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Abstract

We present an extremely fast graph drawing algorithm for very large graphs, which we term ACE (for
Algebraic multigrid Computation of Eigenvectors). ACE exhibits a vast improvement over the fastest algorithms
we are currently aware of; using a serial PC, it draws graphs of millions of nodes in less than a minute. ACE
finds an optimal drawing by minimizing a quadratic energy function. The minimization problem is expressed
as a generalized eigenvalue problem, which is solved rapidly using a novel algebraic multigrid technique. The
same generalized eigenvalue problem seems to come up also in other fields, hence ACE appears to be applicable
outside graph drawing too.

Keywords: algebraic multigrid, multiscale/multilevel optimization, graph drawing, generalized eigenvalue
problem, Fiedler vector, force directed layout, the Hall energy

1 Intr oduction

A graph is a structure G(V; E) representing a binary relation E over a set of entities V. In a very general sense,
we expect the drawing of a graph to visually capture its inherent structure. Interpreting this vague desire as strict
well-defined criteria for the purpose of assessing the quality of a drawing can be done in various ways, leading to
many approaches to graph drawing [6, 18].

One of the most popular approaches is to define an energy function (or a force model), whose minimization
determines the optimal drawing. Several such functions have been proposed, e.g., in [7, 16, 5, 8], each character-
ized by a different set of properties. In this paper we concentrate on one particular form of the energy function,
characterized by being simple and smooth, thus enabling rigorous analytical analysis and a straightforward im-
plementation. This particular function was first applied to graph drawing by Hall [11], and we therefore term it
Hall' senergy.

Most graph drawing methods suffer from lengthy computation times when applied to really large graphs. Sev-
eral publications in the graph drawing conference of 2000 [12, 26, 9, 22] present fast graph drawing algorithms,
but even the fastest of them ([26]) requires about 10 minutes for a typical 105-node graph. As far as we know, no
faster algorithm has been presented since. In fact, a naive implementation of the minimization of Hall’s energy
would also encounter real difficulties on a 105 node graph.

In this paper we suggest an extremely fast algebraic multigrid (AMG) [3, 4, 23, 25] implementation for
minimizing Hall’s energy. It results in typical computation times of 10-20 seconds for 106-node graphs. Actually,
we suggest not only an implementation, but rather a generalization of the original method, allowing for the
drawing of a much larger family of graphs (graphs with masses and negative weights, to be precisely defined
later). Furthermore, the problem that we will be solving is of more fundamental nature, and our algorithm can be
used in areas outside of graph drawing, such as clustering, partitioning, ordering, and image segmentation.

In Section 2 we describe the original method proposed by Hall. In Section 3 we develop ACE, and investigate
its features. Section 4 presents the results of many tests that we have been running, demonstrating the capabilities
of the algorithm. A discussion follows in Section 5. Appendix A addresses related issues of graph-connectivity.
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2 The Eigenprojection Method

In this section we briefly introduce the original method of energy minimization proposed by Hall [11] using a
somewhat different derivation. For a more detailed presentation the reader is referred to [19]. We will call this
method as the eigenprojectionmethod, for reasons that will become clear shortly.

A graph is usually written G(V; E), with V = f 1; : : : ; ng a set of n nodes, and E a set of weighted edges. The
weight of the edge connecting nodes i and j reflects their similarity, and is denoted by wij � 0. Henceforth, we
shall assume wij = 0 for any non-adjacent pair of nodes, and that there are no self-edges (i.e., wii = 0 for all i ).

The degree of node i is defined as di
def=
∑

j wij . The Laplacian, L , is a symmetric positive semi-definite n � n
matrix associated with a graph, which is of fundamental importance to this work. It is defined as

L ij =
{

di i = j
� wij i 6= j

i; j = 1; : : : ; n:

For a connected graph L has one and only one zero eigenvalue, which is associated with the eigenvector 1n
def=

(1; 1; : : : ; 1)T 2 R
n . Throughout the paper we assume, without loss of generality, that G is connected (if it is

not, each connected component can be drawn separately). The usefulness of the Laplacian stems from the fact
that the quadratic form associated with it is just a weighted sum of all the pairwise squared distances:

Lemma 2.1 LetL beann � n Laplacian,andlet x 2 R
n . Then

xT Lx =
1
2

∑

i;j

wij (x i � x j )2:

This lemma can be proved by direct expansion of the sum.

Hall suggested to draw a graph G in one-dimension by minimizing this exact quadratic form, E def= xT Lx ,
to be denoted henceforth the Hall energy. Here, xk is the one-dimensional coordinate associated with the k’th
node. Clearly, E � 0 for any drawing and any graph. Intuitively, the larger the weight of the edge connecting
nodes i and j , the closer x i and x j should be, in order to keep the contribution to the energy small.

Given this function, the energy minimization strategy suggests that the coordinates be determined from:

min
x

xT Lx: (1)

However, this formulation of the graph drawing problem is not enough. The reason is that E is minimized (and
takes the value 0) by solutions of the form x = c � 1n with c being any constant. These solutions are undesirable
from the graph drawing point of view, since they place all the nodes at the same location. These undesirable
solutions can be avoided by requiring the drawing to have a finite variance, Var(x) = 1, meaning that the nodes
are well-scattered. This is equivalent to replacing (1) with

min
x

xT Lx (2)

given xT x = 1

in the subspace xT � 1n = 0:

The choice of a unit variance in the constraint is arbitrary. We could equally well choose a constraint of the form
Var(x) = c, with c being any positive scalar. The choice of c merely determines the length of x and the scale of
E . For, if x0 is a minimizer of (2) with energy E0 = xT

0 Lx 0, then
p

cx0 (with energy cE0) will be a minimizer
of the same problem but with the constraint Var(x) = c.

Throughout the paper we use the convention 0 = � 1 < � 2 � : : : � � n for the eigenvalues of L (which are
known to be real), and denote the corresponding real orthonormal eigenvectors by v1 = (1=

p
n) � 1n ; v2; : : : ; vn .

It can be shown that the minimum of (2) is obtained for x = v2, and the value of E at the minimum is � 2. As
a matter of fact, v2 is a vector of fundamental importance to many fields besides graph drawing; see, e.g., [21].
In fact, it has its own name — theFiedler vector. Appropriately, we term (2) the eigenprojectionproblem. If it
is desired to plot the graph in more dimensions, subsequent eigenvectors may be taken. Thus, a 2-D drawing is
obtained by taking the x-coordinates of the nodes to be given by v2, and the y-coordinates to be given by v3.

Calculating the first few eigenvectors of L is a difficult task that presents a real problem for standard algo-
rithms when n becomes around 105.
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3 The ACE Algorithm

In this section we describe our algorithm, ACE (Algebraic multigrid Computation of Eigenvectors), for solving
the eigenprojection problem (2). In fact, as we shall see, ACE has a broader spectrum of applicability, being
capable of solving a more general problem, the generalizedeigenprojectionproblem.

ACE employs a technique common to the so-called algebraic multigrid (AMG) algorithms [3, 4, 23, 25].
These algorithms progressively express an originally high-dimensional problem in lower and lower dimensions,
using a process called coarsening. On the coarsest scale the problem is solved exactly, and then starts a re�nement
process, during which the solution is progressively projected back into higher and higher dimensions, updated
appropriately at each scale, until the original problem is reproduced. An AMG algorithm should be specifically
designed for a given problem, so that the coarsening process keeps the essence of the problem unchanged, while
the refinement process needs only fast updates to obtain an accurate solution at each scale.

As far as we know, this is the first time that a formal and rigorous AMG algorithm is developed for graph
drawing. Several authors, including some of us, have designed “heuristic” multiscale/multilevel graph drawing
algorithms, i.e., algorithms in which the relationship between the problems on the different scales is not rigorously
defined; see [10, 12, 26, 9]. Another important heuristic multiscale algorithm, from which we draw some of our
inspiration, was developed by Barnard and Simon [1]. It computes the Fiedler vector for use in the partitioning
problem.

In Subsection 3.1 we derive the generalized eigenprojection problem. Our coarsening and refinement tech-
niques are described in Subsections 3.2 and 3.3, respectively. Subsection 3.4 is devoted to the interpolation matrix
— a key concept introduced later on. A schematic summary of the algorithm is given in Subsection 3.5.

3.1 The Generalized Eigenprojection Problem

In contrast to what AMG algorithms strive for, it will become apparent in Subsection 3.2 that the eigenprojec-
tion problem (2) is not preserved during coarsening. Hence, what we do is to define a different problem — the
generalizedeigenprojectionproblem— which is preserved during coarsening, and which contains the eigenpro-
jection problem as a special case. ACE is designed to solve generalized eigenprojection problems, and thus also
eigenprojection problems.

