;57] 

7 Single reference standard 
Composite reference standard 

Reference standard is single test or procedure. 
Reference standard is combination of tests or procedures. 

8 No incorporation 
Incorporation 

Index test is not part of the reference standard. 
Index test is part of the reference standard. [9;56] 

9 Time interval adequate 
Time interval not adequate 

Acceptable time window between index test and reference standard. 
Unacceptable time window between index test and reference  
standard. [9;17;56] 

10 Treatment withheld 
 
Treatment given 

No treatment was administered to patients between index test and  
reference standard.  
Treatment given in this time window. [9;17;56] 

 Interpretation / reading Knowledge of the reference standard result while reading the index  
test or vice versa may enhance agreement 

11 Double blinded reading 
 
Single or non-blinded reading 

Interpretation of index test results and reference standard results  
without knowledge of the results of the other test. 
Interpretation of the index test or reference standard results or both  
not blinded. [9;17;56] 
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Table 1–Continued 
 

Item Label Description 
 

 Data collection Prospective data collection enables researchers to obtain high quality  
data. Retrospective data collection is more vulnerable to missing  
data and incomplete patient flow [17] 

12 Prospective data-collection 
 
Retrospective data-collection 

Data-collection planned before performing index test and reference  
standard. 
Data-collection planned after all index tests and reference standards  
had been performed. [17] 

 Analysis Choices during data-analysis may affect estimates of accuracy,  
including choice of cut-off value for positivity and exclusion of non- 
interpretable test results. [9;17;56] 

13 Pre-defined or standard cut-off 
 
Post-hoc definition of cut-off 

The cut-off value for positivity of the index test results was defined  
before data collection started. [9]  
Post-hoc definition of the positivity cut-off value after data collection  
was completed. [9] 

14 Non-interpretable results reported 
 
Non-interpretable results not 
reported 

The number of indeterminate and non-interpretable test results and  
outliers are explicitly reported.  
The number of these test results and outliers is not reported. [9;17;56] 

15 No drop-out 
 
Drop-out 

Data on more than 90% of the included patients were available for the 
analysis. 
Data on less than 90% of the included patients were available for the  
analysis.[9;17;56] 
 

 

 

Our model can be regarded as a random-effects regression extension of the 

summary Receiver Operating Characteristic model used in many systematic 

reviews of diagnostic accuracy. (22) 

We model the DOR in a particular study of a test as a function of the 

summary DOR for that test, the threshold for positivity in that study, the effect 

of a series of design features, and residual error. We wanted to determine the 

average effect of the respective design features, allowing the effect to differ 

between meta-analyses: anticipating that the effect can be more prominent for 

one test and less prominent in another. Using a regression approach, we 

adjusted the effect of one design feature for the potentially confounding effect of 

other design features. We allowed the DOR to be related to the positivity 

threshold in each meta-analysis, allowing for an ROC like relation between 

sensitivity and specificity across studies in each meta-analysis. 

More formally, our model, a single model including all studies from each 

meta-analysis, expresses the observed log DOR dij in study j in meta-analysis i 

as 
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where Sij is the positivity threshold in each study defined as the sum of 

logit(sensitivity) and logit(1-specificity); �i is the overall accuracy of the test 

studied in meta-analysis i, βi is the coefficient indicating whether the DOR 

varies with S in each meta-analysis, Xijm the value of the design feature 

covariate m in study j included in meta-analysis i, γm is the average effect of 

feature m across all meta-analyses, and νim  expresses the deviation from that 

average effect in meta-analysis i, with  

),0(~ 2

mim
N υσυ . If the between meta-analysis variance of an effect (νim) is 

close or equal to 0, the average effect of a design feature is approximately the 

same in each meta-analysis. Larger values of νim indicate that the magnitude 

or even the direction of that design feature differs substantially from one meta-

analysis to another. The error term eij is also normally distributed as 

),0(~ 22 στ +ijij Ne , and it combines two sources of error: sampling error which 

is specific for each study j and a single residual error term assumed constant 

across meta-analyses. The sampling error or imprecision e of the (log) DOR in 

each study j, is defined as  

ijijijij

ij
dcba

11112 +++=τ , in which aij, bij, cij, dij are the four cells of the 2-by-

2 table of a study j in meta-analysis i.  

The coefficient γm of a particular design feature estimates the change in 

the log transformed DOR between studies with and without that feature. It can 

be interpreted, after antilogarithm transformation, as a Relative Diagnostic 

Odds Ratio (RDOR). It shows the mean DOR of studies with a specific design 

deficiency relative to the mean DOR of studies without this deficiency. If the 

relative DOR is larger than 1, it implies that studies with that design 

deficiency yield larger estimates of the DOR than studies without it. 

We used the PROC MIXED procedure of SAS to estimate the parameters 

of this model (SAS version 9.1, SAS Institute Inc, Cary, NC, USA). The PROC 

MIXED procedure allows for the specification of random effects and the 

specification of the known variances of the (log) DOR which can be kept 

constant (inverse variance method). Further details on how to fit these models 

can be found in van Houwelingen et al. (19-20) 
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We used the following multivariable modelling strategy. We excluded 

covariates from the multivariable model when 50% or more of the studies failed 

to provide information on that design covariate. If that proportion was 10% or 

less, the corresponding studies were assigned to the potentially flawed 

category. Otherwise, the non-reported category was kept as such in the 

analysis. The results of the univariable analysis were used to decide whether 

categories of a design feature with only a few studies could be grouped 

together. Categories were only combined if the underlying mechanism of bias 

was judged to be similar and if the univariable effect estimates were 

comparable. 

 

 

Results 

 

Our search identified 191 potentially eligible systematic reviews, of which 

we were able to include 31 meta-analyses (23-50) with 487 primary studies. 

Figure 1 presents a summary of the inclusion flow. Two meta-analyses on the 

same clinical problem, but with differences in the restriction of patient 

selection, were analysed as one meta-analysis. (23;37) Another meta-analysis 

had to be split up in four separate meta-analyses (49), because of differences in 

test techniques between studies. Because of the exclusion of some primary 

studies (Figure 1) and the splitting of a meta-analysis, six meta-analyses had 

less than 10 studies. (23;35;49) The included meta-analyses addressed a wide 

range of diagnostic problems in different clinical settings (Table 2). Index tests 

varied from signs and symptoms derived from history or physical examination 

to laboratory tests and imaging tests. This diversity in tests is also reflected in 

the pooled diagnostic odds ratios, which ranged from 1.2 to 565, with a median 

of 30. 

Characteristics of the included studies are listed in Table 3. Most studies 

used a clinical cohort (91%), verified all index test results with a reference 

standard (93%) and interpreted the reference standard without integrating 

index test results (95%). Only one fulfilled all 13 desired design features.  

The quality of reporting per item varied from reasonably good (age and 

gender distribution, definition of positive and negative index test results and 

reference standard results) to poor (Table 4).  



Chapter 5 

 

 84 

Table 2. Characteristics of Included Meta-Analysis. 
 
First author, year, (reference) 
 

 
Diagnostic problem 

 
Balk et al., 2001 (23) 

 
Emergency department diagnosis of acute myocardial infarction  

Berger et al., 2000 (24) Diagnosis of gallstones 

Devillé et al., 2000 (25) Workup of herniated discs in patients selected for surgery 

Fiellin et al., 2000 (26) Screening for lifetime alcohol abuse and/or dependence in primary 
care settings 

Gould et al., 2001 (27) Workup of pulmonary nodules 
 

Hobby et al., 2000 (28) Diagnosis of complete tears of the triangular fibrocartilage complex 
in the wrist 

Hoffman et al., 2000 (29) Workup of prostate cancer in men with nonspecific elevations of 
prostate specific antigen levels  

Hoogendam et al., 1999 (30) Primary care screening for prostate  cancer 

Huicho et al., 2002 (31) Screening for urinary tract infection in  children 

Hurley, 2000 (32) Diagnosis of gram-negative infection 

Kelly et al., 2001 (33) Workup of staging in gastro-oesophageal carcinoma 

Kim et al., 2001 (34) Diagnosis of coronary artery disease 

Koelemay et al., 2001 (35) Evaluation of lower extremity arterial disease in aorta-illiac tract 

Kwok et al., 1999 (36) Detection of coronary artery disease in women 

Lau et al., 2001 (37) Emergency department diagnosis of acute myocardial infarction  

Lederle et al., 1999(38) Screening for abdominal aortic aneurysm 

Li, 2001 (39) Confirmation of endotracheal tube placement 

Mitchell et al., 1999(40) Screening for squamous intraepithelial lesions of the cervix 

Mol et al., 1999 (41) Detection of Down syndrome 

Nelemans et al., 2000 (42) Evaluation of peripheral arterial disease 

Safriel et al., 2002 (43) Diagnosis of pulmonary emboli 

Sloan et al., 2000 (44) Diagnosis of gonorrhea and chlamydial infection 

Smith Bindman et al., 2001 (45) Screening for Down syndrome 

Sonnad et al., 2001 (46) Workup of staging of prostate cancer 

Vasquez et al., 2000 (47) Workup of acute cholecystitis 

Visser et al., 2000 (48) Workup of peripheral arterial stenosis 

Westwood et al., 2002 (49) Selecting candidates with recently symptomatic carotid stenosis for 
surgery 

  

  

  

Wiese et al., 2000 (50) 
 

Diagnosis of vaginal trichomoniasis. 

 

Incomplete reporting precluded the investigation of two potential sources 

of bias. Information about non-interpretable test results and information about 

drop-outs were reported in less than 50% of the studies and were therefore not 
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Table 2–Continued 
 
Type of index test 
 

 
No. of studies  

 
Biomarker: presentation (single) creatine kinase (CK)-MB 

 
9 

Symptom: upper abdominal pain 12 

Test of Lasegue 11 

CAGE questionnaire 
 

14 

Positron emission tomography  with  the glucose analog 18-fluorodeoxyglucose 
(FDG-PET) 

29 

Magnetic resonance imaging 11 
 

Free-to-total prostate-specific antigen ratio 21 
 

Digital rectal examination 13 

Urine marker: dipstick nitrate 18 

Gelation Limulus amebocyte lysate 27 

Endoscopic ultrasound 13 

Dobutamine echocardiography 40 

Three dimensional magnetic resonance angiography (MRA) 9 

Exercise electrocardiogram 19 

Biomarker: creatine kinase-myoglobin CK-MB 10 

Abdominal palpation 10 

Capnography: End-tidal CO2 devices 10 

Papanicolaou smear screening 17 

Ultrasonographic marker: nuchal translucency measurement 23 

Two dimensional time of flight MR angiography 13 

Computed tomography pulmonary angiography 10 

Sign: abdominal/lower abdominal pain  14 

Ultrasonographic marker: femoral shortening 28 

Magnetic resonance imaging 21 

Morphine sulfate-augmented hepatobiliary imaging  15 

Color-guided duplex ultrasonography 17 

MRA using: 
Three dimensional contrast enhanced techniques MRA using 

 
7 

Two dimensional contrast enhanced techniques  7 

Three dimensional time of flight techniques 5 

Two dimensional time of flight techniques 5 

Wet mount smear technique 29 
 

 

 

analysed any further. For six design features, the non-reported category 

contained more than 10% of the primary studies (Table 3). 
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Table 3. The Effect of Study Characteristics on Diagnostic Accuracy* 

Item 
no. 

Label reference group No. of studies, no. 
of meta-analyses 

Label contrast group 
 
 

 
1 

 
Cohort 

 
445 / 31 

 
Severe cases and healthy controls 
Other case-control designs 

2 Selection on symptoms / signs 160 / 26 Selection on referral for index test 
Selection on other test results 

3 No limited challenge 359 / 31 Limited challenge 
Increased challenge 

4 Consecutive 130 / 30 Non consecutive 
Random sample 
Sampling method not reported 

5 Same reference standard 388 / 29 Differential verification 

6 Complete verification 453 / 31 Partial verification 

7 Single reference standard 395 / 28 Composite reference standard 

8 No incorporation 463 / 31 Incorporation 

9 Time interval adequate 236 / 28 Time interval not adequate 
Time interval not reported 

10 Treatment withheld 250 / 28 Treatment given 
Treatment not reported 

11 Double blinded reading 84 / 21 Single or non-blinded reading 
Blinding procedure not reported 

12 Prospective data collection 301 / 31 Retrospective data collection 
Data collection not reported 

13 Pre-defined or standard cut-off 338 / 31 Post hoc definition of cutoff 
Cutoff definition not reported 
 

* RDOR: relative diagnostic odds ratio estimated in a multivariable random-effects meta-epidemiological 
regression model. ‘‡’ denotes significant results. 

 
 
The relative effects of all characteristics in the multivariable model are 

shown in Table 3 and are depicted in Figure 2. The reference groups listed in 

Table 3 have, by definition, a relative Diagnostic Odds Ratio (RDOR) of 1, and 

are therefore not presented in Figure 2.  

The largest overestimation of accuracy was found in studies including 

severe cases and healthy controls, with a RDOR of 4.9 (95% confidence interval 

0.6 to 37). There were only 5 studies in 2 meta-analyses that used such a 

design, which explains the broad confidence interval. In addition, the 

heterogeneity in effect between meta-analysis was large (0.7), because there 

was severe overestimation in one meta-analysis (detecting gram-negative  



Evidence of bias and variation: meta-epidemiologic approach 

 

 87 

Table 3–Continued. 

No. of studies, no. of 
meta-analyses 

RDOR 
(95% confidence interval) 

Between meta-
analyses variance in 
effect 

 
5 / 2 
37 / 7 

 
4.9 (0.6-37.3) 
1.1 (0.4-3.4) 

 
0.7 

36 / 9 
291 / 24 

0.5 (0.3-0.9)‡ 
0.9 (0.6-1.3) 

0.0 

85 / 23 
43 / 14 

0.9 (0.6-1.3) 
1.0 (0.6-1.7) 

0.1 

173 / 29  
17 / 6 
167 / 28 

1.5 (1.0-2.1)‡ 
1.7 (0.9-3.2) 
0.9 (0.6-1.3) 

0.1 

99 / 14 1.6 (0.9-2.9) 0.2 

34 / 15 1.1 (0.7-1.7) 0.0 

92 / 14 0.9 (0.5-1.8) 0.4 

24 / 8 1.4 (0.7-2.8) 0.0 

45 / 15 
206 / 28 

1.1 (0.7-1.6) 
1.2 (0.9-1.6) 

0.0 

54 / 11 
183 / 25 

0.9 (0.6-1.4) 
1.0 (0.7-1.4) 

0.0 

187 / 17 
216 / 17 

1.1 (0.8-1.6) 
0.9 (0.6-1.3) 

0.0 

106/21 
80/22 

1.6 (1.1-2.2)‡ 
1.0 (0.7-1.5) 

0.1 

59 / 15 
90 / 18 
 

1.3 (0.8-1.9) 
0.9 (0.7-1.3) 

0.0 

 

 

infection with Gelation Limulus amebocyte lysate) and a much smaller effect in 

the other meta-analysis (detecting lifetime alcohol abuse and/or dependence 

with the CAGE questionnaire). Design features associated with a significant 

overestimation of accuracy were non-consecutive inclusion of patients and 

retrospective data collection. Random inclusion of eligible patients and 

differential verification also resulted in higher estimates of diagnostic accuracy, 

but these effects were not significant. The selection of patients based on 

referral to the index test, rather than on clinical symptoms, was significantly 

associated with an underestimation of accuracy.  

The RDOR presented in Table 3 and Figure 2 are average effects across 

different meta-analyses, and effects varied between meta-analysis. The amount 

of the between meta-analyses variance provides an indication of the  
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Table 4. Quality of Reporting 

Report Characteristics Reference group No. of 
studies 

 
Inclusion dates 

 
Dates of inclusion period reported 

 
238 (49%) 

Index test Definition of positive and negative index test results 
reported 

426 (87%) 

Reference standard Definition of positive and negative reference standard 
results reported 

362 (74%) 

Population Gender or age distribution of study population reported 406 (83%) 

Number assessors Number of readers of index test reported 198 (41%) 

Educational background 
readers 

Number of readers of reference standard reported 111 (23%) 

Training assessors Educational background readers index test described 187 (38%) 

Test reproducibility   

Statistical uncertainty Educational background readers reference standard 
described 
 

131 (27%) 

 

 

heterogeneity of an effect (Table 3). Moderate to large differences were found 

for study design (cohort versus case-control designs), the use of composite 

reference standards and differential verification. For the other design features, 

the between meta-analyses variance was close to zero. 
 

 

Interpretation 

 

This study shows that differences in design and in patient groups are 

associated with changes in estimates of diagnostic accuracy. Accuracy was 

lower in studies using referral to the index test as the inclusion criterion, 

whereas it was significantly higher in studies with non-consecutive inclusion of 

patients and studies using retrospective data-collection. Comparable or even 

higher estimates of accuracy occurred in studies including severe cases and 

healthy controls and in those in which two or more reference standards were 

used to verify index test results, but the corresponding confidence intervals 

were wider. 

 

We found that studies using retrospective data-collection or routinely 

collected clinical data were associated with an overestimation of the DOR by  
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Table 4–Continued 

Contrast group 
 

No. of 
studies 

Dates of inclusion period not reported 249 (51%) 

Definition index test not reported 
 

61 (13%) 

Definition reference standard not reported 
 

125 (26%) 

Description population not reported 81 (17%) 

Number of readers of index test not reported 289 (59%) 

Number of readers of reference standard not reported 
 

376 (77%) 

Educational background readers index test not reported 300 (62%) 

Educational background readers reference standard not 
reported 

 

Training of assessors not reported at all 
 
 

356 (73%) 

 

 

60%. In studies in which data collection is planned after all index tests have 

been performed researchers may find it difficult to use unambiguous inclusion 

criteria and to identify patients who received the index test but were not 

subsequently verified. (51,52)  

Non-consecutive inclusion of patients resulted in an overestimation of the 

DOR by 50% compared to studies using a consecutive series of patients. Studies 

early in the evaluation of a test may have preferentially excluded more difficult 

patients, leading to higher estimates of accuracy. Yet if clear-cut cases are not 

included in a diagnostic study, because the reference standard is costly or 

invasive, diagnostic accuracy will be underestimated. These two mechanisms, 

with opposing effects, may explain why other studies have reported different 

results, either lower accuracy in studies with non-consecutive inclusion (53) or, 

on average, no effect on accuracy. (13) 

We found that studies which selected patients on the basis of referral to 

the index test or on previous test results tended to underestimate diagnostic 

accuracy compared to studies that set out to include all patients with pre-

specified symptoms. The interpretation of this finding is not straightforward. 

We speculate that with this form of patient selection patients with a very 

strong suspicion of the target condition may bypass further testing whereas 
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patients with a low likelihood may never be tested at all. These mechanisms 

tend to lower the proportion of true-positive and true-negative test results. (54) 

An extreme form of selective patient inclusion occurs in studies including 

severe cases and healthy controls. These case-control studies had much higher 

estimates of accuracy (RDOR 4.9), although the low number of such studies led 

to wide confidence intervals. Advanced cases are easier to detect by the index 

test, leading to higher estimates of sensitivity in studies with more advanced 

cases. (55) The inclusion of healthy controls is likely to lower the occurrence of 

false positive results, thereby increasing specificity. (55) Other studies have 

also reported overestimation of accuracy in this type of case-control studies. 

(13;53). 

Verification is a key issue in any diagnostic accuracy study. Studies relying 

on two or more reference standards to verify index test results reported odds 

ratios that were on average 60% higher than studies using a single reference 

standard. The origin of this difference likely resides in differences between 

reference standards in target condition definition or in quality. (56) If 

misclassifications by the second reference standard are correlated with index 

test errors, agreement will artificially increase, leading to higher estimates of 

accuracy. Our result is in line with that of a previous study, reporting a twofold 

increase with a confidence interval overlapping ours. (13)  

As in the Lijmer study, we were unable to demonstrate a consistent effect 

due to partial verification. This may be because the direction and magnitude of 

the effect of partial verification is difficult to predict. If a proportion of negative 

test results is not verified, this tends to increase sensitivity and to lower 

specificity, possibly leaving the odds ratio unchanged. (57) 

We were unable to demonstrate significant associations between estimates 

of DOR and a number of design features. The absence of an association in our 

model does not imply that this feature can be ignored in any given accuracy 

study, as the effect of design differences may vary between meta-analyses, or 

even within a single meta-analysis.  

The results of our study need to be interpreted with the following limitations 

and strengths in mind. We were hampered by the low quality of reporting in 

diagnostic accuracy studies. Several design related characteristics could not be 

adequately examined due to incomplete reporting, including the frequency of 

indeterminate test results and of drop outs, patient selection criteria, clinical 

spectrum, and the degree of blinding. We used the odds ratio as our main  
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Figure 2. Effects of Study Design Features on Diagnostic Accuracy* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

* Adjusted estimates of the relative diagnostic odds ratio (RDOR) in a multivariable random-effects 
meta-epidemiological regression model 
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accuracy measure, which is a convenient summary statistic (58-59), but one 

that may be insensitive to phenomena that produce opposing changes in 

sensitivity and specificity. Further studies should explore the effects of these 

design features on other accuracy measures, such as sensitivity, specificity and 

likelihood ratios. 

This study can be seen as a validation and extension of the study of Lijmer 

and colleagues. (13) To ensure independent validation, we did not include any 

of their meta-analyses in our study. Furthermore, we replaced the fixed-effects 

approach used by Lijmer et al. by a more appropriate random effects approach, 

allowing the design covariates to vary between meta-analyses. This explains 

the wider confidence intervals in our study, despite the fact that we included 

269 studies more than Lijmer and colleagues did. 

In general, the results of this study provide further empirical evidence of 

the importance of design features in studies of diagnostic accuracy. Studies on 

the same test can produce different estimates of diagnostic accuracy, depending 

on choices in design. We feel that our results should be taken into account by 

researchers when designing new primary studies, as well as by reviewers and 

readers who read and appraise these studies. Initiatives like STARD should be 

endorsed to improve the awareness of design features, to improve the quality of 

reporting and, ultimately, the quality of study designs. Well reported studies 

with appropriate designs will provide more reliable information to guide 

decisions on the use and interpretation of test results in the management of 

patients. 
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Appendix 1. Search terms. 

 
Search terms used to retrieve systematic reviews of diagnostic accuracy studies 
 

Medline [OVID] EMBASE [OVID] MEDION 
 
1. exp diagnostic imaging/ 

 
1. exp diagnostic imaging/ 

 
1. DR (diagnostic reviews) 

2. exp diagnostic tests, routine/ 2. exp diagnostic tests, routine/ 2. limit 1 to yr=1999 

3. "sensitivity and specificity"/ 3. "sensitivity and specificity"/ 3. limit 1 to yr=2000 

4. review.pt. 4. meta-analysis/ 4. limit 1 to yr=2001 

5. meta analysis.pt. 5. review.pt. 5. limit 1 to yr=2002 
 

6. meta-analysis/ 6. 1 or 2 or 3  

7. 1 or 2 or 3 7. 4 or 5  

8. 4 or 5 or 6 8. 6 and 7  

9. 7 and 8 9.   limit 8 to yr=2002  

10. limit 9 to yr=1999 10. limit 8 to yr=2001  

11. limit 9 to yr=2000 11. limit 8 to yr=2000  

12. limit 9 to yr=2001 12. limit 8 to yr=1999  

13. limit 9 to yr=2002 13. Conference Paper.pt.  

