
Semantic Wikipedia

Markus Krötzsch a Denny Vrandečić a

Max Völkel b Heiko Haller b Rudi Studer a,b

aInstitut AIFB, Universität Karlsruhe (TH), Germany, {mak|dvr|rst}@aifb.uka.de
bFZI, Karlsruhe, Germany, {voelkel|haller}@fzi.de

Abstract

Wikipedia is the world’s largest collaboratively edited source of encyclopaedic knowledge.
But in spite of its utility, its content is barely machine-interpretable and only weakly struc-
tured. With Semantic MediaWiki we provide an extension that enables wiki-users to seman-
tically annotate wiki pages, based on which the wiki contents can be browsed, searched, and
reused in novel ways. In this paper, we give an extended overview of Semantic MediaWiki
and discuss experiences regarding performance and current applications.

Key words: Semantic Web, Wikis, Wikipedia, Collaborative content editing

1 Introduction

Wikis have become popular tools for collaboration on the web, and many vibrant
online communities employ wikis to exchange knowledge. For a majority of wikis,
public or not, primary goals are to organise the collected knowledge and to share
this information. Wikis are usually viewed as tools to manage online content in
a quick and easy way, by editing some simple syntax known as wikitext. This is
mainly plain text with some occasional markup elements.

Wikipedia is the best known example for a wiki. It aims at creating a multilingual,
free encyclopaedia that everyone can edit. The information contained in Wikipe-
dia however is hardly usable by external tools: using Wikipedia currently means
reading articles – there is no way to gather information scattered across multiple
articles, like to request a list of all movies from the 1960s with Italian directors.
Although the data is quite structured (each movie has its own article, there are links
to actors and directors), its meaning is unclear to the computer, because it is not
represented in a machine-processable, i. e. formalised way.

Preprint submitted to Elsevier 31 August 2007

Semantic

store

MediaWiki DB

(MySQL)

Storage

Abstraction

Storage

Implementation

Parsing Rendering
Inline

Queries
Setup

Lan-

guage

Java-

Scripts

+

CSS

OWL

Export
...

Datatype API

Data processing

Type:String

Type:Date

Type:Number

...

Page display and

manipulation

Special

pages

DB interface

MediaWiki

Webserver (Apache)

Semantic
MediaWiki

S
e
t
u
p

L
a
n
g
u
a
g
e

s
y
s
t
e
m

Fig. 1. Architecture of SMW’s main components in relation to MediaWiki.

Semantic MediaWiki (SMW) is a semantically enhanced wiki engine that enables
users to annotate the wiki’s contents with explicit, machine-readable information.
Using this semantic data, SMW addresses core problems of today’s wikis:

• Consistency of content: The same information often occurs on many pages. How
can one ensure that information in different parts of the system is consistent,
especially as it can be changed in a distributed way?
• Accessing knowledge: Large wikis have thousands of pages. Finding and com-

paring information from different pages is challenging and time-consuming.
• Reusing knowledge: Many wikis are driven by the wish to make information

accessible to many people. But the rigid, text-based content of classical wikis
can only be used by reading pages in a browser or similar application.

SMW is free software, available as an extension of the popular wiki engine Media-
Wiki. Figure 1 provides an overview of SMW’s core components which we will
discuss in more detail throughout this paper. The integration between MediaWiki
and SMW is based on MediaWiki’s extension mechanism: SMW registers for cer-
tain events or requests, and MediaWiki calls SMW functions when needed. SMW
thus does not overwrite any part of MediaWiki, and can be added to existing wikis
without much migration cost. Usage information about SMW, installation instruc-
tions, and the complete documentation are found at SMW’s homepage. 1

Next, Section 2 explains how structural information is collected in SMW, and how
this data relates to the OWL DL ontology language. Section 3 surveys SMW’s main
features for wiki users: semantic browsing, semantic queries, and data exchange
on the Semantic Web. Queries are the most powerful way of retrieving data from
SMW, and their syntax and semantics is presented in detail. The practical use of
SMW is the topic of Section 4, where we consider existing usage patterns in (non-
semantic) Wikipedia, usage statistics from a medium-sized SMW site, and typical
current uses of SMW. Section 5 focusses on performance, first by discussing mea-

1 http://ontoworld.org/wiki/SMW

2

sured processing times on a real SMW installation, and next by comparing SMW’s
query performance with various RDF stores. We conclude by reviewing some re-
lated systems (Section 6), and give a short summary and outlook (Section 7). All
descriptions refer to SMW 1.0, the most recent version at the time of this writing.

2 Annotation of Wiki Pages

The main prerequisite of exploiting semantic technologies is the availability of
suitably structured (“semantic”) data. For this purpose, SMW introduces ways of
adding further structure to MediaWiki by means of annotating textual content of
the wiki. In this section, we recall some of MediaWiki’s current means of struc-
turing data, and introduce SMW’s annotations with properties. Finally, a formal
semantic interpretation of the wiki’s structure in terms of OWL DL is presented.

The primary structural mechanism of most wikis is the organisation of content
within wiki pages. In MediaWiki, these pages are further classified into names-
paces, which distinguish different kinds of pages according to their function. Names-
paces cannot be defined by wiki users, but are part of the configuration settings of
a site. A page’s namespace is signified by a specific prefix, such as “User:” for
user homepages, “Help:” for documentation pages, or “. . . talk:” for various kinds
of discussion pages. Page titles without a known namespace prefix simply belong
to the main namespace. Most pages are subject to the same kind of technical pro-
cessing for reading and editing, denoted Page display and manipulation in Fig. 1.
The major exception are so-called special pages – built-in query forms without
user-edited content – that use “Special:” as a namespace prefix (compare Fig. 1).