Hence, we dedicate this first part to describe this generalized eigenprojection problem. One possible course of
action would be to formulate it in a purely formal fashion, expressing it as a problem in linear algebra. However,
we take a different approach, and show how the generalized problem is tightly connected to graph theory and
emerges naturally from trying to draw a more general entity, that we shall be calling a PSDgraph.

Definition 3.1 (Positive Semi-Definite (PSD) Graph) A PSD graph is a structureG(V; E; M ) in which:

1. V = f 1; : : : ; ng is a setof n nodes.

2. E is a setof weightededges,wij beingtheweightof theedge connectingnodesi andj . Theweightswij

satisfythefollowing rules:

� TheLaplacianof G is positivesemi-de�nite.

� wii = 0 8i (noself-edges).

� wij = 0 for i; j non-adjacentpair.

3. M is a setof n strictly positivemasses,m i beingthemassof thei ' th node.

A PSD graph differs from a classical graph in two aspects. First, it involves an additional set of numbers — the
masses. Second, we have fewer restrictions on the weights — instead of requiring them to be all positive (see
section 2), we allow negative weights, as long as the Laplacian remains positive semi-definite. For the purpose of
graph drawing, positive weights are interpreted as measuring the similarity between pairs of nodes — the larger
wij the more similar are nodes i and j . In analogy we might interpret negative weights as measuring dissimilarity
— the larger � wij the more dissimilar are nodes i and j . Consequently, in the drawing we would expect nodes
connected by large positive weights to be close to each other, and those connected by large negative weights to be
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distantly located. A zero weight wij thus expresses indifference as to the relative locations of nodes i and j . With
this interpretation in mind, minimization of Hall’s energy, E = xT Lx , still looks like a good drawing strategy.
But why do we need to assure positive semi-definiteness of the Laplacian? Because otherwise we can find x such
that the energy is negative; xT Lx < 0. But then, stretching the coordinates by a constant factor, say by c > 0,
will further decrease the energy, c2xT Lx < xT Lx < 0. Consequently, as x is stretched towards infinity, the
energy will decrease to minus infinity. Physically, such graphs are not interesting, and we do not expect to find
them in real problems. We may safely rule them out.

We are aware of the fact that negative weights might seem unnatural, but we hope that our work might
demonstrate that graphs with negative weights can be as natural and legitimate as conventional ones. Since we
are going to frequently address the issue of negative versus positive weights, we find it convenient to use a special
name for the case of a PSD graph with no negative weights:

Definition 3.2 (All-Positive (AP) Graph) A PSDgraphG(V; E; M ) is calledall-positive if all its weightsare
non-negative.

Due to the positive semi-definiteness of the Laplacian, negative weights will always be inferior to positive
ones. This is an important observation that we now prove:

Claim 3.1 LetG(V; E; M ) bea PSDgraph.Thedegreeof each of its nodesis non-negative.

Proof The diagonal elements of the Laplacian are the degrees, so our claim is just a re-statement of a well known
property of positive semi-definite matrices, saying that all the diagonal elements are non-negative. To prove this
let us assume that one node, say the first, has a negative degree, d1 < 0. Then, if we take x = (1; 0; 0; : : : ; 0)T ,
we get E = 1

2

∑

i;j wij (x i � x j )2 =
∑

j w1j = d1 < 0, and so L cannot be positive semi-definite.
So far, we saw that the function to be minimized, Hall’s energy, did not change if we deal with PSD graphs.

The deviation from Hall’s formulation is in the constraints. To this end we define the massmatrix as follows:

Definition 3.3 (Mass Matrix) LetG(V; E; M ) beann-nodePSDgraph.Then � n diagonalmatrixM , de�ned
by

M ij =
{

0 i 6= j
mi i = j ;

is calledthemass matrix of G.

Using this matrix, we replace problem (2) by weighting sums according to node masses, to obtain:

min
x

xT Lx (3)

given xT M x = 1

in the subspace xT M � 1n = 0:

In the next section we will see that this form of the constraints is a natural outcome of the coarsening process, and
for all practical reasons it suffices to take it as such. Moreover, weighting by masses is proved more natural in
various problems. For example, in many cases minimizing (3), where the masses are taken as the node degrees,
is the preferred strategy, e.g., [24, 19].

Throughout the paper we use the convention 0 = � 1 < � 2 � : : : � � n for the generalized eigenvalues
of (L; M ) (which are known to be real), and denote the corresponding real orthonormal eigenvectors by u1 =
� � 1n ; u2; : : : ; un (� some constant). It can be shown that the minimum of (3) is obtained for x = u2, and the
value of E at the minimum is � 2. Appropriately, we term (3) the generalizedeigenprojectionproblem. If it is
desired to plot the graph in more dimensions, subsequent eigenvectors may be taken. Thus, a 2-D drawing is
obtained by taking the x-coordinates of the nodes to be given by u2, and the y-coordinates to be given by u3.

Since it is obvious from Definition 3.1 that both the Laplacian L and the mass matrix M completely define a
PSD graph,1 we will freely use both G(V; E; M ) and G(L; M ) to denote a PSD graph.

Clearly, the eigenprojection problem is just a special case of the generalized eigenprojection problem, given
that the graph is an AP graph, and given that all the masses are 1.

1Actually, this is trueaslongaswearegivenade�nite order1; : : : ; n of thenodes.
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3.2 The Coarsening Process

During the coarsening, we iteratively represent an initial PSD graph as a sequence smaller and smaller PSD
graphs. Let G be such a PSD graph containing n nodes. A single coarsening step would be to replace G with
another PSD graph Gc, containing only m < n nodes (typically, m � 1

2 n). Of course, the structure of Gc should
be strongly linked to that of G, such that both describe approximately the same entity, but on different scales. One
can think of many clever ways to erect Gc given the structure of G, but we postpone discussion on this topic until
Subsection 3.4. Instead, we establish a general framework for the coarsening, into which later specific methods
can be easily cast.

A key concept we will use is that of an interpolationmatrix, which is the tool that links G and Gc. This is an
n � m matrix P that interpolates m-dimensional vectors y 2 R

m into n-dimensional ones x = Py (x 2 R
n ). If

y is the solution of the generalized eigenprojection problem of Gc, a good interpolation matrix is one for which
x = Py is close enough to the solution of the generalized eigenprojection problem of G. Such interpolation
matrices can be designed in various ways, to be discussed, as already mentioned, in Subsection 3.4. In the
meantime we just state the general definition of P :

Definition 3.4 (Interpolation Matrix) An interpolationmatrixP is ann � m matrix (n > m) such that

1. All elementsarenon-negative: Pij � 0 8i; j .

2. Thesumof each row is one:
∑m

j =1 Pij = 1 8i .

3. P hasa full columnrank: rank(P) = m.

Properties 1 and 2 follow naturally by interpreting the i ’th row of P as a series of weights that shows how to
determine coordinate x i given all the y’s, namely, x i =

∑m
j =1 Pij yj . Property 3 prevents the possibility of two

distinct m-dimensional vectors being interpolated to the same n-dimensional vector. Since 1n = P � 1m (from
property 2), we are thus assured that no “good” drawing of Gc will be interpolated to the undesirable drawing of
G, � � 1n . In Appendix A we show that the fact that P is of full column rank also has a role in issues of graph
connectivity.

The interpolation matrix defines a coarsening step completely: Given a fine n-node PSD graph G(L; M ) and
an n � m interpolation matrix P , we can fully obtain the coarse m-node PSD graph Gc(L c; M c). Put differently,
given L , M and P , we calculate the Laplacian L c, and the mass matrix M c. In the rest of this subsection we
show how we do it: In 3.2.1 we explain how M c is found, and in 3.2.2 we explain how L c is found. Finally, in
3.2.3 we discuss the relations between the generalized eigenprojection problem of Gc and that of G.

Before we start, however, let us introduce a simple example upon which we demonstrate the subsequent
results. Let the fine graph G be the 5-node PSD graph (actually, AP graph) shown in Figure 1. Due to its
structure, this graph will be henceforth dubbed the Eiffel towergraph. Let all the masses of G be 1, so that its
Laplacian and mass matrix are given by:

L =













9 � 5 0 � 4 0
� 5 17 � 2 � 7 � 3
0 � 2 4 � 2 0

� 4 � 7 � 2 19 � 6
0 � 3 0 � 6 9













M =













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













: (4)

Let the interpolation matrix be the 5 � 3 matrix

P =













0:55 0 0:45
0:52 0 0:48
0:3 0:4 0:3
0:45 0 0:55
0:4 0 0:6













: (5)

We would like to remind the reader that for the time being we assume that P is given in advance. Ways to build P
given G(L; M ) are discussed only in Subsection 3.4. In any case, we can easily become convinced that this P is
reasonable, since it fixes the first and third nodes of the resulting 3-node PSD graph Gc (10 and 30 ) as the coarse
version of the “tower base” quadruplet (1,2,4,5), and the second node 20 as the coarse version of the “tower top”.
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Figure 1: The Eiffel tower graph.

