
The Secure Remote Password Protocol

Thomas Wu

Computer Science Department

Stanford University

tjw@cs.Stanford.EDU

Abstract

This paper presents a new password authentication

and key-exchange protocol suitable for authenticating

users and exchanging keys over an untrusted network.

The new protocol resists dictionary attacks mounted

by either passive or active network intruders, allow-

ing, in principle, even weak passphrases to be used

safely. It also o�ers perfect forward secrecy, which
protects past sessions and passwords against future

compromises. Finally, user passwords are stored in

a form that is not plaintext-equivalent to the pass-

word itself, so an attacker who captures the password

database cannot use it directly to compromise secu-

rity and gain immediate access to the host. This new

protocol combines techniques of zero-knowledge proofs

with asymmetric key exchange protocols and o�ers

signi�cantly improved performance over comparably

strong extended methods that resist stolen-veri�er at-

tacks such as Augmented EKE or B-SPEKE.

1 Introduction

Password authentication protocols come in many a-
vors, but they all solve the same problem: One party
must somehow prove to another party that it knows
some password P , usually set in advance. Such proto-
cols range from the trivial to the incredibly complex,
and many of them o�er some form of protection from
various attacks mounted by malicious or excessively
curious third parties.
All methods of human authentication fall into three

broad categories:

� Something the user is (voiceprint identi�cation,
retinal scanners)

� Something the user has (ID cards, smartcards)

� Something the user knows (passwords, PINs)

This paper deals with a particularly important sub-
set of the last category known as direct password au-
thentication. Mechanisms that fall into this rather
exclusive category cannot rely on persistent stored
information on the client side. The user's password,
which is a memorized quantity, is the only secret
available to client software. It is also assumed that
the network between the client and server is vulnera-
ble to both eavesdropping and deliberate tampering
by the enemy. In addition, no trusted third party
such as a key server or arbitrator can be used; only
the original two parties can engage in the authenti-
cation protocol.

Such protocols have a surprisingly wide range of
practical applications because they do not require
anything more than a memorized password, making
them much easier to use and less expensive to deploy
than either biometric or token-based methods. One
obvious application is handling remote, password-
protected computer access. Most Internet protocols
currently in use employ plaintext passwords for au-
thentication, and it has been recommended that they
be replaced with more secure alternatives if it can
be done transparently [8]; a secure direct authentica-
tion protocol �ts perfectly into such an architecture
without introducing signi�cant user-visible overhead.
Even in situations where some form of security in-
frastructure already exists, a strong password system
adds a strong independent factor to the authentica-
tion mechanism that adds to the overall strength of
the system. This includes multi-factor systems that
employ a password plus either a hand-carried or bio-
metric device. Reference [9] contains an excellent
treatment of these issues, and [1] also lists additional
applications for secure direct authentication proto-
cols.

Section 2 briey reviews existing authentication
protocols and explains both their strengths and their
shortcomings.

1 of 15



Section 3 discusses the new authentication protocol
in mathematical terms, suggests possible implemen-
tations, and explains the rationale behind its design.
Section 4 analyzes the security of the new protocol,

proves its security against eavesdroppers by reducing
it to existing hard mathematical problems, and dis-
cusses necessary conditions and restrictions.
Section 5 addresses performance and implementa-

tion issues.

2 Terminology and background

Throughout this paper, the terms client and server

will be used to denote the user and host parties in a
direct authentication protocol. Unless stated other-
wise, the client is assumed to be a human user who,
like typical computer users, can only remember rela-
tively short passwords [7, 13]. Although a user may
employ a piece of software to negotiate the authen-
tication protocol in practice, this does not a�ect our
de�nition of the client, since we have already stipu-
lated that said client software cannot remember long-
term keys on behalf of the user.
The terms password and veri�er correspond to con-

ventional private and public keys, di�ering in only
two aspects: Unlike typical private keys, the pass-
word has limited entropy, constrained by the mem-
ory of the user. A veri�er has similar mathematical
properties to a public key, since it is easily computed
from the password, yet deriving the password from
the veri�er is computationally infeasible. Instead of
being a publicly-known quantity, however, the veri-
�er is kept secret by the server. An authentication
mechanism that requires the server to store a copy
of the user's password or private key is known as a
plaintext-equivalent mechanism, while one that only
requires a veri�er to be stored will be called a veri�er-
based mechanism.
Veri�er-based protocols have a signi�cant advan-

tage over ones that are plaintext-equivalent. A
system that uses plaintext-equivalent authentication
becomes instantly compromised once the password
database is revealed, since every user's password is
stored there. A database of veri�ers, on the other
hand, can be protected just as easily and e�ectively as
a database of plaintext-equivalent passwords, except
that failure of said protection is not as catastrophic
if only veri�ers are compromised.
While any reasonably secure authentication pro-

tocol is expected not to leak any information about
the password to eavesdroppers, protocols classi�ed

as zero-knowledge do not even leak any information
about the password to the legitimate host (except
the fact that the party at the other end really does
know it). This subset of veri�er-based protocols is
strong indeed, since the host never stores plaintext-
equivalent information and is never given any such
information during the course of authentication. This
reduces the damage that Trojan horses1 can inict,
and it enables the authentication system to retain
some degree of security even in the case of complete
host compromise.

2.1 Existing authentication techniques

In the simplest of all password authentication proto-
cols, Carol (the user or client) sends Steve (the host
or server) her username and her plaintext password,
and Steve veri�es the password, either by comparing
it directly to his version of Carol's password or apply-
ing a one-way hash function �rst and checking against
a database of stored hashes. Since Carol's password
is immediately exposed to any eavesdropping attack,
this method is unacceptable in networks where such
attacks are possible.
To counter this, Carol and Steve can employ a

challenge-response protocol. In general terms, such
a protocol would take the following form:

1. Carol sends her identity to Steve, along with
some random message.

2. Steve sends Carol a random message, called a
challenge.

3. Carol performs some computation based on the
challenge, the �rst random message, and her
password. She sends this response to Steve, who
performs the same computation and veri�es the
correctness of Carol's response.