14. Editorial.pt. 14. Editorial.pt.  

15. Letter.pt. 15. Letter.pt.  

16. Comment.pt. 16. 13 or 14 or 15  

17. 14 or 15 or 16 17. 9 not 16  

18. 10 not 17 18. 10 not 16  

19. 11 not 17 19. 11 not 16  

20. 12 not 17 20. 12 not 16  

21. 13 not 17 
 

  

 

PubMed 

("meta-analysis"[Publication Type] OR "meta-analysis"[MeSH Terms] OR 
"review"[Publication Type]) AND ("sensitivity and specificity"[MeSH Terms] 
OR "diagnostic imaging"[MeSH Terms] OR "diagnostic tests, routine"[MeSH 
Terms]) AND (("humans"[MeSH Terms]) AND ("1999"[PDAT] : "2002"[PDAT])) 

 
DARE 

A staff member of the Centre for Reviews and Dissemination (CRD) 
provided an endnote database containing all systematic reviews for 2001 and 
2002 that were identified by CRD as systematic reviews of either therapeutic of 
diagnostic studies. Search strategies and selection procedures used by CRD to 
retrieve systematic reviews for the DARE database can be found at 
http://agatha.york.ac.uk/faq2.htm. 
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Abstract 

 

Background and objective: Studies of diagnostic accuracy most often report 

pairs of sensitivity and specificity. We demonstrate the advantage of using 

bivariate meta-regression models to analyze such data  

Methods: We discuss the methodology of both the summary Receiver 

Operating Characteristic (sROC) and the bivariate approach by re-analyzing 

the data of a published meta-analysis. 

Results: The sROC approach is the standard method for meta-analyzing 

diagnostic studies reporting pairs of sensitivity and specificity. This method 

uses the diagnostic odds ratio as the main outcome measure, which removes 

the effect of a possible threshold but at the same time loses relevant clinical 

information about test performance. The bivariate approach preserves the two-

dimensional nature of the original data. Pairs of sensitivity and specificity are 

jointly analyzed, incorporating any correlation that might exist between these 

two measures using a random effects approach. Explanatory variables can be 

added to the bivariate model and lead to separate effects on sensitivity and 

specificity, rather than a net effect on the odds ratio scale as in the sROC 

approach. The statistical properties of the bivariate model are sound and 

flexible.  

Conclusion: The bivariate model can be seen as an improvement and 

extension of the traditional sROC approach. 
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Diagnostic accuracy studies are a vital step in the evaluation of diagnostic 

technologies (1-3). Accuracy studies measure the level of agreement between 

the results of a test under evaluation and that of the reference standard. There 

are several different measures of diagnostic accuracy (4,5). but the majority of 

diagnostic accuracy studies present estimates of sensitivity and specificity, 

either alone or in combination with other measures (6). 

Because the majority of diagnostic papers report estimates of sensitivity 

and specificity, meta-analytic approaches have focused on these measures (6-

13). Pooling pairs of sensitivity and specificity is not straightforward, because 

these measures are often negatively correlated within studies.  

The summary Receiver Operating Characteristic (sROC) approach has 

become the method of choice for the meta-analysis of studies reporting pairs of 

sensitivity and specificity (9,12,14-18). The sROC approach converts each pair 

of sensitivity and specificity into a single measure of accuracy, the diagnostic 

odds ratio (19). The disadvantage of a single measure of diagnostic accuracy is 

that it does not distinguish between the ability of detecting the sick 

(sensitivity) and identifying the well (specificity). Discriminating between these 

abilities is important to determine the optimal use of a test in clinical practice. 

The bivariate model we propose has the distinct advantage of preserving the 

two-dimensional nature of the underlying data. It can also produce summary 

estimates of sensitivity and specificity, acknowledging any possible (negative) 

correlation between these two measures. We will discuss both approaches and 

illustrate their use by reanalyzing the data from a published meta-analysis 

(20). 

 

 

Pooling Pairs of Sensitivity and Specificity: why Simple Methods 

Fail 

 

Diagnostic reviews start with a set of individual studies presenting 

estimates of sensitivity and specificity. One intuitive approach is to do separate 

pooling of sensitivity and specificity using standard methods for proportions. 

However, sensitivity and specificity are often negatively correlated within 

studies, and ignoring this correlation would be inappropriate (7,11,12). 

One possible cause for this negative correlation between sensitivity and 

specificity is that studies may have used different thresholds to define positive 



Chapter 6 

 

 102 

and negative test results. In some cases this may have been done explicitly, for 

example studies that used different cut-off points to classify a continuous 

biochemical measurement as either positive or negative. In other situations 

there may have been implicit variations in thresholds between studies due to 

differences in observers, laboratories, or equipment. Unlike other sources of 

variation, a difference in threshold leads to a particular pattern between 

sensitivity and specificity. This pattern is well known from studies showing the 

effect of different cutoffs in case of a biochemical test with a continuous 

outcome (21-23). Lowering the cutoff value will then lead to more patients with 

a positive result, thereby increasing the number of true positives but also the 

number of false positive results. This means that sensitivity will be higher but 

at the expense of specificity. This trade-off between sensitivity and specificity 

leads to a concave, shoulder-like curve when sensitivity is plotted against 

 
Figure 1. ROC Plot of Sensitivity Against 1-Specificity* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* Symbols represent 44 studies comparing the diagnostic accuracy of lymphangiography (LAG), 
computed tomography (CT), and magnetic resonance imaging (MRI) in the diagnosis of lymph node 
metastases in women with cervical cancer. Data from a published meta-analysis (20). 
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1 minus specificity, the receiver operating characteristic (ROC) curve. In many 

publications involving ROC plots, sensitivity is referred to as the true positive 

rate (TPR) and 1-minus specificity as the false positive rate (FPR). 

In the next paragraphs, we discuss how the sROC and the bivariate 

approach deal with estimates of sensitivity and specificity that can show large 

variability and possible negative correlation.  

 

 

Summary ROC Approach 

 

We provide a short description of the sROC approach as outlined by Moses 

and Littenberg. More details can be found elsewhere (9,12,14-18).  

The sROC approach starts with plotting the observed pairs of sensitivity 

and specificity of each study in ROC-space (see Figure 1). The aim of the sROC 

approach is to find a smooth curve through these points. The key step is to 

transform the TPR (sensitivity) and FPR (1-specificity) scale of the ROC graph 

so that the relation becomes more linear and a straight line can be fitted to the 

data points (12). 

The following transformations of TPR and FPR are used. D is defined as 

the difference in the logit transformed values of TPR and FPR, while S is the 

sum of these same logits: 

)ln(
1
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D is the log of the diagnostic odds ratio (DOR). The DOR is a single overall 

indicator of diagnostic accuracy and it indicates how more often (expressed as 

odds) a positive test result occurs among patients with the condition of interest 

compared to patients without the condition. S relates to the test threshold. It 

has a value of 0 in a study where sensitivity equals specificity, S is positive in 

studies where sensitivity is higher than specificity, and S is negative when 

specificity is higher.  
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A linear regression line is fitted through the transformed points of the 

ROC graph, showing how the (log) DOR varies with the implicit threshold: 

 

SD ⋅+= βα        (3) 

 

The model is generally fitted using either weighted or unweighted least 

squares linear regression (12). 

 

Example Using the sROC Approach 

We illustrate the use of the sROC approach by re-analyzing the data of a 

published meta-analysis (20). In this meta-analysis, Scheidler et al. compared 

three imaging techniques for the diagnosis of lymph node metastasis in women 

with cervical cancer. Forty-four studies in total were included: 17 studies 

evaluated lymphangiography, another 17 studies examined computed 

tomography and the remaining 10 studies focused on magnetic resonance 

imaging. Diagnosis of metastatic disease by lymphangiography (LAG) is based 

on the presence of nodal filling defects, whereas computed tomography (CT) 

and magnetic resonance imaging (MRI) rely on nodal enlargement.  

Similar to the original meta-analysis we fitted three lines, one for each 

imaging modality, using unweighted regression. The intercepts (α) and the 

slopes (β) of these three regression lines are given in table 1. In the final step, 

these linear regression lines are transformed back to the original axes of the 

ROC to obtain the sROC curve. Figure 2 shows the three sROC curves, one for 

each imaging modality. 

The interpretation of the intercept and the slope of the linear regression 

model of equation 3 is not straightforward. When the diagnostic odds ratio 

(DOR) does not depend on the threshold S (e.g. β ≈ 0), the intercept would 

provide a summary estimate of the DOR. When the DOR does vary with S, the 

coefficient of the slope (β) has no direct interpretation, but has a considerable 

effect on the shape of the sROC curve (18). 

The disadvantage of the diagnostic odds ratio as the outcome parameter is 

that summary estimates of sensitivity and specificity are not directly available. 

It is only possible to obtain an estimate of sensitivity by specifying a value of 

specificity, or vice-versa. Many meta-analyses have reported sensitivity and 

specificity at the Q-point. The Q-point is the point on the sROC curve where 

sensitivity equals specificity and is located where the diagonal line running  
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Table 1. Intercepts and Slopes of the Linear Regression Line Underlying the 
Summary ROC Approach* 
Imaging modality Intercept 

(SE) α 
Coefficient 
for S (SE) β 

DOR at mean of S 
(95% CI) 

Q-point (95% 
CI) 

 

LAG 

 

2.09 (0.30) 

 

-0.35 (0.20) 

 

16.02 (8.37 to 30.66) 

 

0.74 (0.68 to 0.79) 

CT 2.84 (0.44) 0.23 (0.14) 10.90 (6.49 to 18.33) 0.81 (0.73 to 0.87) 

MRI 3.51 (0.56) 0.25 (0.17) 20.26 (10.33 to 39.74) 0.85 (0.77 to 0.91) 
P-value LAG vs. CT   0.36 0.15 
P-value LAG vs. MRI   0.62 0.01 
P-value CT vs. MRI 
 

  0.15 0.34 

* Separate lines are fitted for each of the three imaging modalities. Comparison of accuracy (DOR) at 
the average value of S and at the Q-point, where S equals 0. LAG = lymphangiography; CT = computed 
tomography; MRI = magnetic resonance imaging; DOR = diagnostic odds ratio; Q-point = point on 
summary ROC curve where sensitivity equals specificity; CI = confidence interval; SE = standard error. 

 

 

from the top left corner to the lower right corner intersects the sROC-curve (see 

Figure 2). Unfortunately, the Q-point may lead to summary values of 

sensitivity and specificity that are not close, or even outside the range of values 

from the original studies (see Q-point for MRI in Figure 2).  

These Q-points are also used to test for a difference in overall accuracy 

between diagnostic tests. The rationale is that Q-points remove the effect of 

possible difference in threshold by comparing the diagnostic odds ratios at a 

specific value of S, namely zero. However, testing at a different value of S could 

lead to different conclusions if the diagnostic odds ratio of one or both tests 

varies with S. In our example there is a statistically significant difference in 

accuracy (diagnostic odds ratio) at the Q-point between lymphangiography and 

MRI, but at the overall mean value of S the difference in diagnostic odds ratio 

is not significant (see Table 1 and Figure 2). 

 

 

Bivariate Model 

 

The bivariate model uses a different starting point for the meta-analysis of 

pairs of sensitivity and specificity. Rather than transforming these two distinct 

outcome measures into a single indicator of diagnostic accuracy as in the sROC 

approach, the bivariate model preserves the two-dimensional nature of the 

data throughout the analysis. 
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The bivariate model is based on the following line of reasoning (10,24,25). 

We assume that the sensitivities from individual studies (after logit 

transformation) within a meta-analysis are approximately normally distributed 

around a mean value with a certain amount of variability around this mean. 

This is a random effect approach, similar to what is used in therapeutic trials, 

to incorporate unexplained variability in the analysis. This variation in 

underlying sensitivities between studies can be related to remaining 

differences in study population, differences in implicit threshold, or unnoticed 

variations in index test protocol. The same considerations apply to the 

specificities of these studies. The potential presence of a (negative) correlation 

between sensitivity and specificity within studies is addressed by explicitly 

incorporating this correlation into the analysis. The combination of two 

normally distributed outcomes, the logit transformed sensitivities and 

 

 
Figure 2. Estimated Summary ROC Curves and Q-points* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* Estimated summary ROC curves and Q-points for each of the three imaging modalities. Q-point is the 
point on summary ROC curve where sensitivity equals specificity (intersection of the dashed, diagonal 
line with the summary ROC curve). See Figure 1 for primary data. 
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specificities, while acknowledging the possible correlation between them, leads 

to the bivariate normal distribution (25,26). 

Besides variability between studies in the true underlying sensitivities and 

specificities, there is also variation due to sampling. Studies differ in size and 

variation due to chance is more likely in smaller studies. Therefore, we 

extended the bivariate model by incorporating the precision by which 

sensitivity and specificity have been measured in each study using the 

approach of van Houwelingen et al. (24). It means that studies with a more 

precise estimate of sensitivity are given a higher weight in the analysis of 

sensitivities. The same is true for studies with more precise estimates of 

specificity. A more technical description of the bivariate model can be found in 

Appendix I.  

These bivariate models can be analyzed using linear mixed model 

techniques that are now widely available in statistical packages. The 

parameters of the bivariate model are estimated in a single model in order to 

incorporate the possible correlation between sensitivities and specificities. To a 

degree, the bivariate diagnostic model can be viewed as a longitudinal analysis 

with two measurements (corresponding to sensitivity and specificity) within 

each person (corresponding to individual studies). The main commands to run 

the bivariate model using the linear mixed model procedure in SAS are given in 

Appendix II.  

The bivariate model can be seen as an improvement and extension of the 

simple summary ROC approach, as it can produce the following results: 

 

� In a single step, the bivariate model will estimate the amount of 

between-study variation in sensitivity and specificity separately, in 

addition to the degree of correlation between sensitivity and specificity. 

This provides important background information about the 

heterogeneity of results between studies and the possibility of an 

implicit threshold.  

� The bivariate model produces summary estimates of sensitivity and 

specificity and their 95% confidence interval. These intervals take into 

account the heterogeneity beyond chance between studies (random 

effects model).  

� Using the parameters of the bivariate distribution we can calculate 

either a confidence ellipse around the mean values of logit sensitivity 
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and specificity or a prediction ellipse for individual values of sensitivity 

and specificity, taking into account the possible (negative) correlation 

between sensitivity and specificity. 

� The parameters of the bivariate distribution can also be used to obtain 

a sROC curve. This bivariate sROC-curve would be similar to the 

standard sROC of Moses and Littenberg, if we would correct for two 

statistical shortcomings of the standard sROC approach (see 

paragraph on statistical properties). 

� Other measures derived from sensitivity and specificity can be 

calculated, such as the diagnostic odds ratios and likelihood ratios. 
� Covariates can be added to the bivariate model and they lead to 

separate effects on sensitivity and specificity, but net effects on the 

diagnostic odds ratio are still available. This means that we can 

explicitly test whether sensitivity or specificity or both are different 

between two diagnostic technologies. 

 

We will now use the bivariate model to re-analyze the same dataset as we 

used in the summary ROC approach.  

 

Example Using the Bivariate Model 

The bivariate model directly provides summary estimates of (logit) 

sensitivity and specificity with corresponding 95% CI for the three imaging 

modalities (see table 2). Because of the bivariate nature of the analysis we can 

either test for differences in sensitivity, or specificity, or both, between the 

three modalities. The results show that the mean specificity of LAG is 

significantly lower than that of CT and MRI. However, LAG has the highest 

sensitivity, which is significantly different from that of CT, but not from that of 

MRI. There are no statistically significant differences in the mean value of 

sensitivity or specificity between CT and MRI.  

The difference between LAG and CT/MRI could be viewed as an implicit 

threshold effect. It shows that LAG is a more sensitive test, but at the expense 

of more false positive test results, and hence a lower specificity. It means that 

the overall accuracy after ‘correction’ for threshold differences (e.g. diagnostic 

odds ratio) is similar between the three techniques. This explains the results of 

the summary ROC approach, that showed no differences among the three 

techniques. The results of the bivariate model show a more complete picture: a 
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Table 2. Summary Estimates for Sensitivity, Specificity and Diagnostic Odds Ratio* 
Imaging modality 

 

Mean sensitivity 

(95% CI) 

Mean Specificity 

(95% CI) 

Mean DOR 

(95% CI) 

 

LAG 

 

0.67 (0.57 to 0.76) 

 

0.80 (0.73 to 0.85) 

 

8.13 (5.16 to 12.82) 

CT 0.49 (0.37 to 0.61) 0.92 (0.88 to 0.95) 11.34 (6.66 to 19.30) 

MRI 0.56 (0.41 to 0.70) 0.94 (0.90 to 0.97) 21.42 (10.81 to 42.45) 

P-value LAG vs. CT 0.023 0.0002 0.35 

P-value LAG vs. MRI 0.23 0.0001 0.021 

P-value CT vs. MRI 

 

0.47 0.34 0.15 

* From the bivariate model. Comparison between three imaging modalities. 
LAG = lymphangiography; CT = computed tomography; MRI = magnetic resonance imaging; 
DOR = diagnostic odds ratio; CI = confidence interval. 

 

 

difference in sensitivity and specificity between LAG and the other two 

techniques, but no difference in overall accuracy.  

We can still use the visual power of the ROC plot to present the results of 

the bivariate model. The 95 percent coverage region of the estimated bivariate 

distribution of logit sensitivity and specificity can be transformed back to the 

original ROC axes. We can use the ellipse around the mean estimate of 

sensitivity and specificity of each modality to show the region containing likely 

combinations of the mean value of sensitivity and specificity. These ellipses 

clearly show the differences in sensitivity and specificity of LAG compared to 

CT and MRI (see figure 3). In non-comparative situations and in situations 

where the between-study variance is large, a 95% prediction ellipse would be 

useful to show the range of likely values for an individual study. 

 

 

General Discussion of Methods of Meta-Analysis 

 

In this section we discuss the statistical methods for meta-analysis of 

studies of diagnostic accuracy by comparing them on a few key items. These 

are: (1) the choice of outcome measure; (2) the effect of covariates; (3) the 

statistical properties of the model. 
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Figure 3. Bivariate summary estimates* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* Bivariate summary estimates of sensitivity and specificity for each of the three imaging modalities and 
the corresponding 95% confidence ellipse around these mean values. See Figure 1 for primary data. 

 

 

Choice of Outcome Measure 

There are several reasons to favor sensitivity and specificity as the main 

outcome measures in the meta-analysis of diagnostic accuracy studies 

producing dichotomous index test results. First, the vast majority of primary 

accuracy studies report results in pairs of sensitivity and specificity (6). Second, 

our understanding of how sources of bias and variability can affect estimates of 

diagnostic accuracy is largely based on these measures (27,28). Third, 

sensitivity and specificity are at the heart of diagnostic theory and teaching, 

and therefore the most familiar measures to clinicians. Fourth, alternative 

measures, such as likelihood ratios and diagnostic odds ratio, can be derived 

from them.  

The bivariate model directly analyses these well-known measures of 

diagnostic accuracy in a straightforward manner, while acknowledging the 
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possibility of an implicit threshold effect. The model uses a random effects 

approach in the estimation of summary estimates of sensitivity and specificity 

and their corresponding 95% confidence intervals. Because the bivariate model 

estimates the strength and the shape of the correlation between sensitivity and 

specificity, we can either draw a 95% confidence ellipse around their mean 

values or draw a 95% prediction ellipse for individual values of sensitivity and 

specificity. This will enhance our understanding of the heterogeneity of results 

between studies and the correlation within studies.  

In contrast, the sROC approach focuses on the diagnostic odds ratio, and 

therefore it does not yield unique summary estimates of sensitivity and 

specificity. This greatly limits its clinical application. Summary values of 

sensitivity and specificity at the so-called Q-point are just an arbitrary choice of 

possible values, and may not reflect the sensitivity and specificity reported in 

primary studies. In our example, Q-values of MRI were misleading 

(sensitivity=specificity=0.85), because they are far away from the pooled 

estimates of sensitivity and specificity from the bivariate model (0.56 and 0.94 

respectively). The sROC-curve describes how sensitivity and specificity interact 

within studies, but the interpretation is not the same as in the normal ROC-

curve documenting the effect of varying the cut-off value of a continuous 

measurement. There are several other factors in meta-analysis that can lead to 

opposing changes in sensitivity and specificity, thereby mimicking the effect of 

differences in threshold, such as partial verification and various selection 

mechanisms of patients. Drawing a ROC-curve might suggest that all variation 

is related to a threshold effect, while it is only one of the possible explanations. 

Another difficulty in the sROC approach is choosing the range of values over 

which to draw the sROC curve, because a complete curve (from the south-west 

corner to the north-east corner) is misleading. The boundaries of either the 

confidence or the prediction ellipse from the bivariate model are, however, well 

defined.  

  

Comparing Index Tests and Examining the Effect of Covariates 

The sROC approach uses the odds ratio to compare diagnostic accuracy 

between tests. This removes the effect of a possible difference in threshold, but 

at the same time it can mask important clinical differences in test performance. 

In our example, LAG was found to be more sensitive and less specific compared 

to the other two techniques, which might indicate that it can be an important 
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modality for ruling out lymphadenopathy. In the bivariate model we can 

specifically test whether there is a difference in sensitivity, specificity, or both.  

Examining, quantifying and explaining sources of bias and variability in 

meta-analysis is a major issue, in particular for diagnostic studies, as there are 

many possible differences in design, in the selection of patients, and in test 

protocol between studies (8,24,28-34). Again, the effect of these differences in 

design and conduct will be estimated in the sROC approach as changes on the 

diagnostic odds ratio scale (8,29). An unchanged odds ratio however, may 

obscure the effect of a design feature that increases sensitivity but at the same 

time lowers specificity, or vice-versa. The bivariate model enables an analysis 

of the effects on sensitivity and specificity separately, whereas a net effect on 

the odds ratio scale is still available.  

 

Statistical properties 

The statistical properties of the bivariate model for performing diagnostic 

meta-analyses are sound. First, it incorporates and estimates the correlation 

that might exist between estimates of sensitivity and specificity within studies. 

This means that the bivariate model will produce valid results whether or not 

this correlation is high, medium, or absent. This simplifies the overall approach 

to meta-analysis as outlined in recent guidelines (17,35). The examination of 

the degree of correlation between sensitivity and specificity is a cornerstone in 

these guidelines. If a “moderate” correlation is present, the sROC approach is 

advocated. If the correlation is small, separate pooling of sensitivity and 

specificity is promoted. Our bivariate model will automatically deal with both 

situations. Second, the bivariate model is a direct extension of the methods 

used for meta-analysis of data from therapeutic trials (24,25).  It takes into 

account the differences in precision by which sensitivity and specificity have 

been measured within and across studies, and it incorporates and estimates 

the amount of between-study variability in both sensitivity and specificity 

(random effects model).  

The sROC approach is based on the linear regression of D on S and has two 

statistical shortcomings. First, there is measurement error in both the 

dependent (D) and the independent variable (S). There are well-known 

methods that take into account measurement error in both the dependent and 

independent variables, but these are hardly used in the sROC-approach. 

However, a more serious problem is ignoring the covariance that might exist 
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between D and S, because they are defined as the difference and sum of the 

same two measures. Correcting for both errors will lead to a bivariate 

regression model of D and S, which would be the same as our bivariate model, 

only with a less transparent definition of the coefficients. Therefore, our 

bivariate model can be seen as an improvement and an extension of the sROC 

model of Moses and Littenberg (12). It is important to note that a linear 

regression line is also available from the bivariate model to produce the 

equivalent of a sROC curve. This curve runs through the center of the bivariate 

confidence ellipse of either the mean values or the individual values. But for 

reasons stated before, we prefer the use of the confidence or prediction ellipse. 