3.2.1 Calculating the mass matrix of Gc

The coarse masses are derived by:

Definition 3.5 (Mass law) Let G be a �ne n-nodePSDgraph with massesm1; m2; : : : ; mn , and let P be an
n � m interpolationmatrix. Themassesof thecoarsePSDgraphGc mc

1; mc
2; : : : ; mc

m aregivenby

mc
j =

n
∑

i =1

Pij mi :

In 3.2.3 we will understand why this is a natural definition. In the meantime, let us just say that this law is nothing
but a statement of mass conservation if we interpret the nodes of G as physical masses formed by breaking and re-
fusing (as dictated by the interpolation matrix) pieces of the physical masses from which Gc is built up. Applying
the mass law to the Eiffel tower example, we get:

M c =





2:22 0 0
0 0:4 0
0 0 2:38



 : (6)

Notice that the total mass is indeed conserved, TrM = TrM c = 5. Next, we prove two useful equalities (which
are basically just two variations on the same equality) that stem from the mass law, and will serve us later:

Lemma 3.1 Let P be an n � m interpolation matrix, M be the n � n massmatrix of G, and M c be the
correspondingm � m massmatrixof Gc. Then

M c � 1m = PT M � 1n :

Proof M �1n is just (m1; m2; : : : ; mn )T , and M c �1m is just (mc
1; mc

2; : : : ; mc
m )T . Thus, (M c �1m ) = PT (M �1n )

is merely a matrix form of the mass law.

Lemma 3.2 LetP beann� m interpolationmatrix,M bethen� n massmatrixof G, andM c thecorresponding
m � m massmatrixof Gc. Then,thesumof thei ' th row(or column)of P T M P is justmc

i , or

M c � 1m = PT M P � 1m :

Proof The rows of P all sum up to one, thus P � 1m = 1n . Replacing 1n by P � 1m in Lemma 3.1 completes the
proof.
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3.2.2 Calculating the Laplacian of Gc

The Hall energy of G(L; M ) is E = xT Lx , where x 2 R
n . Substituting x = Py, we can express this energy in

terms of the m-dimensional vector y, E = yT PT LP y. It would then be quite natural to define the Laplacian of
Gc to be

L c = PT LP; (7)

so that the Hall energy of Gc(L c; M c) is E = yT L cy. The next claim shows that this definition is consistent with
our previous definitions.

Claim 3.2 L c is theLaplacianof a PSDgraph.

Proof We have to show that L c is symmetric positive semi-definite, and that the sum of each of its rows is 0. The
symmetry and positive semi-definiteness are imposed only by the fact that L is such:

a. Symmetry: Notice that (L c)T = (PT LP )T = PT L T P = PT LP = L c.

b. Positive semi-definiteness: Given any vector y 2 R
m , let us denote by z 2 R

n the vector Py. Then,
yT L cy = yT PT LP y = zT Lz , which is always non-negative due to the positive semi-definiteness of L .

Proving that the rows of L c sum up to 0 (L c � 1m = 0) requires the use of the special features of P . The statement
∑

j Pij = 1 is equivalent to writing P � 1m = 1n . Then, L c � 1m = PT LP � 1m = PT L � 1n = 0, where the last
step is due to the fact that L � 1n = 0.

Having found both L c and M c, Gc is completely defined and the coarsening step comes to its end. Our
definition of coarsening clarifies why we needed the concept of PSD graphs; negative weights might occur in Gc

even if G is an AP graph. This actually happens in our Eiffel tower example, since we get

L c = PT LP =





0:2788 � 0:296 0:0172
� 0:296 0:64 � 0:344
0:0172 � 0:344 0:3268



 :

This Laplacian, together with the mass matrix (6), defines the 3-node PSD graph Gc shown in Figure 2, with a
negative weight connecting nodes 10 and 30.

1�

2�

3�

0.296 0.344

-0.0172m  = 2.221 m  = 2.383

m  = 0.42

Figure 2: The coarse version of the Eiffel tower graph.

The reason for the emergence of negative weights is delicate. Our definition of the coarse Laplacian, L c =
PT LP , has a tendency to diminish the value of a weight that connects two highly correlated coarse nodes, i.e.,
two coarse nodes that during the interpolation often contribute simultaneously to the same fine nodes. To see
this, let us examine explicitly the expression for the coarse weights. From (7) we obtain L c

ij =
∑

p;q Ppi Pqj L pq .
Considering the definition of L , and separating the cases q = p and q 6= p, we get

L c
ij = �

∑

p;q

Ppi Pqj wpq +
∑

p

Ppi Ppj

∑

q

wpq:
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The coarse weights are obtained from the off-diagonal elements of L c. Using the notion of degree we get

wc
ij = � L c

ij =
∑

p;q

Ppi Pqj wpq �
∑

p

dpPpi Ppj ; i 6= j : (8)

The first term collects the contributions of all pairs hp;qi of fine nodes such that one is interpolated from i and
the other from j . For an AP graph this term is always positive. The second term collects the contributions of
those fine nodes for which both i and j contribute to their interpolation. But now, for any PSD graph this term
is always negative (see Claim 3.1), thus having the tendency to decrease wc

ij . In the Eiffel tower example, nodes
10 and 30 are highly correlated, as can be seen by looking at the first and the third columns of P in (5), which
explains the negative weight of the edge connecting them.

3.2.3 The eigenprojection solutions of G and Gc

Given the coarse graph Gc, its corresponding generalized eigenprojection problem is

min
y

yT L cy (9)

given yT M cy = 1

in the subspace yT M c � 1m = 0;

which we term the coarsegeneralizedeigenprojectionproblem. The issue that needs to be addressed now is the
relationship between this problem and the original generalized eigenprojection problem (3) of the fine graph G.
To bring the two problems into the same dimension we substitute x = Py in (3), obtaining the form

min
y

yT PT LP y (10)

given yT PT M Py = 1

in the subspace yT PT M � 1n = 0;

to be referred to as the restrictedgeneralizedeigenprojectionproblem. In general, the coarse generalized eigen-
projection problem (9) and the restricted generalized eigenprojection problem (10) are different problems. Had
these two problems been identical, then the multiscale method would be optimal in the sense that the structure
of the problem is preserved during coarsening. As we will show in subsection 3.4, one can adopt strategies of
choosing P such that this would indeed be the case. Yet other strategies, that may yield more powerful interpo-
lation matrices, do not posses this property. Nevertheless, we will show that in these cases the coarse generalized
eigenprojection problem (9) is a reasonable approximation of the restricted generalized eigenprojection problem
(10), and consequently the solutions of both problems share much resemblance.

To start with, let us compare the two problems in more detail. Due to the equality L c = PT LP , the function
to be minimized is the same in both forms. Moreover, since M c � 1m = PT M � 1n (see Lemma 3.1), we are
looking for solutions to both of these in the same subspace (i.e., in both we avoid the same undesirable solution).
The only difference between them is in the scaling constraint, since in general M c 6= PT M P . In fact, we can
formulate a simple criterion to decide, given P , whether M c = PT M P or not:

Claim 3.3 Let G(L; M ) be an n-nodePSDgraph, and let P be an n � m interpolationmatrix. Thecoarse
generalizedeigenprojectionproblem(9) becomesidenticalto therestrictedgeneralizedeigenprojectionproblem
(10) if PT M P is diagonal.2

Proof The two problems are identical if M c = PT M P . By Lemma 3.2, the sum of the i ’th row (or column) of
PT M P is just mc

i , so obviously M c = PT M P if PT M P is diagonal.
In the case that M c 6= PT M P we would rather solve the coarse generalized eigenprojection problem than

the restricted generalized eigenprojection problem, i.e., we would prefer working with M c over working with
PT M P . This is for efficiency reasons, since matrix manipulations are always faster for diagonal matrices. So
we work only with M c, and we now justify this by showing that the coarse generalized eigenprojection problem
(9) arises naturally as an approximation of the restricted generalized eigenprojection problem (10).

2As amatterof fact,onecanshow thatP T M P will bediagonalif andonly if P hasexactlyonenon-zeroelementin eachrow.