Since Steve's challenge is di�erent for each authen-
tication attempt, a captured response is useless for fu-
ture sessions, defeating a simple replay attack. How-
ever, challenge-response protocols can be attacked in
other ways. Eve can capture the random number,
challenge, and response from a successful authentica-
tion attempt and start guessing passwords until she
�nds one that generates a response that matches the

1One huge bene�t here is that passwords shared between
di�erent systems are not compromised if an attacker installs a
Trojan horse on one of the systems. The Secure Remote Pass-
word protocol is one of the �rst authentication mechanisms
that solves this problem.

2 of 15



captured one. This attack is called a dictionary at-

tack and has been used to exploit systems in the past,
often quite successfully [7].
Challenge-response protocols are also plaintext-

equivalent, so they can be easily defeated by an in-
truder who captures the password �le, as well as one
who can eavesdrop.
To work around the limitations of inherently weak

authentication mechanisms, protocol designers have
traditionally used one of three approaches:

� Increase the length of the key with an external
device like a smartcard.

� Take advantages of physical phenomena to con-
struct a channel that is more di�cult to compro-
mise (spread spectrum, quantum cryptography).

� Ignore the problem and hope \nobody notices."

The �rst method changes the authentication sys-
tem so that it is no longer based on \something you
know," losing the convenience bene�ts of password-
only methods in the process. The second method
is only applicable to a limited range of applications.
The third method is the most common, and exposes
a very dangerous attitude among protocol design-
ers. This combination of weak authentication tech-
nology and lax attitudes towards password security
have given password authentication a negative repu-
tation in the security community [13].

2.2 Stronger solutions

In 1992, Bellovin and Merritt [1] presented a new pro-
tocol known as Encrypted Key Exchange, or EKE.
By using a combination of symmetric and public-
key cryptography, EKE resists dictionary attacks by
giving a passive attacker insu�cient information to
verify a guessed password. EKE performs a key ex-
change as well, so both parties can encrypt their
transmissions once authentication is established. In
the most general form of EKE, the two communicat-
ing parties encrypt ephemeral public keys with a sym-
metric cipher, using their shared secret password as a
key. Since it was invented, EKE has been developed
into a family of protocols, many of which are stronger
than the original or add new desirable properties. For
example, DH-EKE [17] and SPEKE [9] add what is
known as forward secrecy, which means that reveal-
ing the password to an attacker does not help him
obtain the session keys of past sessions. It is also
usually taken to mean that a stolen session key does

not help an attacker carry out a brute-force guessing
attack on the password. Reference [6] describes a set
of \secret public-key" protocols that accomplish the
same objectives as EKE.
To date, the family of EKE protocols represents

the strongest level of password-based authentication
protocols available. EKE's greatest failing is that it
still su�ers from plaintext-equivalence, requiring that
both the client and host have access to the same se-
cret password or hash thereof. There is one variant
of EKE, known as Augmented EKE or A-EKE [2],
which makes EKE a veri�er-based protocol, but the
modi�cation also destroys forward secrecy [17].
Recently, additional work has been done to extend

the EKE family of protocols to address the issue of
holding plaintext-equivalent data in password �les
[10]. B-SPEKE is an example of such an extended
method. These protocols add another key exchange
round to verify the client's possession of the actual
password as opposed to a stolen veri�er from the pass-
word �le. This �xes a major issue with EKE, at the
expense of substantially increasing the running time
and computational complexity of the resulting proto-
col.
The issue of avoiding plaintext-equivalence has

been a glaring omission in secure protocol designs for
quite some time, yet it must be addressed if it is to
be considered a viable replacement for authentication
systems like the /etc/passwd �le in Unix systems
[13]. In addition, poor performance has often been
an obstacle to the adoption of stronger protocols;
the protocols described in [2] and [10] are just slow
enough to be uncomfortable for frequent, lightweight
authentication purposes. An improvement in perfor-
mance from, say, a 3 second delay to a 1.5 second
delay at login time can often make the di�erence be-
tween an unbearable solution and a workable one.

3 A new framework

Designing a veri�er-based protocol is considerably
more di�cult than designing a conventional shared-
secret authentication protocol, because the veri�er
and password are by de�nition not equivalent (though
the former may be derived from the latter), forcing
the computational structure of the protocol to be in-
herently asymmetric. As is the case with public-key
cryptography, only a handful of methods lend them-
selves to the mathematical manipulation necessary to
construct secure veri�er-based protocols. This is one
of the reasons why such protocols are relatively rare

3 of 15



in practice.
We have already seen protocols that use digital

signatures (A-EKE) and protocols that use a sec-
ondary one-sided key exchange (B-SPEKE); this sec-
tion introduces a new construction called Asymmet-

ric Key Exchange, or AKE for short, which is a gen-
eralized form for a third class of veri�er-based pro-
tocols. Later, we will introduce the Secure Remote
Password protocol itself, which will refer to the more
well-de�ned and speci�ed instance of AKE that is of
interest to modern password authentication systems.

3.1 Asymmetric key exchange

Like EKE, the primary function of AKE is to ex-
change keys between two parties, the client and
server, and to use this key to verify that both par-
ties actually know their passwords. Unlike EKE,
AKE does not encrypt any of the protocol ows. In-
stead, it uses prede�ned mathematical relationships
to combine exchanged ephemeral values with estab-
lished password parameters. Avoiding encryption is
advantageous for a number of reasons:

� It simpli�es the protocol by eliminating the need
to negotiate a common encryption algorithm.
The alternative, specifying the algorithm with
the protocol, makes the protocol dependent on
one particular encryption algorithm.

� Any weakness in the encryption will usually re-
sult in a weakness in the resulting authentication
protocol. In addition, when passwords are used
as key material, issues of padding and veri�able
plaintext can open the protocol to a variety of
attacks [6]. Not using encryption in the protocol
itself removes this potential hole.

� In some jurisdictions, software and hardware im-
plementations of encryption algorithms are sub-
ject to legal restrictions or export regulations.
A protocol that does not use encryption is not
a�ected by such concerns.