The statistical shortcomings of the sROC approach have been described 

before (11,13,36). Rutter et al. have developed a hierarchical sROC approach 

(11,37). Their aim was also to obtain meaningful summary estimates of 

sensitivity and specificity, and to improve the handling of within- and between-

study variability. The specification of their model is rather complex, and they 

apply a Bayesian approach for estimating the parameters. Because we 

reanalyzed the same meta-analysis that was used in their paper, we can 

directly compare the results. Despite the differences in models, the summary 

estimates and 95% CI of sensitivity and specificity are almost identical. 

However, their Bayesian approach comes at a price. It is based on Markov 

Chain Monte Carlo simulations, which requires programming, simulations, an 

evaluation of model convergence and adequacy, and a synthesis of simulation 

results. As a result, few if any application of this method can be found in the 

medical literature, although a less complicated way of fitting the hierarchical 

sROC model has been described recently (38). 

In contrast, the set-up of the bivariate model is straightforward as it 

directly models sensitivity and specificity. The development of mixed model 

technology in commercial software means that bivariate models can now be 

analyzed using standard procedures in statistical packages. Several examples 

of the bivariate model have already been published (39-42). In appendix II we 

show how these models can be set up using standard procedures, available in 

SAS software. 

 

Diagnostic Accuracy Studies: Quality of Design and Reporting 

Despite the availability of flexible and advanced statistical models, 

performing a meta-analysis of diagnostic studies will remain difficult. We see 
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three main reasons (9,15). First, a systematic review of diagnostic accuracy 

studies, like any other review, is threatened by publication bias (43). Second, 

many reports of studies of diagnostic accuracy lack information on key 

elements of design and conduct (44). Without complete and accurate reporting 

we cannot correctly identify potential sources of bias and variability (45). This 

hampers a statistical analysis of these sources of genuine heterogeneity. Third, 

many studies on diagnostic accuracy have major shortcomings in design or 

conduct (44,46). Health care workers need evidence from well-designed studies 

to make informed choices, but synthesis of study results remains useless in the 

absence of premium quality primary studies. In all, there is a strong need to 

improve the methodological quality of diagnostic studies in addition to better 

standards of reporting. 

 

 



Bivariate meta-regression model 

 

 115 

References 

 
1. Sackett DL, Haynes RB. The architecture of diagnostic research. In: 

Knottnerus JA, editor. The evidence base of clinical diagnosis. London: BMJ 

Publishing Group; 2002. p. 19-38. 

2. Guyatt GH, Tugwell PX, Feeny DH, Haynes RB, Drummond M. A framework 

for clinical evaluation of diagnostic technologies. CMAJ 1986;134(6):587-94. 

3. Knottnerus JA, Muris JW. Assessment of the accuracy of diagnostic tests: the 

cross-sectional study. J Clin Epidemiol 2003;56(11):1118-28. 

4. Griner PF, Mayewski RJ, Mushlin AI, Greenland P. Selection and 

interpretation of diagnostic tests and procedures. Principles and applications. 

Ann Intern Med 1981;94(4 Pt 2):557-92. 

5. Habbema JDF, Eijkemans R, Krijnen P, Knottnerus JA. Analysis of data on the 

accuracy of diagnostic tests. In: Knottnerus JA, editor. The evidence base of 

clinical diagnosis. London: BMJ Publishing Group; 2002. p. 117-144. 

6. Honest H, Khan KS. Reporting of measures of accuracy in systematic reviews of 

diagnostic literature. BMC Health Serv Res 2002;2(1):4. 

7. Walter SD, Jadad AR. Meta-analysis of screening data: a survey of the 

literature. Stat Med 1999;18(24):3409-24. 

8. Lijmer JG, Mol BW, Heisterkamp S, Bonsel GJ, Prins MH, van der Meulen JH, 

et al. Empirical evidence of design-related bias in studies of diagnostic tests. 

JAMA 1999;282(11):1061-6. 

9. Irwig L, Macaskill P, Glasziou P, Fahey M. Meta-analytic methods for 

diagnostic test accuracy. J Clin Epidemiol 1995;48(1):119-30; discussion 131-2. 

10. Kardaun JW, Kardaun OJ. Comparative diagnostic performance of three 

radiological procedures for the detection of lumbar disk herniation. Methods Inf 

Med 1990;29(1):12-22. 

11. Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-analysis 

of diagnostic test accuracy evaluations. Stat Med 2001;20(19):2865-84. 

12. Moses LE, Shapiro D, Littenberg B. Combining independent studies of a 

diagnostic test into a summary ROC curve: data-analytic approaches and some 

additional considerations. Stat Med 1993;12(14):1293-316. 

13. Deeks JJ. Systematic reviews in health care: Systematic reviews of evaluations 

of diagnostic and screening tests. Bmj 2001;323(7305):157-62. 

14. Hasselblad V, Hedges LV. Meta-analysis of screening and diagnostic tests. 

Psychol Bull 1995;117(1):167-78. 

15. Irwig L, Tosteson AN, Gatsonis C, Lau J, Colditz G, Chalmers TC, et al. 

Guidelines for meta-analyses evaluating diagnostic tests. Ann Intern Med 

1994;120(8):667-76. 

16. Littenberg B, Moses LE. Estimating diagnostic accuracy from multiple 

conflicting reports: a new meta-analytic method. Med Decis Making 

1993;13(4):313-21. 



Chapter 6 

 

 116 

17. Midgette AS, Stukel TA, Littenberg B. A meta-analytic method for 

summarizing diagnostic test performances: receiver-operating-characteristic-
summary point estimates. Med Decis Making 1993;13(3):253-7. 

18. Walter SD. Properties of the summary receiver operating characteristic (SROC) 

curve for diagnostic test data. Stat Med 2002;21(9):1237-56. 

19. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM. The diagnostic odds 

ratio: a single indicator of test performance. J Clin Epidemiol 2003;56(11):1129-

35. 

20. Scheidler J, Hricak H, Yu KK, Subak L, Segal MR. Radiological evaluation of 

lymph node metastases in patients with cervical cancer. A meta-analysis. Jama 

1997;278(13):1096-101. 

21. Hilden J. The area under the ROC curve and its competitors. Med Decis 

Making 1991;11(2):95-101. 

22. Begg CB, McNeil BJ. Assessment of radiologic tests: control of bias and other 

design considerations. Radiology 1988;167(2):565-9. 

23. Sorribas A, March J, Trujillano J. A new parametric method based on S-
distributions for computing receiver operating characteristic curves for 

continuous diagnostic tests. Stat Med 2002;21(9):1213-35. 

24. van Houwelingen HC, Arends LR, Stijnen T. Advanced methods in meta-
analysis: multivariate approach and meta-regression. Stat Med 2002;21(4):589-

624. 

25. van Houwelingen HC, Zwinderman KH, Stijnen T. A bivariate approach to 

meta-analysis. Stat Med 1993;12(24):2273-84. 

26. Kotz S, Balakrishnan N, Johnson NL. Bivariate and trivariate normal 

distributions. In: Continuous multivariate distributions. New York: Wiley; 

2000. p. 251-348. 

27. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, et 

al. The STARD statement for reporting studies of diagnostic accuracy: 
explanation and elaboration. Ann Intern Med 2003;138(1):W1-12. 

28. Whiting P, Rutjes AW, Reitsma JB, Glas AS, Bossuyt PM, Kleijnen J. Sources 

of variation and bias in studies of diagnostic accuracy: a systematic review. Ann 

Intern Med 2004;140(3):189-202. 

29. Lijmer JG, Bossuyt PM, Heisterkamp SH. Exploring sources of heterogeneity in 

systematic reviews of diagnostic tests. Stat Med 2002;21(11):1525-37. 

30. Normand SL. Meta-analysis: formulating, evaluating, combining, and 

reporting. Stat Med 1999;18(3):321-59. 

31. Song F. Exploring heterogeneity in meta-analysis: is the L'Abbe plot useful? J 

Clin Epidemiol 1999;52(8):725-30. 

32. Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a 

comparison of methods. Stat Med 1999;18(20):2693-708. 

33. van Houwelingen H, Senn S. Investigating underlying risk as a source of 

heterogeneity in meta-analysis. Stat Med 1999;18(1):110-5. 

34. Bailey KR. Inter-study differences: how should they influence the 

interpretation and analysis of results? Stat Med 1987;6(3):351-60. 



Bivariate meta-regression model 

 

 117 

35. Deville WL, Buntinx F, Bouter LM, Montori VM, De Vet HC, Van Der Windt 

DA, et al. Conducting systematic reviews of diagnostic studies: didactic 

guidelines. BMC Med Res Methodol 2002;2(1):9. 

36. Shapiro DE. Issues in combining independent estimates of the sensitivity and 

specificity of a diagnostic test. Acad Radiol 1995;2 Suppl 1:S37-47; discussion 

S65-9, S83. 

37. Rutter CM, Gatsonis CA. Regression methods for meta-analysis of diagnostic 

test data. Acad Radiol 1995;2 Suppl 1:S48-56; discussion S65-7, S70-1 pas. 

38. Macaskill P. Empirical Bayes estimates generated in a hierarchical summary 

ROC analysis agreed closely with those of a full Bayesian analysis. J Clin 

Epidemiol 2004;57(9):925-32. 

39. Glas AS, Roos D, Deutekom M, Zwinderman AH, Bossuyt PM, Kurth KH. 

Tumor markers in the diagnosis of primary bladder cancer. A systematic 

review. J Urol 2003;169(6):1975-82. 

40. Bipat S, Glas AS, van der Velden J, Zwinderman AH, Bossuyt PM, Stoker J. 

Computed tomography and magnetic resonance imaging in staging of uterine 

cervical carcinoma: a systematic review. Gynecol Oncol 2003;91(1):59-66. 

41. Scholten RJ, Opstelten W, van der Plas CG, Bijl D, Deville WL, Bouter LM. 

Accuracy of physical diagnostic tests for assessing ruptures of the anterior 

cruciate ligament: a meta-analysis. J Fam Pract 2003;52(9):689-94. 

42. Koelemay MJ, Nederkoorn PJ, Reitsma JB, Majoie CB. Systematic review of 

computed tomographic angiography for assessment of carotid artery disease. 

Stroke 2004;35(10):2306-12. 

43. Song F, Khan KS, Dinnes J, Sutton AJ. Asymmetric funnel plots and 

publication bias in meta-analyses of diagnostic accuracy. Int J Epidemiol 

2002;31(1):88-95. 

44. Reid MC, Lachs MS, Feinstein AR. Use of methodological standards in 

diagnostic test research. Getting better but still not good. JAMA 

1995;274(8):645-51. 

45. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, et 

al. Towards complete and accurate reporting of studies of diagnostic accuracy: 
The STARD Initiative. Ann Intern Med 2003;138(1):40-4. 

46. Sheps SB, Schechter MT. The assessment of diagnostic tests. A survey of 

current medical research. Jama 1984;252(17):2418-22. 



Chapter 6 

 

 118 

Appendix 1. Technical Description of the Bivariate Model 

 

We are dealing with individual studies (i=1, ... , k) that have reported 

sensitivity ( iAp , ) determined in AN  individuals with the condition of interest 

and specificity ( iBp , ) measured in BN  subjects without this condition. We 

define iA,θ  as the logit-transformed sensitivity in study i, and iB,θ  as the logit-

transformed specificity.  

We assume that the true logit sensitivities of these individual studies 

( iA,θ ) are normally distributed around some common mean value Aθ  with a 

between-study variability of 
2
Aσ  . The same random effect assumption is used 

for the specificities of the studies, where we use Bθ  to denote the mean value of 

logit specificity and 
2
Bσ  as the between-study variance in logit specificity. 

We explicitly incorporate the possibility of correlation between (logit) 

sensitivity and specificity within studies. Combining two normal distributions 

that can be correlated, leads to the following bivariate normal model: 
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where ABσ  is the covariance between logit sensitivity and specificity. 

 

We extend this bivariate model by incorporating the precision by which 

sensitivity and specificity have been measured in each study. When AN  and 

BN  are large and 1;0 ,, << iBiA pp , the corresponding variance of the 

estimated logit transformed sensitivity and specificity in each study are given 

by 
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If we treat the observed variance of logit sensitivity and specificity as fixed 

quantities, a standard approach in meta-analysis, we can write: 
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The final model then becomes 
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with Ci being a diagonal matrix holding the 
2
is  ’s.  

This model can be fitted by likelihood-based methods, in particular the 

SAS proc mixed procedure because it allows the user to fix the within trial 

variance at specific values per study (24).  

The standard output of the bivariate model includes: mean logit sensitivity 

( Aθ ) and specificity ( Bθ ) with their standard errors and 95% confidence 

intervals; and estimates of the between-study variability in logit sensitivity 

(
2
Aσ ) and specificity (

2
Bσ ) and the covariance between them ( ABσ ). 

 

Based on these parameters, we can calculate other measures of interest: 

� The likelihood ratio for positive and negative test results: 
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� The diagnostic odds ratio defined by: ( )BAeDOR θθ +=  

� The correlation between logit sensitivity and specificity: 
22
BA

AB

σσ
σ

⋅
  

 
� Several summary ROC linear regression lines based on either the 

regression of logit sensitivity on specificity given by:  
 

 ( )BB
B

AB
AA B

θθ
σ
σθθ θ −+=

2|
ˆ  

 

or the regression of logit specificity on sensitivity, or a orthogonal 

regression line by minimizing the perpendicular distances. These lines 

can be transformed back to the original ROC scale to obtain a summary 

ROC curve.  
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Appendix 2. Fitting the Bivariate Model Using Proc Mixed 

 

Example of main syntax. A copy of the full SAS program is available on 

request from the first author. 

 

/* The dataset (bi_meta) has one outcome variable (logit), but each study has 

two records. One record contains logit sensitivity, the other logit specificty. We 

use two indicator variables to distinguish: dis and non_dis */ 

proc mixed data=bi_meta method=reml cl;  

/* study_id and modality are categorical variables */ 

class study_id modality; 

/* model statement: asking for different estimates of mean sensitivity and 

specificity for each modality, provide large value for degrees of freedom to 

obtain p-values based on normal distribution rather than the t-distribution 

(=default in SAS) */ 

model logit = dis*modality non_dis*modality   /  noint  cl df=1000, 1000,  

1000, 1000, 1000, 1000, 1000;  

/* random effects for logit sensitivity and specificity with possible correlation 

(UN=unstructured covariance structure) */ 

random dis non_dis / subject=study_id type=un ; 

/* use the repeat statement to define different within-study variances for sens 

and spec in each study  */ 

repeated / group=rec; 

/* name the file holding the all the (co)variances parameters, keep the within-

study variance constant */ 

parms / parmsdata=cov hold=4 to 91; 

/* use contrast statement for testing specific hypotheses */ 

/* testing for differences in sensitivities  */ 

contrast 'CT_sens vs LAG_sens' dis*modality 1 –1 0 / df=1000 ; 

contrast 'CT_sens vs MRI_sens' dis*modality 1 0 –1/ df=1000 ; 

contrast 'LAG_sens vs MRI_sens' dis*modality 0 1 –1/ df=1000 ; 

/* testing for differences in specificities */ 

contrast 'CT_spec vs LAG_spec' non_dis*modality 1 –1 0 / df=1000 ; 

contrast 'CT_spec vs MRI_spec' non_dis*modality 1 0 –1/ df=1000 ; 

contrast 'LAG_spec vs MRI_spec' non_dis*modality 0 1 –1/ df=1000 ; 

run; 
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Abstract  

 

Objective: To examine the influence of study design features on estimates 

of sensitivity, specificity, and diagnostic odds ratio in a series of meta-analyses.  

Study design: Meta-epidemiologic approach, including 49 meta-analyses 

with 705 primary studies. A bivariate multivariable regression model was used 

to estimate the relative change in sensitivity and specificity between studies 

with specific design features and studies of the same test without these design 

features. The design features evaluated were type of design, timing of data-

collection, patient selection, test result interpretation, and verification 

procedure. 

Results: Studies using differential verification reported significantly higher 

estimates of specificity (1.4 [95% CI: 1.0 to 1.9]) and odds ratio (1.8 [95% CI: 1.0 

to 3.1]) compared to studies using a single reference standard in the 

verification of test results. The association between other shortcomings in 

design and estimates of diagnostic accuracy were not statistically significant. 

The effect of design features varied substantially between meta-analyses. 

Conclusion: Design features can affect estimates of the sensitivity, 

specificity and diagnostic odds ratio but the direction and magnitude of the 

biasing effects vary between meta-analyses and are difficult to predict. As a 

result, the average effect of design features will become diluted in any 

exploration of heterogeneity through regression modelling in a meta-

epidemiologic approach. 
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Determining the diagnostic accuracy of a test is an important step in the 

evaluation process of medical tests. Diagnostic accuracy is the ability of a test 

to discriminate between subjects that have the target condition and those that 

have not. The accuracy of a test is studied by comparing the results of this 

index test with the outcomes of a reference standard on the same series of 

subjects. For dichotomous test results, diagnostic accuracy can be expressed as 

the test’s sensitivity and specificity, or diagnostic odds ratio. 

Many potential sources of bias and variation can affect estimates of 

diagnostic accuracy (1;2). Empirical evidence derived from diagnostic reviews 

has shown that a number of study characteristics may overestimate diagnostic 

accuracy, but results have not been consistent (3;4). In these analyses, 

diagnostic accuracy estimates in studies with design deficiencies were 

compared to estimates from studies of the same test without the corresponding 

deficiency. Lijmer and colleagues found that studies using case-control designs, 

differential verification and single or not blinded reading reported higher 

estimates of diagnostic accuracy than studies using cohort designs, a single 

reference standard to verify index test results or double blinded reading (3). 

Rutjes and colleagues found that non-consecutive inclusion of patients and 

retrospective data-collection increased the estimates of accuracy and that 

inclusion based on index test results rather than on symptom and signs only, 

decreased the estimates of accuracy (4). 

So far, a minority of meta-analyses has explicitly evaluated the effect of 

design features on diagnostic accuracy. Most meta-analyses did so by relying on 

summary receiver operating characteristic models, using the diagnostic odds 

ratio as the main outcome measure (3;4;5). The odds ratio is a convenient 

statistic, expressing accuracy as a single number (6). Alternatively, one can 

express the diagnostic accuracy in terms of the test’s sensitivity and specificity, 

which are likely to be more informative than the odds ratio. It is possible that 

some of the effects of design features on sensitivity and specificity are not 

reflected in net changes in the corresponding diagnostic odds ratio. 

Recently, a meta-analytic technique has been developed to obtain 

summary estimates of sensitivity and specificity using a bivariate model (7). 

Our aim was to examine if previously documented effects of design features on 

the diagnostic odds ratio are paralleled by effects on sensitivity, specificity, or 

both. In addition, we wanted to explore the variability in these effects between 

different meta-analyses. 
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This paper reports the results of an evaluation of the effect of six design 

features on estimates of sensitivity, specificity, and diagnostic odds ratio in a 

large series of existing meta-analyses of diagnostic accuracy. 

  

 

Methods 

 

Data Sources and Data Extraction 

We combined data from 49 meta-analyses containing 705 primary studies 

of diagnostic accuracy. These meta-analyses have been used in two previous 

explorations of the effects of design features on accuracy (3;4). 

Details about the electronic search of the literature, the selection of meta-

analyses, and the data-extraction of both meta-analyses and primary studies 

can be found elsewhere (3;4). In short, an electronic search strategy was 

developed to identify all systematic reviews of diagnostic accuracy studies 

published between January 1996 and December 1997 (3) and January 1999 

and April 2002 (4), respectively. Systematic reviews were eligible if at least five 

(3) or ten (4) studies of the accuracy of the same test had been included, if study 

selection had not been based on one or more of the design features that we 

intended to evaluate, and if sensitivity and specificity were provided for at least 

90% of the studies in the review. If two or more reviews addressed the same 

index test and target condition combination, only the largest one was included 

to prevent double inclusion of primary studies.  

We excluded primary studies if we were unable to reproduce the two by 

two tables. 

The design features and estimates of diagnostic accuracy of all primary 

studies were evaluated and extracted by two assessors independently. 

Disagreements between assessors were discussed and, if necessary, the ruling 

of a third assessor was decisive. 

 

Assessment of Study Quality 

Six design features were extracted from each primary study: design (cohort 

study versus case-control design), timing of data-collection (prospective versus 

retrospective), patient selection (consecutive or random sample versus non-

consecutive inclusion), test result interpretation (double blinded versus single 

or not blinded), verification procedure (complete versus partial verification; and 
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verification by the preferred reference standard versus verification with 

different reference standards). These six items were selected as they were 

defined identically in the two analyses (3;4). 

The optimal design was considered to be a cohort design with prospectively 

planned data-collection, enrolling a consecutive series of patients who all 

receive both the index test and the preferred reference standard, who’s results 

are interpreted independently (blinded) from each other (8;9). 

Case-control studies using severely diseased cases and healthy controls 

have produced two– or threefold higher estimates of the diagnostic odds ratio 

compared with studies of the same test using a cohort design (2;3). We 

contrasted this type of case-control design against cohort and other case-control 

designs that included cases and controls covering a broader range of the 

disease spectrum. 

Prospective data collection enables researchers to obtain high quality data, 

whereas retrospective data collection is more vulnerable to missing data and 

incomplete patient flow (10). If the timing of data-collection was not reported, 

we scored it as ‘prospective’, which is in concordance with the previous analysis 

of Lijmer et al. (3). 

Bias may occur when not all consecutive patients fulfilling the selection 

criteria are included, unless the selection is random. If the sampling method 

was not reported, the corresponding study was scored as non-consecutive. 

Interpretation of the result of the index test with knowledge of the 

reference standard result or vice versa may enhance agreement, especially if 

the reference standard is open to subjective interpretation. If it was not clear 

that the interpretation was double-blinded, or a study used single blinded 

interpretation, the corresponding study was scored as not-blinded.  

Ideally, all index tests results are verified with the same optimal reference 

standard. The biasing effect of omitting unverified index test results from the 2 

by 2 table (partial verification) is well described (11-14). Use of a second 

reference standard for the initially unverified results (differential verification) 

has been shown to lead to higher estimates of accuracy (3). If more than 90% of 

the included patients was verified by a reference standard, the verification of 

index test results was scored as ‘complete’. 
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Table 1. The Effect of Study Characteristics on Diagnostic Accuracy* 

Label 
No of Studies, 
No of Meta-
analyses 

Average Relative Effect 
on Sensitivity (95% CI) 

Between Meta-
analyses Variance: 
Q–test / p–value / I2 

 
Severe cases-healthy controls 

 
10 / 4 

 
1.60 (0.83 to 3.10) 

 
0 / 0.66 / 0% 

Retrospective data-collection 134 / 28 1.17 (0.85 to 1.59) 0.28 / <0.01 / 49% 
Not consecutive 405 / 39 0.98 (0.85 to 1.14) 0 / 0.97 / 0% 
Single or not-blinded reading 362 / 29 1.21 (0.94 to 1.57) 0.06 / 0.25 / 13% 
Partial verification 88 / 24 0.99 (0.70 to 1.39) 0.28 / 0.01 / 43% 
Differential verification 
 

107 / 17 1.30 (0.87 to 1.94) 0.31 / 0.02 / 44% 

* Relative effect on sensitivity, specificity and diagnostic odds ratio estimated in a multivariable 2 stage 
model. Total number of primary studies = 705; total number of meta-analyses = 49 
No = number   CI = Confidence interval 

 

 

Statistical Analysis 

We used a two stage meta-epidemiological approach to study the effect of 

design features on diagnostic accuracy (15). In the first step, a multivariable 

bivariate model was used to estimate summary estimates of sensitivity and 

specificity within each meta-analysis separately, taking the effects of design 

features into account. 