8



Let us start with the restricted generalized eigenprojection problem. As explained, the off-diagonal elements
of PT M P slow down the computation, and therefore we have an interest in approximating the problem so as
to conceal them. These elements are responsible for the fact that “mixed terms”, i.e., terms that involve the
multiplication yi � yj for i 6= j , appear in the constraint yT PT M Py = 1. Expanding this constraint explicitly

yT PT M Py =
∑

i;j ;p

mpPpi Ppj yi yj ; (11)

we notice that for the mixed terms to be non-zero, Ppi and Ppj should be non-zero simultaneously, implying a
correlation between yi and yj . For any reasonable interpolation matrix, this means that yi and yj are not too
distantly located. A good approximation, therefore, would be to replace each member in the pair yi and yj in (11)
with the average 1

2 (yi + yj ). Thus, we have

yi yj �
1
4

(yi + yj )2 =
1
4

y2
i +

1
4

y2
j +

1
2

yi yj ;

or
yi yj �

1
2

(y2
i + y2

j ):

Substituting this in (11) gives

yT PT M Py �
1
2

∑

i;j ;p

mpPpi Ppj (y2
i + y2

j ) =

=
1
2

∑

i;j ;p

mpPpi Ppj y2
i +

1
2

∑

i;j ;p

mpPpi Ppj y2
j :

The two last terms are actually the same, so that

yT PT M Py �
∑

i;j ;p

mpPpi Ppj y2
i =

∑

i;p

mpPpi y2
i





∑

j

Ppj



 =
∑

i;p

mpPpi y2
i ;

where the last step is due to the fact that the sum of each row of any interpolation matrix is 1. Using further the
mass law, we get

yT PT M Py �
∑

i

y2
i

(

∑

p

mpPpi

)

=
∑

i

mc
i y2

i = yT M cy;

which is just the result that we wanted to prove.

3.3 The Refinement Process

We now keep coarsening further and further until we obtain a coarse PSD graph that is sufficiently small. Typ-
ically, we would stop the process when we have less than 100 nodes (the speed of the ACE algorithm does not
depend on the exact value of this threshold). The drawing of G(L; M ), the coarsest graph, is obtained from the
lowest positive generalized eigenvectors of (L; M ), namely u2; u3; : : :. Actually, we can write the problem as an
eigenvalue problem in the form

B v = �v ; (12)

where B = M � 1
2 LM � 1

2 and v = M
1
2 u, which calls for finding the lowest positive eigenvectors of B . This is a

classical problem that can be handled by numerous algorithms, such as QR and Lanczos (see, e.g., [27]). Due to
the small size of B , finding its eigenvectors takes a negligible fraction of the total running time, which makes the
choice of the algorithm a marginal issue. We chose to use a variation of the power iteration (PI) algorithm (see,
e.g., [27]), which is designed for finding the largest eigenvectors (i.e., those associated with the eigenvalues of
the largest magnitude) of symmetric matrices. For S a symmetric matrix, its largest eigenvector is the asymptotic
direction of Sv0; S2v0; S3v0 : : :, where v0 is an initial guess. The next largest eigenvectors can be found using
the same technique, taking v0 orthogonal to the previously found (larger) eigenvectors. Our problem needs the
lowest eigenvectors rather than the largest ones. We therefore preprocess the matrix B , transforming it into a
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different matrix, B̂ , whose largest eigenvectors are identical to the lowest eigenvectors of B (see also [2]). This
is done using the Gershgorin bound [27], which is a theoretical upper bound for (the absolute value of) the largest
eigenvalue of a matrix. Specifically, for our matrix this bound is given by:

g = max
i



B ii +
∑

j 6= i

jB ij j



 :

The matrix B̂ = g � I � B has the same eigenvectors as B , but in reverse order — the largest eigenvectors
have become the lowest ones. Consequently, it is now suitable for using with the PI algorithm. The pseudocode
of this algorithm is given in Figure 3. The initial guesses û2; û3; : : : are picked at random. PI seems to be a
good algorithm to use here, being intuitive, simple to implement, having guaranteed convergence to the right
eigenvector, and most of all suitable for the refinement process too. Given a certain eigenvector of B , say vi , we
are able to calculate the generalized eigenvector ui from ui = M � 1

2 vi .

Function power iteration (f û2; û3; : : : ; ûpg; L; M )
% {û2; û3; : : : ; ûp} are initial guesses for {u2; u3; : : : ; up}

% L; M are the Laplacian and mass matrix of the graph

% � is the tolerance. We recommend using 10−7 ≤ � ≤ 10−10

v1  M
1
2 � 1n % �rst (known) eigenvector

v1  v1
kv1 k % normalize the �rst eigenvector

B  M � 1
2 LM � 1

2

g  Gershgorin(B )
B̂  g � I � B % reverse order of eigenvalues

for i = 2 to p
v̂i  M

1
2 ûi

v̂i  v̂i

kv̂ik

repeat
vi  v̂i

% orthogonalize against previous eigenvectors

for j = 1 to i � 1
vi  vi � (vT

i vj )vj

end for
v̂i  B̂ � vi % power iteration

v̂i  v̂i

kv̂ik % normalization

until v̂i � vi > 1 � � % halt when direction change is negligible

vi  v̂i

ui  M � 1
2 vi

end for
return u2; : : : ; up

Figure 3: The power iteration algorithm (PI).

Having solved the generalized eigenprojection problem for the coarsest PSD graph directly, we use the so-
lution to accelerate the computation of the corresponding solution for the second coarsest PSD graph. We then
proceed iteratively until the solution of the original problem is obtained.

How is this ‘inductive step’, from the coarser to the finer graph, to be carried out? Well, let Gc(L c; M c) be
a coarse m-node PSD graph, and let uc

2; uc
3; : : : uc

p be the first few solutions of its generalized eigenprojection
problem. For two-dimensional drawings uc

2 and uc
3 are all that we need (thus p = 3), but we do not specify p in

order to keep the algorithm general. Let the next fine n-node PSD graph be G(L; M ), and let u2; u3; : : : ; up be
the first few solutions to its generalized eigenprojection problem. Let also P be the n � m interpolation matrix
connecting G and Gc. The refinement step uses uc

2; uc
3; : : : ; uc

p to obtain a good initial guess for u2; u3; : : : ; up,
thus enabling their fast calculation. The basic idea of the refinement is that for a reasonable interpolation matrix,

10



ûi = Puc
i is a good approximation of ui . We then have to apply an iterative algorithm whose input is the initial

guess ûi and whose output is the generalized eigenvector ui .
The iterative algorithm that we use is the same power iteration that we have already used to solve the coarsest

problem; see Figure 3. In an earlier version of ACE we used the Rayleigh quotient iteration (RQI) technique as an
iterative algorithm for finding extreme eigenvectors. See details in the technical report version of this work [20].
A single iteration of RQI requires many computations (the solution of a system of linear equations), but on the
other hand the convergence rate is extremely fast, and an accurate solution is obtained within a few iterations. In
contrast, a single iteration of PI is very fast, but many more iterations are required. In general, the performance of
both algorithms was quite similar, and we have chosen to use PI for two reasons: First, it is simple to implement
and to track, and second, the convergence to the correct eigenvector is guaranteed (unlike RQI).

3.4 The Interpolation Matrix

At this point, the multiscale scheme is completely defined, and the only thing left unexplained is how we construct
a specific interpolation matrix. More precisely, the question that we address here is: given an n-node PSD graph
G(L; M ) that we would like to represent by a coarser, m-node, PSD graph Gc, what is an appropriate n � m
interpolation matrix P? As already mentioned, there is no unique recipe for this, and we can come up with many
feasible methods. However, for the interpolation matrix to successfully fulfill its role, some guidelines should be
followed:

1. The interpolation matrix should faithfully retain the structure of G, such that the initial guess Puc
i will be

as close as possible to the desired solution ui . The way to achieve this is to construct P such that the Hall
energy associated with Puc

i will be as low as possible. This is the very core of the multiscale scheme, and
thus it is the most important property of the interpolation matrix.

2. The interpolation matrix should be fast to calculate, much faster than solving the generalized eigenprojec-
tion problem of the fine graph directly. Otherwise, we have done nothing in speeding up the calculation.

3. The sparser the interpolation matrix the better, since matrix manipulations will be faster. In a single coars-
ening step the coarse Laplacian L c is determined from the fine one, L , by L c = PT LP . Therefore, to
preserve sparsity of the Laplacian we need a sparse interpolation matrix.

Generally speaking, these guidelines are contradicting. Improving the preservation of the structure of a graph
requires more accurate interpolation, and hence a denser and more complex matrix P . A good interpolation
matrix thus reflects a reasonable compromise regarding the tradeoff between accuracy and simplicity.

We now describe the two methods we have been using to construct P . To be able to compare these algorithms,
we apply them to the Eiffel tower graph, and then compare the interpolated vectors Puc

i to the exact ones ui . The
ui ’s were calculated by solving the generalized eigenprojection problem of the Eiffel tower graph directly. Here
are the first two:

u2 =













0:2947
0:1354

� 0:8835
0:1513
0:3021













u3 =













� 0:6961
� 0:0968
0:0080
0:0777
0:7071













; (13)

and they give rise to the drawing plotted in Figure 4.

3.4.1 Edge contraction interpolation

In this method we interpolate each node of the finer graph from exactly one coarse node. To find an appropriate
interpolation matrix, we first divide the nodes of the fine graph into small disjoint connected subsets, and then
associate the members of each subset with a single coarse node. Consequently, the rows of all the members of the
same subset in the interpolation matrix will be identical, having a single non-zero element (which is, of course, 1).

