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PREFACE iiiPreface(May 1, 1996)\Some half dozen persons have written technically on combinatory logic, andmost of these, including ourselves, have published something erroneous. Sincesome of our fellow sinners are among the most careful and competent logicianson the contemporary scene, we regard this as evidence that the subject is re-fractory. Thus fullness of exposition is necessary for accuracy; and excessivecondensation would be false economy here, even more than it is ordinarily."Haskell B. Curry and Robert Feysin the Preface to Combinatory Logic [2], May 31, 1956In September of 1987 a meeting was held at the conference on Functional ProgrammingLanguages and Computer Architecture (FPCA '87) in Portland, Oregon, to discuss an un-fortunate situation in the functional programming community: there had come into beingmore than a dozen non-strict, purely functional programming languages, all similar in ex-pressive power and semantic underpinnings. There was a strong consensus at this meetingthat more widespread use of this class of functional languages was being hampered by thelack of a common language. It was decided that a committee should be formed to designsuch a language, providing faster communication of new ideas, a stable foundation for realapplications development, and a vehicle through which others would be encouraged to usefunctional languages. This document describes the result of that committee's e�orts: apurely functional programming language called Haskell, named after the logician HaskellB. Curry whose work provides the logical basis for much of ours.GoalsThe committee's primary goal was to design a language that satis�ed these constraints:1. It should be suitable for teaching, research, and applications, including building largesystems.2. It should be completely described via the publication of a formal syntax and semantics.3. It should be freely available. Anyone should be permitted to implement the languageand distribute it to whomever they please.4. It should be based on ideas that enjoy a wide consensus.5. It should reduce unnecessary diversity in functional programming languages.The committee hopes that Haskell can serve as a basis for future research in languagedesign. We hope that extensions or variants of the language may appear, incorporatingexperimental features.



iv PREFACEThis ReportThis report is the o�cial speci�cation of the Haskell language and should be suitable forwriting programs and building implementations. It is not a tutorial on programming inHaskell such as the `Gentle Introduction' [5], so some familiarity with functional languagesis assumed.Version 1.3 of the report was unveiled in 1996. It corrects some minor errors in the1.2 report and adds important new functionality, especially for input/output. This newfunctionality is summarized in the following section. Unlike earlier versions of Haskell,version 1.3 is described in two separate documents: the Haskell Language Report (thisdocument) and the Haskell Library Report[9].HighlightsLibrariesFor the �rst time, we distinguish between Prelude and Library entities. Entities de�nedby the Prelude, a module named Prelude, are in scope unless explicitly hidden. Entitiesde�ned in library modules are in scope only if that module is explicitly imported. Thelibrary modules speci�ed by Haskell are described in the Haskell Library Report.Monadic I/OMonadic I/O has proven to be more general and in many respects simpler than the stream-based I/O system used in Haskell 1.2. Here are the highlights of the I/O de�nition.� We de�ne a monadic programming model for Haskell. Expressions of type IO a denotecomputations that may engage in I/O before returning an answer of type a.� The IO monad admits computations that fail and recovers from such failures.� We de�ne a new type of handles, to mediate I/O operations on �les and other I/Odevices. Handles are part of the I/O library.� We de�ne input polling and input of characters. In contrast, Haskell 1.2 representedcharacter input as a single String (that is, a lazy list of characters), containing allthe characters available for input throughout the program execution.� Monadic I/O provides an extensible framework capable of incorporating advancedoperating system and GUI interfaces in libraries.� Monadic programming has been made more readable through the introduction of aspecial do syntax.



PREFACE vConstructor ClassesConstructor classes are a natural generalization of the original Haskell type system, sup-porting polymorphism over type constructors. For example, the monadic operators used bythe I/O system have been generalized using constructor classes to arbitrary monads just as(+) has been generalized to arbitrary numeric types using type classes.New Datatype FeaturesA number of enhancements have been made to Haskell type declarations. These include:� Strictness annotations allow structures to be represented in a more e�cient manner.� The components of a constructor may be labeled using �eld names. Selection, con-struction, and update operations which reference �elds by name rather than positionare now available.� The newtype declaration de�nes a type which renames an existing datatype withoutchanging the underlying object representation. Unlike type synonyms, types de�nedby newtype are distinct from their de�nition.Improvements in the Module SystemA number of substantial changes to the module system have been made. Instead of renam-ing, quali�ed names are used to resolve name con
icts. All names are now rede�nable; thereis no longer a PreludeCore module containing names that cannot be reused. Interface �lesare no longer speci�ed by this report; all issues of separate compilation are now left up tothe implementation.The n+k Pattern ControversyFor technical reasons, many people feel that n+k patterns are an incongruous languagedesign feature that should be eliminated from Haskell. On the other hand, they serveas a vehicle for teaching introductory programming, in particular recursion over naturalnumbers. Alternatives to n+k patterns have been explored, but are too premature toinclude in Haskell 1.3. Thus the 1.3 committee decided to retain this feature at presentbut to discourage the use of n+k patterns by Haskell users. This feature may be altered orremoved in future versions of Haskell and should be avoided. Implementors are encouragedto provide a mechanism for users to selectively enable or disable n+k patterns.Haskell ResourcesWe welcome your comments, suggestions, and criticisms on the language or its presentationin the report. A common mailing list for technical discussion of Haskell uses the followingelectronic mail addresses:



vi PREFACE� haskell@dcs.gla.ac.uk forwards mail to all subscribers of the Haskell list.� majordomo@dcs.gla.ac.uk is used to add and remove subscribers from the mailinglist. To subscribe or unsubscribe send messages of the form:subscribe haskellunsubscribe haskellYou may wish to subscribe or remove a mailing address other than the reply-to addresscontained in your mail message. These commands may include an explicit emailaddress:subscribe haskell bjm@wotsamatta.eduPlease do not send subscription requests direct to the mailing list.� Each implementation has an email address for discussions of speci�c Haskell systems.Please send questions and comments regarding these directly to the associated groupsinstead of the global Haskell community.Web pages for Haskell, which includes an on-line version of this report, a tutorial,extensions to Haskell, information about upgrading programs from prior Haskell versions,and information about Haskell implementations can be found at the following sites:� http://www.cs.yale.edu/HTML/YALE/CS/haskell/yale-fp.html� http://www.dcs.gla.ac.uk/fp/software/ghc� http://www.cs.chalmers.se/Haskell� http://www.cs.nott.ac.uk/Research/fpg/haskell.htmlAcknowledgementsWe heartily thank these people for their useful contributions to this report: Richard Bird,Stephen Blott, Tom Blenko, Duke Briscoe, Magnus Carlsson, Chris Clack, Guy Cousineau,Tony Davie, Chris Fasel, Pat Fasel, Andy Gill, Cordy Hall, Thomas Hallgren, Bob Hiromoto,Nic Holt, Ian Holyer, Randy Hudson, Simon B. Jones, Stef Joosten, Mike Joy, Stefan Kahrs,Kent Karlsson, Richard Kelsey, Siau-Cheng Khoo, Amir Kishon, John Launchbury, MarkLillibridge, Sandra Loosemore, Olaf Lubeck, Jim Mattson, Erik Meijer, Randy Michelsen,Rick Mohr, Arthur Norman, Nick North, Paul Otto, Larne Pekowsky, Rinus Plasmeijer, IanPoole, John Robson, Colin Runciman, Patrick Sansom, Lauren Smith, Raman Sundaresh,Satish Thatte, Tom Thomson, Pradeep Varma, Tony Warnock, Stuart Wray, and BonnieYantis. We are especially grateful to past members of the Haskell committee|Arvind, JonFairbairn, Maria M. Guzman, Dick Kieburtz, Rishiyur Nikhil, Mike Reeve, David Wise,and Jonathan Young|for the major contributions they have made to previous versions ofthis report, which we have been able to build upon, and for their support for this latestrevision of Haskell. We also thank those who have participated in the lively discussionsabout Haskell on the FP and Haskell mailing lists.



PREFACE viiFinally, aside from the important foundational work laid by Church, Rosser, Curry, andothers on the lambda calculus, we wish to acknowledge the in
uence of many noteworthyprogramming languages developed over the years. Although it is di�cult to pinpoint theorigin of many ideas, we particularly wish to acknowledge the in
uence of Lisp (and itsmodern-day incarnations Common Lisp and Scheme); Landin's ISWIM; APL; Backus's FP[1]; ML and Standard ML; Hope and Hope+; Clean; Id; Gofer; Sisal; and Turner's seriesof languages culminating in Miranda.1 Without these forerunners Haskell would not havebeen possible.