The key feature of the bivariate model is that it preserves the two–

dimensional nature of the underlying data by analysing the logit transformed 

sensitivities [log(sens/(1–sens))] and specificities [log(spec/(1–spec))] in a single 

bivariate model. The overall effect on the diagnostic odds ratio (DOR) scale can 

still be calculated from the effects on sensitivity and specificity, as 

[logit(sens)+logit( spec)=log(DOR)]. This bivariate model incorporates and 

estimates the correlation between logit sensitivity and specificity due to 

threshold differences between studies. The model uses a random effects 

approach for both sensitivity and specificity, allowing for heterogeneity beyond 

chance between studies. In addition, the model acknowledges any differences in 

precision by which sensitivity and specificity have been measured in a study. 

Studies with a larger number of patients with the target condition receive more 

weight in the calculation of the summary estimate of sensitivity, while studies 

with more patients without the target condition are more influential in the 

pooling of specificity. Further details on how to fit this model can be found in 

Reitsma et al. (7). 

Covariables indicating design features were added to the model to examine 

whether, on average, studies that failed to meet certain methodological criteria  
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Table 1–Continued 
Average Relative 
Effect on Specificity 
(95% CI) 

Between Meta-
analyses Variance: 
Q–test p–value / I2 

Average Relative 
Effect on Diagnostic 
Odds Ratio (95% CI) 

Between Meta–
analyses Variance: 
Q–test p–value / I2 

 
1.71 (0.50 to 5.87) 

 
0.95 / 0.03 / 67% 

 
2.22 (0.61 to 8.11) 

 
1.0 / 0.06 / 60% 

1.27 (0.92 to 1.77) 0.34 / <0.01 / 48% 1.26 (0.94 to 1.70) 0.08 / 0.25 / 14% 
1.04 (0.88 to 1.22) 0 / 0.55 / 0% 1.02 (0.83 to 1.26) 0 / 0.98 / 0% 
1.14 (0.87 to 1.49) 0.10 / 0.15 / 21% 1.31 (0.98 to 1.74) 0 / 0.78 / 0% 
1.06 (0.71 to 1.57) 0.48 / <0.01 / 53% 1.16 (0.82 to 1.63) 0.01 / 0.45 / 1% 
1.42 (1.06 to 1.90) 
 

0.04 / 0.35 / 9% 1.69 (1.03 to 2.78) 0.44 / 0.02 / 44% 

 

 

yielded different estimates of accuracy. Relative sensitivities, specificities and 

odds ratios were used as the corresponding summary effect measures, 

expressing the relative changes in studies with the design deficiency relative to 

studies without the corresponding deficiency. 

The second stage of the analysis consisted of a pooling of the relative 

effects of study design features across meta-analyses (15). A standard random 

effects approach was applied using the inverse square root of the standard 

error of the effect, calculated in each meta-analysis (first stage), as weights 

(inverse variance weighting). Variability in design effects between meta-

analyses was evaluated by graphical displays and by calculating the Q–test 

and I2–statistics (16). 

We used the PROC MIXED procedure of SAS to estimate the parameters 

of this model (SAS version 9.1, SAS Institute Inc, Cary, NC, USA).  

 

 

Results 

 

Our combined dataset included 49 meta-analyses with 705 primary 

studies; 11 systematic reviews covering 18 meta-analyses with 218 primary 

studies from the first set (17-27), and 28 systematic reviews covering 31 meta-

analyses with 487 primary studies from the second set (28-55). The tests under 

study varied from laboratory tests to imaging tests, and included physical 

examinations and questionnaires as well (20, 23, 5 and 1 meta-analyses, 

respectively). The target conditions involved covered a broad range of the ICD–

10 classifications (56), including diseases of the circulatory system (18 meta-

analyses), neoplasms (9 meta-analyses), infectious diseases (6 meta-analyses), 
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chromosomal abnormalities (4 meta-analyses) and external causes of morbidity 

and mortality (3 meta-analyses). Additional details of the meta-analyses can be 

found elsewhere (3;4). 

The occurrence of shortcomings in design in primary studies, and the total 

number of meta-analyses that included at least one such study is presented in 

column two of Table 1. Most studies used a cohort design with prospective data-

collection, non-consecutive inclusion of patients, not blinded interpretation of 

test results, and complete verification with a single reference standard. Only 

9.6% (68 out of 705) of the studies fulfilled all 6 study features that we defined 

as optimal.  

 

Average Effects across Meta-Analyses 

The results from the meta-epidemiologic multivariable bivariate model are 

presented in Table 1. The largest effect on estimates of accuracy was found in 

studies using a case-control design including severe cases and healthy controls. 

These studies tended to overestimate the sensitivity, specificity and DOR by 

factor 1.6, 1.7 and 2.2 respectively. Confidence intervals were wide and 

included the no effect value as a result of the limited number of studies using a 

severe-case–healthy-control design (n=10 studies in 4 meta-analyses) and 

because of heterogeneity in effect across meta-analyses. 

Studies using differential verification reported significantly higher 

estimates of specificity (by factor 1.4) and DOR (by factor 1.7), in comparison to 

studies using a single reference standard in the verification of index test 

results. Differential verification tended to increase the estimates of sensitivity 

as well (by factor 1.3) but this effect was not significant.  

We found no significant effects for any of the other four design features on 

either sensitivity, specificity or DOR.  

 

Heterogeneity in Effects Between Meta-Analyses 

The between meta-analyses variances of effect of a design feature on 

sensitivity, specificity and the DOR are presented in Table 1. Variability in the 

effect on sensitivity was large for partial and differential verification and 

retrospective data-collection and small or absent for case-control designs, not 

consecutive inclusion and single or not-blinded reading. The heterogeneity in 

the effect on specificity was very large for case-control designs, large for partial 

verification and retrospective data-collection, and small or absent for the other  
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Figure 1. Variation in Effect Between Meta–Analyses* 
 
a) effect of differential verification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
b) effect of retrospective data–collection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* a) differential verification; b) retrospective data–collection; circles represent individual meta–analyses, 
proportional to number of patients included; dotted line represents the average effect on sensitivity and 
specificity; >0 on logit scale: respective design flaw tends to increase the estimate of accuracy, 0: no 
effect or the design feature, <0: the design flaw tends to decrease the estimate of accuracy. 

 

 

3 design features. On the DOR, the heterogeneity of effect was large for case-

control designs and differential verification, and small or absent for the 4 other 

features. 

Figure 1a shows the between meta-analyses variance for differential 

verification and retrospective data-collection by plotting the effect of the 

respective design feature of each meta-analyses. On average, differential 

verification tended to increase both sensitivity and specificity but the effects 

varied between meta-analyses, in size as well as in direction. The estimates of 

sensitivity and specificity are scattered over all four quadrants, which shows 

that all possible patterns in changes of sensitivity and specificity occurred. The 

heterogeneity in the effect on sensitivity is larger than for specificity.  

Figure 1b illustrates the variability in effect of studies relying on 

retrospective data-collection. The average effect is a slight increase (not 

significant) in both sensitivity and specificity, but the effect varies in size and 

direction across meta-analyses, both for sensitivity and specificity. Most meta-
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analyses have an effect in either the upper left or the lower right quadrant, 

implying that when sensitivity increases, specificity decreases, and vice versa. 

 

  

Discussion 

 

This study confirms that shortcomings in design can affect estimates of 

diagnostic accuracy, and shows that these effects apply both to sensitivity and 

specificity as well as to the diagnostic odds ratio. Estimates of specificity and 

the DOR were significantly higher in studies using differential verification in 

comparison to studies using one reference standard to verify index test results. 

Studies using case-control designs with severe cases and healthy controls, 

retrospective data-collection or not blinded reading of test results tended to 

increase sensitivity, specificity and the DOR, but these effects did not reach 

significance. Overall, the between meta-analyses variance of the effect was 

large for designs using severe cases and healthy controls, partial or differential 

verification, and for retrospective data-collection. 

In general, this study can be classified as meta-epidemiological research 

(15). Meta-epidemiological studies aim to identify and quantify biases in 

estimates of effectiveness by contrasting estimates from studies with different 

characteristics within meta-analyses. Meta-epidemiology faces several 

problems, including inadequate reporting of study features in primary studies, 

heterogeneity in the effect of a particular feature across meta-analyses, and 

selection of an appropriate outcome measure.  

Several of the choices we had to make may have contributed to the 

heterogeneity of design effects. We decided to dichotomise design features in 

optimal versus suboptimal categories, whereas a categorical or even continuous 

scale might be more appropriate. If only 20% of the patients with negative 

index test result is verified in one study and 80% is verified in a second study, 

it will not come as a surprise that the size of effect of partial verification differs. 

If also the pattern of non-verification differs, initiated by negative or positive 

index test results for example, the direction of the effect can vary as well. 

Analogue to the study of Lijmer et al., we grouped the ‘not reported’ category of 

timing of data-collection with ‘prospective data-collection’, which may have 

increased the observed differences in effect. 
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Labeling is another problem. Retrospective data-collection, for example, 

actually represents a number of possible sources of bias and variation: 

incomplete patient flow, variability in the determination of the final diagnosis, 

and incomplete data. These effects may differ in size and direction within and 

across meta-analyses. 

In addition, the effect of a study design feature may be modified by the 

clinical condition and the test used. Blinding, for example, may be of greater 

importance in imaging studies, but less of an issue in evaluations with 

laboratory tests. 

Incomplete and inaccurate reporting is another problematic issue, as it can 

lead to misclassifications of design features.  

The use of a multivariable bivariate meta-analytic model allowed us to 

demonstrate the effects of study design features on sensitivity and specificity 

separately, whereas previous analyses focused only on the effect on the 

diagnostic odds ratio (3;4). Our finding that differential verification leads, on 

average, to higher estimates of diagnostic odds ratio is in line with previous 

research (3). We showed that these effects also apply to both sensitivity and 

specificity. The direction and size of effect depend on the characteristics of the 

reference standards, the relation between the index test and respective 

reference standards and the fraction of patients that are verified differently. 

Lijmer et al. found a significant effect for the effect of case-control design 

and single blinded or unblinded reading (3). Rutjes et al. demonstrated a 

statistical effect of retrospective data-collection and non-consecutive inclusion 

of patients (4). We could not confirm these effects, which can be explained by a 

number of reasons. 

The fixed-effects approach used by Lijmer was replaced by a random 

effects approach in this study, allowing the design covariates to vary between 

meta-analyses. The incorporation of these additional sources of variability 

explains the wider confidence intervals in our study, despite the combined 

number of studies of 705 rather than the 218 primary studies included in the 

Lijmer paper.  

For some design features, as in timing of data-collection and partial 

verification, we observed that the heterogeneity in effect was large on both 

sensitivity and specificity, but small or negligible on the DOR. In retrospective 

data-collection, for example, the majority of studies either reported higher 

estimates of sensitivity with lower estimates of specificity, or lower estimates of 
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sensitivity with higher estimates of specificity (Figure 1b). In other words, as 

the fraction true positives increased, the fraction true negatives decreased, and 

vice versa.  

We observed substantial heterogeneity in the effects of case-control designs 

and retrospective data-collection. The estimated average effect of an effect will 

therefore depend on the set of meta-analyses included. The set included by 

Lijmer et al. did not overlap with the set of Rutjes et al. Estimates derived from 

the combination of these sets can therefore differ. 

Broadening our understanding of the mechanisms through which study 

design features can lead to bias and variability deserves priority in future 

research. Primary accuracy studies, meta-analyses, and simulation models are 

all suitable approaches. Large accuracy studies can explore variability across 

clinical subgroups. Reviews with a large number of primary studies might 

provide insight in the reasons why accuracy differs among non-optimal studies. 

Simulation and modeling offers the possibility of studying the effects under a 

wider range of conditions. 

One of the main challenges remains the development of suitable strategies 

to deal with differences in design in meta-analyses of diagnostic accuracy 

studies. Several strategies can be chosen: restricting inclusion to studies with 

optimal design features, adjusting summary estimates for the differences in 

design, or ignoring design differences altogether. Ignoring differences is not 

recommended. Restricting a meta-analysis to optimal studies introduces a new 

dilemma. Few existing studies fulfill all requirements and restricting the 

number of required features calls for more knowledge of the underlying 

mechanisms. Statistically adjusting for differences in meta-analyses appears to 

be a good option but is only feasible in meta-analyses including a large number 

of primary studies. Visual exploration of heterogeneity, for example by plotting 

pairs of sensitivity and specificity in ROC–space, labeled by design feature, is 

recommended for all meta-analyses. 

Initiatives like STARD (10) should be endorsed to improve the awareness 

of the importance of design features, the quality of reporting of future studies 

and, ultimately, the quality of study designs. Studies with adequate designs 

and good reporting will lead to more reliable information to guide decisions on 

the use and interpretation of test results in the management of patients.  

We showed that different study designs can produce different estimates of 

sensitivity, specificity and diagnostic odds ratio but that the direction and 
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magnitude of the biasing effects varies and is difficult to predict. Both 

researchers and readers should be aware of this when turning to diagnostic 

accuracy studies to support informed decisions about medical tests in 

healthcare. 
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Abstract 

 

Background: The reported diagnostic accuracy of the D-dimer test for the 

exclusion of deep venous thrombosis (DVT) and pulmonary embolism (PE) 

varies. This may be due to the large variety of D-dimer assays evaluated and to 

differences in study design and patient groups.  

Objectives: To obtain precise summary estimates of the sensitivity and 

specificity of D-dimer assays in the exclusion of deep venous thrombosis and 

pulmonary embolism, adjusting for differences in study design and patient 

groups.  

Methods: We systematically searched the MEDLINE and EMBASE 

databases up to March 2005 for studies comparing a D-dimer test to a reference 

standard in patients with suspected deep venous thrombosis or pulmonary 

embolism. A bivariate multivariable regression model was used to obtain 

summary estimates of sensitivity and specificity, adjusting for study 

differences. 

Results: A total of 217 D-dimer test evaluations for deep venous 

thrombosis and 111 test evaluations for pulmonary embolism could be 

analyzed. Several study design characteristics were associated with systematic 

differences in diagnostic accuracy. After adjustment for these features, the 

sensitivities of the enzyme-linked fluorescent immunoassay (ELFA) D-dimer 

(DVT 96%; PE 97%), enzyme-linked immunosorbent assay (ELISA) microplate 

(DVT 94%; PE 95%), and latex quantitative (DVT 93%; PE 95%) assays were 

superior to that of whole-blood D-dimer (DVT 83%; PE 87%), latex 

semiquantitative (DVT 85%; PE 88%) and latex qualitative (DVT 69%; PE 

75%). The sensitivity and specificity of membrane ELISA were not statistically 

different from latex quantitative. Latex qualitative and whole-blood D-dimer 

assays had the lowest sensitivity (DVT 69%, 83%; PE 75%, 87%), but the 

highest specificity (DVT 99%, 71%; PE 99%, 69%).  

Conclusions: Compared to the other D-dimer assays, ELFA, ELISA 

microplate, and latex quantitative D-dimer tests have a higher sensitivity, but 

a lower specificity resulting in a more confident exclusion of the disease, at the 

expense of additional unnecessary testing. 
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Twenty five percent of patients with confirmed venous thromboembolism (deep 

venous thrombosis and pulmonary embolism) die within 7 days of symptoms 

onset, and in about 22% of these cases death is so rapid that there is 

insufficient time to treat (1-3). While a prompt recognition of venous 

thromboembolism is mandatory, only about 25% of the suspected episodes is 

subsequently confirmed (1;2). To avoid unnecessary anticoagulant treatment 

and the associated risk of bleeding, it is crucial to accurately identify the 75% 

of the patients with venous thrombo-embolism symptoms who do not have the 

disease.  

Currently, the reference standards for the objective diagnosis of deep 

venous thrombosis of the legs are ascending venography and compression 

ultrasound repeated at 1 week after a normal compression ultrasound at 

baseline. Serial compression ultrasound has the disadvantage of being 

expensive and time-consuming, whereas the routine use of the venography has 

been limited by the invasiveness, the complication rate, the costs, and the high 

inter-observer variability (2). In the diagnosis of pulmonary embolism, 

pulmonary angiography is considered to be the reference standard, whereas 

spiral computed tomography is emerging as possible safe alternative (1;4). 

However, all these imaging tests are costly, potentially harmful, and cannot be 

ordered for every patient presenting with a remote suspicion of pulmonary 

embolism.  

Given the shortcomings of the currently available reference standards for 

venous thromboembolism, several non-invasive diagnostic tests have been 

developed to limit the number of patients requiring further evaluation with 

imaging techniques. With a high negative predictive value, the D-dimer test 

represents an excellent screening tool in patients with suspected venous 

thromboembolism. When combined with a low pre-test clinical probability of 

disease, a negative D-dimer result can safely exclude a diagnosis of venous 

thromboembolism (2;5;6). A large variety of D-dimer assays has been evaluated 

in numerous studies. Results on the diagnostic accuracy have been discordant, 

possibly because of the differences in the design and conduct of these studies.  

Despite the extensive literature on the topic, including a number of 

systematic reviews, it remains unclear whether one or more of these D-dimer 

tests outperform the others and if two or more D-dimer assays can have a 

similar accuracy (6-10). Previous reviews have summarized data using 

summary estimates of the respective diagnostic odds ratio (7;8;10), or detection 
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rates (6), which may impede clinical interpretation. Only Stein et al. (9) 

presented summary estimates of sensitivity and specificity while incorporating 

the correlation between these two indexes (9). In addition, inclusion of studies 

was restricted to a limited number of assays (7;8), limited to either pulmonary 

embolism (7;8) or deep venous thrombosis (10), and limited to studies that 

fulfilled a number of prespecified design criteria (7-10). Such a restriction to 

presumably optimal studies is but one method to handle design differences and 

may be precarious, as empirical evidence has shown that the biasing effect of 

design differences may vary in direction and size (chapter 7). 

The aim of this systematic review and meta-analysis was to obtain precise 

summary estimates of the sensitivity and specificity of a large number of D-

dimer test categories in the exclusion of deep venous thrombosis or pulmonary 

embolism, adjusting for known sources of bias and variability without resorting 

to restrictive inclusion criteria.  

 

 

Methods 

 

Study Identification 

A systematic search of the MEDLINE and EMBASE databases up to 

March 2005 was performed to identify studies reporting on the diagnostic 

accuracy of a D-dimer test in patients suspected for deep venous thrombosis of 

the lower extremities, or pulmonary embolism. The following search terms 

(MeSH and textwords) were used for the MEDLINE: d dimer, fibrin fibrinogen 

degradation products, vein thrombosis, venous thrombosis, thrombosis, lung 

embolism, pulmonary embolism, thromboembolism, venous thromboembolism, 

sensitivity-and-specificity, predict$, diagnos$, di.fs, du.fs, accura$, and for the 

EMBASE database search: d dimer, fibrin degradation product, fibrinogen 

degradation product, vein thrombosis, venous thrombosis, thrombosis, lung 

embolism, pulmonary embolism, thromboembolism, venous thromboembolism, 

sensitiv$, detect$, accura$, specific$, reliab$, positive diagnos$, negative 

diagnos$, di.fs. Reference lists of all included studies and of reviews related to 

the topic of the present meta-analysis were manually searched for other 

potential eligible studies. No language restrictions were applied. 
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Study Eligibility 

Two investigators (MDN and AS) independently reviewed titles and 

abstracts from the initial search to determine whether the inclusion criteria 

were satisfied. Articles had to evaluate the diagnostic performance of D-dimer 

in the diagnosis of venous thromboembolism. Decisions regarding inclusion 

were made separately, results were compared and any disagreement was 

solved through discussion. Where necessary, the authors were contacted for 

additional information. Case-reports, editorials, and studies including only 

critically ill or post-trauma patients were excluded. 

 

Data Extraction 

Two reviewers (MDN with AS or AR) independently extracted study 

characteristics using standardized forms that were accompanied by a 

background document. Study characteristics had been identified based on their 

potential for bias and variability, as listed in the STARD statement, and in a 

recent systematic review (11-13). The study design characteristics extracted 

and considered for the analysis are given in Table 1. 

Articles were excluded if data could not be extracted to calculate a 2x2 

table, or if the 2x2 table could not be calculated separately for deep venous 

thrombosis and pulmonary embolism in case both conditions were investigated 

in the same study. Any disagreements were solved by consensus and, if 

necessary, by involving a third reviewer (PB). No attempts to mask for 

authorship, journal name or institution were made.  

 

Statistical Analysis 

We used a bivariate random effects regression approach to obtain 

summary estimates of both sensitivity and specificity of the respective D-dimer 

tests while adjusting for sources of bias and variability. This model assumes 

that the (true) logit transformed sensitivities and specificities of the included 

D-dimer studies follow a bivariate normal distribution around a common mean 

of logit-transformed sensitivity and specificity, incorporating any correlation 

that might exist between logit-sens and logit-spec (14). Furthermore, the 

number of patients testing positive among the diseased (sensitivity) in a 

particular study is assumed to follow a binomial distribution. The same is true 

for the number of patients testing negative among the non-diseased 

(specificity). This means that more weight in the pooling of sensitivity is given  
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Table 1a. Design Characteristics of the Included Studies 

Item No. Label of Design Characteristic, with Categories No. of 
Studies 

 
1 

 
Study design 
 Cohort design 
 Case–control design using healthy controls 
 Case–control design using other controls or nested case control design 

 
 
315 
1 
13 

2 Data collection 
 Prospective 
 Retrospective 
 Timing data–collection not reported 

 
203 
34 
92 

3 Sampling method* 
 Consecutive series 
 Random sample 
 Not consecutive nor random 
 Sampling method not reported 

 
161 
7 
119 
42 

4 Interpretation of index tests results 
 Blinded for reference standard results 
 Index test not blinded or blinding not described 

 
142 
187 

5 Interpretation of reference standard results 
 Blinded for index test results 
 Reference standard not blinded or blinding not described 

 
165 
164 

6 Availability of clinical information 
 Clinical information available while interpreting D–dimer test results 
 Clinical information not available while interpreting D–dimer test results 
 Availability of clinical information not described. 

 
5 
34 
290 

7 Availability of clinical information 
 Clinical information available while interpreting reference standard results 
 Clinical information not available while interpreting reference standard results 
 Availability of clinical information not described. 

 
70 
10 
248 

8 Type of reference standard* 
 For deep venous thrombosis: 
     Venography or phlebography 
    Standard or compressed ultrasonography, or phletysmography 
    Diagnostic strategy, using follow–up in D–dimer negative results only 
    Other diagnostic strategies 
 For pulmonary embolism: 
    Pulmonary angiography 
    Ventilation–perfusion scan or computed tomography scan 
    Diagnostic strategy, using follow–up in D–dimer negative results only 
    Other diagnostic strategies 

 
 
70 
47 
9 
91 
 
21 
6 
8 
76 

9 Completeness of verification* 
 Complete 
 Partial 
 Completeness of verification not described 

 
284 
44 
1 
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Table 1a–Continued 

Item No. Label of Design Characteristic, with Categories No. of 
Studies 

 
10 

 
Time lag (between execution of D–dimer test and reference standard)* 
 Maximally 24 hours for pulmonary embolism and 48 hours for deep venous  
 thrombosis 
 Time lag too long 
 Time lag not reported 

 
 
164 
 
17 
148 

11 Drop–outs 
 Drop out more than 10% reported 
 Drop–out not described 

 
98 
231 

12 Cut–off definition* 
 Standard or pre–defined 
 Cut–off from ROC curves 
 Cut–off selected for maximal sensitivity 
 Not reported 
 

 
216 
46 
21 
45 

* denotes variables that are selected for the multivariable approach. 