11
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Figure 4: The drawing of the Eiffel tower example obtained by direct solution of the generalized eigenprojection problem.

In the Eiffel tower example, reasonable subsets would be f 1; 2g, f 3g, and f 4; 5g, giving rise to the interpolation
matrix

Pcon =













1 0 0
1 0 0
0 1 0
0 0 1
0 0 1













;

where the subscript constands for contraction. A well known method to efficiently create such disjoint subsets is
by contracting edges that participate in max-matching (see, e.g., [26, 17]), so that each two contracted nodes are
interpolated from the same single coarse node. Here, in the Eiffel tower example, we have contracted the pairs
f 1; 2g and f 4; 5g.

Using the interpolation matrix Pcon , we obtain a coarse PSD graph Gc characterized by the Laplacian and
mass matrix

L c
con =





16 � 2 � 14
� 2 4 � 2
� 14 � 2 16



 M c
con =





2 0 0
0 1 0
0 0 2



 :

Solving the generalized eigenvalue problem for L c
con and M c

con directly, we get

uc
2 =





0:2236
� 0:8944
0:2236



 uc
3 =





� 0:5
0

0:5



 :

Interpolating back yields the following approximations for the exact u2 and u3:

u0
2 = Pcon uc

2 =













0:2236
0:2236

� 0:8944
0:2236
0:2236













u0
3 = Pcon uc

3 =













� 0:5
� 0:5

0
0:5
0:5













:

To evaluate how good these approximations are, we calculated the angles between them and the exact generalized
eigenvectors (of which only u2 and u3 are given here explicitly; see (13)):

^ (u0
2; u1) = 90� ^ (u0

3; u1) = 90�

^ (u0
2; u2) = 8:9473� ^ (u0

3; u2) = 89:3327�

^ (u0
2; u3) = 89:4852� ^ (u0

3; u3) = 37:9197�

^ (u0
2; u4) = 81:1724� ^ (u0

3; u4) = 83:0270�

^ (u0
2; u5) = 88:6478� ^ (u0

3; u5) = 52:9628�

12



Clearly, u0
2 is close to u2, and is almost orthogonal to all the others. Also, the closest vector to u0

3 is u3, but in a
less significant way; u0

3 almost lies on the plane defined by (u3; u5), with a smaller angle with the u3-axis than
with the u5-axis.

The edge contraction method evidently prefers simplicity over accuracy. On the one hand, P is very sparse
(each row contains exactly one non-zero element) and is easy to compute, but on the other hand, the interpolation
is crude, taking into consideration only the strongest connection of each node. Indeed, we will see in Section
4 that this method is characterized by very fast coarsening, but yields less accurate interpolations during the
refinement.

The simple form of the resulting P gives rise to two elegant properties of the edge contraction algorithm,
which we are about to prove: it preserves the structure of the problem, and it preserves the all-positiveness of the
graph.

Claim 3.4 Let G(L; M ) bean n-nodePSDgraph,and let P bean n � m interpolationmatrix derivedby the
edgecontractionalgorithm.Then,thecoarsegeneralizedeigenprojectionproblem(9) is identicalto therestricted
generalizedeigenprojectionproblem(10).

Proof By Claim 3.3 all we have to show is that P T M P is diagonal for any M . The ij ’th element of P T M P is

(PT M P) ij =
∑

p

mpPpi Ppj :

But P has exactly one non-zero element in each row, so that Ppi Ppj is zero whenever i 6= j . Hence, (P T M P) ij =
0 for i 6= j .
Indeed, it is easy to see that in the Eiffel tower example, M c = PT M P .

Claim 3.5 Let G(L; M ) bean n-nodeAP graph,and let P bean n � m interpolationmatrix derivedby edge
contraction.Then,thecoarsegraphGc will alsobeanAPgraph.

Proof Recall expression (8) for wc
ij , the weights of Gc,

wc
ij =

∑

p;q

Ppi Pqj wpq �
∑

p

dpPpi Ppj ; i 6= j :

The second term vanishes, since in the previous proof we saw that Ppi Ppj = 0 for i 6= j . Therefore, if 8p;q
wpq � 0, then 8i; j wc

ij � 0.
Indeed, the coarse graph Gc of the Eiffel tower is an AP graph.

3.4.2 Weighted interpolation

In this method, inspired by common AMG techniques [3], we interpolate each node of the fine graph from
possibly several coarse nodes. The first stage is to choose a subset of m nodes out of the n in G, such that they
will be the nodes of Gc. Hereinafter, the elements of this subset will be called representatives. We pick the
representatives using a technique that we have developed especially for this purpose. In order to properly explain
this technique, we need further notations, to be defined next.

Let R be the set of representatives, and let V � R be the set of non-representatives (recall that V denotes the
set of all nodes). Since a representative i is uniquely associated with a coarse node, we denote this coarse node
by [i ]. For each non-representative, we define the following two closely related magnitudes:

Definition 3.6 (Partial Degree) Thepartial degree of a non-representativenodei is

d0
i =

∑

k2R

wik :
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Definition 3.7 (Relative Connectivity) Therelative connectivity of a non-representativenodei is

r i =
d0

i

di
;

whered0
i is its partial degreeanddi its degree.

The partial degree of a non-representative is its degree with respect to the representatives only. The relative
connectivity is an important notion that will also be used later on. For an AP graph 0 � r i � 1 8i , but for a
general PSD graph, r i may take on any value.

Function Find Representatives (V; t0; t inc )
% V — the set of all nodes

% t0 — the initial threshold value

% t inc — the amount by which we increase the threshold in each new sweep

Build i 1; i 2; : : : ; i n , a random permutation of the nodes
R  � % Start with an empty set of representatives

thr eshold  t0

for i = 1; : : : ; sweeps
for p = 1; : : : ; n

r p  
∑

k2R wi pk =
∑

k2V wi pk

if r p < thr eshold
R  R[f i pg

end if
end for
thr eshold  thr eshold + t inc

end for
return R

Figure 5: The technique to choose representatives for the weighted interpolation.

Equipped with these definitions, we can now describe the technique by which we pick the representatives;
see Figure 5. The idea is to randomly order the nodes, and then to conduct a predetermined number of sweeps
(typically two or three) along them, choosing as representatives those whose relative connectivity to the already
chosen representatives is below a certain threshold. Naturally, the value of this threshold must be increased before
a new sweep. Typically, we start with a threshold of 0.05, and then increase before each new sweep by 0.05.

Having chosen the representatives, we are now ready to construct the interpolation matrix. We fix the coordi-
nates of the representatives by their values as given in the coarse problem. But then we adopt a different strategy
to the interpolation of the non-representatives. Their coordinates are determined such that the total energy is
minimized. To this end we write the Hall energy as:

E =
1
2

∑

i;j 2V

wij (x i � x j )2 =
1
2

∑

i;j 2R

wij (x i � x j )2 +

+
∑

i 2R

∑

j 2V �R

wij (x i � x j )2 +
1
2

∑

i;j 2V �R

wij (x i � x j )2:

Let k 2 V � R . Differentiating E with respect to xk gives

@E
@xk

= � 2
∑

i 2R

wik (x i � xk ) � 2
∑

i 2V �R

wik (x i � xk ) k 2 V � R: (14)

Equating this to zero and isolating xk , we get

xk =

∑

i 2R wik x i +
∑

i 2V �R wik x i
∑

i 2R wik +
∑

i 2V �R wik
k 2 V � R: (15)
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This equation is satisfied by each of the non-representatives, and therefore (15) actually defines a set of n �
m coupled equations. What we would really like to do, though, is to express the coordinates of each non-
representative by those of the representatives. Indeed, it is possible in theory to work out this set of n � m
equations such as to isolate the n � m coordinates of the non-representatives as functions of the m coordinates
of the representatives. Yet in practice we should avoid it, for two reasons: First, it is overly time consuming.
Second, it will result in a dense interpolation matrix, since each xk (k 2 V � R ) will depend on potentially many
representatives.

Therefore, to avoid lengthy computations and to save sparsity, we would like to approximate (15) by a sim-
pler expression. Such an approximation might be achieved if we ignore, when calculating x k , all other non-
representatives, i.e., by taking them all as if they were located at xk . Due to the local nature of the interpolation,
this is a reasonable approximation. For, if we look at the location of a particular non-representative x k , then all
the other non-representatives will be, on average, equally distributed around it. This assumption is equivalent to
taking the second term in (14) to be zero. Taking a large enough relative connectivity threshold in the process
of selecting representatives, we are assured that the term that we do not neglect (the first term in (14)) is indeed
significant. Substituting x i = xk for i 2 V � R in (15) gives

xk =

∑

i 2R wik x i
∑

i 2R wik
k 2 V � R: (16)

Now, the elements of the interpolation matrix are just

Pi [j ] =
wij

∑

k2R wik
i 2 V � R; j 2 R (17)

Pi [j ] =
{

1 if j = i
0 if j 6= i

i 2 R: (18)

This expression is much simpler and is fast to compute. It also results in a sparser interpolation matrix than we
would have gotten from (15). If the result is still not sparse enough, we can always make it even sparser by
interpolating xk only from the first few most dominant representatives. That is, for each k 2 V � R we define a
set R 0

k � R that includes at most r (a certain small number of) representatives, from which xk is interpolated.
Equations (16) and (17) then become

xk =

∑

i 2R 0
k

wik x i
∑

i 2R 0
k

wik
k 2 V � R; (19)

and
Pi [j ] =

wij
∑

k2R 0
i
wik

i 2 V � R; j 2 R 0
i ; R 0

i � R : (20)

Obviously, if 8k R 0
k = R , then (16) and (17) are reconstructed.