Adhering to MediaWiki’s basic principles, semantic data in SMW is also structured
by pages, such that all semantic content explicitly belongs to a page. Semantically
speaking, every page corresponds to an ontological element (including classes and
properties) that might be further described by annotations on that very page. This
locality is crucial for maintenance: if knowledge is reused in many places, users
must still be able to understand where the information originated. Different names-
paces are used to distinguish the semantic rôles that wiki pages may play: they
can be individual elements (the majority of the pages, describing elements of the
domain of interest), categories (used to classify individual elements, and also to
create subcategories), properties (relationships between two pages or a page and
a data value), and types (used to distinguish different kinds of properties, as de-
scribed in the Section 2.2). Categories have been introduced into MediaWiki in
2002, whereas properties and types were introduced by SMW.

The following section describes existing structuring features in MediaWiki, fol-
lowed by the newly introduced semantic annotations enabled by SMW. Section 2.3
defines a mapping of the structural features within SMW to the OWL standard used

3

for exporting the knowledge within a wiki.

2.1 Content Structuring in MediaWiki

The primary method for entering information into a wiki currently is wiki text, a
simplified markup language that is transformed into XHTML pages for reading.
Accordingly, wiki text already provides many facilities for describing formatting,
and even some for structuring content. For defining the interrelation of pages within
a wiki, hyperlinks are arguably the most important feature. They are vital for nav-
igation, and sometimes even used to classify articles informally. In Wikipedia, for
example, articles may contain links to pages of the form “as of 2005” to state that
the given information might need revalidation or updates after that year.

Many wiki engines generally use links for classifying pages. For instance, searching
for all pages with a link to the page “France” is a good way to find information about
that country. In MediaWiki, however, this use has been replaced by a more elaborate
category system. Every page can be assigned to one or many categories, and each
category is associated with a page in the “Category:” namespace. Category pages
in turn can be used to browse the classified pages, and also to organise categories
hierarchically. Page categories and their hierarchy can be edited by all users via
special markup within wiki texts. Overall, the category system probably is the one
function of MediaWiki that is closest in spirit to the extensions of SMW.

Another structuring problem of large wikis are synonymous and homonymous ti-
tles. In case of synonyms, several different pages for the same subject may emerge
in a decentralised editing process. MediaWiki therefore has a redirect mechanism
by which a page can be caused to forward all requests directly to another page. This
is useful to resolve synonyms but also for some other tasks that suggest such for-
warding (e.g. the mentioned articles “as of 2005” are redirects to the page about the
year 2005). Homonyms in turn occur whenever a page title is ambiguous, and may
refer to many different subjects depending on context. This problem is addressed
by so-called disambiguation pages that briefly list the different possible meanings
of a title. Actual pages about a single sense then are augmented with parentheses to
distinguish them, e.g. in the case of “1984 (book)”.

A final formatting feature of significance to the structure of the wiki is Media-
Wiki’s template system. The wiki parser replaces templates with the text given on
the template’s own page. The template text in turn may be parametrized. This can
be used to achieve a higher consistency, since, for example, a table is then defined
only once, and so all pages using this table will look similar. The idea of capturing
semantic data in templates has been explored inside Wikipedia 2 and in external
projects [2].

2 See, e.g., http://de.wikipedia.org/wiki/Hilfe:Personendaten.

4

In addition to the above, MediaWiki knows many ways of structuring the textual
content of pages, e.g. by sections or tables. SMW, however, aims at collecting in-
formation about the (abstract) concept represented by a page, not about the asso-
ciated text. The layout and structure of article texts do hardly carry such data in a
machine-accessible way, since they must follow didactic considerations. The possi-
bility of assigning semantic information to single sections also seems less relevant
in the context of Wikipedia, the main target application of SMW, since Wikipedia
normally contains independent pages for significant subtopics anyway.

2.2 Semantic annotations in SMW

SMW collects semantic data by letting users add annotations to the wiki text of
pages via a special markup. The processing of this markup is performed by the
components for Parsing and Rendering in Fig. 1. While annotation syntax is most
relevant (and most visible) to wiki editors, it is but a small part of the overall SMW
system. The underlying conceptual framework, based on properties and types is
rather more relevant.

Properties in SMW are used to express binary relationships between one semantic
entity (as represented by a wiki page) and some other such entity or data value.
Each wiki-community is interested in different relationships depending on its topic
area, and therefore SMW lets wiki users control the set of available properties.
SMW’s property mechanism follows standard Semantic Web formalisms where bi-
nary properties also are a central expressive mechanism. But unlike RDF-based lan-
guages, SMW does not view property statements (subject-predicate-object triples)
as primary information units. SMW rather adopts a page-centric perspective where
properties are a means of augmenting a page’s contents in a structured way.

MediaWiki offers no general mechanism for assigning property values to pages,
and a surprising amount of additional data becomes available by making binary
relationships in existing wikis explicit. The most obvious kind of binary relations
in current wikis are hyperlinks. Each link establishes some relationship between
two pages, without specifying what kind of relationship this is, or whether it is
significant for a given purpose. SMW allows links to be characterised by properties,
such that the link’s target becomes the value of a user-provided property. But not
all properties take other wiki pages as values: numeric quantities, calendar dates,
or geographic coordinates are examples of other available types of properties.

For a concrete example, consider the article shown in Fig. 2 (top). The markup
elements are easy to read: '''. . . ''' is used for text that should appear bold-faced,
and text within square brackets [[. . .]] is transformed into links to the wiki page
of that name. The given links to England, United Kingdom, and 2005 do not carry
any semantics yet. To state that London is the capital of England, one just extends

5

'''London''' is the capital city of [[England]] and of the [[United Kingdom]]. As of

[[2005]], the population of London was estimated 7,421,328. Greater London covers an

area of 609 square miles. [[Category:City]]

'''London''' is the capital city of [[capital of::England]] and of the [[capital of::United

Kingdom]]. As of [[2005]], the population of London was estimated [[population::7,421,328]].

Greater London covers an area of [[area::609 square miles]]. [[Category:City]]

Fig. 2. Source of a page about London in MediaWiki (top) and in SMW (bottom).