1Miranda is a trademark of Research Software Ltd.
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11 IntroductionHaskell is a general purpose, purely functional programming language incorporating manyrecent innovations in programming language design. Haskell provides higher-order func-tions, non-strict semantics, static polymorphic typing, user-de�ned algebraic datatypes,pattern-matching, list comprehensions, a module system, a monadic I/O system, and a richset of primitive datatypes, including lists, arrays, arbitrary and �xed precision integers, and
oating-point numbers. Haskell is both the culmination and solidi�cation of many years ofresearch on lazy functional languages.This report de�nes the syntax for Haskell programs and an informal abstract semanticsfor the meaning of such programs. We leave as implementation dependent the ways inwhich Haskell programs are to be manipulated, interpreted, compiled, etc. This includessuch issues as the nature of programming environments and the error messages returned forunde�ned programs (i.e. programs that formally evaluate to ?).1.1 Program StructureIn this section, we describe the abstract syntactic and semantic structure of Haskell, as wellas how it relates to the organization of the rest of the report.1. At the topmost level a Haskell program is a set of modules, described in Section 5.Modules provide a way to control namespaces and to re-use software in large programs.2. The top level of a module consists of a collection of declarations, of which there areseveral kinds, all described in Section 4. Declarations de�ne things such as ordinaryvalues, datatypes, type classes, and �xity information.3. At the next lower level are expressions, described in Section 3. An expression denotesa value and has a static type; expressions are at the heart of Haskell programming \inthe small."4. At the bottom level is Haskell's lexical structure, de�ned in Section 2. The lexicalstructure captures the concrete representation of Haskell programs in text �les.This report proceeds bottom-up with respect to Haskell's syntactic structure.The sections not mentioned above are Section 6, which describes the standard built-in datatypes and classes in Haskell, and Section 7, which discusses the I/O facility inHaskell (i.e. how Haskell programs communicate with the outside world). Also, there areseveral appendices describing the Prelude, the concrete syntax, literate programming, thespeci�cation of derived instances, and pragmas supported by most Haskell compilers.Examples of Haskell program fragments in running text are given in typewriter font:let x = 1z = x+yin z+1



2 1. INTRODUCTION\Holes" in program fragments representing arbitrary pieces of Haskell code are written initalics, as in if e1 then e2 else e3 . Generally the italicized names are mnemonic, such ase for expressions, d for declarations, t for types, etc.1.2 The Haskell KernelHaskell has adopted many of the convenient syntactic structures that have become popularin functional programming. In all cases, their formal semantics can be given via translationinto a proper subset of Haskell called the Haskell kernel. It is essentially a slightly sugaredvariant of the lambda calculus with a straightforward denotational semantics. The trans-lation of each syntactic structure into the kernel is given as the syntax is introduced. Thismodular design facilitates reasoning about Haskell programs and provides useful guidelinesfor implementors of the language.1.3 Values and TypesAn expression evaluates to a value and has a static type. Values and types are not mixed inHaskell. However, the type system allows user-de�ned datatypes of various sorts, and per-mits not only parametric polymorphism (using a traditional Hindley-Milner type structure)but also ad hoc polymorphism, or overloading (using type classes).Errors in Haskell are semantically equivalent to ?. Technically, they are not distinguish-able from nontermination, so the language includes no mechanism for detecting or actingupon errors. Of course, implementations will probably try to provide useful informationabout errors.1.4 NamespacesHaskell provides a lexical syntax for in�x operators (either functions or constructors). Toemphasize that operators are bound to the same things as identi�ers, and to allow the twoto be used interchangeably, there is a simple way to convert between the two: any functionor constructor identi�er may be converted into an operator by enclosing it in backquotes,and any operator may be converted into an identi�er by enclosing it in parentheses. Forexample, x + y is equivalent to (+) x y, and f x y is the same as x �f� y. These lexicalmatters are discussed further in Section 2.There are six kinds of names in Haskell: those for variables and constructors denotevalues; those for type variables, type constructors, and type classes refer to entities relatedto the type system; and module names refer to modules. There are three constraints onnaming:1. Names for variables and type variables are identi�ers beginning with lowercase letters;the other four kinds of names are identi�ers beginning with uppercase letters.2. Constructor operators are operators beginning with \:"; variable operators are oper-ators not beginning with \:".



1.5 Layout 33. An identi�er must not be used as the name of a type constructor and a class in thesame scope.These are the only constraints; for example, Int may simultaneously be the name of amodule, class, and constructor within a single scope.1.5 LayoutIn the syntax given in the rest of the report, declaration lists are always preceded by thekeyword where, let, do, or of, and are enclosed within curly braces ({ }) with the individ-ual declarations separated by semicolons (;). For example, the syntax of a let expressionis: let { decl1 ; decl2 ; ::: ; decln [;] } in expHaskell permits the omission of the braces and semicolons by using layout to convey thesame information. This allows both layout-sensitive and -insensitive styles of coding, whichcan be freely mixed within one program. Because layout is not required, Haskell programscan be straightforwardly produced by other programs.The layout (or \o�-side") rule takes e�ect whenever the open brace is omitted after thekeyword where, let, do, or of. When this happens, the indentation of the next lexeme(whether or not on a new line) is remembered and the omitted open brace is inserted (thewhitespace preceding the lexeme may include comments). For each subsequent line, if itcontains only whitespace or is indented more, then the previous item is continued (nothingis inserted); if it is indented the same amount, then a new item begins (a semicolon isinserted); and if it is indented less, then the declaration list ends (a close brace is inserted).A close brace is also inserted whenever the syntactic category containing the declarationlist ends; that is, if an illegal lexeme is encountered at a point where a close brace would belegal, a close brace is inserted. The layout rule matches only those open braces that it hasinserted; an explicit open brace must be matched by an explicit close brace. Within theseexplicit open braces, no layout processing is performed for constructs outside the braces,even if a line is indented to the left of an earlier implicit open brace.Given these rules, a single newline may actually terminate several declaration lists. Also,these rules permit:f x = let a = 1; b = 2g y = exp2in exp1making a, b and g all part of the same declaration list.To facilitate the use of layout at the top level of a module (an implementation mayallow several modules may reside in one �le), the keyword module and the end-of-�le tokenare assumed to occur in column 0 (whereas normally the �rst column is 1). Otherwise, alltop-level declarations would have to be indented.See also Section B.3.



4 1. INTRODUCTIONAs an example, Figure 1 shows a (somewhat contrived) module and Figure 2 shows theresult of applying the layout rule to it. Note in particular: (a) the line beginning }};pop,where the termination of the previous line invokes three applications of the layout rule,corresponding to the depth (3) of the nested where clauses, (b) the close braces in thewhere clause nested within the tuple and case expression, inserted because the end of thetuple was detected, and (c) the close brace at the very end, inserted because of the column0 indentation of the end-of-�le token.When comparing indentations for standard Haskell programs, a �xed-width font withthis tab convention is assumed: tab stops are 8 characters apart (with the �rst tab stop incolumn 9), and a tab character causes the insertion of enough spaces (always � 1) to alignthe current position with the next tab stop. Particular implementations may alter this ruleto accommodate variable-width fonts and alternate tab conventions, but standard Haskellprograms must observe this rule.