Now we have guaranteed both sparsity and speed of computation, but we are facing a new problem. Equations
(17) and (20) might violate the requirements from an interpolation matrix. If negative weights are present, Pij is
no longer bounded to the region [0; 1], but may take on negative values (and thus also values greater than 1), which
might give rise to negative masses. To assure a proper interpolation matrix, we must take further precautions: Let
Pi be the set of all representatives that are connected to fine node i by positive weights, and let pi be the sum
of those weights. Similarly, let N i be the set of all representatives that are connected to fine node i by negative
weights, and let n i be their sum (obviously, pi + ni =

∑

k2R wik = d0
i ). Then, if we choose R 0

i in (20) as Pi

if the positive weights are dominant (pi � � ni ) and as N i if the negative weights are dominant (pi < � ni ), we
obtain a proper interpolation matrix:

Pi [j ] =







wij =pi j 2 Pi and pi � � ni

wij =ni j 2 N i and pi < � ni

0 otherwise
i 2 V � R: (21)

Of course, if either Pk or Nk is empty, (21) becomes identical to (17). Moreover, P will still be proper if we
choose R 0

i � Pi when pi � � ni and R 0
i � N i when pi < � ni .
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Actually, we have seen that if we start with an AP graph then the positive weights are almost always dominant
during the entire coarsening process — the negative weights that do appear are significantly inferior in number
and in magnitude. We cannot prove this observation directly, but we can support it with two facts: First, recall
that the degree of each node is non-negative (see Claim 3.1), and therefore the total sum of positive weights of a
node is never smaller than the sum of the absolute value of its negative weights. Second, we can prove a weak
version of the all-positiveness preservation:

Claim 3.6 Let G be an n-nodeAP graph, let P be an n � m interpolation matrix derivedby the weighted
interpolation(17), and let r i be therelativeconnectivityof the i ' th node. Then,if 8i 2 V � R r i � 1

2 , the
coarsegraphGc will alsobeanAPgraph.3

Proof Recall expression (8) for wc
[i ][ j ] , the weights of Gc:

wc
[i ][ j ] =

∑

p;q2V

Pp[i ]Pq[j ]wpq �
∑

p2V

dpPp[i ]Pp[j ]; i 6= j :

This equation contains two terms, which we denote by T1 and T2. We start by examining the second term,
T2. Partitioning the sum into a sum over representatives and a sum over non-representatives we get T2 =
�
∑

p2V �R dpPp[i ]Pp[j ] �
∑

p2R dpPp[i ]Pp[j ] . Keeping in mind that each representative is interpolated only
from itself, we know that if p 2 R then Pp[i ]Pp[j ] = 0 for i 6= j . Therefore, the summation over representatives
vanishes and we are left with T2 = �

∑

p2V �R dpPp[i ]Pp[j ] . Similar considerations for T1 gives

T1 = wij +
∑

p;q2V �R

Pp[i ]Pq[j ]wpq +
∑

p2V �R

Pp[j ]wpi +
∑

p2V �R

Pp[i ]wpj :

We now use (17) to write the overall result

wc
[i ][ j ] = T1 + T2 = wij +

∑

p;q2V �R

wpi wqj wpq

d0
pd0

q
+

∑

p2V �R

wpj wpi

d0
p

+

+
∑

p2V �R

wpi wpj

d0
p

�
∑

p2V �R

dp
wpi wpj

d0
pd0

p
=

= wij +
∑

p;q2V �R

wpi wqj wpq

d0
pd0

q
+

∑

p2V �R

wpj wpi

d0
p

(

2 �
dp

d0
p

)

:

The first two terms are obviously non-negative. The third will be non-negative if 8p; 2 � dp=d0
p � 0, which is

just r p � 1
2 .

From the proof it can be seen clearly that 1
2 is a high value for the bound. Due to the first two positive terms of

wc
ij we expect in most of the cases that Gc will be an AP graph even for lower values of the relative connectivity.

This observation is important for practical reasons, since if we keep r i � 1
2 for all non-representatives, we might

be needing a large number of representatives, which would make P very dense.
Clearly, in comparison with the edge contraction algorithm, this algorithm prefers accuracy over simplicity.

P is less sparse, more expensive to compute, but far more accurate. As one might expect, we will see in Section 4
that the weighted interpolation algorithm gives slower coarsening but faster refinement. For large enough graphs,
this algorithm evidently outperforms the edge contraction algorithm, as will become apparent in Section 4.

All these properties are nicely seen when we apply the weighted interpolation algorithm on the Eiffel tower
graph. Taking the nodes 1, 3 and 5 as representatives, such that [1] = 1, [3] = 2, and [5] = 3, the interpolation
matrix that we get is

Pwi =













1 0 0
0:5 0:2 0:3
0 1 0

0:333 0:167 0:5
0 0 1













;

3A similar claimcanbeprovedwhentheinterpolationmatrix is derivedfrom (20),but therelativeconnectivity of nodei shouldbetaken
asr i =

P
k∈R0

i
wik =di .
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where the subscript wi stands for weightedinterpolation. Using this matrix, we obtain a coarse PSD graph Gc

characterized by the Laplacian and mass matrix

L c
w i =





5:3611 � 1:6278 � 3:7333
� 1:6278 3:2744 � 1:6467
� 3:7333 � 1:6467 5:38



 M c
w i =





1:8333 0 0
0 1:3667 0
0 0 1:8



 :

Solving the generalized eigenvalue problem for L c
w i and M c

w i directly, we get

uc
2 =





0:3869
� 1

0:3652



 uc
3 =





� 0:9665
� 0:0205

1



 :

Interpolating back gives the following approximations for the exact u2 and u3:

u0
2 = Pwi uc

2 =













� 0:3869
� 0:103

1
� 0:1449
� 0:3652













u0
3 = Pwi uc

3 =













� 0:9665
� 0:1874
� 0:0205
0:1744

1













:

Again, we calculate the angles between these approximations and the exact generalized eigenvectors:

^ (u0
2; u1) = 90� ^ (u0

3; u1) = 90�

^ (u0
2; u2) = 4:02� ^ (u0

3; u2) = 88:5265�

^ (u0
2; u3) = 89:1129� ^ (u0

3; u3) = 3:6322�

^ (u0
2; u4) = 86:0809� ^ (u0

3; u4) = 89:4198�

^ (u0
2; u5) = 89:8908� ^ (u0

3; u5) = 86:732�

A vast improvement over the edge contraction algorithm is undoubtedly observed, since both u0
2 and u0

3 are very
close to their target values u2 and u3.

3.5 The Algorithm in a Nutshell

Figure 6 outlines of the full ACE algorithm, in the form of recursive function.

Function ACE (L; M )
% L — the Laplacian of the graph

% M — the mass matrix

if dimension (L ) < thr eshold
(u2; u3)  direct solution(L c; M c)

else
Compute the interpolation matrix P
Compute the Laplacian, L c  PT LP
Compute the mass matrix M c

(uc
2; uc

3)  AMG Graph Drawing(L c; M c)
(û2; û3)  (Puc

2; Puc
3)

(u2; u3)  power iteration (f û2; û3g; L; M )
end if
return u2; u3

Figure 6: Structural outline of ACE.
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4 Experimental Results

We have tested our algorithm on a variety of graphs, taken from diverse sources. Here we present some of the
more interesting results, all obtained using a dual processor Intel Xeon 1.7GHz PC. The program is non-parallel
and ran on a single processor. In Subsection 4.1 we compare our two methods for generating an interpolation
matrix. Next, in Subsection 4.2 we study some multiscale properties of the algorithm. In Subsection 4.3 we
show the computation speed for selected graphs. Finally, in Subsection 4.4 we show examples of the drawings
produced by the algorithm.

4.1 Comparing Edge Contraction with Weighted Interpolation

In Subsection 3.4 we introduced two techniques for generating an interpolation matrix, edge contraction and
weighted interpolation. Comparing the two with respect to the speed of ACE, necessitates taking into account
two issues, which we now briefly survey.