Fig. 3. A semantic view of London.

the link to [[England]] by writing [[capital of::England]]. This asserts that
“London” has a property called “capital of” with the value “England.” This is even
possible if the property “capital of” has not been introduced to the wiki before.

Figure 2 (top) shows further interesting datavalues that are not corresponding to
hyperlinks, e.g. the given population number. A syntax for annotating such values
is not as straightforward as for hyperlinks, but we eventually decided for using the
same markup in both cases. An annotation for the population number therefore
could be added by writing [[population::7,421,328]]. In this case, “7,421,328”
is not referring to another page and we do not want our statement to be displayed as
a hyperlink. To accomplish this, users must first declare the property “population”
and specify that it is of a numerical type. This mechanism is described below. If a
property is not declared yet, then SMW assumes that its values denote wiki pages
such that annotations will become hyperlinks. An annotated version of the wikitext
for “London” is shown in Fig. 2 (bottom), and the resulting page is displayed in
Fig. 3. The box at the bottom of this page sums up the discovered annotations, and
possibly provides some related information.

Properties are introduced to the wiki by just using them on some page, but it is
often desirable to specify additional information about properties. SMW supports
this by introducing wiki pages for properties. For example, a wiki might contain a
page “Property:Population” where “Property:” is the namespace prefix. A property
page can contain a textual description of the property that helps users to employ it
consistently throughout the wiki, but it also can specify semantic features of a prop-

6

erty. One such feature is the aforementioned (data)type of the property. In the case
of “Property:Population” one would add the annotation [[has type::Number]] to
describe that the property expects numerical values. The property “has type” is a
built-in property of SMW with the explicated special interpretation. It can also be
described on its property page but it cannot be modified or deleted.

SMW provides a number of datatypes that can be used with properties. Among
those are “String” (character sequences), “Date” (calendar dates), “Geographic co-
ordinate” (locations on earth), and the default type “Page” that creates links to other
pages. Each type provides own methods to process user input, and to display data
values. SMW supplies a modular Datatype API as shown in Fig. 1 that can also
be extended by application-specific datatypes. Just like properties, types also have
dedicated pages within the wiki, and every type declaration creates a link to the ac-
cording page. To some extent, it is also possible to create new customised datatypes
by creating new type pages. These pages of course cannot define the whole com-
putational processing of a data value, but they can create parametrised versions
of existing types. The main application of this is to endow numerical types with
conversion support for specific units of measurement. For example, the property
“Area” in Fig. 2 (bottom) might use a custom type that supports the conversion
between km2 and square miles. Unit conversion is of great value for consolidating
annotations that use different units, which can hardly be avoided in a larger wiki.

2.3 Mapping to OWL

The formal semantics of annotations in SMW is given via a mapping to the OWL DL
ontology language. Most annotations can easily be exported in terms of OWL DL,
using the obvious mapping from wiki pages to OWL entities: normal pages corre-
spond to abstract individuals, properties correspond to OWL properties, categories
correspond to OWL classes, and property values can be abstract individuals or
typed literals. Most annotations thus are directly mapped to simple OWL state-
ments, similar to RDF triples. It must be noted that this semantic data is not meant
to describe the page’s HTML-document but rather its (intended) subject.

OWL further distinguishes object properties, datatype properties, and annotation
properties, and SMW properties may represent any of those depending on their
type. Types themselves do not have OWL semantics, but may decide upon the XML
Schema type used for literal values of a datatype property. Finally, containment of
pages in MediaWiki’s categories is interpreted as class membership in OWL.

SMW offers a number of built-in properties that may also have a special seman-
tic interpretation. The above property “has type,” for instance, has no equivalent
in OWL and is interpreted as an annotation property. Many properties that pro-
vide SMW-specific meta-information (e.g. for unit conversion) are treated similarly.

7

Fig. 4. Browsing through the wiki knowledge base.

MediaWiki supports the hierarchical organisation of categories, and SMW can be
configured to interpret this as an OWL class hierarchy (this may not be desirable
for all wikis [15]). Moreover, SMW introduces a special property “subproperty of”
that can be used for property hierarchies. No type checking is done when declar-
ing subproperties, but subproperty statements between incompatible types are ne-
glected for semantic processing. Overall, the schematic information representable
in SMW is intentionally shallow, since the wiki is not intended as a general pur-
pose ontology editor that requires users to have specific knowledge about semantic
technologies. Yet SMW has also been used in conjunction with more expressive
background ontologies, evaluated by external OWL inference engines [16].

OWL DL constraints subject and objects of statements to individuals, whereas
SMW does not have such constraints, thus allowing a kind of meta-modelling. Se-
mantically this kind of meta-modelling is similar to “punning” as introduced by
OWL 1.1 [8], which does not make reasoning substantially more complex.

3 Exploiting Semantics

However simple the process of semantic annotation may become, the majority of
users will justifiably neglect it as long as it does not bear immediate benefits. In
the following, we introduce several features of SMW that show contributors the
usefulness of semantic markup.

3.1 Browsing

As shown Fig. 3, the rendered page includes a so called Factbox which is placed at
the bottom of the page to avoid disturbing normal reading. The Factbox summarises
the given annotations, provides feedback on possible errors, e.g. if a given data
value does not fit a property’s type, and offers links to related functions.