 

Table 1b. Patient Group Characteristics of the Included Studies 

Item No. Label of Patient Group Characteristic, with Categories No. of 
Studies 

1 Age* 
 Mean age below 60 years 
 Mean age above 60 years 
 Mean age not reported 

 
130 
107 
92 

2 Gender* 
 Patient group included predominantly females (>50%) 
 Patient group included predominantly males 
 Gender distribution not reported 

 
236 
50 
42 

3 Outpatients or Inpatients * 
 Outpatients 
 Inpatients or mixture of in– and outpatients 
 Type of patients not reported 

 
176 
109 
44 

4 Type of selection criteria* 
Selection of the patients based on: 
 Clinical suspicion only 
 Previous test 
 Referral to reference standard or on reference standard results 

 
 
234 
23 
72 

5 Treatment 
 No treatment given in the time window between application of D–dimer test  
 and reference standard 
 Treatment received before both D–dimer test and reference standard were  
 applied 
 No information concerning treatment reported 

 
79 
 
34 
 
212 

* denotes variables that are selected for the multivariable approach. 
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to studies including more patients with DVT/PE, and more weight to studies 

with higher numbers of patients without DVT/PE in the pooling of specificity 

(14). 

 

Bivariate Analysis with Covariates 

To adjust for potential sources of bias and variation and the resulting 

heterogeneity in study results, 12 design and 5 patient group characteristics 

(Table 1) were analyzed in the bivariate random-effects model. We used a two-

stage approach. In the first stage, 17 bivariate models were used to evaluate 

the effect of the respective design characteristics on the estimates of sensitivity 

and specificity in PE and DVT. An effect was considered statistically significant 

if p<0.1. In the second stage, a multivariable bivariate regression analysis was 

performed, adjusting for all study features identified in the first stage. This 

final model included indicators for type of venous thromboembolism (PE or 

DVT), type of D-dimer method, design and patient group characteristics. 

Stage 1 analyses were performed with the PROC NLMIXED module in 

SAS statistical software, version 9.1 (SAS Institute). The multivariable model 

was fitted with WINBUGS, version 1.4, using non-informative priors and 

posterior distributions obtained using Markov Chain Monte Carlo methods. 

Parameter estimates are the medians of the posterior distributions. The range 

from the 2.5% to the 97% quantile was used to quantify the uncertainty in the 

parameter estimates. This range can be interpreted as a 95% confidence 

interval. If this interval excluded the null value, the corresponding effect is 

seen as statistically significant.  

 

 

Results  

 

Of 1721 papers identified with the initial search strategy, 265 were 

considered potentially eligible based on the title and/or abstract. Of these 

papers, 33 did not address test accuracy, in 24 it was not possible to extract 

data separately for deep venous thrombosis and pulmonary embolism, in 20 we 

were unable to make a 2 by 2 tables, 8 were double publications, 6 included 

critically-ill or trauma patients only, 3 full length articles could not be 

retrieved, and one was a review paper. After excluding these 95 articles not 

meeting the pre-specified inclusion criteria, a total of 171 articles and letters, 
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with 328 D-dimer test evaluations, was included in the final analysis (list 

available upon request). 

We observed significant effects on sensitivity for the following design 

characteristics: outpatients or inpatients, age, gender, type of reference 

standard, and cut-off definition. A significant effect on specificity was found for 

outpatients or inpatients, age, type of selection criteria, sampling method, type 

of reference standard, completeness of verification, and time lag between the D-

dimer and the reference test. One outlier study used a case-control design with 

healthy controls and reported very high estimates of specificity (15). The 

results of this study were not used in the analysis. 

 

Deep Venous Thrombosis 

For 113 studies with 217 D-dimer test evaluations on deep venous 

thrombosis it was possible to calculate a 2x2 contingency table for the D-dimer 

test versus a reference standard. Design characteristics of the included test 

evaluations are given in Table 1. Table 2 describes the median prevalence, 

sensitivity and specificity across D-dimer methods. Some enzyme-linked 

immunosorbent assay (ELISA), latex and other assays could not be assigned to 

any of the D-dimer categories, due to incomplete descriptions. For 

completeness, descriptions of these groups of assays are given in Table 2 as 

well.  

The prevalence of venous thromboembolism ranged widely, from 1% to 78% 

(Table 2). Reported sensitivity also varied, whereas reported specificity even 

ranged from 5% to 100%.  

The multivariable analysis, incorporating indicator effects for study 

features, showed that several study characteristics were significantly related to 

the D-dimer test performance. Studies that used ultrasound, serial 

compression ultrasound or phletysmography as the sole reference standard (45, 

1, and 1 test evaluations, respectively) had significantly lower sensitivities, in 

comparison to studies that used a combination of these tests within a 

diagnostic strategy. The use of follow-up to verify D-dimer test negative results 

led to a small increase of sensitivity and decrease of specificity, but these 

effects were not significant. Studies that used venography as the sole reference 

standard had considerably higher specificities in comparison to studies that 

used a combination of tests within a diagnostic strategy. The inclusion of 

inpatients, alone or together with outpatients, was associated with lower 
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Table 2. Median Prevalence, Sensitivity and Specificity with Range for D–dimer 
Methods 

 
Type of D–dimer 

 
Deep Venous Thrombosis 

 
 
 

 
Studies  
(n) 

 
Median 
prevalence of 
VTE (range) 

 
Median sensitivity 
(range) 

 
Median 
specificity 
(range) 

     

ELISA     

 Microplate 35 42% (13–72) 95% (71–100) 47% (21–82) 

 Membrane 31 43% (1–75) 94% (50–100) 52% (12–94) 
     

ELFA 23 35% (20–67) 97% (88–100) 42% (5–82) 
     

LATEX      

 Quantitative 45 39% (1–72) 96% (57–100) 48% (26–97) 

 Semiquantitative 22 40% (23–67) 84% (61–100) 63% (22–92) 

 Qualitative 2 54% (40–68) 82% (77–87) 100% (100–100) 
     

Whole–blood assay 34 26% (3–72) 86% (53–100) 66% (20–94) 
     

Undefined methods     

 Elisa 9 40% (36–78) 95% (80–100) 48% (29–80) 

 Latex 14 46% (19–78) 78% (48–100) 81% (43–100) 

 Other 
 

2 3% (2–5) 94% (88–100) 59% (46–72) 

 

 

specificities, as compared to studies including outpatients only. Studies that 

based patient selection on previous test results had considerably higher 

specificities in comparison to studies that selected patients on clinical suspicion 

only.  

Corrected for the 9 study design characteristics selected in the univariable 

stage, the estimates of sensitivity and specificity changed slightly, but the 

ranking of the D-dimer methods on sensitivity remained the same. The 

sensitivity of enzyme-linked fluorescent immunoassay ELFA (96%), ELISA 

microplate (94%), and latex quantitative (93%) were significantly higher than 

for other D-dimer tests (Table 3). Membrane ELISA had a lower sensitivity 

(89%) than latex quantitative, but this difference was not significant. 
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Table 2–Continued 
 

 
Type of D–dimer 

 
Pulmonary Embolism 

 
 
 

 
Studies  
(n) 

 
Median 
prevalence of 
VTE (range) 

 
Median sensitivity 
(range) 

 
Median specificity 
(range) 

     

ELISA     

 Microplate 15 28% (11–42) 96% (79–100) 39% (13–79) 

 Membrane 6 26% (3–47) 97% (40–100) 39% (25–94) 
     

ELFA 20 27% (5–46) 99% (88–100) 38% (7–59) 
     

LATEX      

 Quantitative 23 29% (7–69) 96% (63–100) 43% (16–88) 

 Semiquantitative 14 31% (10–62) 94% (50–100) 55% (24–90) 

 Qualitative 1 25% (na) 48% (na) 97% (na) 
     

Whole–blood assay 12 17% (3–33) 87% (50–100 66% (38–78) 
     

Undefined methods     

 Elisa 12 32% (19–68) 97% (83–100) 41% (24–100) 

 Latex 4 34% (19–36) 97% (84–100) 27% (19–56) 

 Other 
 

4 23% (11–41) 99% (83–100) 50% (30–80) 

 

 

Specificity of latex qualitative was superior to that of other methods, but also 

the specificities of whole-blood D-dimer tests and latex semi-quantitative were 

significantly higher than those of latex quantitative, ELISA methods and 

ELFA. Figure 1 visualizes accuracy indexes of the D-dimer methods in the ROC 

space, illustrating the negative relation of sensitivity and specificity in deep 

venous thrombosis. 

 

Pulmonary Embolism 

Eighty-one studies with 111 D-dimer test evaluations on pulmonary 

embolism were included. Sensitivity and specificity of D-dimer tests varied 

largely across studies (Table 2). The prevalence of venous thromboembolism  
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Table 3. Summary Estimates of Sensitivity and Specificity of D–dimer Methods* 

 
Type of D–
dimer 

 
Deep Venous Thrombosis 

  
Pulmonary embolism 

  
Sensitivity  
(95% CI) 

 
Specificity  
(95% CI) 

  
Sensitivity  
(95% CI) 

 
Specificity  
(95% CI) 

      

ELISA      

 Microplate 94 (86–97) 53 (38–68)  95 (84–99) 50 (29–71) 

 Membrane 89 (76–95) 53 (37–68)  91 (73–98) 50 (29–72) 
      

ELFA 96 (89–98) 46 (31–61)  97 (88–99) 43 (23–65) 
      

LATEX       

 quantitative 93 (89–95) 53 (46–61)  95 (88–98) 50 (36–64) 

 semiquantitative 85 (68–93) 68 (53–81)  88 (66–97) 66 (43–83) 

 qualitative 69 (27–93) 99 (94–100)  75 (25–96) 99 (92–100) 
      

Whole–blood 
assay 

83 (67–93) 71 (57–82)  87 (64–96) 69 (48–84) 

* Estimates derived from the bivariate multivariable model adjusting for differences in study design 

 

 

ranged widely, from 3% to 69% (Table 1), with similarly wide ranges for 

sensitivity (from 40% to 100%), and even wider ranges for specificity (from 7% 

to 100%). 

As for deep venous thrombosis, the multivariable analysis showed that 

differences in design were associated with diverse estimated sensitivity and 

specificity. Significantly higher sensitivities, but lower specificities were 

observed in studies that included more elderly patients (mean age above 60 

years) while significantly lower estimates of specificity were found in studies 

using pulmonary angiography as the sole reference standard. The inclusion of 

inpatients, exclusively or with outpatients, was also associated with lower  

specificities compared to studies including outpatients only. Studies that based 

patient selection on previous test results had higher specificities in comparison 

to studies that selected patients on clinical suspicion only. 
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After adjusting for study design features, ELFA, microplate ELISA, and 

latex quantitative had a sensitivity that was significantly higher (97%, 95% 

and 95%, respectively) than for other D-dimer methods, although the absolute 

difference between latex quantitative and membrane ELISA was not 

statistically significant (Table 2). As in deep venous thrombosis, the 

specificities of latex qualitative (99%), whole-blood (69%), and latex semi-

quantitative (66%) tests were statistically superior to those of the other D-

dimer assays. The relation between sensitivity and specificity for the various D-

dimer tests in pulmonary embolism is represented in Figure 2.  

 

 

Discussion 

 

This systematic review confirms that study design, prevalence, sensitivity, 

and specificity vary largely in studies evaluating the diagnostic accuracy of D-

dimer tests for the exclusion of venous thromboembolism. Differences in the 

performance of D-dimer methods can in part be explained by variations in 

(implicit) positivity cut-offs, as the ranking based on sensitivity mirrors the 

specificity ranking. After adjusting for a number of study differences, ELFA, 

microplate ELISA, and latex quantitative had the highest sensitivities, but the 

lowest specificities. The pooled sensitivity of membrane ELISA was lower than 

that of latex quantitative, although the difference was not statistically 

significant. 

In this study, we have obtained summary estimates of the sensitivity and 

specificity of seven different D-dimer methods. Our analysis was not designed 

to clarify whether kits within each of the respective D-dimer test categories 

have an identical diagnostic accuracy. While the general principles for the 

development and execution of the test may be similar within each category, 

differences in the reagents and conditions could change the final test 

performance. 

The best design to compare the performance of the D-dimer methods would 

be a full comparative design, where included patients either receive all D-dimer 

methods or are randomly allocated to one of them, whereupon all test results 

are verified. In our study we included a number of comparative studies, but 

none of them studied all available methods. 
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Figure 1. Adjusted Summary Estimates in ROC–Space* 

 

Deep Venous Thrombosis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Summary estimates derived from the bivariate multivariable model adjusting for differences in study 
design; circles denote D–dimer assays, proportional to number of patients included; a) estimates for 
deep venous thrombosis; b) estimates for pulmonary embolism 

 

 

Some spectrum effects, as for example the value of the D-dimer in cancer 

patients, could not be evaluated. Although recent studies have suggested that 

the sensitivity and negative predictive value of D-dimer may be lower in cancer 

patients (16), others have advocated that the negative predictive value is 

comparable to non cancer patients (17). This issue could not be assessed in the 

current meta-analysis given the small number of subgroup analyses in cancer 

patients.  

Our summary estimates for microplate ELISA, ELFA and latex 

quantitative are in line with those reported by Brown et al. (7;8), but diverge  
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Figure 2. Adjusted Summary Estimates in ROC–Space* 
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* Legend: see Figure 1 

 

 

from those of a previous review which claimed the superiority of the ELISA and 

ELFA assays over other D-dimer tests, including latex quantitative assays (9). 

Our summary estimates for the ELISA microplate and ELFA closely 

resemble those of Stein and colleagues, whereas the estimates for latex 

quantitative are quite different. For this latter D-dimer method, Stein et al 

reported a sensitivity and specificity of 85% and 66% for deep venous 

thrombosis, and 89% and 45% for pulmonary embolism, respectively. In our 

meta-analysis the estimates for latex quantitative are, on the contrary, close to 

those of microplate ELISA and ELFA. A number of issues may help to explain 

this discrepancy in the results. The number of studies included in the meta-

analysis of Stein et al. was far lower than the total considered in the current 
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analysis. This difference may be partly due to new studies, published after that 

review was completed, but also to the selection criteria. Stein and colleagues 

used rather strict inclusion criteria, excluding, for example, all studies with 

differential verification, where the method of verification depended on the D-

dimer test result. We did not exclude these studies but accommodated any 

resulting differences in estimated accuracy in our statistical analysis. Although 

a multivariable regression model was also used, the approach to handling 

differences in design and patient groups differed respect to our analysis. Stein 

et al. initially pooled high-quality studies only, using 3 quality indicators to 

explain remaining variation in results. We used a larger number of indicators 

to adjust for design and patient group variability in our multivariable 

regression model. 

In general, meta-analyses of diagnostic accuracy studies are challenged by 

the variability in design characteristics of the primary studies and by the poor 

quality of reporting. Our results confirm the finding of previous evaluations 

which showed that the type of reference standard (10) and age (7) significantly 

affect the estimated accuracy. It is not easy to denote which reference standard 

or strategy classifies venous thromboembolism more correctly, but such 

differences should be taken into account when comparing or pooling study 

results. Heim et al. reported a non-significant 40% lower diagnostic odds ratio 

in studies using a mixture of in- and outpatients compared to studies that used 

only outpatients. We found that studies with a mixture of in- and outpatient 

had a significantly lower specificity but this did not affect sensitivity. It is 

generally acknowledged that the use of the D-dimer test is more reliable in 

outpatients, since raised D-dimer concentrations can also be observed in other 

disease states as myocardial infarction, pneumonia, or cancer (18). We also 

found that selection based on previous test results significantly increased 

specificity. Other reviews have excluded these studies (7-9). 

To be useful for clinical decision-making, D-dimer assays must be rapid, 

accurate, and reliable. Not all assays have these characteristics because of 

important differences in both assay methodology and in the monoclonal 

antibodies used (19;20). We classified D-dimer assays using seven categories, 

each of which has advantages and disadvantages, as extensively described by 

others (10). In short, ELFA, microplate ELISA, and latex quantitative are all 

quantitative methods, with reproducible results that are hardly prone to 

observer variability. Microplate ELISA had higher sensitivity compared to 
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latex quantitative assays, but it takes several hours for the results. Latex 

quantitative can generate results within 15 minutes. In addition, microplate 

ELISA is labor-intensive and has to be run in batches rather than on single 

samples. ELFA produces results within 35 minutes and has the advantage over 

microplate elisa that it can be run on single samples. Membrane ELISA is also 

a rapid but not a quantitative method. Its sensitivity is significantly lower than 

that of ELFA, and (not significantly) lower than that of latex quantitative with 

comparable specificity. Latex qualitative, latex semi-quantitative and whole-

blood D-dimer assays are rapid and easy to perform, but they are qualitative 

tests, observer dependent, and limited in their ability to detect minimally 

increased D-dimer concentrations, resulting in lower sensitivities but higher 

specificities. 

Our summary estimates can be used to calculate negative and positive 

likelihood ratios which could be used in Bayes’ theorem to calculate posttest 

probabilities from pretest probabilities (21). Negative likelihood ratios lower 

than 0.1 and positive likelihood ratios larger than 10 generate large and often 

conclusive changes from pre- to posttest probabilities (21). Only ELFA, ELISA 

microplate, and latex quantitative had low negative likelihood ratios for deep 

venous thrombosis (0.09, 0.11, and 0.13, respectively) and pulmonary embolism 

(0.07, 0.10, and 0.10, respectively). Latex qualitative was the only method with 

a positive likelihood ratio greater than 3 (DVT: 69; PE: 75). To illustrate the 

use of a negative likelihood ratio of 0.1, consider a patient presenting with a 

low pretest probability of pulmonary embolism of 20 %. If the D-dimer test 

result is negative, the posttest probability becomes 1.9 %. 

As the exclusion of venous thromboembolism is the main goal of the D-

dimer test, a high sensitivity of the assay is highly desirable. Yet the specificity 

of the test directs the number of further imaging procedures required. Our 

analysis showed the typical inverse relation between sensitivity and specificity: 

D-dimer methods with a higher true positive fraction also have the highest 

false positive fraction. As a consequence, a larger number of patients with a 

positive D-dimer result will be referred to additional imaging tests when D-

dimer methods with high sensitivity, such as the ELFA D-dimer are used. This 

problem can be partially circumvented by incorporating the D-dimer test in 

diagnostic algorithms, combining them with a probability score (22;23). Only 

patients with a low or low to moderate pre-clinical probability and a negative 

D-dimer receive no additional imaging. This may be particularly useful for 
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those D-dimer assays with a lower sensitivity. While improving the sensitivity 

in the low or low-moderate clinical probability patients, these D-dimer tests 

would still offer the advantage of a higher specificity as compared to the ELFA, 

ELISA microplate, and latex quantitative. 

In summary, the sensitivities of ELFA, ELISA microplate and latex 

quantitative were found to be comparable and higher than those of the other D-

dimer assays, although their specificities are lower. Before recommending the 

ELFA, the ELISA microplate, or the latex quantitative D-dimer assays as the 

best available options, more large direct comparisons of these assays are 

warranted within diagnostic algorithms in which the D-dimer test is combined 

with the pre-test clinical probability score. In addition, the cost-effectiveness of 

these approaches should be weighted against venous thromboembolism 

diagnostic work-ups using D-dimer assays with a higher specificity. 

 

 

References 

 
1. Goldhaber SZ. Pulmonary embolism. Lancet 2004; 363(9417):1295-1305. 

2. Kyrle PA, Eichinger S. Deep vein thrombosis. Lancet 2005; 365:1163-1174. 

3. Buller HR, Agnelli G, Hull RD, Hyers TM, Prins MH, Raskob GE. 

Antithrombotic therapy for venous thromboembolic disease: the Seventh ACCP 

Conference on Antithrombotic and Thrombolytic Therapy. Chest 2004; 126(3 

Suppl):401S-428S. 

4. Quiroz R, Kucher N, Zou KH, Kipfmueller F, Costello P, Goldhaber SZ et al. 

Clinical validity of a negative computed tomography scan in patients with 

suspected pulmonary embolism. A systematic review. JAMA 2005; 293:2012-

2017. 

5. Tamariz LJ, Eng J, Segal JB, Krishnan JA, Bolger DT, Streiff MB et al. 

Usefulness of clinical prediction rules for the diagnosis of venous 

thromboembolism: a systematic review. Am J Med 2004; 117:676-684. 

6. Fancher TL, White RH, Kravitz RL. Combined use of rapid D-dimer testing and 

estimation of clinical probability in the diagnosis of deep vein thrombosis: 
systematic review. BMJ 2004; 329(7470):821. 

7. Brown MD, Rowe BH, Reeves MJ, Bermingham JM, Goldhaber SZ. The 

accuracy of the enzyme-linked immunosorbent assay D-dimer test in the 

diagnosis of pulmonary embolism: a meta-analysis. Ann Emerg Med 2002; 

40(2):133-144. 

8. Brown MD, Lau J, Nelson RD, Kline JA. Turbidimetric D-dimer test in the 

diagnosis of pulmonary embolism: a metaanalysis. Clin Chem 2003; 

49(11):1846-1853. 



Diagnostic accuracy of the D-dimer test for the exclusion of VTE 

 

 155 

9. Stein PD, Hull RD, Patel KC, Olson RE, Ghali WA, Brant R et al. D-dimer for 

the exclusion of acute venous thrombosis and pulmonary embolism: a 

systematic review. Ann Intern Med 2004; 140(8):589-602. 

10. Heim SW, Schectman JM, Siadaty MS, Philbrick JT. D-dimer testing for deep 

venous thrombosis: a metaanalysis. Clin Chem 2004; 50(7):1136-1147. 

11. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM et al. 

Towards complete and accurate reporting of studies of diagnostic accuracy: the 

STARD initiative. Ann Intern Med 2003; 138:40-44. 

12. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM et al. 

The STARD statement for reporting studies of diagnostic accuracy: explanation 

and elaboration. Ann Intern Med 2003; 138:W1-W12. 

13. Whiting P, Rutjes AWS, Reitsma JB, Glas AS, Bossuyt PM, Kleijnen J. Sources 

of variation and bias in studies of diagnostic accuracy: a systematic review. Ann 

Intern Med 2004; 140:189-202. 

14. Reitsma JB, Glas AS, Rutjes AWS, Scholten RJPM, Bossuyt PMM, 

Zwinderman AH. Bivariate analysis of sensitivity and specificity produces 

informative summary measures in diagnostic reviews. J Clin Epidemiol 2005; 

58:982-90. 

15. Declerck PJ, Mombaerts P, Holvoet P, De Mol M, Collen D. Fibrinolytic 

response and fibrin fragment D-dimer levels in patients with deep vein 

thrombosis. Thromb Haemost 1987; 58(4):1024-1029. 

16. Lee AYY, Julian JA, Levine MN, Weitz JI, Kearon C, Wells PS et al. Clinical 

utility of a rapid whole-blood d-dimer assay in patients with cancer who present 

with suspected acute deep venous thrombosis. Ann Intern Med 1999; 131:417-

423. 