Sparsity vs. accuracy

The sparser the interpolation matrix, the sparser the coarse Laplacian P T LP , and thus the faster a single itera-
tion of PI. Also, the more accurate the interpolation matrix, the less PI iterations are required until convergence.
It is difficult therefore to predict which would be faster in the refinement — the sparse but less accurate edge
contraction, or the denser but more accurate weighted interpolation. We anticipate that the structure of homoge-
neous graphs, like that of grids, is satisfactorily preserved even with a sparse interpolation matrix. In these cases
we expect the edge contraction to be faster. However, for non-homogeneous graphs, we expect the weighted
interpolation to be faster.

Coarsening vs. refinement

Our implementation of the edge contraction method does not involve matrix multiplication. Rather, Gc is com-
puted from G by directly contracting edges, while accumulating edge weights and node masses. Thus, with
respect to the coarsening time, edge contraction is much preferable to weighted interpolation. On the other hand,
for non-homogeneous graphs, weighted interpolation exhibits faster refinement times. For relatively loose toler-
ance (large � in PI), not much work is required during the refinement, and we can expect the coarsening time to be
significant, resulting in faster performance of edge contraction. However, as we decrease � , the PI time becomes
more and more dominant, yielding faster performance of weighted interpolation.

Sometimes, one is interested in computing more than two generalized eigenvectors. This might be the case
when carrying out three-dimensional drawings, or in two-dimensional drawings where the coordinates are asso-
ciated with generalized eigenvectors other than u2 and u3; see Figure 10(e-f). In any case, when more than two
generalized eigenvectors are requested, the expected PI time of ACE increases, while the coarsening time does
not change. Consequently, the advantages of weighted interpolation become more salient, which suggests that it
be preferred in such cases.

Demonstration

A demonstration of the above discussion is shown in Figure 7, where the total computation time for both methods
is plotted against the tolerance � for two types of graphs. In the Figure, every point is the average of 10 identical
runs of ACE. In each run we asked ACE to compute the generalized eigenvectors u2 and u3 so as to produce
the standard two-dimensional drawing. For both graphs, the use of weighted interpolation results in 7 different
scales, calling for 7 applications of the PI algorithm. However, the use of edge contraction results in 15 different
scales, making a direct comparison between the two coarsening methods slightly biased. Hence, we implemented
a variant of the algorithm, which, when using edge contraction, applies PI alternately, only on every other scale,
resulting in 8 applications of the PI algorithm.

Grid400 is a simple 400� 400 square grid, containing 160,000 nodes and 319,200 edges. The coarsening
time is independent of the tolerance, being 2.8 seconds for weighted interpolation and 0.5 seconds for edge
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Figure 7: A comparison between the total computation time of ACE using different coarsening methods. The comparison is
made as a function of the tolerance � for two graphs.
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Figure 8: Comparing how well the two different coarsening methods preserve the Hall energy during coarsening. Clearly,
weighted interpolation is superior in this regard, maintaining the structure of the graph more accurately.

contraction. Since Grid400 is quite homogenous, edge contraction outperforms weighted interpolation with
regard to total computation time. For low tolerances (high accuracy) of � = 10� 11 to 10� 12, the 15-scale edge
contraction algorithm becomes inferior to weighted interpolation, due to the high number of PI iterations required
for convergence. The 8-scale edge contraction, though, is clearly the fastest algorithm along the entire tolerance
range.

The mrngA is a finite element graph, comprised of 257,000 nodes and 505,048 edges. The coarsening times
are 7.6 seconds and 1.5 seconds for weighted interpolation and edge contraction, respectively. For high tolerance
(low accuracy) of � = 10� 7 to 10� 9, PI is fast, and the coarsening time is a significant portion of the total
computation time, making edge contraction faster. However, as the tolerance decreases, the PI time becomes
more and more dominant, giving an increasing gap in computation time in favor of weighted interpolation, no
matter which of the edge contraction variants is used. Since the graph is less homogenous, the advantages of
weighted interpolation are reflected more saliently.

Figure 8 exemplifies how well each of the coarsening methods preserves the structure of the original graph. In
the figure, the Hall energy uT

2 Lu 2 of Grid400 and mrngA is plotted against the number of nodes in the different
scales. Note that the Hall energy is non-increasing with the number of nodes, since as the graph is represented
by a smaller number of nodes, there is less flexibility in drawing it. Clearly weighted interpolation succeeds
in producing low energy layouts, even with a very coarse representation. Edge contraction, on the other hand,
cannot achieve the same low levels of energy.
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4.2 Scalability and Multiscale Complexity of the Algorithm

We demonstrate the multiscale aspects of ACE by studying two properties: scalability and multiscale complexity.
The former is assessed by measuring the number of power iterations performed on the finest level for a sequence
of similar graphs with growing dimensions. The second is assessed by measuring the sum of the nonzero weights
in all reduced graphs relative to the number of nonzero weights in the original graph.

Table 1 shows that the number of iterations required in the finest level not only stabilizes, but even decreases
with the growing dimension of the graph. This is a highly desirable property, that stems from the fact that as the
graph becomes larger, more levels are generated during the multiscale process, and the solution in the finest level
is better approximated by the multiscale process.

Table 1: Scalability study of ACE on two types of graphs (regular grid and Sierpinsky fractal). Here, the edge contraction
interpolation was used, and a tolerance of 10−7 was set. For comparison, applying the algorithm only in the finest level
resulted in � 1000 iterations for a 100� 100Grid, and in � 800 iterations for depth-6 Sierpinsky.

Grid
size 100× 100 200× 200 400× 400 600× 600 800× 800 1000× 1000 1200× 1200 1400× 1400
|V| 10,000 40,000 160,000 360,000 640,000 1,000,000 1,440,000 1,960,000
|E| 19,800 79,600 319,200 718,800 1,278,400 1,998,000 2,877,600 3,917,200

# iterations 7 5 3 3 2 2 2 2
(�ne level)

overall comp. 0.093 0.296 1.141 2.562 4.312 6.515 9.718 13.171
time [sec]

Sierpinsky
depth 6 7 8 9 10 11 12 13
|V| 1,095 3,282 9,843 29,526 88,575 265,722 797,163 2,391,486
|E| 2,187 6,561 19,683 59,049 177,147 531,441 1,594,323 4,782,969

# iterations 6 4 3 2 2 2 2 2
(�ne level)

overall comp. 0.016 0.031 0.063 0.156 0.532 1.609 4.797 15.016
time [sec]

When generating a coarse graph the number of nodes decreases but the graph might become denser. It is of
interest, therefore, to study the behavior of the multiscale complexity — the relative number of nonzero weights
— during the coarsening process. An example is shown in Figure 9, where a dramatic decrease in the complexity
is demonstrated. This is the typical behavior observed in all other graphs too.
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Figure 9: Multiscale complexity study of ACE on the mrngB graph (jV j = 1; 017; 253, jEj = 2; 015; 714), taken from
Karypis’ collection at: ftp.cs.umn.edu/users/kumar/Graphs.
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4.3 Speed of Computation for Selected Graphs

Table 2 shows the results of applying ACE to a number of large graphs, each with more than 105 nodes, and it
gives a pretty good feeling for the speed of the algorithm. We used the edge contraction method, and a tolerance
of � = 10� 7, asking ACE to compute the two generalized eigenvectors u2 and u3. In the table, we provide
the size of the graphs, as well as the computation times of the different parts of ACE. The rightmost column of
the table gives the number of PI iterations performed on the finest scale (the most expensive ones) during the
computation of u2.

Graphs of around 105 nodes are drawn in a few seconds; graphs with 106 nodes the algorithm take 10-20
seconds. The largest graph in the table consists of 7:5 � 106 nodes, and the running time is about two minutes.
Thus, ACE exhibits a truly significant improvement in computation time for drawing large graphs. Moreover,
one can use it to draw huge graphs of 106 to 107 nodes, which we have not seen dealt with appropriately in
the literature, in quite a reasonable amount of time. Recently, we have been able to achieve computation times
comparable to ACE, using a different approach to graph drawing; see [13].

Table 2: Running times of the various components of ACE. Data for most graphs were taken from web sources, as indicated
in the table. The graphs grid1000 and grid1415, which are simple square grids, were produced by us.