These links can be used to browse the wiki based on its semantic content. The page

8

QUERY ::= CONJ (’||’ CONJ)* PROP ::= ’[[’ TITLE ’::’ VALUE (’||’ VALUE)* ’]]’

CONJ ::= ATOM (’ ’ ATOM)* VALUE ::= ’+’ | SUB | ((’>’|’<’|’!’)? STR)

ATOM ::= SUB | PROP | CAT | PAGE CAT ::= ’[[Category:’ TITLE (’||’ TITLE)* ’]]’

SUB ::= ’<q>’ QUERY ’</q>’ PAGE ::= ’[[:’ FULLTITLE (’||’ FULLTITLE)* ’]]’

QUERY ::= ’(’ CONJ (’t’ CONJ)* ’)’ PROP ::= ’∃’ TITLE ’.(’ VALUE (’t’ VALUE)* ’)’

CONJ ::= ’(’ ATOM (’u’ ATOM)* ’)’ VALUE ::= ’>’ | SUB | (’ge(’|’le(’|’ne(’|’eq(’) STR ’)’

ATOM ::= SUB | PROP | CAT | PAGE CAT ::= ’(’ TITLE (’t’ TITLE)* ’)’

SUB ::= ’(’ QUERY ’)’ PAGE ::= ’({’ FULLTITLE ’}’ (’t {’ FULLTITLE ’}’)* ’)’

Fig. 5. Production rules for SMW queries (top) and according DL queries (bottom).

title in the Factbox heading leads to a semantic browsing interface that shows not
only the annotations within the given page, but also all annotations where the given
page is used as a value (Fig. 4). The magnifier icon behind each value leads to an
inverse search for all pages with similar annotations. Both of those user interfaces
are realised as special pages, architecturally similar to the special page OWL Ex-
port in Fig. 1. In addition, the Factbox shows links to property pages, which in turn
list all annotations for a given property. All those browsing features are intercon-
nected by appropriate links, so that users can easily navigate within the semantic
knowledge base.

3.2 Querying

SMW includes a query language that allows access to the wiki’s knowledge. The
query language can be used in two ways: either to directly query the wiki, or to
add the answer to a page by creating an inline query (cf. Fig. 1). The latter enables
editors to add dynamically created lists or tables to a page, thus making up-to-
date query results available to readers who are not even aware of semantic queries.
Figure 6 shows a query result as it might appear within an article about Switzerland.
Compared to manually edited listings, inline queries are more accurate, easier to
create, and easier to maintain.

The syntax of SMW’s query language is closely related to wiki text, whereas its
semantics corresponds to certain class expressions in OWL DL. Each query is a
disjunction of conjunctions. Fundamental conditions are encoded as query atoms
whose syntax are similar to that of SMW’s annotations. For instance, [[located
in::England]] is the atomic query for all pages with this annotation. Queries with
other types of properties and category memberships are constructed after the same
principle. Instead of single fixed values one can also specify ranges of values, and
even specify nested query expressions.

A simplified form of SMW’s query language is defined in Fig. 5 (top). The main
control symbols used to structure queries are: || as the disjunction operator, <q>
and </q> as (sub)query delimiters, + as empty condition that matches everything,

9

Fig. 6. A semantic query for all cantons of Switzerland, together with their capital, popula-
tion, and languages. The data stems from an automatically annotated version of Wikipedia.

and <, >, ! to express comparison operators ≤, ≥, and ,. Some nonterminals in
Fig. 5 are not defined for reasons of space: TITLE is for page titles, FULLTITLE is for
page titles with namespace prefix, and STR is for Unicode strings. In those, we do
not permit symbols that could be confused with other parts of the query, e.g. page
titles must not start with <. SMW provides means to escape such characters.

The following is an example query for all cities that are located in an EU-country
or that have more than 500,000 inhabitants: [[Category:City]] <q>[[located
in::<q>[[Category:Country]] [[member of::EU]]</q>]] || [[population::

>500,000]] </q>. The formal semantics of such queries is given by a mapping to
class expressions in OWL DL, i.e. a query retrieves all inferred members of the
according OWL class. It is not hard to see that every SMW query emerges from a
unique sequence of production steps, and we can follow the same steps in the gram-
mar in the lower part of Fig. 5. The result is a description logic (DL) concept which
could be translated to OWL DL as usual (which space does not permit here). For-
mally, this also requires to define the underlying DL-language, to introduce punning
to allow the same names for DL roles, concepts, and individuals, to give concrete
domains for SMW’s datatypes, and to fix the interpretation of ge, le, ne, eq and
> (when used for datatype properties). We omit these easy but tedious definitions
for reasons of space, and only note that our above example corresponds to the fol-
lowing DL concept: City u (∃ located_in.(Country u ∃ member_of.{EU}) t
∃ population.ge(500, 000)).

Just like OWL DL, SMW’s query language does not support explicit variables,
which essentially disallows cross-references between parts of the query. For in-
stance, it is not possible to ask for all people who died in the city they were born
in. This restriction makes query answering tractable, which is essential for SMW’s
usage in large wikis. In contrast, when variables are allowed querying is at least
NP-hard, and it becomes harder still even for tractable fragments of OWL 1.1 [10].

SMW-queries as introduced above merely define a result set of pages. In order to
retrieve more information about those results, SMW allows so-called print requests
as parts of queries. For instance, writing [[has capital::∗]] within a query will
cause all values of the property “Has capital” to be displayed for each result. Fig. 6
shows a typical output for a query with multiple print requests. Using further pa-
rameters in query invocation, result formatting can be controlled to a large degree.

10

In addition to tabular output, SMW also supports various types of lists and enumer-
ations, interactive timelines 3 , and many further custom formats.

3.3 Giving Back to the Web

The Semantic Web is all about exchanging and reusing knowledge, facilitated by
standard formats that enable the interchange of structural information between pro-
ducers and consumers. Section 2.3 explained how SMW’s content is grounded in
OWL DL, and this data can also be retrieved via SMW’s web interface for OWL
export. As shown in Fig. 1, this service is implemented as a special page, which
can be queried for information about certain elements. The link “RDF feed” within
each Factbox also leads to this service (see Fig. 3).

Exported data is provided in OWL/RDF encoding, using appropriate URIs as iden-
tifiers to prevent confusion with URLs of the wiki’s HTML documents. The gener-
ated OWL/RDF is “browsable” in the sense that URIs can be used to locate further
resources: all URIs point to a web service of the wiki that uses content negotiation
to redirect callers either to the OWL export service or to the according wiki page.
Together with the compatibility to both OWL and RDF this enables a maximal
reuse of SMW’s data. Even tools like Tabulator [3] that incrementally retrieve RDF
resources during browsing can easily retrieve additional semantic data on user re-
quest. SMW furthermore provides scripts for generating the complete export of all
data within the wiki, which is useful for tools that are not tailored towards online
operation such as the faceted browser Longwell. 4 Sample files of such export are
found at http://ontoworld.org/RDF/.