1.5 Layout 5module AStack( Stack, push, pop, top, size ) wheredata Stack a = Empty| MkStack a (Stack a)push :: a -> Stack a -> Stack apush x s = MkStack x ssize :: Stack a -> Integersize s = length (stkToLst s) wherestkToLst Empty = []stkToLst (MkStack x s) = x:xs where xs = stkToLst spop :: Stack a -> (a, Stack a)pop (MkStack x s)= (x, case s of r -> i r where i x = x) -- (pop Empty) is an errortop :: Stack a -> atop (MkStack x s) = x -- (top Empty) is an errorFigure 1: A sample programmodule AStack( Stack, push, pop, top, size ) where{data Stack a = Empty| MkStack a (Stack a);push :: a -> Stack a -> Stack a;push x s = MkStack x s;size :: Stack a -> Integer;size s = length (stkToLst s) where{stkToLst Empty = [];stkToLst (MkStack x s) = x:xs where {xs = stkToLst s}};pop :: Stack a -> (a, Stack a);pop (MkStack x s)= (x, case s of {r -> i r where {i x = x}}) -- (pop Empty) is an error;top :: Stack a -> a;top (MkStack x s) = x -- (top Empty) is an error} Figure 2: Sample program with layout expanded



6 2. LEXICAL STRUCTURE2 Lexical StructureIn this section, we describe the low-level lexical structure of Haskell. Most of the detailsmay be skipped in a �rst reading of the report.2.1 Notational ConventionsThese notational conventions are used for presenting syntax:[pattern] optionalfpatterng zero or more repetitions(pattern) groupingpat1 j pat2 choicepathpat 0i di�erence|elements generated by patexcept those generated by pat 0fibonacci terminal syntax in typewriter fontBecause the syntax in this section describes lexical syntax, all whitespace is expressedexplicitly; there is no implicit space between juxtaposed symbols. BNF-like syntax is usedthroughout, with productions having the form:nonterm ! alt1 j alt2 j : : : j altnCare must be taken in distinguishing metalogical syntax such as j and [: : :] from concreteterminal syntax (given in typewriter font) such as | and [...], although usually the contextmakes the distinction clear.Haskell uses the Latin-ISO-8859-1[6] character set. However, source programs arecurrently biased toward the ASCII character set used in earlier versions of Haskell.2.2 Lexical Program Structureprogram ! f lexeme j whitespace glexeme ! varid j conid j varsym j consym j literal j special j reservedop j reservedidliteral ! integer j 
oat j char j stringspecial ! ( j ) j , j ; j [ j ] j _ j � j { j }whitespace ! whitestu� fwhitestu� gwhitestu� ! whitechar j comment j ncommentwhitechar ! newline j vertab j formfeed j space j tab j nonbrkspcnewline ! a newline (system dependent)space ! a spacetab ! a horizontal tabvertab ! a vertical tab



2.2 Lexical Program Structure 7formfeed ! a form feednonbrkspc ! a non-breaking spacecomment ! -- fanyg newlinencomment ! {- ANYseq fncomment ANYseqg -}ANYseq ! fANY ghfANY g ( {- j -} ) fANY giANY ! any j newline j vertab j formfeedany ! graphic j space j tab j nonbrkspcgraphic ! large j small j digit j symbol j special j : j " j 'small ! ASCsmall j ISOsmallASCsmall ! a j b j : : : j zISOsmall ! �a j �a j â j ~a j �a j �a j � j �c j �e j �e j ê j �ej �� j �� j �̂ j �� j d� j ~n j �o j �o j ô j ~o j �o j �j �u j �u j û j �u j �y j thorn j �y j �large ! ASClarge j ISOlargeASClarge ! A j B j : : : j ZISOlarge ! �A j �A j Â j ~A j �A j �A j � j C� j �E j �E j Ê j �Ej �I j �I j Î j �I j D- j ~N j �O j �O j Ô j ~O j �O j �j �U j �U j Û j �U j �Y j Thornsymbol ! ASCsymbol j ISOsymbolASCsymbol ! ! j # j $ j % j & j * j + j . j / j < j = j > j ? j @j \ j ^ j | j - j ~ISOsymbol ! � j c| j $ j currency j Y= j jj j x j� j c
 j a j �j : j � j R
 j� j � j � j 2 j 3 j� j � j {j � j � j 1j o j � j 14 j 12 j 34 j � j � j �digit ! 0 j 1 j : : : j 9octit ! 0 j 1 j : : : j 7hexit ! digit j A j : : : j F j a j : : : j fCharacters not in the category ANY are not valid in Haskell programs and should resultin a lexing error. Comments are valid whitespace. An ordinary comment begins with twoconsecutive dashes (--) and extends to the following newline. A nested comment beginswith {- and ends with -}; it can be between any two lexemes. All character sequencesnot containing {- nor -} are ignored within a nested comment. Nested comments maybe nested to any depth: any occurrence of {- within the nested comment starts a newnested comment, terminated by -}. Within a nested comment, each {- is matched by acorresponding occurrence of -}. In an ordinary comment, the character sequences {- and-} have no special signi�cance, and, in a nested comment, the sequence -- has no specialsigni�cance. Nested comments are used for compiler pragmas, as explained in Appendix E.If some code is commented out using a nested comment, then any occurrence of {- or -}



8 2. LEXICAL STRUCTUREwithin a string or within an end-of-line comment in that code will interfere with the nestedcomments.2.3 Identi�ers and Operatorsvarid ! (small fsmall j large j digit j ' j _g)hreservedidiconid ! large fsmall j large j digit j ' j _greservedid ! case j class j data j default j deriving j do j elsej if j import j in j infix j infixl j infixr j instancej let j module j newtype j of j then j type j wherespecialid ! as j qualified j hidingAn identi�er consists of a letter followed by zero or more letters, digits, underscores, andsingle quotes. Identi�ers are lexically distinguished into two classes: those that begin witha lower-case letter (variable identi�ers) and those that begin with an upper-case letter(constructor identi�ers). Identi�ers are case sensitive: name, naMe, and Name are threedistinct identi�ers (the �rst two are variable identi�ers, the last is a constructor identi�er).Some identi�ers, here indicated by specialid, have special meanings in certain contexts butcan be used as ordinary identi�ers.varsym ! ( symbol fsymbol j :g )hreservedopiconsym ! (: fsymbol j :g)hreservedopireservedop ! .. j :: j = j \ j | j <- j -> j @ j ~ j =>specialop ! - j !Operator symbols are formed from one or more symbol characters, as de�ned above,and are lexically distinguished into two classes: those that start with a colon (constructors)and those that do not (functions). Some operators, here indicated by specialop, have specialmeanings in certain contexts but can be used as ordinary operators.The sequence -- immediately terminates a symbol; thus +--+ parses as the symbol +followed by a comment.Other than the special syntax for pre�x negation, all operators are in�x, although eachin�x operator can be used in a section to yield partially applied operators (see Section 3.5).All of the standard in�x operators are just prede�ned symbols and may be rebound.Although case is a reserved word, cases is not. Similarly, although = is reserved, == and~= are not. At each point, the longest possible lexeme is read, using a context-independentdeterministic lexical analysis (i.e. no lookahead beyond the current character is required).Any kind of whitespace is also a proper delimiter for lexemes.In the remainder of the report six di�erent kinds of names will be used:varid (variables)



2.4 Numeric Literals 9conid (constructors)tyvar ! varid (type variables)tycon ! conid (type constructors)tycls ! conid (type classes)modid ! conid (modules)Variables and type variables are represented by identi�ers beginning with small letters, andthe other four by identi�ers beginning with capitals; also, variables and constructors havein�x forms, the other four do not. Namespaces are also discussed in Section 1.4.External names may optionally be quali�ed in certain circumstances by prepending themwith a module identi�er. This applies to variable, constructor, type constructor and typeclass names, but not type variables or module names. Quali�ed names are discussed indetail in Section 5.1.2.qvarid ! [modid .] varidqconid ! [modid .] conidqtycon ! [modid .] tyconqtycls ! [modid .] tyclsqvarsym ! [modid .] varsymqconsym ! [modid .] consym2.4 Numeric Literalsdecimal ! digitfdigitgoctal ! octitfoctitghexadecimal! hexitfhexitginteger ! decimalj 0o octal j 0O octalj 0x hexadecimal j 0X hexadecimal
oat ! decimal . decimal [(e j E)[- j +]decimal ]There are two distinct kinds of numeric literals: integer and 
oating. Integer literals maybe given in decimal (the default), octal (pre�xed by 0o or 0O) or hexadecimal notation(pre�xed by 0x or 0X). Floating literals are always decimal. A 
oating literal must containdigits both before and after the decimal point; this ensures that a decimal point cannot bemistaken for another use of the dot character. Negative numeric literals are discussed inSection 3.4. The typing of numeric literals is discussed in Section 6.3.1.