AKE also di�ers from its predecessors in another
way. Protocols like EKE use prearranged shared se-
crets as the basis for authentication. This means that
both parties keep exactly the same secret string and
use it indirectly to authenticate each other. Since
possession of the secret is enough to impersonate ei-
ther party, and since there are now two places from
which the secret can potentially be stolen, both par-
ties are responsible for exchanging the initial secret
securely and guarding the secret carefully.

AKE, however, describes a \swapped-secret" ap-
proach, in which each party computes a secret and
then applies a one-way function to that secret to gen-
erate a veri�er, which is handed to the other party.
Although it is still important to guard the veri�er
to prevent a dictionary attack, a stolen veri�er is
no longer enough to impersonate the user; the cor-
responding secret password is still needed.

A special case of this technique, in which only
one party generates a secret and computes a ver-
i�er, appears to be quite useful if the other party
is a multiuser system that stores many veri�ers. In
such an application, the user's secret (i.e. the pass-
word) never has to leave the local host during the ini-
tial password setup and password change procedures;
only the veri�er needs to be sent, greatly improving
the overall security of the system.

Table 1 summarizes the notation used in this sec-
tion. We make no assumptions at this point about
the domain, range, or input/output types of the func-
tions save for the following:

(8w; x; y; z) S(R(P (w); P (x)); Q(y; z)) =

S(R(P (y); P (z)); Q(w; x)) (1)

Equation 1 must be satis�ed for AKE to work prop-
erly. By itself, it guarantees nothing about the secu-
rity of the resulting protocol. That is entirely depen-
dent on the choices of the functions P (), Q(), R(),
and S(). For example, the function P () should be
one-way; it should be di�cult to �nd x given P (x).

To set things up for the AKE protocol, Carol and
Steve select parameters x and z, respectively. These
serve as the passwords in the protocol. Carol com-
putes P (x) and gives it to Steve, and Steve computes
P (z) and gives it to Carol. Carol and Steve are now
ready to use AKE to exchange keys using the follow-
ing steps:

At this point, Carol and Steve have performed the
basic AKE protocol and have their respective session
keys. If the values of x and z used to compute the ses-
sion key correspond to the previously agreed-to values
of P (x) and P (z), then by Equation 1, the two values
ofK will match. To complete the authentication pro-
cess, Carol and Steve can use any mutually agreeable
method to verify that their keys match; the security
of the resulting protocol is obviously dependent on
the choice of this method.

From the basic AKE protocol, one can see the role
of each of the four parameters: x and z are the long-
term secrets held by the two parties, while w and y

4 of 15



w, x, y, z Arbitrary parameters
P (x) A \one-way" veri�er-generating function

Q(x; y), R(x; y) \Mixing" functions for private and public parameters
S(x; y) The session key generation function

K Session key

Table 1: Mathematical Notation for AKE

Carol Steve

(generate random w)
P (w)
�! K = S(R(P (w); P (x)); Q(y; z))

K = S(R(P (y); P (z)); Q(w; x))
P (y)
 � (generate random y)

Table 2: Generic AKE

are ephemeral parameters generated by each side to
ensure that the session key varies from session to ses-
sion. As stated earlier, the security of AKE depends
on the four functions it uses. Obviously, P () should
be di�cult to invert, and its output should also reveal
little or no information about its input. The same
can be said for S(); it should be chosen especially
to protect its second argument from leakage. Addi-
tionally, it should be infeasible to reconstruct either
value of K using only P (w), P (x), P (y), and P (z).
No closed-form expression that does this should ex-
ist, and ideally we would like this to be as di�cult
as inverting P (). Further restrictions will depend on
the exact implementation of AKE.

3.2 SRP: An AKE construction

AKE by itself is merely an interesting mathematical
exercise. It describes the broad outline of a family of
key-exchange protocols, but it is necessary to �ll in
some of the blanks to make the protocol applicable
and enable further detailed security analysis. This
section presents the Secure Remote Password (SRP)
protocol, one possible interpretation of AKE and one
that is believed to be simple, fast, and highly secure.

3.2.1 SRP speci�cations

In SRP, all computations are performed in a �nite
�eld GF(n). In other words, a large prime number n
is chosen ahead of time, and all additions, multipli-
cations, and exponentiations are performed modulo
n. All input parameters and outputs of P (), Q(),

R(), and S() are thus integers between 0 and n � 1
inclusive.
The \one-way" veri�er-generator P () becomes a

modular exponentiation in GF(n):

P (x) = gx (2)

g is a generator in GF(n). Remember that there is
an implicit modulo n in each computation.
The functions Q(), R(), and S() are the following:

Q(w; x) = w + ux (3)

R(w; x) = wxu (4)

S(w; x) = wx (5)

The role of the variable u will be explained in Sec-
tion 3.2.4. In these equations, u is de�ned as a func-
tion of w and x: u = f(w; x). By inspection, Equa-
tions 2{5 satisfy Equation 1. More information about
the number theory used here can be found in [16].
As stated in Section 3.1, the two parties still need

to verify that their session keys match and do so in a
secure manner. SRP accomplishes this with a simpli-
�ed MAC (Message Authentication Code) based on
one-way hash functions.

3.2.2 The SRP protocol

What follows is a complete description of the entire
SRP authentication process from beginning to end,
starting with the password setup steps.
Table 3 shows the notation used in this section.

The values n and g are well-known values, agreed to
beforehand.

5 of 15



n A large prime number. All computations are performed modulo n.
g A primitive root modulo n (often called a generator)
s A random string used as the user's salt
P The user's password
x A private key derived from the password and salt
v The host's password veri�er
u Random scrambling parameter, publicly revealed

a; b Ephemeral private keys, generated randomly and not publicly revealed
A;B Corresponding public keys
H() One-way hash function
m;n The two quantities (strings) m and n concatenated
K Session key

Table 3: Mathematical Notation for SRP

To establish a password P with Steve, Carol picks
a random salt s, and computes

x = H(s; P )

v = gx

Steve stores v and s as Carol's password veri�er and
salt. Remember that the computation of v is implic-
itly reduced modulo n. x is discarded because it is
equivalent to the plaintext password P .