4 Practical Experiences

In this section we describe the use of SMW in practical applications, and discuss
some basic usage data, observed problems and successes. It is clearly important
to ask how annotations are typically used within a wiki, and in which way exist-
ing usage schemes need to be augmented or modified when introducing semantic
features. However, this question is much more complex than it might seem at first,
since each wiki has its own usage and editing culture and workflows, which can
hardly be generalised to other wikis. Without conclusive studies on the usage of
wikis in general, any prediction on the effect of introducing semantics in these en-
vironments lacks justification. Moreover, raw data for conducting such studies is
generally not available. Of course public wikis provide access to all content and

3 http://simile.mit.edu/timeline/
4 http://simile.mit.edu/wiki/Longwell

11

editing logs, but actual edits are just a small part of wiki usage that hardly captures
the actual editing workflow. The usage of the wiki for reading and searching is even
harder to estimate, given that page access counts are not available on larger wikis.

We therefore try to derive usage data from different sources. Firstly, we look at
comparable workflows in Wikipedia, as the most well studied and maybe least typ-
ical wiki. Secondly, we discuss usage data from ontoworld.org, as a much smaller
semantic wiki site with the advantage of being completely accessible to us for such
studies. Thirdly, we review some existing uses of SMW in other wikis, focussing
on general successes and problems that occurred in those settings.

4.1 Structuring of Wikipedia Content

One way of estimating the use of SMW annotations in Wikipedia is to compare
it to existing features that are likely to have similarities with respect to editing or
usage. For this purpose we focus on Wikipedia’s category system. Just like SMW’s
properties, categories are conceived as an aid for structuring the wiki, and users
manage not only page classification but also the available categories in general, in-
cluding their (hierarchical) organisation. From a user perspective, the purpose of
categories is to find information, and the according browsing features are compara-
ble to SMW’s functions for properties. Complex querying as in SMW has no coun-
terpart in Wikipedia, and must be excluded from our considerations. Yet we believe
that the below observations on categories are good indicators of the presumed use
of properties.

Reading access in Wikipedia is monitored only very coarsely, and we are in fact
more interested in the process of adding (category or SMW) annotations to the
wiki. The overall editing processes in Wikipedia are still not understood properly.
A first analysis was conducted in [13], where it was found that wiki editors can
roughly be classified into two groups: most edits are performed by a small group
of core contributors, whereas most content is contributed by a much larger group
of content authors. The former group has more expertise and interest in the wiki
as a whole, whereas the latter group takes interest in a small set of articles, usually
of their specific expertise. As [13] puts it: “an outsider makes one edit to add a
chunk of information, then insiders make several edits tweaking and reformatting
it. In addition, insiders rack up thousands of edits doing things like changing the
name of a category across the entire site – the kind of thing only insiders deeply
care about.” More extensive studies are required to refine our picture of the editing
in Wikipedia, but these first observations indicate that structural enhancements like
categorisation are mostly handled by just a small portion of contributors.

Another important aspect of categorisation in Wikipedia are the associated semi-
official workflows, guidelines, and rules. Such policies are an important part of

12

structuring Wikipedia in general [14], and for categories we find detailed descrip-
tions on how to decide whether a category is appropriate, and if it should be used in
a given article. 5 Categorisation policies and their application are subject of ongo-
ing discussions of interested community members – the main decision process in
Wikipedia. We also note that, according to the guidelines, categories are conceived
as annotations in the sense that the reason of their use must be evident from the text
of the article. Categories should not add completely new information, but make
some aspect of a page’s content explicit. This use of categories is not inherent to
the technical category system, but reflects the usage in (English) Wikipedia.

Finally, we note that the use of categories in Wikpedia is governed mostly by prac-
tical considerations. The purpose of categorisation is not to build a taxonomy of the
world’s knowledge, but to create helpful structures for readers to discover informa-
tion. Likewise, SMW’s properties are not an attempt at the utopian task of building
a “world ontology” but a practical tool to aid the everyday usage of Wikipedia.

4.2 Usage on ontoworld.org

Large wikis like Wikipedia cannot afford the performance overhead of detailed us-
age logging, and creating such logs requires server-side access which is not avail-
able in general. Luckily, the Semantic Web community wiki ontoworld.org, main-
tained by the authors, is available for more extensive experiments. Its main use is
to collect information about Semantic Web events, researchers and projects, and to
serve as a conference wiki for the international Semanitc Web conferences. How-
ever, ontoworld.org also is still the home of SMW and is used by many as a testbed
for semantic features. The advantage is the existence of a real non-centralised com-
munity and a rather heterogeneous page structure, but of course ontoworld.org is
also more biased towards the use of SMW than other wikis might be.

As of today, ontoworld.org has 6,319 content pages (including short pages a.k.a.
“stubs”). The site has 930 registered users, most of which have contributed little to
the total of recorded 37,880 edits. The semantic knowledge base of ontoworld.org
counts 17,562 property annotations for 808 properties. Most of those have a page
in the wiki, and about 50% are of type Page (i.e. used to annotate hyperlinks).

Further considering the usage of properties, it is characteristic that 5% of the prop-
erties account for over 74% of the annotations, whereas the least used 80% of the
properties make up less than 9% of all semantic statements. Very similar power-law
distributions occur for Wikipedia’s categories [15] and indeed in many data collec-
tions that are created in a distributed fashion by many users. This is an important
characteristic of community-driven sites, whereas small wikis often have a more
contrived structure.