10 2. LEXICAL STRUCTURE2.5 Character and String Literalschar ! ' (graphich' j \i j space j escapeh\&i) 'string ! " fgraphich" j \i j space j escape j gapg "escape ! \ ( charesc j ascii j decimal j o octal j x hexadecimal )charesc ! a j b j f j n j r j t j v j \ j " j ' j &ascii ! ^cntrl j NUL j SOH j STX j ETX j EOT j ENQ j ACKj BEL j BS j HT j LF j VT j FF j CR j SO j SI j DLEj DC1 j DC2 j DC3 j DC4 j NAK j SYN j ETB j CANj EM j SUB j ESC j FS j GS j RS j US j SP j DELcntrl ! ASClarge j @ j [ j \ j ] j ^ j _gap ! \ whitechar fwhitecharg \Character literals are written between single quotes, as in 'a', and strings betweendouble quotes, as in "Hello".Escape codes may be used in characters and strings to represent special characters.Note that a single quote ' may be used in a string, but must be escaped in a character;similarly, a double quote " may be used in a character, but must be escaped in a string.\ must always be escaped. The category charesc also includes portable representations forthe characters \alert" (\a), \backspace" (\b), \form feed" (\f), \new line" (\n), \carriagereturn" (\r), \horizontal tab" (\t), and \vertical tab" (\v).Escape characters for the ISO-8859-1 character set, including control characters such as\^X, are also provided. Numeric escapes such as \137 are used to designate the characterwith decimal representation 137; octal (e.g. \o137) and hexadecimal (e.g. \x37) represen-tations are also allowed. Numeric escapes that are out-of-range of the ISO standard areunde�ned and thus non-portable.Consistent with the \consume longest lexeme" rule, numeric escape characters in stringsconsist of all consecutive digits and may be of arbitrary length. Similarly, the one ambiguousASCII escape code, "\SOH", is parsed as a string of length 1. The escape character \& isprovided as a \null character" to allow strings such as "\137\&9" and "\SO\&H" to beconstructed (both of length two). Thus "\&" is equivalent to "" and the character '\&' isdisallowed. Further equivalences of characters are de�ned in Section 6.1.2.A string may include a \gap"|two backslants enclosing white characters|which isignored. This allows one to write long strings on more than one line by writing a backslantat the end of one line and at the start of the next. For example,"Here is a backslant \\ as well as \137, \\a numeric escape character, and \^X, a control character."String literals are actually abbreviations for lists of characters (see Section 3.7).



113 ExpressionsIn this section, we describe the syntax and informal semantics of Haskell expressions, includ-ing their translations into the Haskell kernel, where appropriate. Except in the case of letexpressions, these translations preserve both the static and dynamic semantics. Some of thenames and symbols used in the syntax are not reserved. These are indicated by the `special'productions in the lexical syntax. Examples include ! (used only in data declarations) andas (used in import declarations).Free variables and constructors used in these translations refer to entities de�ned bythe Prelude. To avoid clutter, we use True instead of Prelude.True or map instead ofPrelude.map. (Prelude.True is a quali�ed name as described in Section 5.1.2.)In the syntax that follows, there are some families of nonterminals indexed by precedencelevels (written as a superscript). Similarly, the nonterminals op, varop, and conop mayhave a double index: a letter l , r , or n for left-, right- or non-associativity and a precedencelevel. A precedence-level variable i ranges from 0 to 9; an associativity variable a variesover fl ; r ; ng. Thus, for exampleaexp ! ( expi+1 qop(a;i) )actually stands for 30 productions, with 10 substitutions for i and 3 for a .exp ! exp0 :: [context =>] type (expression type signature)j exp0expi ! expi+1 [qop( n;i) expi+1 ]j lexpij rexpilexpi ! (lexpi j expi+1 ) qop( l;i) expi+1lexp6 ! - exp7rexpi ! expi+1 qop( r;i) (rexpi j expi+1 )exp10 ! \ apat1 : : : apatn -> exp (lambda abstraction; n � 1 )j let decllist in exp (let expression)j if exp then exp else exp (conditional)j case exp of { alts [;] } (case expression)j do { stmts [;] } (do expression)j fexpfexp ! [fexp] aexp (function application)aexp ! qvar (variable)j gcon (general constructor)j literalj ( exp ) (parenthesized expression)j ( exp1 , : : : , expk ) (tuple; k � 2 )j [ exp1 , : : : , expk ] (list; k � 1 )j [ exp1 [, exp2 ] .. [exp3 ] ] (arithmetic sequence)



12 3. EXPRESSIONSItem Associativitysimple terms, parenthesized terms {irrefutable patterns (~) {as-patterns (@) rightfunction application leftdo, if, let, lambda(\), case (leftwards) rightcase (rightwards) rightin�x operators, prec. 9 as de�ned. . . . . .in�x operators, prec. 0 as de�nedfunction types (->) rightcontexts (=>) {type constraints (::) {do, if, let, lambda(\) (rightwards) rightsequences (..) {generators (<-) {grouping (,) n-aryguards (|) {case alternatives (->) {de�nitions (=) {separation (;) n-aryTable 1: Precedence of expressions, patterns, de�nitions (highest to lowest)j [ exp | qual1 , : : : , qualn ] (list comprehension; n � 1 )j ( expi+1 qop(a;i) ) (left section)j ( qop(a;i) expi+1 ) (right section)j qcon { fbind1 , : : : , fbindn } (labeled construction; n � 0 )j aexpfqcong { fbind1 , : : : , fbindn } (labeled update; n � 1 )As an aid to understanding this grammar, Table 1 shows the relative precedence ofexpressions, patterns and de�nitions, plus an extended associativity. � indicates that theitem is non-associative.The grammar is ambiguous regarding the extent of lambda abstractions, let expressions,and conditionals. The ambiguity is resolved by the metarule that each of these constructsextends as far to the right as possible. As a consequence, each of these constructs has twoprecedences, one to its left, which is the precedence used in the grammar; and one to itsright which is obtained via the metarule. See the sample parses below.



3.1 Errors 13Expressions involving in�x operators are disambiguated by the operator's �xity (seeSection 5.6). Consecutive unparenthesised operators with the same precedence must bothbe either left or right associative to avoid a syntax error. Given an unparenthesised ex-pression \x qop(a;i) y qop(b;j ) z", parentheses must be added around either \x qop(a;i) y"or \y qop(b;j )z" when i = j unless a = b = l or a = b = r.Negation is the only pre�x operator in Haskell; it has the same precedence as the in�x- operator de�ned in the Prelude (see Figure 2, page 62).The separation of function arrows from case alternatives solves the ambiguity whichotherwise arises when an unparenthesised function type is used in an expression, such asthe guard in a case expression.Sample parses are shown below.This Parses asf x + g y (f x) + (g y)- f x + y (- (f x)) + ylet { ... } in x + y let { ... } in (x + y)z + let { ... } in x + y z + (let { ... } in (x + y))f x y :: Int (f x y) :: Int\ x -> a+b :: Int \ x -> ((a+b) :: Int)For the sake of clarity, the rest of this section shows the syntax of expressions withouttheir precedences.3.1 ErrorsErrors during expression evaluation, denoted by?, are indistinguishable from non-termination.Since Haskell is a lazy language, all Haskell types include ?. That is, a value of any typemay be bound to a computation that, when demanded, results in an error. When evalu-ated, errors cause immediate program termination and cannot be caught by the user. ThePrelude provides two functions to directly cause such errors:error :: String -> aundefined :: aA call to error terminates execution of the program and returns an appropriate error indi-cation to the operating system. It should also display the string in some system-dependentmanner. When undefined is used, the error message is created by the compiler.Translations of Haskell expressions use error and undefined to explicitly indicate whereexecution time errors may occur. The actual program behavior when an error occurs is upto the implementation. The messages passed to the error function in these translationsare only suggestions; implementations may choose to display more or less information whenan error occurs.



14 3. EXPRESSIONS3.2 Variables, Constructors, and Operatorsaexp ! qvar (variable)j gcon (general constructor)j literalgcon ! ()j []j (,f,g)j qconqvar ! qvarid j ( qvarsym ) (quali�ed variable)qcon ! qconid j ( qconsym ) (quali�ed constructor)Alphanumeric operators are formed by enclosing an identi�er between grave accents(backquotes). Any variable or constructor may be used as an operator in this way. If funis an identi�er (either variable or constructor), then an expression of the form fun x y isequivalent to x �fun� y . If no �xity declaration is given for �fun� then it defaults to highestprecedence and left associativity (see Section 5.6).Similarly, any symbolic operator may be used as a (curried) variable or constructor byenclosing it in parentheses. If op is an in�x operator, then an expression or pattern of theform x op y is equivalent to (op) x y .Quali�ed names may only be used to reference an imported variable or constructor (seeSection 5.1.2) but not in the de�nition of a new variable or constructor. Thuslet F.x = 1 in F.x -- invalidincorrectly uses a quali�er in the de�nition of x, regardless of the module containing thisde�nition. Quali�cation does not a�ect the nature of an operator: F.+ is an in�x operatorjust as + is.Special syntax is used to name some constructors for some of the built-in types, as foundin the production for gcon and literal . These are described in Section 6.1.An integer literal represents the application of the function fromInteger to the appro-priate value of type Integer. Similarly, a 
oating point literal stands for an application offromRational to a value of type Rational (that is, Ratio Integer).Translation: The integer literal i is equivalent to fromInteger i , where fromIntegeris a method in class Num (see Section 6.3.1).The 
oating point literal f is equivalent to fromRational (n Ratio.% d), wherefromRational is a method in class Fractional and Ratio.% constructs a rationalfrom two integers, as de�ned in the Ratio library. The integers n and d are chosen sothat n=d = f .