The AKE protocol also allows Steve to have a pass-
word z with a corresponding public key gz held by
Carol; in SRP, we set z = 0 so that it drops out of
the equations. Since this private key is 0, the cor-
responding public key is 1. Consequently, instead of
safeguarding its own password z, Steve needs only to
keep Carol's veri�er v secret to assure mutual authen-
tication. This frees Carol from having to remember
Steve's public key and simpli�es the protocol.

To authenticate, Carol and Steve engage in the pro-
tocol described in Table 4. A description of each step
follows:

1. Carol sends Steve her username, (e.g. carol).

2. Steve looks up Carol's password entry and
fetches her password veri�er v and her salt s.
He sends s to Carol. Carol computes her long-
term private key x using s and her real password
P .

3. Carol generates a random number a, 1 < a < n,
computes her ephemeral public key A = ga, and
sends it to Steve.

4. Steve generates his own random number b, 1 <
b < n, computes his ephemeral public key B =
v+gb, and sends it back to Carol, along with the
randomly generated parameter u.

5. Carol and Steve compute the common exponen-
tial value S = gab+bux using the values available
to each of them. If Carol's password P entered
in Step 2 matches the one she originally used to
generate v, then both values of S will match.

6. Both sides hash the exponential S into a crypto-
graphically strong session key.

7. Carol sends Steve M1 as evidence that she has
the correct session key. Steve computesM1 him-
self and veri�es that it matches what Carol sent
him.

8. Steve sends Carol M2 as evidence that he also
has the correct session key. Carol also veri�es
M2 herself, accepting only if it matches Steve's
value.

This protocol is mostly the result of substituting
the equations of Section 3.2.1 into the generic AKE
protocol, adding explicit ows to exchange informa-
tion like the user's identity and the salt s. Both sides
will agree on the session key S = gab+bux if all steps
are executed correctly. SRP also adds the two ows
at the end to verify session key agreement using a
one-way hash function. Once the protocol run com-
pletes successfully, both parties may useK to encrypt
subsequent session tra�c.

6 of 15



Carol Steve

1.
C
�! (lookup s, v)

2. x = H(s; P )
s
 �

3. A = ga
A
�!

4.
B;u
 � B = v + gb

5. S = (B � gx)a+ux S = (Avu)b

6. K = H(S) K = H(S)

7. M1 = H(A;B;K)
M1

�! (verify M1)

8. (verify M2)
M2

 � M2 = H(A;M1;K)

Table 4: The Secure Remote Password Protocol

3.2.3 Computation of B

Observant readers will notice that Steve's ephemeral
public key in Step 4 is the sum of two exponential
residues. Why not just make B = gb and simplify
the protocol?
Unfortunately, that simpli�cation opens the proto-

col to the an active dictionary attack, carried out by
an attacker who masquerades as a legitimate host and
convinces Carol to make an authentication attempt.
The attacker, Sue, captures s from a legitimate ses-
sion and proceeds as follows:

1. Carol sends Sue her username.

2. Sue sends Carol the salt s she snooped earlier.

3. Carol sends Sue her public exponential residue
A.

4. Sue picks her own random b and u, computes her
own residue B and sends B and u to Carol.

5. Carol computes her session key S = Ba+ux, com-
putes K from S, and happily sends Sue a proof
of that K.

6. Sue simulates network failure or simply noti�es
Carol that the password was incorrect.

Now, Sue has A and her own b, along with a proof
of K from Carol. She can guess at a password p0,
compute x0 from it and then v0 from that, construct
S0 as S0 = (Av0u)b, and �nally K 0 = H(S0), and
check it against Carol's proof of the real K. If they
match, the guessed password is correct.
Since this attack comes from an impostor who does

not know v (anyone who does know v can already

perform a dictionary attack), one way to thwart it is
to force the host to commit to its value of v in Step 4.
However, the way in which the residues gb and v are
combined must be selected carefully. If we denote
the \combining function" used to compute B as B =
f(v; gb), then we wish to avoid using functions f that

have the property that f(gx; gy) = gf̂(x;y) for some

easily-derived f̂(). The attack described above can be
extended to situations where f() has this undesirable
property. This rules out, for example, f(x; y) = xy.
In addition, we also wish the value of B to leak

as little information about v as possible, which rules
out f(x; y) = x � y (i.e. \exclusive-or") or f(x; y) =
Ey(x), where Ek() is a symmetric encryption algo-
rithm. In either of these cases, an attacker can carry
out a partition attack, which facilitates an o�-line
password search by eliminating impossible passwords.
For example, if we used B = v�gb, an attacker could
capture B and compute a guessed veri�er v0 for each
password guess. If B � v0 > n, then that particular
password guess can be ruled out as impossible. If this
is done over a number of sessions, an attacker may be
able to reduce the number of possible passwords to a
number small enough to permit brute-force guessing.
Modular addition appears to be the simplest op-

eration that leaks no information about v while at
the same time enabling SRP to resist a dictionary at-
tack by a fake host. Additionally, g must be a prim-
itive root of GF(n) in order to make all values of B
equiprobable for any v. If this requirement is not
met, a partition attack again becomes possible.

3.2.4 The role of u

Why is the parameter u used at all in the SRP pro-
tocol when it is broadcast in the clear in Step 4? Let

7 of 15



us assume, for the moment, that an intruder, Chris,
who has captured v poses as a fake client attempt-
ing to gain access to the host. Let us also assume
that Chris has somehow discovered the value of u
in Step 3, perhaps through psychic ability or (more
likely) as a result of a aw in Steve's random num-
ber generator. Under these circumstances, Chris can
gain access to the host using the following steps:

1. Chris sends Carol's username to Steve.

2. Steve sends Carol's salt s to Chris.

3. Chris computes

A = gav�u

and sends it to Steve instead of using the regular
formula for A.

4. Steve sends B = v+gb back to Chris as expected.

5. Chris computes the session key K as:

K = H((B � v)a mod n)

6. Chris sends Steve a proof of this K and logs in
as Carol.

This attack works because Steve computes his ses-
sion key as:

S = (Avu)b = (gav�uvu)b = gab

Note that this value is independent of the long-term
keys, and can easily be computed by Chris. Since
he has the same session key that Steve has, he can
fool Steve into believing that he is Carol. Obviously,
this attack can also be carried out if u is �xed to a
publicly-known value.