5 http://en.wikipedia.org/wiki/Wikipedia:Categorization

13

Views u# r# p# u#/p# r#/p#

All 16, 525 52, 192 6, 319 2.62 8.26
Category: 598 4, 166 484 1.24 8.61
Property: 781 3, 150 756 1.03 4.17
Type: 263 336 43 6.12 7.81
Help: 1, 766 773 41 43.07 18.85

Special u#

Browse 637
PropSearch 1, 326
Querying 222
Properties 83
Types 59

Special u#

Changes 479
Backlinks 284
Search 419
Categories 65
OWL export 575

Fig. 7. Access statistics for ontoworld.org for a period of 7 days. The columns u#, r#, and
p# denote numbers of user requests, robot requests, and existing pages, respectively.

We have monitored the use of ontoworld.org over a period of seven days, during
which a total of 68,000 normal page views (excluding edits and special pages)
occurred. As expected, the majority of requests is caused by identified web crawlers
(including 75% of all page views) but also automated spammers (causing about
16,000 blocked edit attempts). The latter cannot be fully separated from real users,
but functions for searching and browsing are normally not triggered by spammers,
and thus give good indications of actual usage.

Access statistics for the observed timespan are given in Fig. 7. The leftmost table
shows page views by namespaces, where we use the ratio between requests and
existing pages as a slightly more normalised measure for comparing results. Prop-
erties appear to be of slightly less interest, especially to robots: this is due to a
very recent relabelling of this namespace which caused all URLs to change. Oth-
erwise, we note that categories and properties are of comparable popularity among
users. The Help- and Type-namespaces mostly contain SMW’s user documentation,
which explains the increased interest in those pages.

The middle and right tables of Fig. 7 show usage counts for special functions:
“Browse” and “PropSearch” are SMW’s special browsing functions (Section 3.1);
“Querying” is a dedicated interface for using SMW-queries (Section 3.2); “Prop-
erties”, “Types”, and “Categories” display all elements of the respective kinds;
“Changes” lists recent edits; “Backlinks” lists all pages with links to a given page;
“Search” is MediaWiki’s text search; “OWL export” is SMW’s OWL export. We
can observe that SMW’s browsing features (property pages, Browse, PropSearch)
are frequently used, also when compared to MediaWiki’s browsing interfaces (cat-
egory pages and Backlinks). SMW’s stand-alone query interface is also employed
by many users even though requiring much more interaction. This is evident when
mentioning that robots issued about 20,000 browsing requests, but called the query
interface only 28 times. Also, SMW’s maintenance pages for properties and types
are of similar popularity as MediaWiki’s category list.

In conclusion, we find that SMW’s features are already used at least as much as
comparable MediaWiki functions. We also noted that query and browsing requests
typically related to the wikis main topics, and were used for navigating to further
content pages. We conjecture that those requests reflect real usage, as opposed to
mere testing of SMW functions. Yet, of course, access statistics do not allow us to

14

conclude whether or not the requested functions were actually considered useful for
a given purpose, and further research – starting with the evaluation of MediaWiki
and Wikipedia – is needed to obtain definite results.

Finally, the usage of SMW’s OWL export is also remarkable. A surprisingly high
number of 575 users accessed export data, but 190 of those requests were caused
by user agents automatically following links in the head of SMW’s HTML pages.
Few of the remaining 385 requests are due to deliberate user requests from the
wiki, while others refer from search engines, or were caused by unidentified user
agents (possibly involving RDF-browsers). The vast majority of export requests,
however, is caused by robots. While classical search engines are less active on those
pages, an additional amount of Semantic Web applications such as Swoogle (http:
//swoogle.umbc.edu) show exclusive interest in the OWL data. This usage of
SMW as a source for reusable semantic data is in the true spirit of the Semantic
Web, and has potential to attract additional users to a wiki.

4.3 SMW in other Semantic Wikis

Finally, we have a brief look at practical uses of SMW in other wikis. It is hardly
possible to track down novel installations of SMW on the web, but we are aware
of numerous sites that currently employ the extension (http://ontoworld.org/
wiki/Sites_using_Semantic_MediaWiki). Many of those early adopters are
very specific wikis with a small editing community, and usage patterns might be
different from large wikis. Yet we can observe some successful uses and problems.

Protégé Wiki (http://protegewiki.stanford.edu) is a good example of a
carefully structured wiki site. Being recently started, it counts about 160 pages,
16 registered users, and 350 annotations. Naturally, we do not encounter the large
amounts of hardly used properties and categories either. Many of today’s wikis (se-
mantic or not) are built similarly by a very small number of people. It is important
to understand that the usage patterns in such a small wiki will be very different
from one like ontoworld.org. Protégé Wiki still is a good example of using SMW:
it contains a good balance of textual and semantic content, makes suitable use of
inline queries, and provides editing help that is tailored to its own workflows.

SMW is conceived as an extension for text-based wikis, but it also can be used in
cases where almost all content is strongly structured. SMW thus, somewhat unin-
tentionally, takes the place of a database application with a web frontend for col-
laborative editing. A good example for this type of semantic wiki is DiscourseDB
(http://discoursedb.org), which collects information about ongoing political
debates. Its actual content pages are short, strongly structured articles about single
publications, but it offers many automatically generated query pages that provide
novel views on this content as shown in Fig. 8.

15

Fig. 8. DiscourseDB uses SMW to generate overviews of public political debate. The above
inline queries display positions on the Iran nuclear crisis.

The above examples are typical for a number of SMW installations, but many other
uses of SMW do not fit into a given scheme. We have rarely encountered cases
where users found it hard to come up with initial ideas on how to add seman-
tic structure, but some topic areas, such as theology (see e.g. BibleWiki http:
//bible.tmtm.com), are not easily cast into OWL. Other exceptions are cases
where most of the content is not plain text but some other form of multimedia. This
challenges MediaWiki as well as SMW, but first interesting prototypes for manag-
ing e.g. video in SMW have been presented recently [7].

5 Performance Evaluation

Performance is a key factor in web applications, since today’s high numbers of re-
quests can produce significant (and expensive) server loads. This is especially true
for Wikipedia, which often receives over 30,000 requests per second. Hence, while
collecting the usage data discussed in Section 4.2, we also measured processing
times of many central operations of the software. Raw results of ongoing measure-
ments can be accessed at http://ontoworld.org/profileinfo.php.