3.3 Curried Applications and Lambda Abstractions 153.3 Curried Applications and Lambda Abstractionsfexp ! [fexp] aexp (function application)exp ! \ apat1 : : : apatn -> expFunction application is written e1 e2 . Application associates to the left, so the parenthesesmay be omitted in (f x) y. Because e1 could be a data constructor, partial applicationsof data constructors are allowed.Lambda abstractions are written \ p1 : : : pn -> e , where the pi are patterns. An ex-pression such as \x:xs->x is syntactically incorrect, and must be rewritten as \(x:xs)->x.The set of patterns must be linear|no variable may appear more than once in the set.Translation: The lambda abstraction \ p1 : : : pn -> e is equivalent to\ x1 : : : xn -> case (x1, : : :, xn) of (p1, : : :, pn) -> ewhere the xi are new identi�ers. Given this translation combined with the semantics ofcase expressions and pattern matching described in Section 3.17.3, if the pattern failsto match, then the result is ?.3.4 Operator Applicationsexp ! exp1 qop exp2j - exp (pre�x negation)The form e1 qop e2 is the in�x application of binary operator qop to expressions e1 ande2 . The special form -e denotes pre�x negation, the only pre�x operator in Haskell, and issyntax for negate (e). The binary - operator does not necessarily refer to the de�nition of- in the Prelude; it may be rebound by the module system. However, unary - will alwaysrefer to the negate function de�ned in the Prelude. There is no link between the localmeaning of the - operator and unary negation.Pre�x negation has the same precedence as the in�x operator - de�ned in the Prelude(see Figure 2, page 62). Because e1-e2 parses as an in�x application of the binary oper-ator -, one must write e1(-e2) for the alternative parsing. Similarly, (-) is syntax for(\ x y -> x-y), as with any in�x operator, and does not denote (\ x -> -x)|one mustuse negate for that.Translation: e1 op e2 is equivalent to (op) e1 e2 . -e is equivalent to negate (e).



16 3. EXPRESSIONS3.5 Sectionsaexp ! ( exp qop )j ( qop exp )Sections are written as ( op e ) or ( e op ), where op is a binary operator and e is anexpression. Sections are a convenient syntax for partial application of binary operators.The normal rules of syntactic precedence apply to sections; for example, (*a+b) issyntactically invalid, but (+a*b) and (*(a+b)) are valid. Syntactic associativity, however,is not taken into account in sections; thus, (a+b+) must be written ((a+b)+).Because - is treated specially in the grammar, (- exp) is not a section, but an applica-tion of pre�x negation, as described in the preceding section. However, there is a subtractfunction de�ned in the Prelude such that (subtract exp) is equivalent to the disallowedsection. The expression (+ (- exp)) can serve the same purpose.Translation: For binary operator op and expression e , if x is a variable that doesnot occur free in e , the section (op e) is equivalent to \ x -> x op e, and the section(e op) is equivalent to (op) e.3.6 Conditionalsexp ! if exp1 then exp2 else exp3A conditional expression has the form if e1 then e2 else e3 and returns the value of e2if the value of e1 is True, e3 if e1 is False, and ? otherwise.Translation: if e1 then e2 else e3 is equivalent to:case e1 of { True -> e2 ; False -> e3 }where True and False are the two nullary constructors from the type Bool, as de�nedin the Prelude.3.7 Listsaexp ! [ exp1 , : : : , expk ] (k � 1 )Lists are written [e1, : : :, ek], where k � 1 ; the empty list is written []. Standardoperations on lists are given in the Prelude (see Appendix A, notably Section A.1).



3.8 Tuples 17Translation: [e1, : : :, ek] is equivalent toe1 : (e2 : ( : : : (ek : [])))where : and [] are constructors for lists, as de�ned in the Prelude (see Section 6.1.3).The types of e1 through ek must all be the same (call it t), and the type of the overallexpression is [t] (see Section 4.1.1).3.8 Tuplesaexp ! ( exp1 , : : : , expk ) (k � 2 )Tuples are written (e1, : : :, ek), and may be of arbitrary length k � 2 . Standard opera-tions on tuples are given in the Prelude (see Appendix A).Translation: (e1, : : :, ek) for k � 2 is an instance of a k -tuple as de�ned in thePrelude, and requires no translation. If t1 through tk are the types of e1 through ek ,respectively, then the type of the resulting tuple is (t1, : : :, tk) (see Section 4.1.1).3.9 Unit Expressions and Parenthesized Expressionsaexp ! ()j ( exp )The form (e) is simply a parenthesized expression, and is equivalent to e . The unit expres-sion () has type () (see Section 4.1.1); it is the only member of that type apart from ? (itcan be thought of as the \nullary tuple")|see Section 6.1.5.Translation: (e) is equivalent to e.3.10 Arithmetic Sequencesaexp ! [ exp1 [, exp2 ] .. [exp3 ] ]The form [e1, e2 .. e3] denotes an arithmetic sequence from e1 in increments of e2 � e1of values not greater than e3 (if the increment is nonnegative) or not less than e3 (if theincrement is negative). Thus, the resulting list is empty if the increment is nonnegative ande3 is less than e1 or if the increment is negative and e3 is greater than e1 . If the incrementis zero, an in�nite list of e1 s results if e3 is not less than e1 . If e3 is omitted, the resultis an in�nite list, unless the element type is �nite, in which case the implied limit is thegreatest value of the type if the increment is nonnegative, or the least value, otherwise.



18 3. EXPRESSIONSThe forms [e1.. e3] and [e1..] are similar to those above, but with an implied incre-ment of one.Arithmetic sequences may be de�ned over any type in class Enum, including Char, Int,and Integer (see Figure 5 , page 66 and Section 4.3.3). For example, ['a'..'z'] denotesthe list of lowercase letters in alphabetical order.Translation: Arithmetic sequences satisfy these identities:[ e1.. ] = enumFrom e1[ e1,e2.. ] = enumFromThen e1 e2[ e1..e3 ] = enumFromTo e1 e3[ e1,e2..e3 ] = enumFromThenTo e1 e2 e3where enumFrom, enumFromThen, enumFromTo, and enumFromThenTo are class methodsin the class Enum as de�ned in the Prelude (see Figure 5 , page 66 ).3.11 List Comprehensionsaexp ! [ exp | qual1 , : : : , qualn ] (list comprehension; n � 1 )qual ! pat <- expj let decllistj expA list comprehension has the form [ e | q1, : : :, qn ]; n � 1 ; where the qi quali�ers areeither� generators of the form p <- e, where p is a pattern (see Section 3.17) of type t and eis an expression of type [t]� guards, which are arbitrary expressions of type Bool� local bindings which provide new de�nitions for use in the generated expression e orsubsequent guards and generators.Such a list comprehension returns the list of elements produced by evaluating e in thesuccessive environments created by the nested, depth-�rst evaluation of the generators inthe quali�er list. Binding of variables occurs according to the normal pattern matchingrules (see Section 3.17), and if a match fails then that element of the list is simply skippedover. Thus:[ x | xs <- [ [(1,2),(3,4)], [(5,4),(3,2)] ],(3,x) <- xs ]yields the list [4,2]. If a quali�er is a guard, it must evaluate to True for the previouspattern match to succeed. As usual, bindings in list comprehensions can shadow those inouter scopes; for example:[ x | x <- x, x <- x ] = [ z | y <- x, z <- y]



3.12 Let Expressions 19Translation: List comprehensions satisfy these identities, which may be used as atranslation into the kernel:[ e | b ] = if b then [e] else [][ e | let decllist ] = let decllist in [e][ e | q1, q2 ] = concat [ [ e | q2 ] | q1 ][ e | p <- l ] = let ok p = Trueok _ = Falsein map (\p -> e) (filter ok l)where e ranges over expressions, p ranges over patterns, l ranges over list-valued ex-pressions, b ranges over boolean expressions, q1 and q2 range over non-empty lists ofquali�ers, and ok is a new identi�er not appearing in e, p, or l . These equations uniquelyde�ne list comprehensions. True, False, map, concat, and filter are all as de�ned inthe Prelude.As indicated by the translation of list comprehensions, variables bound by let have fullypolymorphic types while those de�ned by <- are lambda bound and are thus monomorphic(see Section 4.5.3).3.12 Let Expressionsexp ! let decllist in expLet expressions have the general form let { d1 ; : : : ; dn } in e, and introduce a nested,lexically-scoped, mutually-recursive list of declarations (let is often called letrec in otherlanguages). The scope of the declarations is the expression e and the right hand side of thedeclarations. Declarations are described in Section 4. Pattern bindings are matched lazily;an implicit ~ makes these patterns irrefutable. For example,let (x,y) = undefined in edoes not cause an execution-time error until x or y are evaluated.