17. ten Wolde M, Kraaijenhagen RA, Prins MH, Buller HR. The clinical usefulness 

of d-dimer testing in cancer patients with suspected deep venous thrombosis. 

Arch Intern Med 2002; 162:1880-1884. 

18. Kelly J, Rudd A, Lewis RR, Hunt BJ. Plasma d-dimers in the diagnosis of 

venous thromboembolism. Arch Intern Med 2002; 162:747-756. 

19. Dempfle CE. Use of D-dimer assays in the diagnosis of venous thrombosis. 

Semin Thromb Hemost 2000; 26(6):631-641. 

20. Kelly J, Rudd A, Lewis RR, Hunt BJ. Plasma D-dimers in the diagnosis of 

venous thromboembolism. Arch Intern Med 2002; 162(7):747-756. 

21. Jaeschke R, Guyatt GH, Sackett DL. Users' guides to the medical literature. 

III. How to use an article about a diagnostic test. B. What are the results and 

will they help me in caring for my patients? The Evidence-Based Medicine 

Working Group. JAMA 1994; 271(9):703-707. 

22. Wells PS, Anderson DR, Bormanis J, Guy F, Mitchell M, Gray L et al. Value of 

assessment of pretest probability of deep-vein thrombosis in clinical 

management. Lancet 1997; 350:1795-1798. 

23. Wells PS, Anderson DR, Rodger M, Forgie M, Kearon C, Dreyer J et al. 

Evaluation of d-dimer in the diagnosis of suspected deep-vein thrombosis. N 

Engl J Med 2003; 349:1227-1235. 



 



 

 

Quality of Reporting of 

Diagnostic Accuracy 

Studies 

 

 

 

Nynke Smidt1, Anne W.S. Rutjes2, Daniëlle A.W.M. van der 
Windt1, Raymond W.J.G. Ostelo1, Johannes B. Reitsma2, Patrick 

M.M. Bossuyt1, Lex M. Bouter1 and Henrica C.W. de Vet1 

From the Institute for Research in Extramural Medicine1, VU University 
Medical Center, Amsterdam, the Netherlands and the Department of Clinical 
Epidemiology and Biostatistics2, Academic Medical Center, University of 
Amsterdam, Amsterdam, the Netherlands 

 

 

 

 

 

 

 

 

 

Radiology 2005;235(2):347-53. 



Chapter 9 

 

 158 

Abstract 

 

Purpose: To evaluate quality of reporting in diagnostic accuracy articles 

published in 2000 in journals with impact factor of at least 4 by using items of 

Standards for Reporting of Diagnostic Accuracy (STARD) statement published 

later in 2003.  

Materials and Methods: English-language articles on primary diagnostic 

accuracy studies in 2000 were identified with validated search strategy in 

MEDLINE. Articles published in journals with impact factor of 4 or higher that 

regularly publish articles on diagnostic accuracy were selected. Two 

independent reviewers evaluated quality of reporting by using STARD 

statement, which consists of 25 items and encourages use of a flow diagram. 

Total STARD score for each article was calculated by summing number of 

reported items. Subgroup analyses were performed for study design (case-

control or cohort study) by using Student t tests for continuous outcomes and 2 

tests for dichotomous outcomes.  

Results: Included were 124 articles published in 2000 in 12 journals: 33 

case-control and 91 cohort studies. Only 41% of articles (51 of 124) reported on 

more than 50% of STARD items, while no articles reported on more than 80%. 

A flow chart was presented in two articles. Assessment of reporting on 

individual items of STARD statement revealed wide variation, with some items 

described in 11% of articles and others in 92%. Mean STARD score (0-25 points 

available) was 11.9 (range, 3.5-19.5). Mean difference in STARD score between 

cohort studies and case-control studies was 1.53 (95% confidence interval: 0.24, 

2.82).  

Conclusion: Quality of reporting in diagnostic accuracy articles published 

in 2000 was less than optimal, even in journals with a high impact factor. 

Authors, editors, and reviewers should pay more attention to reporting, by 

checking STARD statement items and including a flow diagram to represent 

study design and patient flow. 
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Several systematic reviews have emphasized the poor quality of reporting in 

diagnostic accuracy studies (1-3). This poor reporting hampers an adequate 

judgment of both the internal and the external validity of a study. In 1995, 

Reid et al. (4) evaluated the methodologic quality of 112 articles on diagnostic 

accuracy published in Lancet, British Medical Journal, New England Journal 

of Medicine, and Journal of the American Medical Association (JAMA) during 

the period of 1978-1993. On the basis of a set of seven methodologic standards, 

they concluded that the quality of the articles was poor. For example, only 8% 

of the articles included calculation of measures of diagnostic accuracy for 

relevant subgroups, and work-up bias was avoided in no more than 46% of the 

articles (4). The extent to which poor quality of reporting impeded the 

assessment of methodologic quality is unclear.  

In 1999, Lijmer et al. (1) demonstrated that case-control studies with 

healthy control subjects led to overestimation of diagnostic accuracy, compared 

with that in cohort studies. Furthermore, knowledge of the results of the index 

test and the use of clinical information about the study population when 

interpreting the reference standard resulted in an overestimation of diagnostic 

accuracy (1). Therefore, complete and accurate reporting is essential to judge 

the potential for bias and to assess the generalizability of results.  

The first checklist for reporting of diagnostic accuracy studies was 

published by Bruns et al. (5) in October 2000. In January 2003, guidelines for 

reporting studies of diagnostic accuracy (the Standards for the Reporting of 

Diagnostic Accuracy, or STARD) were published simultaneously in eight 

medical journals (Radiology, American Journal of Clinical Pathology, Annals of 

Internal Medicine, British Medical Journal, Clinical Biochemistry, Clinical 

Chemistry, Clinical Chemistry of Laboratory Medicine, and Lancet) (6,7). 

Similar guidelines for the reporting of randomized controlled trials (the 

Consolidated Standards for Reporting of Trials, or CONSORT), systematic 

reviews (the Quality of Reporting of Meta-analyses, or QUORUM), and 

observational studies (the Meta-analysis of Observational Studies in 

Epidemiology, or MOOSE) already exist (8-10).  

After publication of the CONSORT statement, Moher et al. (11) evaluated 

the quality of reports of 211 randomized controlled trials published in British 

Medical Journal, JAMA, Lancet, and the New England Journal of Medicine by 

using the CONSORT checklist. They concluded that the use of the CONSORT 

statement is associated with improvements in the quality of reports of  
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Figure 1. Flow Chart* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
* Diagram shows search and selection process of articles on diagnostic accuracy. 

 

 

randomized controlled trials (11). The presentation of a flow diagram was also 

associated with improved quality of reporting of randomized controlled trials 

(12).  

Although Reid et al. (4) had pointed out the poor quality of reporting in the 

1990s, it is possible that the reporting has improved in more recent articles. 

Therefore, this study was designed to evaluate the quality of reporting in 

articles on diagnostic accuracy published in 2000 in journals with an impact 

 Search for articles on 
diagnostic accuracy in 

MEDLINE in 2000  
(n= 32,643) 

Search limitation to humans 
and English language 

(n = 20,728) 
 

Number of articles on 
diagnostic accuracy in the top 

50 journals (n =2447) 
 

Potentially eligible articles on 
diagnostic accuracy in 12 

journals (impact factor > 4) 
identified and screened for 

retrieval on keywords, title and 
abstract (n=884)  

Excluded: n= 18,281 

Excluded: n= 1563 

Potentially eligible articles on 
diagnostic accuracy (n=219) 

Assessment of the quality of 
reporting in articles on 

diagnostic accuracy (n=124) 

Excluded: n = 665 

Excluded: n = 95:  
• Limitation of number of articles 

published in Radiology (n=77) 
• Did not concern diagnostic test 

research (n=13) 
• Letter to the Editor (n=3) 
• Test results of animals (n=1) 
• Lack of reference standard (n=1) 
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factor of at least 4 by using the items of the STARD statement published later 

in 2003. 

 

 

Materials and Methods 

 

Data Sources 

One reviewer (NS) searched MEDLINE with a validated strategy to 

identify articles on diagnostic accuracy, as follows: "sensitivity AND 

specificity.sh" OR "specificit*.tw" OR "false negative.tw" OR "accuracy.tw" 

(where ".sh" indicates subject heading and ".tw" indicates text word) (13). The 

search was subsequently limited to publications in 2000, articles published in 

English, and studies focusing on human subjects. The journals were ranked 

according to the number of publications retrieved. From the top 50 in that 

ranking, those with an impact factor of 4 or higher were selected. Only articles 

published in these journals were included in the evaluation.  

 

Study Selection 

Articles were included if they reported on primary studies of diagnostic 

accuracy, in which the results of one or more tests were compared with the 

findings obtained with a reference standard in the same study population. Two 

reviewers (NS, AWSR) independently assessed the title, abstract, and 

keywords of all eligible articles to determine whether they met the inclusion 

criteria. If there was any doubt, the full text of the article was retrieved and 

read by both reviewers. Disagreements were discussed and resolved in a 

consensus meeting.  

 

Data Extraction 

The STARD statement was used to assess the quality of reporting. The 

statement contains a list of 25 items and encourages the use of a flow diagram 

to represent the design of the study and the flow of patients through the study 

(6,7). For this assessment, the reviewers had to determine whether each item of 

the checklist was described adequately in the text. Note that the reviewers 

were not evaluating the likelihood of bias but only the quality of reporting. Two 

reviewers independently evaluated the quality of reporting in the included 

articles. One reviewer (NS) assessed all articles, and four other reviewers 
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(AWSR, HCWdV, DAWMvdW, RWJGO) each evaluated a quarter of all the 

articles. Disagreements were discussed and resolved in a consensus meeting. If 

consensus could not be reached, a third reviewer made the final decision.  

 

Statistical Analysis 

For each item in the STARD statement, the total number of articles 

reporting the elements mentioned in that item is presented. A total STARD 

score for each article was calculated by summing the number of reported items 

(0-25 points available). Higher scores indicated better quality of reporting. 

Equal weights were applied to each of the items. Six items (items 8, 9, 10, 11, 

13, and 24) concern the index tests, as well as the reference standard. Weights 

for these items were assigned to both the index test (0.5 point) and the 

reference standard (0.5 point) and evaluated separately. The overall mean and 

standard deviation of the total STARD scores are presented.  

Subgroup analyses were performed to compare the quality of reporting 

among different journals and designs (case-control and cohort studies). Cohort 

studies are characterized by selection of subjects who underwent the index test, 

whereas in case-control studies, the subjects are selected on the basis of the 

results of the reference standard (14). Student t tests (independent samples) 

were used to calculate mean differences between the total STARD score of case-

control and cohort studies. In addition, 2 tests were used to calculate 

differences between the number of articles reporting the items of the STARD 

statement in case-control and cohort studies. If the assumptions of the 2 tests 

were not met, the Fisher exact test was used. Differences in total STARD 

scores between the 12 journals were calculated by means of pairwise 

comparisons (Tukey honestly significant difference test). P-values of less than 

.05 were considered to indicate a statistically significant difference. Statistical 

analysis was performed (N.S.) by using SPSS for Windows (release 11.0.1; 

SPSS, Chicago, Ill).  

 

 

Results 

 

Search and Selection 

The search strategy resulted in the identification of 20 728 publications 

(Figure 1). All hits were grouped according to journal, and the number of 
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Table 1. Top 50 Journal that Frequently Publish Articles on Diagnostic Accuracy 
Ranking 
 

Journal Name Number of 
Hits 

Impact Factor 
in 2000* 

 
1 

 
Radiology 

 
298 

 
4.1 

2 J Clin Microbiol 241 3.5 
3 Am J Roentgenol 127 1.9 
4 Am J Cardiology 124 2.8 
5 Cancer 114 3.6 
6 Neurology 102 4.8 
7 Crit Care Med 93 3.8 
8 Clin Chem 84 4.3 
9 J Urol 84 2.9 
10 Circulation 83 10.9 
11 Lancet 81 10.2 
12 Chest 71 2.5 
13 Obstetrics and Gynecology 60 2.1 
14 BMJ 59 5.3 
15 New England Journal of Medicine 44 29.5 
16 Br J Radiol 38 1.0 
17 Pediatrics 38 3.7 
18 Clin Radiol 38 0.9 
19 Archives of Internal Medicine 35 6.1 
20 Annals of Emergency Medicine 34 2.2 
21 Scandinavian Journal of Gastroenterology 32 1.8 
22 Archives of Neurology 31 4.4 
23 J Clin Epidemiol 31 2.1 
24 Radiotherapy and Oncology 30 2.5 
25 Ann Internal Medicine 29 9.8 
26 Arch Pathol Lab Med 29 1.4 
27 Annals of Oncology 26 3.2 
28 Acad Radiol 26 0.9 
29 Oncology 24 2.6 
30 Gut 24 5.4 
31 Archives of Disease in Childhood 23 1.9 
32 Annals of Rheumatic Diseases 22 2.4 
33 Arch Phys Med Rehab 22 1.4 
34 Archives of Surgery 21 2.6 
35 Ophthalmology 21 3.0 
36 European Journal of Cancer 21 2.7 
37 Medical Journal of Australia 18 1.9 
38 Cardiology 15 0.7 
39 Australian and New Zealand Journal of Surgery 15 0.6 
40 British Journal of Surgery 14 2.9 
41 Scand J Clin Lab Invest 14 1.1 
42 JAMA 14 15.4 
43 Am Fam Physician 14 0.9 
44 Archives of Dermatolgy 14 3.3 
45 British Journal of Ophthalmology 14 1.9 
46 Br J General Pract 11 1.6 
47 Am J Phys Med Rehab  8 0.9 
48 Baillieres Best Pract Res Clin Obst Gyn 7 0.9 
49 Eye 7 1.1 
50 
 

Archives of Ophthalmology 7 2.2 

* According to www.jcrweb.com 
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publications for each journal was counted. Journals with an impact factor of at 

least 4 in the top 50 were Annals of Internal Medicine, Archives of Internal 

Medicine, Archives of Neurology, British Medical Journal, Circulation, Clinical 

Chemistry, Gut, JAMA, Lancet, New England Journal of Medicine, Neurology, 

and Radiology (Table 1). In these six general medical journals and six disease- 

or discipline-specific journals, the search strategy yielded 884 hits. On the basis 

of the title, abstract, and/or keywords, 219 articles were selected. As 46% (102 

of 219) of the articles were published in Radiology, it was decided to limit the 

number of articles in this journal to 25 by selecting the first two articles 

published in this journal each month and the first three articles published in 

the December 2000 issue. The full text of the 142 selected articles was read by 

two independent reviewers. Subsequently, 18 articles were excluded because of 

a lack of reference standard (n = 1), no diagnostic research (n = 13), a letter to 

the editor instead of a full article (n = 3), and a mixture of human and animal 

research (n = 1). Finally, 124 articles fulfilled the selection criteria.  

 

Article Characteristics 

The 124 diagnostic articles consisted of 33 case-control studies and 91 

cohort studies, including five reporting on population screening. Most articles 

(75%, 93 of 124) were published in disease- or discipline-specific medical 

journals, such as Radiology, Neurology, Clinical Chemistry, Archives of 

Neurology, Archives of Internal Medicine, and Circulation. Case-control studies 

were more often published in disease- or discipline-specific journals (30%, 28 of 

93) than in general medical journals (16%, five of 31).  

 

Quality of Reporting in Diagnostic Articles 

Interrater agreement on the items of the STARD statement was good 

(overall agreement, 81.3%; κ statistic, 0.62). In six articles, disagreements 

between two reviewers could not be resolved, and the decision was made by one 

of the other reviewers. Most disagreements were caused by poor reporting of 

the design or doubts about the identity of the index and/or reference test. The 

time needed to perform the quality assessment was approximately 1 hour for 

each article.  

Overall, the items of the STARD statement were poorly reported. The 

mean STARD score of the 124 articles was 11.9 (standard deviation, 3.3). Only 

41% (51 of 124) of the articles reported more than 50% of the items (STARD 
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score 12.5), and none of the them reported more than 80% (STARD score 20). A 

flow chart was presented in only two articles (2%). The quality of the reporting 

of the items of the STARD statement for each article separately is presented in 

the online Appendix E1 

(radiology.rsnajnls.org/cgi/content/full/2352040507/DC1; for further 

information, contact N.S. at n.smidt@vumc.nl).  

 

STARD Statement 

The overall quality of the reporting of the items of the STARD statement in 

the articles is presented in Table 2. There is a broad variation in the quality of 

the reporting of these items (11%-92%). Poorly (<20%) reported items were (a) 

identification of the article as a study of diagnostic accuracy (item 1), (b) 

methods used for calculating or comparing measures of diagnostic accuracy 

(item 12), (c) methods used for calculating test reproducibility (item 13), (d) 

adverse events from performing the test(s) (item 20), and (e) estimates of test 

reproducibility of the reference standard (item 24b). The best reported item 

was discussion of the clinical applicability of the study findings (item 25). For 

each section (title, abstract, and keywords; introduction; methods; results; and 

discussion) of the STARD statement, the most remarkable findings are 

discussed as follows.   
Title, abstract, and keywords (item 1)— To identify articles on diagnostic 

accuracy (item 1), keywords such as sensitivity and specificity or diagnostic 

accuracy would improve and simplify the search and the selection of articles on 

diagnostic accuracy. Only four of the 12 journals (Circulation, Gut, Neurology, 

and Radiology) presented keywords in the article itself. No more than two (3%) 

of the 71 articles published in these journals used the keywords sensitivity and 

specificity or diagnostic accuracy. Furthermore, less than 3% (three of 124) of 

all articles mentioned the words diagnostic accuracy in the title, and only 9% 

(11 of 124) mentioned them in the abstract.  

The STARD statement recommends the use of the Medical Subject 

Headings (MeSH) term sensitivity and specificity. In this search, 686 (78%) of 

the 884 articles were identified by this MeSH term. However, only 100 of the 

686 articles actually concerned a diagnostic accuracy study (positive predictive 

value, 15%). Nevertheless, the sensitivity of this search term was high, with 

81% (100 of 124) of the included articles being identified correctly in 

MEDLINE.  
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Table 2. The Report of the Items of the STARD Statement*  
 

Category and Item Number 
All 

articles 
(n=124)§ 

Cohort 
studies 
(n=91)† 

Case 
control 
studies 
(n=33)‡ 

Title / abstract / keywords n (%) n (%) n (%) 
1 Identify the article as a study of diagnostic accuracy (recommend 

MeSH heading 'sensitivity and specificity'). 
13 (11) 9 (10) 4 (12) 

Introduction       
2 State the research questions or study aims, such as estimating 

diagnostic accuracy or comparing accuracy between tests or across 
participant groups. 

112 (90) 83 (91) 29 (88) 

Methods        
3 The study population: The inclusion and exclusion criteria, setting 

and locations where data were collected. 
35  (28) 28 (31) 7 (21) 

4 Participant recruitment: Was recruitment based on presenting 
symptoms, results from previous tests, or the fact that the 
participants had received the index tests or the reference standard? 

103 (83) 76 (84) 27 (82) 

5 Participant sampling: Was the study population a consecutive series 
of participants defined by the selection criteria in item 3 and 4? If not, 
specify how participants were further selected. 

70 (57) 58 (64) 12 (36) 

6 Data collection: Was data collection planned before the index test 
and reference standard were performed (prospective study) or after 
(retrospective study)? 

99 (80) 76 (84) 23 (70) 

7 The reference standard and its rationale. 70 (57) 51 (56) 19 (58) 
8 Technical specifications of material and methods involved including 

how and when measurements were taken, and/or cite references for  
           a) index tests and  
           b) reference standard. 

 
 

115  
83 

 
 
(93) 
(67) 

 
 

83 
62 

 
 
(91) 
(68) 

 
 

32 
21 

 
 
(97) 
(64) 

9 Definition of and rationale for the units, cut–offs and/or categories of 
the results of the      a) index tests and the  
           b) reference standard. 

 
103 
75 

 
(83) 
(61) 

 
77 
60 

 
(85) 
(66) 

 
26 
15 

 
(79) 
(46) 

10 The number, training and expertise of the persons executing and 
reading the  
           a) index tests and the  
           b) reference standard. 

 
51  
32 

 
(41) 
(26) 

 
42 
29 

 
(46) 
(32) 

 
9 
3 

 
(27) 
(9) 

11 Whether or not the readers of the  
           a) index tests and  
           b) reference standard were blind (masked) to the results of the 
other test and describe any other clinical information available to the 
readers. 

 
46 
23 

 

 
(37) 
(19) 

 
31 
18 

 
(34) 
(20) 

 
15 
5 

 
(46) 
(15) 

12 Methods for calculating or comparing measures of diagnostic 
accuracy, and the statistical methods used to quantify uncertainty 
(e.g. 95% confidence intervals). 

17 (14) 13 (14) 4 
 

(12) 

13 Methods for calculating test reproducibility, if done 
           a) for the index test 
           b) for the reference standard. 

 
20 
6 

 
(16) 
(5) 

 
14 
6 

 
(15) 
(7) 

 
6 
– 

 
(18) 
(–) 

* In 124 articles on diagnostic accuracy published in 2000. 
Note.—Data are number of articles. Numbers in parentheses are percentages.  
§ Mean STARD score, 11.9 ± 3.3. Range, 3.5-19.5. 
† Mean STARD score, 12.4 ± 3.0. Range, 3.5-19.5. 
‡ Mean STARD score, 10.8 ± 3.7. Range, 4.5-19.0. 
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Table 2–Continued 
 

Category and Item Number 
All 

articles 
(n=124)§ 

Cohort 
studies 
(n=91)† 

Case 
control 
studies 
(n=33)‡ 

Results       
14 When study was performed, including beginning and end dates of 

recruitment. 
60 (48) 48 (53) 12 (36) 

15 Clinical and demographic characteristics of the study population (at 
least information on age, gender, spectrum of presenting symptoms). 

65 (52) 46 (51) 19 (58) 

16 The number of participants satisfying the criteria for inclusion who did 
or did not undergo the index tests and/or the reference standard; 
describe why participants failed to undergo either test (a flow 
diagram is strongly recommended). 

75  (61) 58 (64) 17 (52) 

17 Time–interval between the index tests and the reference standard, 
and any treatment administered in between. 

33 (27) 28 (31) 5 (15) 

18 Distribution of severity of disease (define criteria) in those with the 
target condition; other diagnoses in participants without the target 
condition. 

28 (23) 18 (20) 10 (30) 

19 A cross tabulation of the results of the index tests (including 
indeterminate and missing results) by the results of the reference 
standard; for continuous results, the distribution of the test results by 
the results of the reference standard. 

104 (84) 76  (84) 28 (85) 

20 Any adverse events from performing the index tests or the reference 
standard. 

21  (17) 19 (21) 2 (6) 

21 Estimates of diagnostic accuracy and measures of statistical 
uncertainty (e.g. 95% confidence intervals). 

40  (32) 32 (35) 8 (24) 

22 How indeterminate results, missing data and outliers of the index 
tests were handled. 

73 (59) 60 (66) 13 (39) 

23 Estimates of variability of diagnostic accuracy between subgroups of 
participants, readers or centers, if done. 

48 (39) 36 (40) 12 (36) 

24 Estimates of test reproducibility, if done. 
           a) index test 
           b) reference standard 

 
40 
8 

 
(32) 
(7) 

 
25 
7 

 
(28) 
(8) 

 
15 
1 

 
(46) 
(3) 

Discussion       
25 Discuss the clinical applicability of the study findings. 114 (92)  82 (90) 32 (97) 
* In 124 articles on diagnostic accuracy published in 2000. 
Note.—Data are number of articles. Numbers in parentheses are percentages.  
§ Mean STARD score, 11.9 ± 3.3. Range, 3.5-19.5. 
† Mean STARD score, 12.4 ± 3.0. Range, 3.5-19.5. 
‡ Mean STARD score, 10.8 ± 3.7. Range, 4.5-19.0. 