To prevent Chris from being able to cancel out the
v term in this manner, Steve must not reveal the value
of u until after he receives A from the user. Since u is
communicated publicly, it is possible to \piggyback"
it on top of another public value, thus transmitting
it implicitly. For example, both sides can compute u
as a simple function of B, in which case Steve must
wait for Carol to send out A before he sends back B
and reveals u. In either case, u = 0 must be avoided
for obvious reasons.

4 Security analysis

It is easy to prove that both AKE and SRP are \cor-
rect" in the sense that both parties are guaranteed
to agree on a session key if the correct passwords
are supplied and the software on both sides functions
properly. It is more di�cult to show, as this section
attempts to do, that these protocols are in fact secure.
This means many things in the context of authentica-
tion protocols. In general terms, an intruder, who is
de�ned here as a malicious third party interested in
subverting communications between Carol and Steve,
must not be able to gain access to the host merely by
observing the messages exchanged during a successful
run of the protocol. In the case of SRP, we would like
to strengthen this de�nition further in the following
ways:

1. No useful information about the password P or
its associated private key x is revealed during a
successful run. Speci�cally, we wish to prevent
an attacker from being able to guess and verify
passwords based on exchanged messages.

2. No useful information about the session key K
is revealed to an eavesdropper during a success-
ful run. Since K is a cryptographically strong
key instead of a limited-entropy password, we
are not concerned about guessing attacks on K,
as long as K cannot be computed directly by an
intruder.

3. Even if an intruder has the ability to alter or
create his own messages and make them appear
to originate from Carol or Steve, the protocol
should prevent the intruder from gaining access
to the host or learning any information about
passwords or session keys. At worst, an in-
truder should only be able to cause authentica-
tion to fail between the two parties (often termed
a denial-of-service attack).

4. If the host's password �le is captured and the
intruder learns the value of v, it should still not
allow the intruder to impersonate the user with-
out an expensive dictionary search.

5. If the session key of any past session is compro-
mised, it should not help the intruder guess at
or otherwise deduce the user's password.

6. If the user's password itself is compromised, it
should not allow the intruder to determine the

8 of 15



session keyK for past sessions and decrypt them.
Even present sessions should at least be pro-
tected from passive eavesdropping.

A protocol with these properties is robust; in other
words, it resists being compromised even if the partic-
ipants in the protocol are not completely reliable or
secure. Informally, such a protocol tolerates a wide
range of attacks, preventing an attack on any part
or parts of the system from leading to further secu-
rity compromises. If an attacker manages to obtain a
user's password, for example, the potential for dam-
age should stop as soon as the user changes that pass-
word. This ties in closely with the concept of forward
secrecy, which protects past information from future
compromises.

4.1 Reduction to Di�e-Hellman

Fortunately, the mathematical structure of the SRP
protocol is su�ciently similar to the Di�e-Hellman
(DH) problem [4], a problem that is believed to be
computationally infeasible with su�ciently large pa-
rameters, that it is possible to construct a proof link-
ing the intractability of DH to that of compromis-
ing SRP. This proof establishes the security of SRP
against passive eavesdropper attack.
We begin by presuming the existence of an algo-

rithm or method that yields the SRP session key in
polynomial time given all the information that is pub-
licly known or transmitted during a legitimate and
successful run of the SRP protocol, as well as the

user's password. The reason for giving away this piece
of information will be evident shortly. Such an algo-
rithm can be modeled as an oracle Q that accepts the
values A, B, u, g, n, and x from Table 4 and com-
putes the session key S = gab+bux from this input.

Q(ga; gb + gx; u; g; n; x) = gab+bux

The DH conjecture claims that it is di�cult to com-
pute gab in GF(n) given ga and gb. By �xing u = 2
and x = (n� 1)=2, we can de�ne the DH oracle Q̂ in
terms of the SRP oracle Q as follows:

Q̂(A;B; g; n) = Q(A;B + g(n�1)=2; 2; g; n; (n� 1)=2)

Substituting A = ga and B = gb, we have:

Q̂(ga; gb; g; n) = gab

Thus, if there existed a method to compromise the
session key used in SRP through a passive attack,

that same method could be used to break a DH key
exchange in polynomially-equivalent time. This proof
establishes that SRP resists passive attack at least as
well as the Di�e-Hellman protocol.

In terms of our security requirements, this directly
satis�es Requirement 6 in our security analysis, since
revealing the password does not permit the compu-
tation of any previously-used session key. This also
satis�es Requirement 2, since an intruder who does
not know the password x has even less information
about the session key.

The preceding proof establishes that it is compu-
tationally infeasible to construct a session key even
with the user's password x and all public informa-
tion. This applies to all possible values of x, not
just the correct one. In other words, an intruder who
eavesdrops on a successful SRP run cannot construct
a guess at the session key using only publicly-visible
information and a guessed value of x. Without the
ability to construct guesses at K, the messages M1

and M2 leak no information to the passive o�-line
attacker2. Since A and B do not leak any information
either (see Section 3.2.3), a passive attacker cannot
verify guesses at the user's password. Thus, SRP re-
sists passive dictionary attacks and satis�es Require-
ment 1.

4.2 Resistance to the Denning-Sacco at-
tack

The Denning-Sacco Attack [3] occurs when an in-
truder captures the session key K from an eaves-
dropped session and uses it either to gain the abil-
ity to impersonate the user directly or to conduct a
brute-force search against the user's password.

If K is revealed to a passive eavesdropper Eve, she
does not learn any new information from combining
K withM1 orM2. This is true because bothM1 and
M2 can be computed directly from publicly-visible
data and K. We have already established that Eve
cannot construct meaningful guesses at the session
key K from guessed passwords, and there does not
appear to be any easier way for her to carry out a
brute-force dictionary attack. It is thus conjectured
that Requirement 5 is satis�ed.