Our main goal was to find out how much additional processing time SMW re-
quires in a typical medium-sized wiki. Results are influenced by many complex
factors (e.g. database caching effects), and are useful for estimating overall perfor-
mance impacts rather than exact runtimes of particular software modules. During
the experiment, MediaWiki was called 214,356 times, with a total runtime of about
4.54 × 105s. The aggregated total runtime of all SMW functions amounted to only
8.6% of this time. The major components of this runtime were the evaluation of se-
mantic queries (40.5%), various browsing functions (22.5%), OWL export (22.2%),
and parsing of annotations (12.3%). These functions depend on the amount of se-
mantic content of the wiki, i.e. performance impair relates to actual usage. Loading
SMW takes only 2.3% of SMW’s time (less than 0.2% of total time).

As we saw in Section 4.2 ontoworld.org clearly uses semantic features rather fre-
quently, and the small overall performance impact is encouraging. Yet, especially

16

queries can have very high costs. We recorded 51,569 query evaluations overall (in-
cluding many inline queries), but the 0.4% of requests to “Querying” in Fig. 7 ac-
count for 11% of processing time. Various features of SMW help to manage query
load. First, all inline query results are cached with their pages: improved caching
mechanisms as on Wikipedia also reduce query load. Second, query complexity
and processing can be restricted in SMW by many parameters. Individual reason-
ing features can be disabled, and overall size of query constructs can be limited up
to allowing only most trivial queries.

Query computation in principle is a polynomial time problem [10], but the cost
of processing still depends heavily on the actual implementation. In SMW, the
Storage Implementation shown in Fig. 1 processes all queries. This component is
wrapped by a Storage Abstraction that hides all implementation details. The cur-
rent default store used by SMW is based on the wiki’s existing relational database
(MySQL), but this component could be replaced by faster stores if available. Hence
we anal̃ysed SMW’s query performance in isolation by directly measuring compu-
tation times for the database queries issued by SMW. The resulting times are not
influenced by network delays, preprocessing times, or caching effects, and thus can
be compared to other semantic storage implementations.

To obtain a large yet realistic dataset, we uploaded an article dump from En-
glish Wikipedia to a local installation of SMW. To obtain initial annotations, we
used a dataset from dbpedia.org, created by interpreting template parameters as
RDF triples [2]. Since this data relies on Wikipedia’s internal labels for template
param̃eters, not all statements are correct or even meaningful. But the data is based
on manually created content, and shows a realistic structure that is more important
for a performance test than factual accuracy. Finally, we exported all semantic data
as OWL/RDF, now including exactly the statements considered by SMW for query-
ing. The dataset now contained 13,802,002 triples, modelling 3,524,650 elements.

We considered six different test queries with different result sets. For reference,
we label them as follows (number of results in parentheses): q1 (1), q2 (8677), q3

(56), q4 (13), q5 (3612), q6 (4). Queries q1 to q3 consist of nested query condi-
tions and thus describe chains of properties. Query q4 contains no subqueries but
many conjunctive conditions, q5 emphasises range restrictions on data values, and
q6 combines conditions of all those kinds. Equivalent versions of each query were
formulated in SMW and in SPARQL, and SMW queries then were translated to
SQL queries by SMW’s storage implementation. The queries and the complete
dataset are available at http://ontoworld.org/RDF/.

We compared the runtime of the SQL queries on SMW’s MySQL database with the
time needed to answer the corresponding SPARQL queries on four RDF storage
implementations: Jena in-memory, Jena on an embedded Apache Derby DB [6],
Sesame2 in-memory, and Sesame2 native b-tree [5]. For this experiment, we con-
centrated on runtime, and disregarded memory usage and loading times although

17

both are strictly restricted in practical cases. Sesame2 in-memory clearly turned
out to be the fastest store, usually 10 to 50 times faster than MySQL. The only
exception is q3, where Sesame2 in-memory is slower than MySQL by a factor of
5. Surprisingly, Sesame2 native is faster than its in-memory sibling on q3 but still 4
times slower than MySQL. With the exception of q3 and q1, MySQL tends to be up
to two times slower than Sesame2 native, but its much simpler implementation is
still competitive. All tests on Sesame2 native used all available indexing modes, as
the defaults were up to 40 times slower for q1, q2, and q4. Jena, finally, could hardly
compete with the other stores. Jena in-memory was hardly able to load the dataset
within 6 GB memory, and crashed when trying to answer queries. Jena Derby was
slightly faster than MySQL on q6 but up to 40 times slower on all other queries.

Summing up, SMW’s MySQL store compares surprisingly well to other storage so-
lutions, and shows the most continuous performance overall. Sesame2 is generally
faster, but collapses unexpectedly for specific queries. As expected, running stores
in-memory is usually much faster, but may not be feasible for very large datasets.

6 Related Systems

Besides SMW a number of other semantic wiki implementations have been created.
The most notable (and stable) systems currently are IkeWiki [12] and MaknaWiki
[11]. Both of these are similar to SMW with respect to the supported kinds of easy-
to-use inline wiki annotations, and various search and export functions. In contrast
to SMW, both systems introduce the concept of ontologies and (to some extent)
URIs into the wiki, which emphasises use-cases of collaborative ontology editing
that are not the main focus of SMW.

MaknaWiki is tailored for closed-domain settings where a suitable schema for an-
notation can be anticipated. It supports the usage of expressive ontologies and inte-
grates according inferencing features, but allows only administrators to change the
ontological schema. IkeWiki in turn uses URIs to identify concepts, but provides
interfaces for simplifying annotation, e.g. by suggesting properties. In contrast to
MaknaWiki and SMW, IkeWiki is not based on any existing wiki implementation,
which has advantages and disadvantages.