 
 
Introduction (item 2)—In 90% of all articles (112 of 124), the research 

question became clear after reading the abstract and introduction (item 2). 

However, information regarding the index tests, the reference standard, and 

the target condition was scattered throughout the text. Only 32% of the articles 

(40 of 124) mentioned the index test, the reference standard, and the target 

condition in their research question. In many articles, the reference standard 

was lacking in the formulation of the research question (64%, 79 of 124).  
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Methods (items 3-13)—Only 28% of all articles (35 of 124) reported the 

inclusion and exclusion criteria, the setting, and the location where the data 

were collected (item 3). This low percentage was mainly due to the absence of 

exclusion criteria (69 of the 124 articles [56%]). The inclusion criteria were 

relatively well reported (108 of 124; 87%), but only 56% of the articles (70 of 

124) reported how patients were selected (item 5). A consecutive series of 

patients was apparently included in 36% of the studies [45 of 124]). The 

reference standard and its rationale were reported clearly in 57% of the articles 

(item 7). In 40% of the articles (50 of 124), only the reference standard was 

reported, while in four articles (3%), the identity of the reference standard 

remained unclear. Information concerning the index test was better reported 

than that for the reference standard (items 8-13 and 24). In particular, 

information regarding the number and training of the persons executing and 

evaluating the reference test(s) and the blinding of the readers to the tests was 

reported poorly (items 10 and 11).  

Only 37% of the articles (46 of 124) clearly reported whether the results of 

the reference standard and clinical information about the study population 

were given to the readers of the index test (item 11a). In most articles (62%, 77 

of 124), information regarding the revelation of clinical information about the 

study population to the readers of the index test was lacking. If it was reported 

clearly that the index test was performed before the reference test, we assume 

that the readers of the index test had been blinded to the results of the 

reference test. Information regarding the revelation of the results of the index 

test, other tests, or clinical information about the study population to the 

readers of the reference standard was reported in only 18% of the articles (23 of 

124) (item 11b).  

The methods for calculating measures of diagnostic accuracy, such as 

sensitivity, specificity, likelihood ratios, diagnostic odds ratios, and receiver 

operating characteristic curves, were reported in 65% of the articles (81 of 124). 

Only 14% of the articles (17 of 124) adequately reported the statistical methods 

used to calculate measures of diagnostic accuracy, particularly with regard to 

the quantification of estimates of the diagnostic accuracy (e.g., 95% confidence 

limits, item 12). Methods used to study the reproducibility of the index test and 

the reference standard were reported poorly; by only 16% (20 of 124) and 5% 

(six of 124) of the articles, respectively (item 13). Six articles (5%) referred to 

previous research on the reproducibility of the test(s).  
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Results (items 14-24)—Clinical and demographic characteristics, such as 

age and sex of the study population and the spectrum of the symptoms at 

presentation, were reported clearly in 52% of the articles (65 of 124, item 15). 

Less frequently reported clinical characteristics were co-morbidity (20 of 124, 

16%) and current treatments (33 of 124, 27%).  

Eighty-three percent of the articles (103 of 124) reported the number of 

participants who met the inclusion criteria and those who did or did not 

undergo the index test and reference standard. Seventy-five (60%) articles 

explained why participants failed to undergo one or more of the tests (item 16). 

In 43 of the 75 articles, however, none of the participants failed to undergo the 

index test or reference standard. A flow diagram, describing the design of the 

study and the number of participants, was presented in only two articles (2%).  

Information about the time interval between the index test and the 

reference standard and about the treatment administered between the tests 

was given in 33 (27%) articles (item 17). Twenty-two of these 33 articles did not 

report on the treatment between the tests, but the time interval between the 

tests was so small that treatment could not have affected the results of the 

second test.  

Although 109 of 124 articles reported estimates of diagnostic accuracy (e.g., 

sensitivity and specificity), 29 of these gave no information about the number of 

true-positive, true-negative, false-positive, and false-negative findings. Thirty-

two percent of the articles (40 of 124) reported statistical uncertainty (i.e., 95% 

confidence intervals) for the measures of diagnostic accuracy (item 21).  

Discussion (item 25)—Most articles (114 of 124, 92%) discussed the clinical 

applicability of the study findings. In addition to scoring the items of the 

STARD statement, the reviewers were asked to compose a 2 x 2 table for each 

article. This was possible for 73% of the articles (91 of 124). However, true-

positive and true-negative findings often had to be deduced from the results of 

sensitivity and specificity, which implied that the number of indeterminate or 

missing results had to be ignored in the reconstruction of the 2 x 2 table.  

 

Subgroup Analysis 

Results of subgroup analyses showed that the quality of reporting for case 

control studies was not as good as that for cohort studies (Table 2). The mean 

STARD score ± standard deviation was 12.4 ± 3.0 for the 91 cohort studies and 

10.8 ± 3.7 for the case-control studies. The mean difference in STARD score  
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Table 3. Quality of Reporting* 

Journal Name Impact 
Factor† 

No. of 
Articles 
(n=124) 

Cohort 
Study 
(n=91) 

Case–
Control 
Study 
(n=33) 

Mean 
STARD 
Score ± 
SD‡ 

 
New England Journal of  
Medicine 

 
29.5 

 
7 

 
7 

 
– 

 
14.3 (2.7) 

Journal of the American 
Medical Association 

15.4 4 4 – 15.5 (2.3) 

Circulation 10.9 13 11 2 10.3 (3.6) 
Lancet 10.2 9 7 2 12.4 (3.5) 
Annals of Internal Medicine 9.8 3 2 1 13.2 (1.3) 
Archives of Internal 
Medicine 

6.1 6 4 2 11.3 (3.6) 

Gut 5.4 13 11 2 12.7 (3.1) 
British Medical Journal 5.3 2 2 – 9.8 (2.5) 
Neurology 4.8 20 8 12 10.8 (3.6) 
Archives of Neurology 4.4 7 4 3 12.3 (2.7) 
Clinical Chemistry 4.3 15 9 6 10.0 (3.0) 
Radiology 4.1 25 22 3 13.2 (2.3) 
* of articles on diagnostic accuracy published in 12 high impact journals 
Note—Data are number of articles, unless specified otherwise. † In 2000, according to 
www.jcrweb.com; ‡ SD = standard deviation. Each item was given equal weight (0–25 points available). 

 

 

between cohort studies and case-control studies was 1.5 (95% confidence 

interval: 0.2, 2.8). Large differences (15%) in the quality of reporting between 

cohort and case-control studies were found for the following items: (a) 

participant sampling (item 5); (b) definition of and rationale for the units, 

cutoffs, and/or categories of the results of the reference standard (item 9b); (c) 

the number, training, and expertise of the persons executing and evaluating 

the tests (items 10a and 10b); (d) recruitment period (item 14); (e) time interval 

between the index tests and the reference standard and any treatment 

administered between the tests (item 17); (f) adverse events of the tests (item 

20); (g) how indeterminate results, missing data, and outliers of the index tests 

were handled (item 22); and (h) estimates of reproducibility of the index test 

(item 24a). Statistically significant differences (P < .05) between case-control 

and cohort studies were found for the following items: participant sampling 

(item 5); number, training, and expertise of the persons executing and 

evaluating the reference standard (item 10b); and the handling of 

indeterminate results (item 22). Only 27% of the case-control studies (nine of 

33) adequately reported on at least 50% of the items, while 46% of the cohort 

studies (42 of 91) reported on more than 50% of the items.  
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Mean STARD score and standard deviations are presented for each journal 

in Table 3. The mean STARD score varied from 9.8 in the British Medical 

Journal to 15.5 in JAMA. However, none of the pairwise comparisons were 

statistically significant.  

 

 

Discussion 

 

The results of this study indicate that the quality of reporting in articles on 

diagnostic accuracy published in 2000 is disappointingly poor, even in journals 

with a high impact factor. Only 41% of the articles adequately reported on at 

least 50% of the items, and none of the articles provided information on more 

than 80% of the STARD items. The mean STARD score (out of 25 available 

points) of the 124 articles was 11.9 ± 3.3. The advantage of using an overall 

score is its simplicity, but an overview of specific items that are poorly 

reported—and therefore need improvement—is, in our opinion, more 

important. Therefore, we elaborated in detail on these individual items.  

First, we strongly recommend the use of a flow diagram, because for most 

of the articles, the reviewers had to spend a considerable amount of time 

identifying the index test and the reference standard, the sequences of 

performing these tests, and the number of patients who underwent each test. 

Second, accurate identification of articles on diagnostic accuracy in the 

literature is important, and therefore, the use of uniform terms (MeSH 

headings) in keywords, titles, or abstracts is important. Just as clinical trials 

are labeled as a specific type of publication in MEDLINE (PubMed), studies on 

diagnostic accuracy should also be labeled as a specific type of publication. The 

STARD group proposed systematic use of the MeSH term sensitivity and 

specificity, because this is indicative of a study on diagnostic accuracy and is a 

term that has been used frequently in the past. Moons and Harrell (15) 

suggested use of the term posttest probability, because studies on diagnostic 

accuracy do not necessarily have to determine sensitivity and specificity. 

However, posttest probability is not yet registered as a MeSH term. We 

recommend the use of diagnostic accuracy as publication type, and posttest 

probability should be included as a new MeSH term, in addition to sensitivity 

and specificity.  
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The STARD statement focuses on the quality of reporting, not the 

methodologic quality of a diagnostic study. For example, if the authors stated 

that the reviewers of the reference standard were not blinded to the results of 

the index test, we considered item 11 to be well reported, even though this 

indicates a potential methodologic shortcoming. We believe that there is a 

positive association between the methodologic quality of a study and the 

quality of reporting. It is easier to report on a well-performed study than on a 

study that was poorly designed or in which a large number of protocol 

deviations occurred. Moreover, in the latter case, the authors may be less 

inclined to report in detail what happened. Increased attention to the quality of 

reporting and strict requirements for reporting in journals might, in the long 

term, thus also improve the methodologic quality of diagnostic research.  

Lijmer et al. (1) showed that various methodologic characteristics of a 

diagnostic study might influence the results of diagnostic accuracy. Their 

analysis was hampered by the poor reporting in many studies. Improved 

reporting may lead to better estimation of the influence of methodologic 

characteristics on diagnostic accuracy. Moreover, better estimates of biases or 

sources of variation within diagnostic studies can be made if all STARD items 

are reported. The STARD guidelines are not the first to focus on the reporting 

of studies. CONSORT, QUORUM, and MOOSE have emphasized the 

importance of better reporting of other study designs (8-10).  

The quality of reporting in articles on diagnostic accuracy is of great 

importance for assessing the generalizability of the results. It is also essential 

for the detection of methodologic flaws, the recalculation of sensitivity and 

specificity, repetition of the study, and application of the results in clinical 

practice. Fortunately, a number of journals have already changed their 

instructions to authors and require authors to complete the STARD checklist 

and to include a flow diagram that represents the design of the study and the 

flow of patients.  

Our study has a few limitations. First, the identification of studies of 

diagnostic accuracy is difficult. We searched MEDLINE by using a validated 

search strategy to identify all studies on diagnostic accuracy published in 2000. 

However, the search strategy has a sensitivity of 80.0% and a specificity of 

97.3% (13). Therefore, we may have missed studies on diagnostic accuracy that 

were not identified with our search strategy.  
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Second, the generalizability of the results of this study may be questioned. 

We evaluated the quality of reporting of studies on diagnostic accuracy 

published in 2000 in 12 journals. For this purpose, journals were selected if 

they occurred in the top-50 ranking of journals that frequently publish articles 

on diagnostic accuracy and if they had an impact factor of at least 4. However, 

it remains unclear whether results would be similar for journals that only 

rarely publish diagnostic accuracy studies or for journals with an impact factor 

of less than 4.  

Furthermore, as almost 50% of all identified articles on diagnostic 

accuracy were published in Radiology, we decided to limit the number of 

articles published in Radiology to 25. As the quality of reporting could have 

been improved during the year, we selected the first two articles of each month 

and the first three articles published in the December 2000 issue. In our 

opinion, the quality of reporting of those articles not selected for the review will 

be similar to the selected articles.  

We strongly recommend that authors, editors, and reviewers use the 

STARD statement for preparing, writing, and reviewing articles on diagnostic 

accuracy. We also stress that special attention should be paid to the 

identification of the article as a work pertaining to diagnostic accuracy and that 

a flow diagram should be included to represent the design of the study and the 

flow of patients. Hopefully this will lead to an improvement in the quality of 

reporting in the near future.  

 

 

Footnotes 

 

Abbreviations: MeSH = Medical Subject Headings, STARD = Standards for 

the Reporting of Diagnostic Accuracy 
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Diagnostic accuracy studies measure the amount of agreement between the 

results of a test and those of a reference standard, the best available method 

for establishing the presence or absence of the condition of interest. Accuracy 

studies can be designed in many different ways, and some of these features 

may have a biasing effect on estimates of a test’s sensitivity, specificity, or 

diagnostic odds ratio. 

The aim of this thesis was to find out if, how, and when these design 

features affect estimates of diagnostic accuracy by producing empirical 

evidence on the direction, magnitude and variability of these effects. This 

knowledge can be used to improve strategies on how to incorporate differences 

in design in systematic reviews of test accuracy. 

 

The introduction in Chapter 1 provides a brief explanation of the role of 

diagnosis in medical health care, and introduces diagnostic accuracy studies, 

their objective and variety in designs. It also provides the outline of this thesis. 

Chapter 2 discusses similarities and differences between diagnostic and 

etiologic case-control studies, as well as the mechanisms that can lead to 

variation in estimates of diagnostic accuracy in studies with separate sampling 

schemes ("gates") for diseased (cases) and non-diseased individuals (controls). A 

key difference is that diagnostic accuracy studies are cross-sectional in nature, 

whereas etiologic case-control studies involve a time window between the 

potential causal exposure and disease occurrence. We point out that 

researchers and readers should be aware of spectrum effects in diagnostic case-

control studies caused by restricted sampling of cases and/or controls, which 

can lead to changed estimates of diagnostic accuracy. These spectrum effects 

may be advantageous in the early investigation of a new diagnostic test, but for 

an overall evaluation of the clinical performance of a test, case-control studies 

should use an appropriate source population. 

In Chapter 3 we explore the mechanisms that can lead to changes in 

diagnostic accuracy in studies with partial or differential verification. 

Incomplete verification with the preferred reference standard may be planned 

in the design, but more commonly occurs because the practitioner or patient 

decides to avoid verification by an invasive standard. Incomplete verification is 

therefore more likely to occur in patients in whom the index test is negative 

and in patients with a low prior probability of disease. Under these conditions, 

leaving unverified index test results out of the two-by-tow table (partial  
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verification) usually leads to overestimation of sensitivity and underestimation 

of specificity. The use of a second reference standard for the initially unverified 

results (differential verification) also leads to changes in estimates of accuracy 

that depend on the association in results between the index test and the 

reference standards and on the proportions of patients that are verified 

differently. In many likely scenarios, differential verification will lead to higher 

estimates of the diagnostic odds ratio. 

In Chapter 4 we systematically review the available literature on design 

related factors that can lead to bias or variation in the results of diagnostic 

accuracy studies. The best-documented effects of bias and variation were found 

for demographic features, disease prevalence and severity, partial verification, 

clinical review bias, and observer and instrument variation. For other sources, 

such as distorted selection of participants, absent or inappropriate reference 

standard, differential verification bias, and review bias, the amount of evidence 

was limited. Evidence was lacking for incorporation bias, treatment paradox, 

arbitrary choice of threshold value, and dropouts. We concluded that many 

issues in the design and conduct of diagnostic accuracy studies can lead to bias 

or variation; however, the empirical evidence about the size and effect and 

factors that can modify these effects is limited. 

Chapter 5 describes the results of a multivariable meta-epidemiological 

regression analysis to investigate the direction and strength of the association 

of 15 study features with estimates of diagnostic accuracy. We included 31 

meta-analyses containing 487 primary studies. Only one primary study had no 

design deficiencies. The quality of reporting was poor in most studies. We found 

significantly higher estimates of diagnostic accuracy in studies with non-

consecutive inclusion of patients (relative diagnostic odds ratio, RDOR 1.5 [95% 

CI 1.0 to 2.1] and retrospective data collection (RDOR 1.6 [95% CI 1.1 to 2.2]). 

Studies using referral to the index test as the inclusion criterion produced 

significantly lower estimates of diagnostic accuracy (RDOR 0.5 [95% CI 0.3 to 

0.9]). For several design features, the magnitude of the effect varied 

considerably from one meta-analysis to another, including type of design (case 

control designs versus cohort), the use of composite reference standards, and 

differential verification. We concluded that shortcomings in design can affect 

estimates of diagnostic accuracy, but that the size or the direction of the effect 

can vary from one situation to another.  
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The standard method for meta-analyzing diagnostic studies is the 

summary ROC approach (sROC). This method uses the diagnostic odds ratio as 

the main outcome measure, which removes the effect of a possible threshold 

but at the same time loses relevant clinical information about test 

performance. In Chapter 6, we introduce a bivariate approach, which preserves 

the two-dimensional nature of the original data. Pairs of sensitivity and 

specificity are jointly analyzed using a random effects approach, incorporating 

any correlation that exists between these two measures. Explanatory variables 

can be added to the bivariate model and lead to separate effects on sensitivity 

and specificity, rather than a net effect on the odds ratio scale as in the sROC 

approach. The statistical properties of the bivariate model are sound and 

flexible. We conclude that the bivariate model can be seen as an improvement 

and extension of the traditional sROC approach. 

In Chapter 7 we use the bivariate approach to evaluate the biasing effects 

of 6 design features on estimates of sensitivity, specificity and the diagnostic 

odds ratio (DOR). Using a dataset of 49 meta-analyses with 705 primary 

studies, we first estimated the relative effects of these 6 features within each 

meta-analysis, and then examined heterogeneity in effects across meta-

analyses. Relative sensitivities and specificities were used to compare 

estimates of studies with specific design shortcomings with the results of 

studies on the same test without these shortcomings. Studies using differential 

verification reported significantly higher estimates of specificity (rspec 1.4 [95% 

CI 1.0 to 1.9]) and rDOR (1.7 [95% CI 1.0 to 2.8) compared to studies using a 

single reference standard to verify index test results. Other design features did 

not yield statistical significant results. The effect of design features varied 

substantially between meta-analyses for type of design (case-control versus 

cohort), partial and differential verification, and retrospective data-collection. 

We concluded that design features can affect sensitivity and specificity as well 

as the diagnostic odds ratio, but the direction and magnitude of the biasing 

effects may vary between meta-analyses and are difficult to predict. 

Chapter 8 reports the results of a meta-analysis of the diagnostic accuracy 

of D-dimer tests for the exclusion of venous thromboembolisms (VTE), 

involving 217 D-dimer test evaluations on deep venous thrombosis (DVT) and 

111 D-dimer test evaluations on pulmonary embolism (PE). We used a 

multivariable bivariate regression approach for pooling estimates of sensitivity 

and specificity for 7 types of D-dimer assays. We adjusted for differences in 
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patient groups and design between studies. Several patient group and design 

features affected the diagnostic accuracy of the D-dimer assays leading to 

either over- or under-estimation of sensitivity or specificity. Adjusted for design 

differences, we found that studies using enzyme-linked fluorescent 

immunoassay (ELFA), Microplate enzyme-linked immunosorbent assay 

(ELISA) and latex quantitative D-dimer tests had similar high estimates of 

sensitivity (DVT: 96, 94, 93; PE: 97, 95 and 95% respectively) which appear to 

be superior to Elisa Membrane, Latex semi-quantitative, Whole-blood and 

Latex qualitative D-dimer assays (DVT: 89, 85, 83, 69; PE: 91, 88, 87, and 75% 

respectively). Significantly higher estimates of specificity were observed in 

latex qualitative, whole blood and latex semi-quantitative D-dimer assays 

(DVT: 99, 71, 68; PE: 99, 69, and 66% respectively) in comparison to latex 

quantitative, elisa and ELFA D-dimer methods (DVT: 53, 53, 46; PE: 50, 50, 

and 43% respectively). We concluded that Microplate ELISA, ELFA, and latex 

quantitative D-dimer assays have the best properties to exclude DVT and PE, 

but with the inconvenience of having a low specificity leading to higher 

numbers of false positive results. This means unnecessary and costly imaging 

tests in a considerable group of patients.  

Chapter 9 focuses on the quality of reporting of diagnostic accuracy 

studies. We evaluated 124 diagnostic accuracy studies published in high impact 

journals in the year 2000. We used the Standards for Reporting of Diagnostic 

Accuracy (STARD) statement published in 2003, consisting of 25 items, to 

assess the quality of reporting by summing the number of adequately reported 

items (potential range of scores 0 to 25). We found that only 41% of articles (51 

of 124) reported on more than 50% of STARD items, while no articles reported 

on more than 80% of the items. The mean STARD score was 11.9 (range, 3.5–

19.5). A flow chart was presented in only two articles. There was wide variation 

in the reporting of individual items of STARD statement ranging from 11% of 

all articles (Item 1: Identify the article as a study of diagnostic accuracy in title, 

abstract or keywords) to 92% (Item 25: Discuss the clinical applicability of the 

study findings). The quality of reporting in diagnostic accuracy articles 

published in 2000 was found to be less than optimal, even in journals with a 

high impact factor. Authors, editors, and reviewers should pay more attention 

to reporting by checking STARD statement items and by endorsing the 

inclusion of a flow diagram to represent study design and patient flow. 
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In conclusion, the work in this thesis highlights that design features can be 

an important source of bias and variability in diagnostic accuracy studies. 

However, the magnitude, or even the direction of the effect, can vary from one 

situation to another. This is especially true for design features that influence 

the composition of the study population and for different forms of partial and 

differential verification. This variation in magnitude and direction might be 

one of the reasons why there was no effect of certain design features when 

measuring it across all meta-analyses. Our meta-epidemiological research was 

hampered by incomplete reporting. Improving the quality of reporting of 

diagnostic accuracy studies would benefit future evaluations using meta-

(epidemiological) regression approaches. Better reporting enables more detailed 

evaluations of design effects that could contribute to the explanation of the 

observed variability in effects. 

Future research should explore the conditions under which design features 

lead to bias in reviews of diagnostic accuracy studies. As our analysis of case-

control designs and verification issues has shown, a “reject all” policy will both 

be inefficient and unjustified. In meta-analysis, techniques for incorporating 

study designs differences in the analysis should be investigated. As the 

Cochrane Collaboration has ventured into the development of systematic 

reviews of diagnostic test accuracy, reviewers will expect guidance on how to 

deal with the sometimes stunning differences in design and conduct of studies. 