Note that this di�ers from the Augmented-EKE
protocol in [2] because A-EKE requires the user to
send a message that is dependent on both the long-

2This assumes that the hash function used to generate M1

and M2 is cryptographically secure, a concept that is beyond
the scope of this paper.

9 of 15



term private key and the session key. It is this mes-
sage that enables the Denning-Sacco attack against
that protocol.

4.3 Resistance to active attacks

SRP has been carefully designed to thwart the ac-
tive attacks illustrated in Sections 3.2.3 and 3.2.4.
Although it is di�cult to determine conclusively
whether or not these precautions bulletproof the pro-
tocol completely from all possible active attacks,
SRP resists all the well-known attacks that have
plagued existing authentication mechanisms, such
as the Denning-Sacco attack mentioned previously.
While no successful attacks have been discovered
against SRP, a more formal analysis of active attack
scenarios would be welcome.

Active attacks can take many di�erent forms, de-
pending on what information is available to the at-
tacker. An attacker who knows Carol's private key
x can obviously pretend to be Carol when accessing
the host3. Likewise, an attacker with v can mas-
querade as Steve when Carol tries to contact him.
Although the amount of damage that can be caused
by a leaked veri�er is limited compared to plaintext-
equivalent systems, the veri�er should not be treated
as a public quantity.

A man-in-the-middle attack, which requires an at-
tacker to fool both sides of a legitimate conversation,
cannot be carried out by an attacker who does not
know Carol's password. An attacker who does not
know x cannot fool Steve into thinking he is talking
to Carol, so at least one half of the deception fails.
If the attacker doesn't know v either, he is in worse
shape, because he also can't fool Carol into believing
that she is communicating with Steve.

4.4 Security assumptions and constraints

The validity of the preceding security analysis de-
pends on a number of conditions, most of which con-
cern the proper generation and screening of various
parameters in the SRP protocol. This section will
discuss these conditions and put forth a set of con-
straints that will satisfy them.

3In a typical client/server environment, many do not con-
sider this an active attack, since a user can initiate contact with
the host from any location. In any event, this is much easier
to carry out compared to a more conventional active attack.

4.4.1 Discrete logarithms

In Section 3.1, we mentioned that the function P ()
selected for use in AKE must be di�cult to invert. It
is obvious why this is important: The security of SRP
and any other construction of AKE depends on keep-
ing the private values w and y secret while publicly
revealing P (w) and P (y).

Recall that in the case of SRP, we have

P (x) = gx

where the base g and the implied modulus n are
publicly known and agreed-upon values. Comput-
ing P (x) is known as discrete exponentiation, and its
inverse is known as a discrete logarithm. Finding dis-
crete logarithms is a problem long believed to be com-
putationally di�cult for large values of n (512 bits or
longer)4 and has been the subject of a great deal of
research [11]. The apparent security of discrete ex-
ponentiation as a one-way trapdoor is used by other
key-exchange protocols, most notably Di�e-Hellman
[4].

Note that the proof-by-reduction of Section 4.1
actually relied on the intractability of the Di�e-
Hellman problem itself, not the intractability of com-
puting discrete logarithms in GF(n). While the abil-
ity to solve discrete logarithms implies the ability to
break DH, the implication in the other direction has
yet to be proven. Without loss of generality, the
most accurate assessment of SRP at this time is that
its security is linked to that of the underlying Di�e-
Hellman problem.

4.4.2 Group parameter agreement

Both [4] and [1] discuss the safe generation of n and
g. For SRP, we wish to maximize the di�culty of
calculating discrete logarithms in GF(n). For this
reason, n must be a non-smooth prime, which means
that n � 1 must not consist entirely of small factors
[15].

Some authentication protocols based on discrete
logarithms are potentially susceptible to a subgroup

con�nement attack [9], where an attacker forces the
session key used by either party to be con�ned to
a small subgroup of GF(n). Because of the way it
computes session keys, SRP resists this attack. Since

4As computational speeds creep upwards, the lower size
bound for n will gradually increase as well. For that reason,
many are recommending 1024 bits for long-term security.

10 of 15



the probability of generating a smooth prime at ran-
dom is quite small [11], n can, in practice, be safely
generated by selecting a random, large prime.
Nevertheless, for maximal security, the author rec-

ommends that n be a safe prime, which is a number
of the form

n = 2p+ 1

where p is also prime. These numbers resist dis-
crete logarithm computation and contain the small-
est possible number of subgroups, since n � 1 con-
tains the fewest possible number of factors, 2. If n
is a safe prime, an attempted subgroup con�nement
attack can be easily detected and avoided in all cases.
The protocol descriptions until now have assumed

that the parameters n and g have been established
in advance of the authentication attempt. One way
to accomplish this is to have the server send n and
g to the client as part of the protocol. Alternatively,
as suggested in [9], parameters can be embedded into
the software at both ends. The former approach has
the advantage of being more exible by allowing dif-
ferent parameters to be used for each host and even
each user according to individual security and per-
formance requirements. The latter approach can be
used to avoid issues of testing ephemeral parameters
for safety, issues that will be discussed in the next
section.

4.4.3 Constraint checks

The following is a list of constraint checks that must
be performed by both sides to ensure the security
of the SRP protocol. Client testing of n and g is
only necessary if these values are transmitted and not
embedded or prearranged.

n is a large safe prime (client) The client must
ensure that n is large enough to resist attack;
see Section 4.4.1 for recommendations. Using a
probabilistic primality tester, the client should
also ensure that both n and (n� 1)=2 are prime.

g is a primitive root of GF(n) (client)
Assuming the factorization of n � 1 is known,
the algorithm described in [16] for testing gener-
ators can be used to verify g. If n is a safe prime,
this test is particularly easy and fast.

A 6= 0 (server) This prevents the server's session
key from being forced to a known value, namely
zero.

B 6= 0 (client) This check prevents a dictionary at-
tack on the password from a masquerading host.

a; b > logg n The computations of ga and gb in GF(n)
must \wrap around" to prevent an attacker from
taking the algebraic logarithm of ga to recover a.
The probability of this happening is in�nitesimal
(less than 2�1014 for 1024-bit n), but the check
is trivial.