20 3. EXPRESSIONSTranslation: The dynamic semantics of the expression let { d1 ; : : : ; dn } in e0are captured by this translation: After removing all type signatures, each declarationdi is translated into an equation of the form pi = ei , where pi and ei are patternsand expressions respectively, using the translation in Section 4.4.2. Once done, theseidentities hold, which may be used as a translation into the kernel:let {p1 = e1; ...; pn = en} in e0 = let (~p1,...,~pn) = (e1,...,en) in e0let p = e1 in e0 = case e1 of ~p -> e0where no variable in p appears free in e1let p = e1 in e0 = let p = fix ( \ ~p -> e1) in e0where fix is the least �xpoint operator. Note the use of the irrefutable patterns in thesecond and third rules. This translation does not preserve the static semantics becausethe use of case precludes a fully polymorphic typing of the bound variables. The staticsemantics of the bindings in a let expression are described in Section 4.4.2.3.13 Case Expressionsexp ! case exp of { alts [;] }alts ! alt1 ; : : : ; altn (n � 1 )alt ! pat -> exp [where decllist ]j pat gdpat [where decllist ]gdpat ! gd -> exp [ gdpat ]gd ! | exp0A case expression has the general formcase e of { p1 match1 ; : : : ; pn matchn }where each matchi is of the general form| gi1 -> ei1: : :| gimi -> eimiwhere decllistiEach alternative pi matchi consists of a pattern pi and its matches, matchi , which consistsof pairs of guards gij and bodies eij (expressions), as well as optional bindings (decllisti)that scope over all of the guards and expressions of the alternative. An alternative of theform pat -> exp where decllistis treated as shorthand for: pat | True -> exprwhere decllist



3.14 Do Expressions 21A case expression must have at least one alternative and each alternative must have atleast one body. Each body must have the same type, and the type of the whole expressionis that type.A case expression is evaluated by pattern matching the expression e against the in-dividual alternatives. The matches are tried sequentially, from top to bottom. The �rstsuccessful match causes evaluation of the corresponding alternative body, in the environ-ment of the case expression extended by the bindings created during the matching of thatalternative and by the decllisti associated with that alternative. If no match succeeds, theresult is ?. Pattern matching is described in Section 3.17, with the formal semantics ofcase expressions in Section 3.17.3.3.14 Do Expressionsexp ! do { stmts [;]} (do expression)stmts ! exp [; stmts ]j pat <- exp ; stmtsj let decllist ; stmtsA do expression provides a more readable syntax for monadic programming.Translation: Do expressions satisfy these identities, which may be used as a transla-tion into the kernel:do {e} = edo {e;stmts} = e >> do {stmts}do {p <- e; stmts} = e >>= \p -> do {stmts}where p is failure-freedo {p <- e; stmts} = let ok p = do {stmts}ok _ = zeroin e >>= okwhere p is not failure-freedo {let decllist; stmts} = let decllist in do {stmts}>>, >>=, and zero are operations in the classes Monad and MonadZero, as de�ned in thePrelude.A failure-free pattern is one that can only be refuted by ?. Failure-free patterns arede�ned as follows:� All irrefutable patterns are failure-free (irrefutable patterns are described in Section3.17.1).� If C is the only constructor in its type, then C p1 : : :pn is failure-free when each ofthe pi is failure free.



22 3. EXPRESSIONS� If pattern p is failure-free, then the pattern v@p is failure-free.This translation requires a monad in class MonadZero if any pattern bound by <- is notfailure-free. Otherwise, only class methods from Monad are generated. Type errors resultingfrom patterns which are not failure-free can be corrected by using ~ to force the pattern tobe failure-free.As indicated by the translation of do, variables bound by let have fully polymorphictypes while those de�ned by <- are lambda bound and are thus monomorphic.3.15 Datatypes with Field LabelsA datatype declaration may optionally include �eld labels for some or all of the componentsof the type (see Section 4.2.1). Readers unfamiliar with datatype declarations in Haskellmay wish to read Section 4.2.1 �rst. These �eld labels can be used to construct, select from,and update �elds in a manner that is independent of the overall structure of the datatype.Di�erent datatypes cannot share common �eld labels in the same scope. A �eld labelcan be used at most once in a constructor. Within a datatype, however, a �eld name can beused in more than one constructor provided the �eld has the same typing in all constructors.3.15.1 Field Selectionaexp ! qvarField names are used as selector functions. When used as a variable, a �eld name serves asa function which extracts the �eld from an object. Selectors are top level bindings and sothey may be shadowed by local variables but cannot con
ict with other top level bindings ofthe same name. This shadowing only a�ects selector functions; in other record constructs,�eld labels cannot be confused with ordinary variables.Translation: A �eld label f introduces a selector function de�ned as:f x = case x of { C1 p11 : : : p1k -> e1 ; : : : ; Cn pn1 : : : pnk -> en }where C1 : : : Cn are all the constructors of the datatype containing a �eld labeled withf , pij is y when f labels the j th component of Ci or _ otherwise, and ei is y when some�eld in Ci has a label of f or undefined otherwise.3.15.2 Construction Using Field Labelsaexp ! qcon { fbind1 , : : : , fbindn } (labeled construction; n � 0 )fbind ! var j var = exp



3.15 Datatypes with Field Labels 23A constructor with labeled �elds may be used to construct a value in which the componentsare speci�ed by name rather than by position. Unlike the braces used in declaration lists,these are not subject to layout; the { and } characters must be explicit. (This is also true of�eld updates and �eld patterns.) Construction using �eld names is subject to the followingconstraints:� Only �eld labels declared with the speci�ed constructor may be mentioned.� A �eld name may not be mentioned more than once.� Fields not mentioned are initialized to ?.� When the = exp is omitted and there is a variable with the same name as the �eldlabel in scope, the �eld is initialized to the value of that variable.� A compile-time error occurs when any strict �elds (�elds whose declared types arepre�xed by !) are omitted during construction. Strict �elds are discussed in Sec-tion 4.2.1.Translation: In the binding f = v , the �eld f labels v . Any binding f that omits the= v is expanded to f = f .C { bs } = C (pickC1 bs undefined) : : : (pickCk bs undefined)k is the arity of C .The auxiliary function pickCi bs d is de�ned as follows:If the ith component of a constructor C has the �eld name f , and if f = vappears in the binding list bs, then pickCi bs d is v . Otherwise, pickCi bs dis the default value d .3.15.3 Updates Using Field Labelsaexp ! aexphqconi { fbind1 , : : : , fbindn } (labeled update; n � 1 )Values belonging to a datatype with �eld names may be non-destructively updated. Thiscreates a new value in which the speci�ed �eld values replace those in the existing value.Updates are restricted in the following ways:� All labels must be taken from the same datatype.� At least one constructor must de�ne all of the labels mentioned in the update.� No label may be mentioned more than once.� An execution error occurs when the value being updated does not contain all of thespeci�ed labels.