Besides text-centered semantic wikis, various collaborative database systems have
appeared recently. Examples of such systems include OntoWiki [1], OpenRecord
(http://www.openrecord.org), Metaweb (http://www.metaweb.com/), and
OmegaWiki (http://www.omegawiki.org). Such systems typically use form-
based editing, and are used to maintain data records, whereas SMW concentrates
on text, the main type of content in wikis. OntoWiki draws from concepts of seman-
tic technologies and provides a built-in faceted (RDF) browser. The other systems
have their background in relational databases.

18

7 Outlook

Semantic MediaWiki is under continuous development, and numerous additions are
planned for the near future. Upcoming features involve improved annotation sup-
port (including suggestions and auto-completion), additional functions for main-
taining the emerging vocabulary, and storing (additional) semantic data not given
within article texts, which is useful for database-like applications.

In parallel, Wikipedia-related showcases are planned to further advertise the utility
and feasibility of the system in this particular use-case. Initially, this may be based
on our current test data [2], but more reliable data from elaborate off-line extrac-
tion methods might be preferred [9,4]. Extracted information like this can be used
to bootstrap a Semantic Wikipedia, allowing to augment and improve the learned
results within what would be the hitherto largest collaboratively edited semantic
knowledge repository.

As of today, SMW is one of the most popular semantically enhanced collaborative
knowledge management systems, mostly because it strives to make semantic tech-
nologies accessible to non-expert users. Though SMW has found many unexpected
uses in a wide range of applications, the original goal of enabling a Semantic Wiki-
pedia is still the main driving use case that we are aiming at, and is becoming more
concrete as the system matures.

Acknowledgements. The presented work was supported by the European Union
under the projects SEKT, NEON and Nepomuk, and by Vulcan Inc. under the Halo
project. We thank Holger Lewen, Uta Hellinger and the anonymous reviewers for
helpful comments, and all contributors of Semantic MediaWiki for their work.

References

[1] Sören Auer, Sebastian Dietzold, and Thomas Riechert. OntoWiki – A tool for social,
semantic collaboration. In Yolanda Gil, Enrico Motta, Richard V. Benjamins, and
Mark Musen, editors, Proc. 5th Int. Semantic Web Conference (ISWC’05), number
4273 in LNCS, pages 736–749. Springer, 2006.

[2] Sören Auer and Jens Lehmann. What have Innsbruck and Leipzig in common?
Extracting semantics from wiki content. In Enrico Franconi, Michael Kifer, and
Wolfgang May, editors, Proc. 4th European Semantic Web Conference (ESWC), 2007.

[3] Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan Connolly, Ruth Dhanaraj, James
Hollenbach, Adam Lerer, and David Sheets. Tabulator: Exploring and analyzing
linked data on the Semantic Web. In Lloyd Rutledge, m.c. schraefel, Abraham
Bernstein, and Duane Degler, editors, Proc. 3rd Int. Semantic Web User Interaction
Workshop, 2006.

19

[4] Stephan Bloehdorn and Sebastian Blohm. A self organizing map for relation extraction
from wikipedia using structured data representations. In Wray Buntine and Henry
Tirri, editors, Proc. Int. Workshop on Intelligent Information Access (IIIA-2006), 2006.

[5] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic
architecture for storing and querying RDF and RDF Schema. In Ian Horrocks and
James Hendler, editors, Proc. 1st Int. Semantic Web Conference (ISWC’02), number
2342 in LNCS, pages 54–68, 2002.

[6] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne, and
Kevin Wilkinson. Jena: implementing the Semantic Web recommendations. In
Stuart I. Feldman, Mike Uretsky, Marc Najork, and Craig E. Wills, editors, Proc. 13th
Int. World Wide Web Conference (WWW’04 alternate track papers & posters), pages
74–83, 2004.

[7] Michael Dale. Metavid wiki - real time collaborative semantic audio/video metadata
in mediawiki, 2007. Talk presented at WikiMania2007.

[8] Bernardo Cuenca Grau et al. OWL 1.1 Web Ontology Language Guide. Available at
http://owl1_1.cs.manchester.ac.uk/, March 2007.

[9] Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic relatedness using
Wikipedia-based explicit semantic analysis. In Manuela Veloso, editor, Proc. 20th Int.
Joint Conference on Artificial Intelligence (IJCAI’07), 2007.

[10] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Conjunctive queries for a
tractable fragment of OWL 1.1. In Karl Aberer, Key-Sun Choi, and Natasha Noy,
editors, Proc. 6th Int. Semantic Web Conf. (ISWC’07). Springer, 2007.

[11] Lyndon J. B. Nixon and Elena Paslaru Bontas Simperl. Makna and MultiMakna:
towards semantic and multimedia capability in wikis for the emerging web. In
Sebastian Schaffert and York Sure, editors, Proc. Semantics 2006. Österreichische
Computer Gesellschaft, 2006.

[12] Sebastian Schaffert. IkeWiki: A semantic wiki for collaborative knowledge
management. In Robert Tolksdorf, Elena Paslaru Bontas, and Klaus Schild, editors, 1st
Int. Workshop on Semantic Technologies in Collaborative Applications (STICA’06),
Manchester, UK, June 2006.

[13] Aaron Swartz. Who writes Wikipedia?, 2006. Available at http://www.aaronsw.
com/weblog/whowriteswikipedia.

[14] Fernanda Viégas, Martin Wattenberg, Jesse Kriss, and Frank van Ham. Talk before
you type: Coordination in Wikipedia. In Proc. 40th Hawaii International Conference
of System Sciences. Computer Society Press, 2007.

[15] Jakob Voss. Collaborative thesaurus tagging the Wikipedia way, 2006. Available at
http://arxiv.org/abs/cs/0604036v2.

[16] Denny Vrandečić and Markus Krötzsch. Reusing ontological background knowledge
in semantic wikis. In Max Völkel, Sebastian Schaffert, and Stefan Decker, editors,
Proc. of the 1st Workshop on Semantic Wikis – From Wikis to Semantics, 2006.

20