Incorporating quality requires complete and accurate reporting on the design 

and conduct of accuracy studies. Although reporting seems to improve (1-2), the 

overall completeness of reporting still leaves much to be desired, and the 

STARD initiative deserves widespread support. In the end, the bewildering 

variety in study designs has to be attenuated. Different research questions 

deserve different study designs, but there is no universal excuse for relying on 

suboptimal methods for designing studies. In general, the methodology for 

evaluating tests is lagging behind our methods for evaluating therapy. As 

researchers, reviewers and readers will become more critical, we can expect 

data of better quality that will ultimately lead to better decisions in health 

care.  
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Het bepalen van de diagnostische accuratesse is een belangrijke fase in de 

evaluatie van een test. Men kijkt daarbij naar de overeenkomsten in uitslagen 

van de test en die van de referentietest; de best beschikbare methode om ziekte 

aan te tonen of uit te sluiten. Bij het opzetten van onderzoek naar 

diagnostische accuratesse moeten diverse keuzes worden gemaakt. Sommige 

keuzes hebben de potentie om maten van diagnostische accuratesse -zoals 

sensitiviteit, specificiteit en diagnostische odds ratio- te beïnvloeden, waardoor 

vertekening (bias) kan ontstaan. 

Het onderzoek in dit proefschrift had als doel kennis te vergaren over 

wanneer en hoe designkenmerken de diagnostische accuratesse kunnen 

beïnvloeden. Empirisch onderzoek naar de effecten van designkenmerken op 

accuratesse is samengevat, maar ook geïnitieerd, waarna de kennis over 

potentiële effecten is ingebouwd in een systematisch overzichtsartikel en meta-

analyse van diagnostische tests. 

 

De introductie in Hoofdstuk 1 benadrukt het belang van het stellen van de 

juiste diagnose binnen de gezondheidszorg, gevolgd door een omschrijving van 

diagnostisch accuratesseonderzoek. De cruciale rol van accuratesseonderzoek 

en verschillen in onderzoeksopzetten worden toegelicht. Tevens biedt dit 

hoofdstuk een leeswijzer voor de overige delen van het proefschrift. 

Hoofdstuk 2 gaat dieper in op de overeenkomsten en verschillen tussen 

diagnostische en etiologische patiëntcontrole-onderzoeken (case-control 

designs). Het bespreekt mechanismen die kunnen leiden tot verschillen in de 

uitkomsten van diagnostische accuratesse in onderzoek waarin zieken (cases) 

en niet-zieken (controls) afzonderlijk worden ingesloten (different gates). Een 

belangrijk verschil is dat diagnostisch accuratesseonderzoek in essentie een 

dwarsdoorsnede-opzet heeft, terwijl bij etiologisch patientcontrole-onderzoek er 

altijd sprake is van een tijdsverloop tussen de potentieel causale blootstelling 

en het optreden van ziekte. We benadrukken dat onderzoekers en lezers zich 

bewust moeten zijn van spectrumeffecten in diagnostisch patiëntcontrole-

onderzoek. Door selectief cases en controles in te sluiten kunnen 

spectrumeffecten ontstaan die leiden tot veranderingen in accuratesse. Deze 

spectrumeffecten kunnen nuttig zijn in de vroege evaluatie van een nieuwe 

test. In de latere stappen van de testevaluatie moet het patiënt-controle-

onderzoek de selectie laten aansluiten bij de juiste bronpopulatie.  
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In Hoofdstuk 3 exploreren we de mechanismen waardoor partiële en 

differentiële verificatie kunnen leiden tot veranderingen in diagnostische 

accuratesse. Incomplete verificatie met de geprefereerde referentiestandaard 

kan in het protocol zijn opgenomen. Dit treedt echter vaker ongewild op door 

het besluit van de (para)clinicus of patiënt om verificatie te vermijden, 

bijvoorbeeld vanwege het invasieve karakter van deze standaard. Incomplete 

verificatie komt waarschijnlijk vaker voor bij patiënten met een negatieve 

uitslag van de indextest en bij patiënten met een lage voorafkans op de ziekte. 

In deze omstandigheden zal het weglaten van niet-geverifieerde patiënten uit 

de analyse (partiële verificatie) meestal leiden tot een overschatting van de 

sensitiviteit en een onderschatting van de specificiteit. Het gebruik van een 

tweede referentietest voor de initieel niet-geverifieerde patiënten (differentiële 

verificatie) leidt ook tot veranderingen in accuratesse. De richting en de grootte 

van die veranderingen hangen af van de associatie tussen de indextest en de 

referentietest en het aantal patiënten dat anders wordt geverifieerd. In veel 

scenario’s zal differentiële verificatie leiden tot hogere schattingen van de 

diagnostische odds ratio. 

In Hoofdstuk 4 bespreken we de resultaten van een systematisch 

literatuuroverzicht naar designkenmerken die kunnen leiden tot vertekening of 

variatie in diagnostische accuratesseonderzoeken. Het vaakst bestudeerd zijn 

demografische kenmerken, prevalentie, ernst van de ziekte, partiële verificatie, 

beschikbaarheid van klinische informatie en beoordelaars- en 

instrumentvariatie. Voor andere kenmerken, zoals verstoorde selectie van 

patiënten, het ontbreken van een referentietest, het toepassen van een 

inadequate referentietest, differentiële verificatie en andere vormen van 

interpretatiebias, was weinig onderbouwing voorhanden. De onderbouwing 

ontbrak in het geheel voor incorporatiebias, behandelparadox, patiëntenuitval 

en het achteraf kiezen van de afkapwaarde voor een afwijkende testuitslag. 

Veel keuzes in opzet en uitvoer van diagnostisch onderzoek kunnen leiden tot 

vertekening en variatie, maar de empirische onderbouwing van de grootte en 

de richting van deze effecten is tot nu toe beperkt.  

Hoofdstuk 5 beschrijft de resultaten van een regressieanalyse waarin de 

oorspronkelijke onderzoeken uit een aantal meta-analyses in één model werden 

geanalyseerd (meta-epidemiologie). Met deze analyse onderzochten wij de 

richting en grootte van het effect van 15 designkenmerken op de diagnostische 

accuratesse. In totaal werden 31 meta-analyses met 487 oorspronkelijke 



Samenvatting 

 

 186 

onderzoeken ingesloten. Slechts één van de oorspronkelijke onderzoeken had 

geen tekortkomingen in design. De kwaliteit van rapportage was matig. We 

vonden significant hogere schattingen van diagnostische accuratesse in 

onderzoeken waarin patiënten niet achtereenvolgend werden ingesloten 

(relatieve diagnostische odds ratio, RDOR 1.5 [95% BI 1.0 tot 2.1]) en in 

onderzoek met retrospectieve data collectie (RDOR 1.6 [95% BI 1.1 tot 2.2]). 

Onderzoeken die een verwijzing naar de indextest als inclusiecriterium 

gebruikten, hadden significant lagere schattingen van diagnostische 

accuratesse (RDOR 0.5 [95% BI 0.3 tot 0.9]). Bij de volgende kenmerken 

varieerde het effect aanzienlijk van de ene tot de andere meta-analyse: soort 

design (patiëntcontrole-designs versus cohort), het gebruik van een 

samengestelde referentiestandaard en differentiële verificatie. We 

concludeerden dat tekortkomingen in design de schattingen van diagnostische 

accuratesse kunnen beïnvloeden, maar dat de grootte en de richting van het 

effect kan variëren. 

De summary Receiver Operating Characteristic (sROC) analyse is de 

bekendste methode van meta-analyse voor gegevens uit diagnostische 

accuratesseonderzoeken. Deze methode gebruikt de diagnostische odds ratio als 

primaire uitkomstmaat. De diagnostische odds ratio verwerkt sensitiviteit en 

specificiteit tot één getal, maar heeft als nadeel dat relevante klinische 

informatie over testeigenschappen verloren gaan. In Hoofdstuk 6 introduceren 

we een bivariate methode, waarin rechtstreeks paren van sensitiviteit en 

specificiteit worden geanalyseerd. Het bivariate model is een random effects 

model, waarin rekening wordt gehouden met de mogelijk aanwezige negatieve 

correlatie tussen sensitiviteit en specificiteit. Verklarende variabelen kunnen 

aan het bivariate model worden toegevoegd en leiden tot aparte schattingen 

van het effect op sensitiviteit en specificiteit in plaats van een gecombineerd 

effect op de odds ratioschaal, zoals in de sROC methode. De statistische 

eigenschappen van het bivariate model zijn correct en flexibel. We concluderen 

dat de bivariate methode kan worden gezien als een verbetering en uitbreiding 

van het traditionele sROC model. 

In Hoofdstuk 7 wordt het bivariate model gebruikt om de verstorende 

effecten van zes designkenmerken op sensitiviteit, specificiteit en de 

diagnostische odds ratio te vergelijken. De gebruikte dataset omvatte 49 meta-

analyses en 705 oorspronkelijke onderzoeken. Door de resultaten uit 

onderzoeken met bepaalde tekortkomingen te vergelijken met schattingen uit 
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onderzoeken naar dezelfde test, maar zonder tekortkomingen, kon de mate van 

vertekening worden bepaald en uitgedrukt als relatieve veranderingen in 

sensitiviteit en specificiteit. Onderzoeken met differentiële verificatie 

rapporteerden significant hogere schattingen van specificiteit (rspec 1.4 [95% 

BI 1.0 tot 1.9]) en rDOR (1.7 [95% BI 1.0 tot 2.8), in vergelijking met 

onderzoeken waarin één referentiestandaard is toegepast. De gemiddelde 

effecten van de overige designkenmerken waren statistisch niet significant. 

Echter, voor diverse kenmerken was er sprake van substantiële variatie in 

effect tussen meta-analyses, waaronder type design (patiëntcontrole versus 

cohort), partiële en differentiële verificatie en retrospectieve datacollectie. Dit 

houdt in dat het gevonden effect in specifieke meta-analyses wel degelijk 

aanzienlijk kan zijn. Onze conclusie was dat designkenmerken zowel de 

sensitiviteit, specificiteit als de diagnostische odds ratio kunnen beïnvloeden, 

maar dat de richting en de grootte van het effect over meta-analyses verschilt 

en moeilijk te voorspellen is.  

Hoofdstuk 8 rapporteert de resultaten van een meta-analyse over de 

diagnostische accuratesse van D-dimer tests voor het uitsluiten van veneuze 

tromboëmbolieën. In totaal werden 217 D-dimer testevaluaties over diep 

veneuze trombose en 111 D-dimer testevaluaties over longembolieën 

ingesloten. Het bivariate regressiemodel uit hoofdstuk 6 werd toegepast om 

schattingen van sensitiviteit en specificiteit van 7 soorten D-dimer tests te 

verkrijgen. We voegden indicatorvariabelen toe om voor verschillen in 

patiëntgroepen en design te corrigeren. Verscheidene patiëntgroep- en 

designkenmerken beïnvloedden de diagnostische accuratesse van D-dimer tests 

met als gevolg over- of onderschatting van de sensitiviteit of specificiteit. 

Rekening houdend met verschillen in design, vonden we dat enzyme-linked 

fluorescent immunoassay (ELFA), Microplate enzyme-linked immunosorbent 

assay (ELISA) en Latex kwantitatieve D-dimer tests vergelijkbaar hoge 

schattingen van sensitiviteit rapporteerden voor DVT (achtereenvolgens 96%, 

94% en 93% voor DVT; 97%, 95%, 95% voor PE), superieur aan de sensitiviteit 

geobserveerd in ELISA Membrane, Latex semi-kwantitatieve, Whole-blood en 

Latex kwalitatieve D-dimer tests (achtereenvolgens 89%, 85%, 83%, en 69% 

voor DVT; 91%, 88%, 87%,75% voor PE). De drie D-dimer methoden met de 

hoogste sensitiviteit hadden echter lagere schattingen van de specificiteit 

(achtereenvolgens 46%, 53%, 53% voor DVT; 43%, 50%, 50% voor PE). 

Significant hogere specificiteiten werden geobserveerd in latex kwalitatieve, 
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whole blood en latex semi-kwantitatieve D-dimer (achtereenvolgens 99%, 71%, 

en 68% voor DVT; 99%, 69%, en 66% voor PE). We concludeerden dat ELFA, 

Microplate ELISA en Latex kwantitatieve D-dimer tests de beste 

karakteristieken hebben om DVT en PE uit te sluiten, maar met het ongemak 

van een lage specificiteit, wat leidt tot grote aantallen patiënten met een fout 

positieve testuitslag. Dit betekent voor deze patiënten onnodige verwijzing 

naar beeldvormende tests. 

Hoofdstuk 9 richt zich op de kwaliteit van rapportage in diagnostisch 

accuratesseonderzoek. Uit het jaar 2000 werden oorspronkelijke onderzoeken 

naar diagnostische accuratesse in tijdschriften met een hoge impactfactor 

geselecteerd (n=124). We gebruikten het Standards for Reporting of Diagnostic 

Accuracy (STARD) statement, bestaande uit 25 onderdelen, om de kwaliteit 

van de rapportage te meten. De som van alle items (maximum 25) waaraan 

werd voldaan, was onze uitkomstmaat. 41% van de artikelen (51 uit 124) 

rapporteerde meer dan 50% van alle STARD items, terwijl geen enkel artikel 

meer dan 80% van de items rapporteerde. De gemiddelde STARD score was 

11.9 (range, 3.5–19.5). Een stroomdiagram werd slechts in twee artikelen 

gepresenteerd. Er was een grote variatie in de rapportage van individuele 

items uit het STARD-statement, variërend van 11% (item 1: Maak het artikel 

herkenbaar als een verslag van een onderzoek naar diagnostische accuratesse) 

tot 92% van alle artikelen (item 25: Bediscussieer de klinische toepasbaarheid 

van de resultaten van het onderzoek). Onze conclusie luidde dat er nog veel 

ruimte voor verbetering is in de kwaliteit van rapportage in diagnostische 

accuratesseonderzoeken, zelfs in tijdschriften met een hoge impactfactor. 

Auteurs, redacteuren en reviewers zouden meer aandacht moeten besteden aan 

heldere en complete rapportage, door onderdelen van het STARD-statement te 

doorlopen. Het gebruik van stroomdiagrammen om het design en de 

patiëntenstroom te verduidelijken dient gestimuleerd te worden. 

 

Dit proefschrift toont aan dat verschillen in design een bron van 

vertekening en variatie zijn kunnen zijn. Wel varieert de grootte en de richting 

van deze effecten aanzienlijk tussen meta-analyses. Dit geldt in het bijzonder 

voor spectrum gerelateerde designkenmerken en de verschillende vormen van 

partiële en differentiële verificatie. Mede door de variatie in grootte en richting 

van de effecten konden we van sommige designkenmerken geen algemeen 

effect over meta-analyses heen aantonen. Onze evaluatie werd tevens 
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bemoeilijkt door de matige kwaliteit van rapportage in de oorspronkelijke 

onderzoeken. Een verbetering in de kwaliteit van rapportage zal verdienstelijk 

zijn voor toekomstige evaluaties die gebruik maken van meta  

(-epidemiologische) regressietechnieken. Een volledige rapportage van de 

gehanteerde studiekenmerken maakt een meer gedetailleerde evaluatie van 

designeffecten mogelijk, wat de waargenomen variabiliteit in effecten kan 

helpen verklaren. 

Toekomstig onderzoek zou zich moeten richten op de omstandigheden 

waaronder studiekenmerken tot vertekening leiden in reviews van 

diagnostische accuratesseonderzoeken. Uitkomsten van dit soort onderzoeken 

zal reviewers en lezers in staat stellen de potentie voor bias in oorspronkelijke 

onderzoeken te beoordelen. Zoals onze analyse over patiëntcontroledesigns en 

verificatie-aspecten heeft laten zien, zal een reject all-beleid zowel inefficiënt, 

als ongerechtvaardigd zijn. Strategieën om verschillen in designkenmerken te 

integreren in meta-analyses dienen verder onderzocht te worden. Nu de 

Cochrane Collaboration de uitdaging van het ontwikkelen van systematische 

overzichtsartikelen naar diagnostische accuratesse is aangegaan, zullen 

reviewers een leidraad verwachten hoe omgegaan kan worden met de soms 

verbluffende verschillen in onderzoeksopzet en uitvoer. Randvoorwaarde is dat 

reviewers de noodzakelijke informatie moeten kunnen vinden in de artikelen 

die over diagnostische accuratesse berichten. Hoewel de beschrijving van 

details van het onderzoek en resultaten lijkt te verbeteren (1;2), laat de 

rapportage in zijn geheel gezien nog veel te wensen over. Het STARD-initiatief 

verdient daarom breed aandacht. Uiteindelijk zal de epaterende variëteit in 

onderzoeksopzetten moeten verminderen. Bij verschillende onderzoeksvragen 

horen verschillende onderzoeksopzetten, maar er is geen universeel excuus 

voor het gebruikmaken van suboptimale methoden in het opzetten van 

onderzoek. In het algemeen ligt de methodologie van testevaluatieonderzoek 

achter op die van therapie- evaluatie. Door een meer kritische opstelling van 

onderzoekers, reviewers, en lezers kunnen we betere data tegemoet zien, ter 

ondersteuning van geïnformeerde, evidence based besluitvorming over testen 

in de gezondheidszorg. 
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In augustus 2001 kreeg ik een aanstelling bij de afdeling Klinische 

Epidemiologie en Biostatistiek op het project “Design-Related Bias in 

Diagnostic Accuracy Studies”. De plezierige samenwerking met collega’s, maar 

zeker ook het enthousiasme en de vakbekwaamheid van de mensen om mij 

heen, hebben mij al snel doen inzien dat het committeren aan een 4-jarig 

promotieonderzoek een goede keuze was. Na jaren van ijverig ploeteren is het 

dan zover: ik mag mijn proefschrift verdedigen! Familie, vrienden en collega’s 

hebben op verschillende wijzen substantieel bijgedragen aan het tot stand 

komen van dit proefschrift. In dit dankwoord beperk ik mij echter tot het 

bedanken van diegenen, met wie ik direct en intensief heb samengewerkt om 

deze dissertatie te voltooien. Ik zie ernaar uit om alle anderen te bedanken 

onder het genot van een biertje of Lagavulin. 

Allereerst prof. dr. P.M.M. Bossuyt, mijn promotor en dr. J.B. Reitsma, 

mijn co-promotor en dagelijks begeleider. Beste Patrick, ik heb grote 

bewondering voor je heldere denkwijze en je enorme kennis en liefde voor het 

vak. Ik heb veel van je mogen leren en ik ben je erg dankbaar voor je intensieve 

begeleiding. Als ik het even niet meer zag zitten wist jij me altijd weer te 

stimuleren. Lieve Hans, ik zou willen dat ik jouw capaciteiten had om 

statistische modellen tot in detail te ontrafelen en te beheersen. Jij bent voor 

mij het toonbeeld van goedheid. Je bent altijd bereid om iedereen met raad en 

daad bij te staan, zonder er iets voor terug te verwachten. Hierdoor had je het 

wel heel erg druk, maar toch wist je altijd tijd voor mij te maken, zelfs in de 

avonduren en in het weekend, als alle zeilen bijgezet moesten worden. 

Ontzettend bedankt hiervoor. Ik wil jullie beiden ook oprecht bedanken voor de 

mogelijkheid die jullie mij hebben geboden om vanuit Italië een nieuw project 

uit te voeren. Ik had me geen betere start in mijn nieuwe thuisland kunnen 

bedenken! 

Dr. M. Di Nisio, lieve Marcello. Zonder jou hadden we onze deadlines niet 

gehaald. Niets was jou te veel. Honderden artikelen heb je met mij beoordeeld. 

Tot 10 uur ’s avonds waren wij in het AMC om data in te voeren, en toch 

hadden we altijd veel plezier in wat we samen deden. Ik ben nog steeds 

verbaasd over de snelheid waarmee jij je de grondbeginselen van de 
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epidemiologie hebt eigengemaakt. Met trots kijk ik toe hoe jij 6 publicaties in 

de eerste 9 maanden van dit jaar hebt bereikt, binnenkort zal ook jij ‘hora est’ 

in de Lutherse kerk horen. 

Beste Penny Whiting. Net als Marcello kun jij in een oogwenk een berg 

werk verzetten. Bij jou zou ik een cursus plannen kunnen volgen. Je komt 

altijd je afspraken na op de afgesproken tijd. Met plezier denk ik terug aan 

mijn werkbezoek in York, ik dank je voor de prettige en vruchtvolle 

samenwerking. Als jij volgend jaar gaat promoveren, boek ik een vlucht! 

Dr. J. Kleijnen. Beste Jos, ik ken je al sinds mijn studie 

bewegingswetenschappen in Maastricht. Jij hebt de gave om met veel humor 

mensen te enthousiasmeren voor de wetenschap. Dank je voor de 

samenwerking, die efficiënt, maar ook heel gezellig was. Ik zal nooit vergeten 

dat je, tegen beter weten in, Penny en mij vergezeld hebt op een ‘ghost-tour’ in 

York. 

Dr. N. Smidt, beste Nynke. Wat waren wij soms wanhopig, als we weer een 

artikel uit de klinisch chemische hoek moesten beoordelen. Samen hebben we 

ons er doorheen geslagen, wat tot mooie publicaties heeft geleid. Ik stel je 

directe communicatie zeer op prijs en dank je voor je goede adviezen! 

Dr. J.C. van Rijn, beste Jeroen. Ik moest wennen aan je stroom van 

woorden, maar ik kan ook enorm met je lachen. In de kroeg ben je op je best! 

Vele discussies hebben wij gevoerd, als wij van mening verschilden was het 

moeilijk jou te overtuigen. Maar ik denk dat we door de diepgang van onze 

discussies beiden veel hebben geleerd. 

Dr. A.S. Glas, lieve Afina. Ik wil je bedanken voor je bijdrage in mijn 

artikelen, maar ook voor de gezelligheid en de wonderlijke gesprekken die we 

hebben gevoerd. 

Prof. dr. A.H. Zwinderman en dr. R. Geskes, beste Koos en Ronald. De 

analyse van de D-Dimer set was een ware uitdaging. Met jullie kundige 

adviezen en begeleiding in WinBugs is het toch nog gelukt. Bedankt! 

Prof. Irwig, dear Les. I enjoyed our discussions and sharing our ideas 

during your visits to Amsterdam. I hope to have the pleasure of working with 

you again in future. 

Prof. dr. H.C.R. de Vet, beste Riekie. Onze samenwerking begon al in 1999. 

Ik ben erg blij dat we die konden voortzetten toen ik aan dit promotieonderzoek 

begon. Dank je voor je betrokkenheid en ik hoop dat ik je afdeling, bij 

toekomstige projecten, mag blijven versterken. 
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Prof. dr. J.P. Vandenbroucke, beste Jan. Tijdens onze eerste vergadering 

was ik al meteen onder de indruk van jouw analytisch denkvermogen. Je 

gefundeerde wetenschappelijke mening en je opbouwende kritiek hebben een 

belangrijke rol gespeeld in een denkproces dat uiteindelijk leidde tot een 

publicatie waar ik trots op ben.  

Prof. dr. H.R. Büller, beste Harry. Als ik bij jou aanklopte met een 

‘probleem’, wist je me in luttele minuten te overtuigen dat er geen probleem 

was, maar slechts een uitdaging die we gemakkelijk samen konden aangaan. 

Mijn oprechte dank voor al je hulp.  

De overige leden van mijn promotiecommissie prof. dr. K.G.M. Moons, prof. 

dr. M. Offringa en prof. dr. J. Stoker wil ik bedanken voor het beoordelen van 

de inhoud van mijn proefschrift. 

Ten slotte wil ik mijn paranimfen bedanken. Christine en Kimberly, ik ben 

heel blij dat jullie op 14 december naast mij staan! 
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