5 Optimizing SRP

Implementing a protocol such as SRP for use in real
systems brings practical issues like performance into
play. The number of message rounds, the size of the
exchanged messages, and the expected execution time
of a successful authentication attempt are all impor-
tant factors in designing concrete protocol speci�ca-
tions. Eliminating even one network message or com-
putational round can signi�cantly improve the utility
of an authentication system [5].

5.1 Message rounds

C =) S C
C (= S s
C =) S A
C (= S B
C =) S M1

C (= S M2

Table 5: Original SRP

Recall from Section 3.2.2 that the full SRP proto-
col involved a total of three round trips between client
and server, as shown in Table 5. This section will as-
sume that u is transmitted implicitly along with B,
as discussed in Section 3.2.4. It is possible to reduce
the total number of messages exchanged by consoli-
dating some of the individual transactions, grouping
together pieces of information that do not depend on
earlier messages. For example, since the salt s and
the client's exponent are independent of each other,
they can be sent in either order. By rearranging ad-
ditional messages, it is possible to reduce SRP to two
round trips, as shown in Table 6.
It is possible to reduce the number of messages

even further if one is willing to settle for one-way
authentication instead of the mutual authentication
that is provided by both Original SRP and Optimized

11 of 15



C =) S C;A
C (= S s;B
C =) S M1

C (= S M2

Table 6: Optimized SRP

SRP. Table 7 shows a three-message, one-and-a-half
round trip implementation of SRP that authenticates
the client to the server, but not the other way.

C =) S C;A
C (= S s;B
C =) S M1

Table 7: One-Way Optimized SRP

Three messages appears to be the theoretical lower
bound for a secure authentication protocol, which
also matches the minimal protocol presented in [17].
This is based on the observation that a two-message
protocol (one in which the client sends a message to
the server and the server sends a message back) is
trivially vulnerable to a replay attack, assuming that
no out-of-band communication is used, like a biomet-
ric input device or synchronized clocks.

5.2 Execution speed

Of all the operations executed in the course of nego-
tiating secure protocols like SRP, the slowest one by
far is the iterated group operation, modular exponen-
tiation in this case. By comparison, other functions
such as hashing, addition, and multiplication require
a negligible amount of processor time. Any discus-
sion of performance issues necessarily centers around
the speed of the group operation.
Instead of lumping all modular exponentiation op-

erations into the same category and counting them,
we can arrive at more accurate performance estimates
by subdividing them into three categories. Our nota-
tion will be the following:

tg The amount of time required to execute a modular
exponentiation with a tiny base (e.g. g = 2).

te The amount of time required if the exponent is
tiny.

tb The amount of time required if neither base or
exponent is tiny.

For the purposes of our benchmark data, we will
use a 1024-bit safe prime modulus and 256-bit expo-
nents. Tiny exponents are 32 bits long. Although
performance �gures will vary with di�ering parame-
ter sizes, host architectures, and software implemen-
tations, their relative values should remain consis-
tent.

Table 8 gives the amount of time required to nego-
tiate some well-known protocols, including the three
veri�er-based protocols currently in existence. In
this table, Augmented-EKE is evaluated with the p-
NEW digital signature algorithm discovered by Ny-
berg and Rueppel [14], one of the fastest such algo-
rithms usable with A-EKE.

To save time, one could easily implement the client
and server so that they do some of the computations
in parallel. A reasonable lower bound on execution
time can be calculated simply by taking the greater
of the two times, since that will determine the critical
path of the protocol.

Table 9 shows performance �gures gathered from
a 167 MHz single-processor Sun ULTRASparc-1 run-
ning Solaris 2.5. The GNU MP library, built with the
GNU C compiler, was used to perform the multiple-
precision arithmetic. For this platform, tg = 247 ms,
te = 45 ms, and tb = 379 ms.

SRP ends up being the fastest veri�er-based proto-
col in the table. Compared to SRP, A-EKE requires
41% more running time, while B-SPEKE is nearly
60% slower. Tests with other implementations yield
results that di�er by a constant factor, so the \nor-
malized" column remains accurate across platforms.

SRP has other performance advantages that these
tables do not necessarily show. For example, to re-
duce running times even further, the values ga and
gb can be precomputed before either party begins au-
thentication. This is practical when the group param-
eters n and g are known to both parties ahead of time
instead of being exchanged during the course of the
protocol. Not all protocols can employ this strategy;
in particular, the SPEKE family, because its expo-
nentials are functions of the shared password, cannot
do this [10].

To improve the running time any further, we would
need to switch to another AKE construction that
used something other than discrete exponentiation.
One promising candidate is the elliptic curve cryp-
tosystem [12], which can potentially o�er the same

12 of 15



Protocol Client Server

Di�e-Hellman/DH-EKE tg + tb tg + tb
SPEKE 2tb 2tb
A-EKE 2tg + te + tb 2tg + 2tb

B-SPEKE 3tb tg + 3tb
SRP 2tg + tb tg + te + tb

Table 8: Reference Running Times

Protocol Execution Time Normalized

Di�e-Hellman/DH-EKE 626 ms 1.000
SPEKE 758 ms 1.211

SRP 873 ms 1.395
A-EKE 1252 ms 2.000

B-SPEKE 1384 ms 2.211

Table 9: Benchmarks on a 167 MHz ULTRASparc-1

level of security as cryptosystems based on the dif-
�culty of discrete logarithms but with much shorter
keys. Jablon [10] claims that elliptic curve methods
improve the speed of group operations by a factor
of 6 to 7 while maintaining an equivalent level of
security. It is still too early to make any �rm pro-
nouncements on the security of elliptic curves, how-
ever, since they have not been analyzed as extensively
as discrete exponents. In addition, elliptic curves are
encumbered by royalty and patent restrictions, which
is not the case for simple discrete exponentiation. In
the author's opinion, SRP is e�cient enough, even
on today's hardware, that performance is not a sig-
ni�cant issue. In most cases, the time required to
negotiate the authentication protocol is not even no-
ticeable (under 1 second) to the user, and this will
only improve as hardware becomes faster. The well-
established security a�orded by discrete exponentia-
tion should satisfy even the most conservative secu-
rity requirements.