24 3. EXPRESSIONS� When the = exp is omitted, the �eld is updated to the value of the variable in scopewith the same name as the �eld label.Translation: Using the prior de�nition of pick ,e { bs } = case e ofC1 v1 : : : vk1 -> C (pickC1 bs v1 ) : : : (pickCk bs vk1 )...Cj v1 : : : vkj -> C (pickC1 bs v1 ) : : : (pickCk bs vkj )_ -> error "Update error"where fC1 ; : : : ;Cjg is the set of constructors containing all labels in b, and ki is thearity of Ci .Here are some examples using labeled �elds:data T = C1 {f1,f2 :: Int}| C2 {f1 :: Int,f3,f4 :: Char}Expression TranslationC1 {f1 = 3} C1' 3 undefinedC2 {f1 = 1, f4 = 'A', f3 = 'B'} C2' 1 'B' 'A'x {f1 = 1} case x of C1' _ f2 -> C1' 1 f2C2' _ f3 f4 -> C2' 1 f3 f4The �eld f1 is common to both constructors in T. The constructors C1' and C2' are `hiddenconstructors', see the translation in Section 4.2.1. A compile-time error will result if no singleconstructor de�nes the set of �eld names used in an update, such as x {f2 = 1, f3 = 'x'}.3.16 Expression Type-Signaturesexp ! exp :: [context =>] typeExpression type-signatures have the form e :: t , where e is an expression and t is a type(Section 4.1.1); they are used to type an expression explicitly and may be used to resolveambiguous typings due to overloading (see Section 4.3.4). The value of the expression isjust that of exp. As with normal type signatures (see Section 4.4.1), the declared type maybe more speci�c than the principal type derivable from exp, but it is an error to give a typethat is more general than, or not comparable to, the principal type.3.17 Pattern MatchingPatterns appear in lambda abstractions, function de�nitions, pattern bindings, list compre-hensions, do expressions, and case expressions However, the �rst �ve of these ultimatelytranslate into case expressions, so de�ning the semantics of pattern matching for case ex-pressions is su�cient.



3.17 Pattern Matching 253.17.1 PatternsPatterns have this syntax:pat ! var + integer (successor pattern)pat j pat0pat i ! pat i+1 [qconop( n;i) pat i+1 ]j lpat ij rpat ilpat i ! (lpat i j pat i+1 ) qconop( l;i) pat i+1lpat6 ! - (integer j 
oat) (negative literal)rpat i ! pat i+1 qconop( r;i) (rpat i j pat i+1 )pat10 ! apatj gcon apat1 : : : apatk (arity gcon = k ; k � 1 )apat ! var [ @ apat ] (as pattern)j gcon (arity gcon = 0 )j qcon { fpat1 , : : : , fpatk } (labeled pattern; k � 0 )j literalj _ (wildcard)j ( pat ) (parenthesized pattern)j ( pat1 , : : : , patk ) (tuple pattern; k � 2 )j [ pat1 , : : : , patk ] (list pattern; k � 1 )j ~ apat (irrefutable pattern)fpat ! var = patj varThe arity of a constructor must match the number of sub-patterns associated with it; onecannot match against a partially-applied constructor.All patterns must be linear |no variable may appear more than once.Patterns of the form var@pat are called as-patterns, and allow one to use var as a namefor the value being matched by pat . For example,case e of { xs@(x:rest) -> if x==0 then rest else xs }is equivalent to:let { xs = e } incase xs of { (x:rest) -> if x == 0 then rest else xs }Patterns of the form _ are wildcards and are useful when some part of a pattern is notreferenced on the right-hand-side. It is as if an identi�er not used elsewhere were put in itsplace. For example,case e of { [x,_,_] -> if x==0 then True else False }



26 3. EXPRESSIONSis equivalent to:case e of { [x,y,z] -> if x==0 then True else False }In the pattern matching rules given below we distinguish two kinds of patterns: anirrefutable pattern is: a variable, a wildcard, N apat where N is a constructor de�ned bynewtype and apat is irrefutable (see Section 4.2.3), var@apat where apat is irrefutable, orof the form ~apat (whether or not apat is irrefutable). All other patterns are refutable.3.17.2 Informal Semantics of Pattern MatchingPatterns are matched against values. Attempting to match a pattern can have one of threeresults: it may fail ; it may succeed, returning a binding for each variable in the pattern; orit may diverge (i.e. return ?). Pattern matching proceeds from left to right, and outside toinside, according to these rules:1. Matching a value v against the irrefutable pattern var always succeeds and binds varto v . Similarly, matching v against the irrefutable pattern ~apat always succeeds.The free variables in apat are bound to the appropriate values if matching v againstapat would otherwise succeed, and to ? if matching v against apat fails or diverges.(Binding does not imply evaluation.)Matching any value against the wildcard pattern _ always succeeds and no binding isdone.Operationally, this means that no matching is done on an irrefutable pattern until oneof the variables in the pattern is used. At that point the entire pattern is matchedagainst the value, and if the match fails or diverges, so does the overall computation.2. Matching a value con v against the pattern con pat , where con is a constructor de�nedby newtype, is equivalent to matching v against the pattern pat . That is, constructorsassociated with newtype serve only to change the type of a value.3. Matching ? against a refutable pattern always diverges.4. Matching a non-? value can occur against three kinds of refutable patterns:(a) Matching a non-? value against a pattern whose outermost component is a con-structor de�ned by data fails if the value being matched was created by a di�er-ent constructor. If the constructors are the same, the result of the match is theresult of matching the sub-patterns left-to-right against the components of thedata value: if all matches succeed, the overall match succeeds; the �rst to fail ordiverge causes the overall match to fail or diverge, respectively.(b) Numeric literals are matched using the overloaded == function. The behavior ofnumeric patterns depends entirely on the de�nition of == for the type of objectbeing matched.



3.17 Pattern Matching 27(c) Matching a non-? value x against a pattern of the form n+k (where n is a variableand k is a positive integer literal) succeeds if x � k , resulting in the binding ofn to x � k , and fails if x < k . The behavior of n+k patterns depends entirely onthe underlying de�nitions of >=, fromInteger, and - for the type of the objectbeing matched.5. Matching against a constructor using labeled �elds is the same as matching ordinaryconstructor patterns except that the �elds are matched in the order they are namedin the �eld list. All �elds listed must be declared by the constructor; �elds may notbe named more than once. Fields not named by the pattern are ignored (matchedagainst _).6. The result of matching a value v against an as-pattern var@apat is the result ofmatching v against apat augmented with the binding of var to v . If the match of vagainst apat fails or diverges, then so does the overall match.Aside from the obvious static type constraints (for example, it is a static error to matcha character against a boolean), these static class constraints hold: an integer literal patterncan only be matched against a value in the class Num and a 
oating literal pattern canonly be matched against a value in the class Fractional. and a n+k pattern can only bematched against a value in the class Integral.Many people feel that n+k patterns should not be used. These patterns may be removedor changed in future versions of Haskell. Compilers should support a 
ag which disablesthe use of these patterns.Here are some examples:1. If the pattern [1,2] is matched against [0,?], then 1 fails to match against 0, andthe result is a failed match. But if [1,2] is matched against [?,0], then attemptingto match 1 against ? causes the match to diverge.2. These examples demonstrate refutable vs. irrefutable matching:(\ ~(x,y) -> 0) ? ) 0(\ (x,y) -> 0) ? ) ?(\ ~[x] -> 0) [] ) 0(\ ~[x] -> x) [] ) ?(\ ~[x,~(a,b)] -> x) [(0,1),?] ) (0,1)(\ ~[x, (a,b)] -> x) [(0,1),?] ) ?(\ (x:xs) -> x:x:xs) ? ) ?(\ ~(x:xs) -> x:x:xs) ? ) ?:?:?Additional examples illustrating some of the subtleties of pattern matching may be foundin Section 4.2.3.



28 3. EXPRESSIONS(a) case e of { alts } = (\v -> case v of { alts }) ewhere v is a completely new variable(b) case v of { p1 match1; : : : ; pn matchn }= case v of { p1 match1 ;_ -> : : : case v of {pn matchn_ -> error "No match" }: : :}where each matchi has the form:| gi;1 -> ei;1 ; : : : ; | gi;mi -> ei;mi where { declsi }(c) case v of { p | g1 -> e1 ; : : :| gn -> en where { decls }_ -> e0 }= case e0 of{y -> (where y is a completely new variable)case v of {p -> let { decls } inif g1 then e1 : : : else if gn then en else y_ -> y }}(d) case v of { ~p -> e; _ -> e0 }= (\x01 : : : x0n -> e1 ) (case v of { p-> x1 }) : : : (case v of { p -> xn})where e1 = e [x01=x1; : : : ; x0n=xn]x1; : : : ; xn are all the variables in p; x01; : : : ; x0n are completely new variables(e) case v of { x@p -> e; _ -> e0 }= case v of { p -> ( \ x -> e ) v ; _ -> e0 }(f) case v of { _ -> e; _ -> e0 } = eFigure 3: Semantics of Case Expressions, Part 1Top level patterns in case expressions and the set of top level patterns in function orpattern bindings may have zero or more associated guards. A guard is a boolean expressionthat is evaluated only after all of the arguments have been successfully matched, and itmust be true for the overall pattern match to succeed. The environment of the guard isthe same as the right-hand-side of the case-expression alternative, function de�nition, orpattern binding to which it is attached.The guard semantics have an obvious in
uence on the strictness characteristics of afunction or case expression. In particular, an otherwise irrefutable pattern may be evaluatedbecause of a guard. For example, inf ~(x,y,z) [a] | a==y = 1both a and y will be evaluated by a standard de�nition of ==.



