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Abstract

We present a wrist worn fall detector for elderly people.
The detector is easy to wear and offers the full functional-
ity of a small transportable wireless alarm system. It im-
plements a fall detection algorithm which will alert a call
center after a heavy fall. This occurs even if the wearer is
unconscious or too agitated to press the alarm button him-
self. The algorithm is designed to work with the fall detec-
tor attached to the wrist. This is probably the most difficult
place for detecting a fall. The algorithm can therefore be
expected to function at other locations on the body. The
system combines complex data analysis and wireless com-
munication capabilities in a truly wearable watch-like form.
This paper summarizes the functionality, architecture and
implementation of the system.

1. Introduction

Health monitoring is among the most attractive applica-
tion fields for wearable electronics and has been studied by
many research groups [1, 2]. A variety of wearable devices
for monitoring physiological parameters are commercially
available today, with many others in the research and devel-
opment stage. Most monitoring devices target people need-
ing special care (e.g., VITAPHONE) or young and active
people (e.g., POLAR www.polar-usa.com).

We developed Speedy, a first prototype of a fall detector
built into a wrist watch. Small, ubiquitous and very easy to
handle, it is aimed at elderly people living alone at home or
in social housing. If they press the incorporated alarm but-
ton, or if they are unconscious after a fall, Speedy will alert
relatives or a call center via a wireless link to a local tele-
phone central. The function is the same as the commercially
available device telealarm (www.teletronic.com) plus an au-
tonomous fall detector. There are other commercially avail-
able fall detectors, but they are all attached to a belt around

the hip (e.g Tunstall www.tunstall.co.uk). This makes them
less comfortable and inadequate to be worn during sleep.
The critical phase of getting up can not be covered by such
devices.

A fall detector in the form of a wrist watch will not feel
alien to the wearer. The major disadvantage of this solution
is the complexity of the fall detection algorithm. The arm
can move and rotate, thus has six degrees of freedom in its
movement. There are two possibilities: either use six sen-
sors (three for acceleration and three for rotation) or adapt
the algorithm to function with only incomplete information.
To comply with the small space available and the low-power
requirement, we use only three axes of acceleration sensed
and an algorithm using only very low computing power.
Our goal was to develop a much smaller device than the
systems found in most case studies like [3] and [4].

2. Concept of Speedy

Speedy is integrated in the case of a wrist watch.

Figure 1. Speedy and its axes



Two sensors (Analog Device ADXL202) measure the ac-
celeration on all three axes. There are no sensors for rota-
tion. The detection is based on the norm of the acceleration;
there is no information about how the device is orientated.
An obvious approach to detect a fall would be to measure
the speed of the person relative to the ground. This could be
done by integrating the downward directed fraction of the
acceleration. Yet, the orientation of Speedy is not known.
At rest, there is a static acceleration sensed by Speedy of
9.81ms−2 due to gravity. This static acceleration could be
used to determine the orientation of Speedy as follows: If
Speedy measures a steady acceleration of 9.81ms−2 over a
certain time period, the algorithm assumes that this acceler-
ation is perpendicular to the ground. But during a fall this
information about orientation would be lost due to possible
rotations which can not be detected based on only the three
axes of acceleration

3. Principle of Detection

Our approach is to integrate the norm of the three axes
acceleration vector. Due to the static acceleration the norm
can only be smaller than 9.81ms−2 during a fall as shown
in fig. 2.
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Figure 2. Resulting acceleration vector during
a fall

To detect a fall Speedy uses three different parameters. One
parameter is the norm of the three axes acceleration vector.

|n| =
√

a2
x + a2

y + a2
z (1)

This norm is independent of Speedy’s orientation. To ob-
tain information about the velocity of Speedy we need to
integrate this norm. To obtain the correct velocity relative
to the ground we need to compensate the static accelera-
tion of 9.81ms−2. A correct compensation is not possible
because we do not know the orientation of Speedy. We ap-
proximate the current velocity by integrating the norm after

subtracting a fixed value of 9.81ms−2:

v1 =
∫ (√

a2
x + a2

y + a2
z − 9.81

)
dt (2)

This approximation is only correct for vertical movements.
The error between our approximation and the correct verti-
cal component of acceleration is shown in figure 3:
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Figure 3. Rough approximation of vertical
component

The approximation is best for vertical movements and worst
for nearly horizontal movements. More problematic is that
fast accelerated movements towards the ground (accelera-
tion ≥ 9.81ms−2) result in an incorrectly estimated veloc-
ity. Nevertheless, this approximation has some beneficial
properties. It is independent of the orientation and even ro-
tation of Speedy. During a vertical movement, the approx-
imation results in an underestimated velocity. This point
helps reduce the sensitivity to horizontal movements. Only
during a fall are negative values integrated. Because we
are not interested in other movements, the implemented al-
gorithm integrates negative values and damps the integral
during positive values following the formula:

v1 =
{ ∫

(|n| − 9.81) dt if |n| − 9.79 < 0
v1 · 0.95 else

(3)

Instead of the full value of 9.81ms−2 we subtract only a
value of 9.79 to prohibit the integration of possible offsets
and the noise of the acceleration sensors. The value of 0.95
is the damping factor which slowly resets the integral during
rest and positive accelerations.