6 Conclusion

Password authentication protocols have traditionally
used symmetric encryption, public-key encryption, or
a combination of the two approaches to resist com-
mon attacks. Only recently, however, has there been
signi�cant attention paid to designing strong direct
authentication protocols that could be deployed with-

out depending on expensive external infrastructure.
In this paper, we showed that existing protocols have
started to address this problem with some success,
but that there was still room for improvement. While
current direct authentication technology o�ers a va-
riety of tradeo�s between security and performance,
the compromise has been somewhat unsatisfying to
implementors.
Next, we presented the groundwork for a new fam-

ily of authentication protocols called AKE, which
employed a swapped-secret instead of a traditional
shared-secret arrangement and which did not use any
form of symmetric encryption to achieve its security.
Section 3.1 outlined some of the bene�ts of avoiding
encryption in an authentication protocol.
We then presented a construction of AKE, known

as SRP, based on discrete exponentiation and out-
lined a proof (Section 4.1) that established a lower
bound on the security of SRP. In our analysis, we
put forth a series of requirements for a secure pass-
word protocol, emphasizing those that existing pro-
tocols failed to meet. We demonstrated that SRP, as
a veri�er-based, zero-knowledge protocol resistant to
dictionary attacks, o�ered a number of new bene�ts
for password system implementors:

� An attacker with neither the user's password nor
the host's password �le cannot mount a dictio-
nary attack on the password. Mutual authenti-
cation is achieved in this scenario.

13 of 15



� An attacker who captures the host's password
�le cannot directly compromise user-to-host au-
thentication and gain access to the host without
an expensive dictionary search.

� An attacker who compromises the host does not
obtain the the password from a legitimate au-
thentication attempt.

� An attacker who captures the session key can-
not use it to mount a dictionary attack on the
password.

� An attacker who captures the user's password
cannot use it to compromise the session keys of
past sessions.

It is believed that this set of properties is at or near
the theoretical limit of security that can be o�ered
by a purely password-based protocol. SRP, which
bases its security on the di�culty of solving the Di�e-
Hellman problem in the multiplicative �eld modulo a
large safe prime, meets these requirements and does
so using only one exponential key exchange round,
making it useful for applications in which good per-
formance is an issue. It solves some outstanding is-
sues with protocols like EKE and SPEKE without
sacri�cing either performance or security. SRP's se-
curity, simplicity, and speed make it ideal for a wide
range of real-world applications in which secure pass-
word authentication is required.

Acknowledgements

The author would like to thank Dan Boneh (Stan-
ford), John Gill (Stanford), Doug Tygar (CMU), Li
Gong (JavaSoft), David Jablon (Integrity Sciences),
and the many readers of sci.crypt for their com-
ments and feedback regarding this paper. The author
gratefully acknowledges the support of the Defense
Advanced Research Projects Agency under Contract
DABT63-94-C-0055. The author would also like to
thank Eugene Jhong for his help with software cod-
ing and development and Paul Losleben for helping
to make this research possible.

References

[1] S.M. Bellovin and M. Merritt. Encrypted
key exchange: Password-based protocols secure
against dictionary attacks. In Proceedings of

the 1992 IEEE Computer Society Conference on

Research in Security and Privacy, pages 72{84,
1992.

[2] S.M. Bellovin and M. Merritt. Augmented en-
crypted key exchange: A password-based proto-
col secure against dictionary attacks and pass-
word �le compromise. Technical report, AT&T
Bell Laboratories, 1994.

[3] D. Denning and G. Sacco. Timestamps in key
distribution systems. Communications of the

ACM, August 1981.

[4] W. Di�e and M.E. Hellman. New directions in
cryptography. IEEE Transactions on Informa-

tion Theory, IT-22(6):644{654, November 1976.

[5] L. Gong. E�cient network authentication pro-
tocols: Lower bounds and optimal implemen-
tations. Distributed Computing, 9(3):131{145,
1995.

[6] L. Gong, M.A. Lomas, R. Needham, and
J. Saltzer. Protecting poorly chosen secrets
from guessing attacks. IEEE Journal on Selected

Areas in Communications, 11(5):648{656, June
1993.

[7] F.T. Grampp and R.H. Morris. Unix operating
system security. AT&T Bell Laboratories Tech-

nical Journal, 63(8):1649{1672, October 1984.

[8] N. Haller and R. Atkinson. On Internet Authen-

tication. Naval Research Laboratory, October
1994. Request For Comments (RFC) 1704.

[9] D. Jablon. Strong password-only authenticated
key exchange. Computer Communication Re-

view, 26(5):5{26, October 1996.

[10] D. Jablon. Extended password methods immune
to dictionary attack. InWETICE '97 Enterprise

Security Workshop, Cambridge, MA, June 1997.

[11] B.A. LaMacchia and A.M. Odlyzko. Computa-
tion of discrete logarithms in prime �elds. De-

signs, Codes, and Cryptography, 1:46{62, 1991.

[12] A. Menezes and S.A. Vanstone. Elliptic curve
cryptosystems and their implementations. Jour-
nal of Cryptology, 6(4):209{224, 1993.

[13] R.H. Morris and K. Thompson. Unix pass-
word security. Communications of the ACM,
22(11):594, November 1979.

14 of 15



[14] K. Nyberg and R.A. Rueppel. Message recov-
ery for signature schemes based on the discrete
logarithm problem. In Advances in Cryptology|

EUROCRYPT '94 Proceedings. Springer-Verlag,
1995.

[15] S.C. Pohling and M.E. Hellman. An improved
algorithm for computing logarithms in gf(p) and
its cryptographic signi�cance. IEEE Trans-

actions on Information Theory, 24(1):106{111,
January 1978.

[16] Bruce Schneier. Applied Cryptography. John Wi-
ley & Sons, Inc., New York, 1996.

[17] M. Steiner, G. Tsudik, and M. Waidner. Re-
�nement and extension of encrypted key ex-
change. ACM Operating Systems Review, 29(3),
July 1995.

15 of 15