Graph Size Degree Times[sec] PI iterations
Name |V| |E| min avg. max PI coarsening total (�nest level)
598a† 110,971 741,934 5 13.37 26 3.1 0.8 4 7
ocean‡ 143,437 409,593 1 5.71 6 1 0.6 1.7 4
144† 144,649 1,074,393 4 14.86 26 4.4 1.2 5.7 8

wave§ 156,317 1,059,331 3 13.55 44 3 0.8 3.9 12
m14b† 214,765 1,679,018 4 15.64 40 5.4 1.7 7.3 7
mrngA† 257,000 505,048 2 3.93 4 3.9 1.5 5.5 5
auto† 448,695 3,314,611 4 14.77 37 14.1 4.5 19.1 7

grid1000 1,000,000 1,998,000 2 4.00 4 2.3 3.5 6.2 3
mrngB† 1,017,253 2,015,714 2 3.96 4 14 7.8 22.3 6
grid1415 2,002,225 4,001,620 2 4.00 4 3.7 7.0 11.6 2
mrngC† 4,039,160 8,016,848 2 3.97 4 34.7 24.7 61.6 4
mrngD† 7,533,224 14,991,280 2 3.98 4 61.1 48.7 114.2 4
† Takenfrom Karypis' collectionat: ftp.cs.umn.edu/users/kumar/Graphs
‡ Takenfrom Pellegrini's Scotchgraphcollection,at:

www.labri.u-bordeaux.fr/Equipe/PARADIS/Member/pelegrin/graph
§ Takenfrom theUniversityof GreenwichGraphPartitioningArchive,at:

www.gre.ac.uk/˜c.walshaw/partition

4.4 Drawings of Selected Graphs

Unfortunately, limitations of file size and printing resolution prevent us from bringing here full drawings of really
huge graphs. Yet, for the reader to obtain a visual impression of the kind of drawings produced by ACE, we bring
here a collection of drawings of smaller graphs.

Before discussing specific examples, here are some general comments about the nature of drawings produced
by minimizing Hall’s energy. On the one hand, we are assured to be in a global minimum of the energy, thus
we might expect the global layout of the drawing to faithfully represent the structure of the graph. On the other
hand, there is nothing in Hall’s energy that prevents nodes from being very close. Hence, the drawing might show
dense local arrangement.

These general claims are nicely demonstrated in the examples drawn in Figure 10. Figure 10(a) shows a
folded grid, obtained by taking a square grid, removing the horizontal edges in its central region, and connecting
opposing corners. This graph has high degree of symmetry, which is perfectly reflected in the drawing. Figures
10(b-c) show additional examples of symmetric graphs. Besides the excellent preservation of symmetry in the
two-dimensional layout, these graphs show how ACE handles graphs in which many different “textures” are
embedded. The drawing of Figure 10(d), the 4elt graph, resembles the one shown in the technical report version
of [26], which was obtained using a different graph drawing approach. As to be expected from the previous
discussion, these drawings indeed exhibit rather impressive global layout, but also have locally dense regions.
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(a) (b) (c)

(d) (e) (f)

Figure 10: Examples of ACE drawings. (a) A folded-grid, based on a 100 � 100 rectangular grid.
jV j = 10; 000, jEj = 18; 713. (b) The 4970 graph, taken from [26]. jV j = 4970, jEj = 7400.
(c) The Crack graph, taken from Petit’s collection, at www.lsi.upc.es/˜jpetit/MinLA/Experiments.
jV j = 10; 240, jEj = 30; 380. (d) The 4elt graph, taken from Pellegrini’s Scotch graph collection, at:
www.labri.u-bordeaux.fr/Equipe/PARADIS/Member/pelegrin/graph. jV j = 15; 606, jEj = 45; 878.
(e,f) The dwa512 graph, taken from the Matrix Market, at math.nist.gov/MatrixMarket. jV j = 512, jEj = 1004.
Drawn using f u2; u3g (e) and f u3; u4g (f).

For the vast majority of graphs, associating the coordinates with u2 and u3 gives satisfactory results. For
example, in Figure 10(a-d) the drawings were obtained in this way. In some cases, though, using other generalized
eigenvectors might be beneficial. An example is shown in Figures 10(e-f), of the dwa512 graph, drawn using two
different sets of generalized eigenvectors, f u2; u3g and f u3; u4g, respectively. This graph is comprised of two
grids, strongly connected via their centers. The Fiedler vector u2 is known for its ability to divide the graph
into its natural clusters, as is nicely demonstrated in Figure 10(e). Whereas, Figure 10(f) reveals the grid-based
structure.

5 Discussion

It appears that the time performance of the ACE algorithm is sufficiently good to finally consider building graph
drawing tools for visualizing huge systems, such as the World Wide Web or networks of protein-protein interac-
tions. This remains to be seen.
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Obviously, the quality of the algorithm’s results depends for the appropriateness of Hall’s energy to the
problem of graph drawing. In comparison with many of the other energy functions used in graph drawing, such
as the Kamada-Kawai energy [16], Hall’s energy is distinguished by its simple form. The tractability of the
mathematical analysis that this brings with it yields the vastly improved computation speed and a guaranteed
convergence to a global minimum. All this lends ACE stability and causes its results to be “globally aesthetic”.
On the other hand, local details of the graph might be aesthetically inferior with respect to the results of other,
more complicated, energy functions. For certain applications it might be possible to combine the advantages of
different graph drawing algorithms, obtaining the global layout of a huge graph with ACE, and then use slower
methods to beautify particular regions of interest.

Having ACE quickly determine the coordinates of the nodes of huge graphs poses new challenges for their
actual display. Obviously, graphs with millions of nodes cannot be beneficially displayed or printed as is, and
new display tools would be required. A promising direction is to display only a portion of a graph at any given
time, using various smooth navigation tools. A survey of such methods can be found in, e.g., [14]. Another
interesting approach is to use the coarse graphs produced by ACE during the coarsening process as abstractions
of the original graph for various display purposes. Moreover, in line with the previous paragraph, we could
use ACE to produce the global layout and its abstractions, and then use other algorithms for the instantaneous
drawing of zoomed portions.

In developing the ACE algorithm we restricted ourselves to the problem of graph drawing. However, what
we have been actually doing is to devise an algorithm that quickly finds the extreme generalized eigenvectors of
any problem of the form

Lx = �M x

with L a Laplacian and M a real diagonal positive definite matrix. It seems that these limitations on L and M
can be removed by some modifications to the algorithm.

Problems of the form Lx = �M x, with L a Laplacian and M real diagonal positive definite, appear frequently
also outside graph drawing; for example, in image segmentation [24], partitioning [1], and linear ordering [15],
and we hope that ACE may be found useful by researchers in these and other fields.

Finally, we would like to emphasize that the two algorithms we proposed for calculating an interpolation
matrix should be taken as suggestions only. Since there is no strict criterion for the evaluation of an interpolation
matrix, the algorithms we were using are not necessarily “optimal”, and in fact we have a number of additional
ideas about this issue that require further inspection.
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A Graph Connectivity

Throughout the paper we deliberately did not discuss the issue of graph connectivity, mainly because it would
have distracted the flow of the presentation. Nevertheless, we believe that many readers will find interest in the
question of whether ACE preserves connectivity, i.e., starting with a connected graph, can we obtain disconnected
ones along the coarsening. Superficial observation prescribes that no matter what the original graph is, negative
weights might appear in the coarsening, so that there is a theoretical, if not practical, possibility that weights will
be concealed (i.e., weights of an edge might sum to zero) such that the graph will become disconnected. We
would like to prove that, at least when we start with an AP graph, this can never happen.

A well known fact is that the number of zero eigenvalues of the Laplacian of an AP graph equals to the
number of its connected components; see, e.g., [21]. Unfortunately, this does not hold for PSD graphs with
negative weights. For example, consider the connected PSD graph described by the Laplacian

L =





1 � 2 1
� 2 4 � 2
1 � 2 1



 ;

which has two zero eigenvalues corresponding to the orthogonal vectors v1 = (1; 1; 1)T and v2 = (1; 0; � 1)T .
Nonetheless, it is easy to prove that a PSD graph whose Laplacian has only one zero eigenvalue is connected.
Now we are ready to prove our main result.

Theorem A.1 LetG(L; M ) beann-nodePSDgraph,andlet its LaplacianL haveonlyonezero eigenvalue. Let
Gc(L c; M c) beanm-node(m < n) PSDgraphobtainedbycoarseningG. Then,bothG andGc areconnected.

Proof Since L has a single zero eigenvalue, G is connected. All that is left to prove is that for any interpolation
matrix P , the Laplacian L c = PT LP has only one zero eigenvalue. Let vc be any eigenvector of L c with zero
eigenvalue, so that (vc)T L cvc = 0. Let z be the vector interpolated from vc, z = Pvc. Then (vc)T L cvc =
zT Lz = 0. But L has only one zero eigenvalue, so that z must be of the form c � 1n , and vc satisfies the equation
Pvc = c � 1n . We already know that vc = c � 1m solves this equation, and indeed this is the already familiar
eigenvector of L c corresponding to zero eigenvalue. Another solution of Pvc = c � 1n does not exist because P
is of full column rank. Therefore, L c has only one zero eigenvalue.
Obviously, this theorem can be used inductively to show that if we start with a PSD graph whose Laplacian
possesses only one zero eigenvalue, then each of its successive coarse versions obtained during the coarsening
process are connected.

Since the Laplacian of a connected AP graph has only one zero eigenvalue we deduce:

Corollary A.1 All thegraphsobtainedfroma connectedAPgraphduringcoarseningareconnected.
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