To handle the above mentioned fast accelerated move-
ments towards the ground, we use a second integral which
also approximates the speed of the device. Instead of inte-
grating the norm, we first integrate each axis separately and
then calculate the norm. To limit the effect of possible off-
set errors, we reduce the length of the computed integral to
120 samples (800ms).
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√( ∫
axdt

)2

+
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+
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)2

−
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(4)



This integral is again an estimation and yields a second
speed approximation of Speedy. This approximation is very
good, as long as the device is not rotated during the fall. If
the device is rotated while falling, the integral results in a
large error. The effect of the error is over after 120 sam-
ples. Yet we did not find a real-world example where both
approximations went wrong at the same time.

All three parameters, the norm |n| and the two integrals
v1 and v2, are continuously calculated and used as input in
the fall detection algorithm. The algorithm uses three differ-
ent thresholds to distinguish between a common movement
and a potentially harmful velocity towards the ground.

The speed estimation is only the first step in the process
of detecting a potentially harmful fall. First, a high velocity
towards the ground has to be detected. Then, within 3 sec-
onds an impact has to be detected, or the event will be dis-
carded. The impact is detected based on the differentiation
of the norm |n|. After the impact the general activity will be
observed for 60 seconds. If during this interval at least 40
seconds of inactivity are recorded, Speedy will generate an
audible alarm. The wearer can then deactivate the alarm by
pushing on the button for 1 second. If the wearer does not
respond to the alarm tone by pressing the button, the alarm
will be transmitted wireless to the basestation, which will
then alert a call center.

Speedy targets elderly people and has a minimal user
interface. Only one button is provided to either generate
an alarm by pressing for more than 10 seconds, or to can-
cel an alarm triggered by the fall detection algorithm. All
other settings, like threshold values or telephone numbers,
are programmed by the call center.

4. Results

The main components of Speedy are two accelerometers
(Analog Devices ADXL202E), a Microcontroller (Texas
Instruments MSP430F149) and a wireless RF-Link to the
base station (RFM DR3001). The range of the accelerom-
eters is ±2ms−2. We use the pulse-width signal of the
ADXL202E. The sampling rate is 150Hz. The noise level
measured is 5mg rms on each of the three axes. The power
consumption is 2.6mA in monitoring mode and 11 mA dur-
ing the wireless transmission of an alarm. The workload of
the processor is only about 25%. With the employed bat-
teries (1000mAh/ 3.6V) the device works constantly for ap-
proximately 2 weeks in the monitoring mode.

The next figure depicts the values of the three axes mea-
sured by Speedy during a typical fall. The three phases de-
tected by the algorithm are also put in evidence.
The following two figures represent two similar patterns.
Figure 5 shows the signals during a fall with a fast acceler-
ation towards the ground.
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Figure 4. A typical fall as measured by
Speedy. The three phases detected by the
algorithm are 1) high velocity towards the
ground 2) impact 3) inactivity
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Figure 5. Recording during a fast fall showing
the three axes, the norm (|n|) and the integral
1 and 2 (v1 and v2).

Notice that the norm |n| drops below 1 only for a short mo-
ment. This is due to the fast movement towards the ground.
The integral v1 fails to detect the dangerous situation. Yet
the fall was successfully detected based on the second in-
tegral v2. The second example in figure 6 shows a strong
handshake. Notice that the norm |n| and the first integral
v1 look very similar to the fast accelerated fall in figure 5.



However, this time no fall is detected because the second
integral v2 has no notable value.
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Figure 6. Recording during a fast fall. No fall
is detected because of integral 2 (v2)

To evaluate the reliability of the fall detection we did a se-
ries of tests. A test subject was wearing the device while
falling on a mattress. The results are summarized in table 4:

Table 1. Three subjects did falls in different
directions. The algorithm detects a fall only if
all three phases are recorded consecutively:
a) high velocity towards the ground b) impact
c) inactivity

fall # a) b) c) succes
forwards 10 10 10 10 100%
backwards 24 15 14 14 58%
sideways 11 7 5 5 45%
total 45 32 29 29 65%

We can see that not all fall situations are detected with the
same certitude. One problem was sideways falls on the side
the device is worn because the distance to ground can be
very short. The second difficult fall to detect was the fall
backwards because the arms are often first moving in the
opposite direction of the fall. In some cases phase 2 was
not detected. This is mainly because of the soft mattress.

After these test series the device was worn for 48 hours.
The wearer was walking, cycling, washing dishes and doing
all kinds of day-to-day activities. No false alarm was given.
Yet the device worked fine in a subsequent falltest.

The following table resumes the thresholds used to detect
high velocity towards the ground:

Table 2. For detecting the first phase three
thresholds are used. If all three values are
exceeded the algorithm assumes high veloc-
ity towards the ground

norm |n| integral v1 integral v2

threshold 0.46 -1.72 -2.62

5. Conclusions

We are able to detect a potentially harmful fall with a
small and light fall detector which is easily integrated into a
wrist watch. This is a new approach where the fall detector
is integrated into a truly ubiquitous device. There was no
false alarm during a two-day trial. All this is important for
the acceptance of such a device especially for elderly peo-
ple. In our tests not all fall situations were detected. But
we believe the algorithm can be improved by optimizing
the thresholds based on long-term tests. This could be done
in social housing with medical staff and an in-house tele-
phone central. For a commercial device the battery life is
too short. Thus the power consumption has to be reduced by
a factor of at least 20. Again we believe this is possible by
using low-power accelerometers (60µW ). Additionally the
microcontroller will be put to sleep during periods of low
activity. A low-power barometer (60µW ) may be added to
further improve the performance of the algorithm.
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