3.17 Pattern Matching 293.17.3 Formal Semantics of Pattern MatchingThe semantics of all pattern matching constructs other than case expressions are de�nedby giving identities that relate those constructs to case expressions. The semantics ofcase expressions themselves are in turn given as a series of identities, in Figures 3{4. Anyimplementation should behave so that these identities hold; it is not expected that it willuse them directly, since that would generate rather ine�cient code.In Figures 3{4: e , e 0 and ei are expressions; g and gi are boolean-valued expressions;p and pi are patterns; v , x , and xi are variables; K and K 0 are algebraic datatype (data)constructors (including tuple constructors); N is a newtype constructor;and k is a character, string, or numeric literal.Rule (b) matches a general source-language case expression, regardless of whether itactually includes guards|if no guards are written, then True is substituted for the guardsgi;j in the matchi forms. Subsequent identities manipulate the resulting case expressioninto simpler and simpler forms.Rule (h) in Figure 4 involves the overloaded operator ==; it is this rule that de�nes themeaning of pattern matching against overloaded constants.These identities all preserve the static semantics. Rules (d), (e), and (j) use a lambdarather than a let; this indicates that variables bound by case are monomorphically typed(Section 4.1.3).



30 3. EXPRESSIONS(g) case v of { K p1 : : : pn -> e; _ -> e0 }= case v of {K x1 : : :xn -> case x1 of {p1 -> : : : case xn of { pn -> e ; _ -> e0 } : : :_ -> e0 }_ -> e0 }at least one of p1; : : : ; pn is not a variable; x1; : : : ; xn are new variables(h) case v of { k -> e; _ -> e0 } = if (v == k) then e else e0(i) case v of { x -> e; _ -> e0 } = case v of { x -> e }(j) case v of { x -> e } = ( \ x -> e ) v(k) case N v of { N p -> e; _ -> e0 }= case v of { p -> e; _ -> e0 }where N is a newtype constructor(l) case ? of { N p -> e; _ -> e0 } = case ? of { p -> e }where N is a newtype constructor(m) case v of { K { f1 = p1 , f2 = p2 , : : : } -> e ; _ -> e0 }= case e0 of {y ->case v of {K { f1 = p1 } ->case v of { K { f2 = p2 , : : : } -> e ; _ -> y };_ -> y }}where f1, f2, : : : are �elds of constructor K; y is a new variable(n) case v of { K { f = p } -> e ; _ -> e0 }= case v of {K p1 : : : pn -> e ; _ -> e0 }where pi is p if f labels the ith component of K, _ otherwise(o) case (K 0 e1 : : : em) of { K x1 : : : xn -> e; _ -> e0 } = e0where K and K 0 are distinct data constructors of arity n and m, respectively(p) case (K e1 : : : en) of { K x1 : : : xn -> e; _ -> e0 }= case e1 of { x01 -> : : : case en of { x0n -> e[x01=x1 : : : x0n=xn] }: : :}where K is a constructor of arity n; x01 : : : x0n are completely new variables(q) case e0 of { x+k -> e; _ -> e0 }= if e0 >= k then let {x0 = e0-k} in e[x0=x] else e0 (x0 is a new variable)Figure 4: Semantics of Case Expressions, Part 2



314 Declarations and BindingsIn this section, we describe the syntax and informal semantics of Haskell declarations.module ! module modid [exports ] where bodyj bodybody ! { [impdecls ;] [[�xdecls ;] topdecls [;]] }j { impdecls [;] }topdecls ! topdecl1 ; : : : ; topdecln (n � 0 )topdecl ! type simpletype = typej data [context =>] simpletype = constrs [deriving ]j newtype [context =>] simpletype = con atype [deriving ]j class [context =>] simpleclass [where { cbody [;] }]j instance [context =>] qtycls inst [where { valdefs [;] }]j default (type1 , : : : , typen) (n � 0 )j decldecls ! decl1 ; : : : ; decln (n � 0 )decl ! signdeclj valdefdecllist ! { decls [;] }signdecl ! vars :: [context =>] typevars ! var1 , : : :, varn (n � 1 )The declarations in the syntactic category topdecls are only allowed at the top level ofa Haskell module (see Section 5), whereas decls may be used either at the top level or innested scopes (i.e. those within a let or where construct).For exposition, we divide the declarations into three groups: user-de�ned datatypes,consisting of type, newtype, and data declarations (Section 4.2); type classes and over-loading, consisting of class, instance, and default declarations (Section 4.3); and nesteddeclarations, consisting of value bindings and type signatures (Section 4.4).Haskell has several primitive datatypes that are \hard-wired" (such as integers and
oating-point numbers), but most \built-in" datatypes are de�ned with normal Haskellcode, using normal type and data declarations. These \built-in" datatypes are describedin detail in Section 6.1.4.1 Overview of Types and ClassesHaskell uses a traditional Hindley-Milner polymorphic type system to provide a static typesemantics [3, 4], but the type system has been extended with type and constructor classes(or just classes) that provide a structured way to introduce overloaded functions.



32 4. DECLARATIONS AND BINDINGSA class declaration (Section 4.3.1) introduces a new type class and the overloadedoperations that must be supported by any type that is an instance of that class. Aninstance declaration (Section 4.3.2) declares that a type is an instance of a class andincludes the de�nitions of the overloaded operations|called class methods|instantiatedon the named type.For example, suppose we wish to overload the operations (+) and negate on types Intand Float. We introduce a new type class called Num:class Num a where -- simplified class declaration for Num(+) :: a -> a -> anegate :: a -> aThis declaration may be read \a type a is an instance of the class Num if there are (over-loaded) class methods (+) and negate, of the appropriate types, de�ned on it."We may then declare Int and Float to be instances of this class:instance Num Int where -- simplified instance of Num Intx + y = addInt x ynegate x = negateInt xinstance Num Float where -- simplified instance of Num Floatx + y = addFloat x ynegate x = negateFloat xwhere addInt, negateInt, addFloat, and negateFloat are assumed in this case to beprimitive functions, but in general could be any user-de�ned function. The �rst declarationabove may be read \Int is an instance of the class Num as witnessed by these de�nitions(i.e. class methods) for (+) and negate."More examples of type and constructor classes can be found in the papers by Jones [7]or Wadler and Blott [11]. The term `type class' was used to describe the original Haskell1.0 type system; `constructor class' was used to describe an extension to the original typeclasses. There is no longer any reason to use two di�erent terms: in this report, `type class'includes both the original Haskell type classes and the constructor classes introduced byJones.4.1.1 Syntax of Typestype ! btype [-> type] (function type)btype ! [btype] atype (type application)atype ! gtyconj tyvarj ( type1 , : : : , typek ) (tuple type; k � 2 )j [ type ] (list type)j ( type ) (parenthesised constructor)



4.1 Overview of Types and Classes 33gtycon ! qtyconj () (unit type)j [] (list constructor)j (->) (function constructor)j (,f,g) (tupling constructors)The syntax for Haskell type expressions is given above. Just as data values are built usingdata constructors, type values are built from type constructors . As with data constructors,the names of type constructors start with uppercase letters.To ensure that they are valid, type expressions are classi�ed into di�erent kinds whichtake one of two possible forms:� The symbol � represents the kind of all nullary type constructors.� If �1 and �2 are kinds, then �1 ! �2 is the kind of types that take a type of kind �1and return a type of kind �2.The main forms of type expression are as follows:1. Type variables, written as identi�ers beginning with a lowercase letter. The kind of avariable is determined implicitly by the context in which it appears.2. Type constructors. Most type constructors are written as identi�ers beginning withan uppercase letter. For example:� Char, Int, Integer, Float, Double and Bool are type constants with kind �.� Maybe and IO are unary type constructors, and treated as types with kind � ! �.� A datatype declaration data T ... adds the type constructor T to the typevocabulary. The kind of T is determined by kind inference.Special syntax is provided for some type constructors:� The trivial type is written as () and has kind �. It denotes the \nullary tuple"type, and has exactly one value, also written () (see Sections 3.9 and 6.1.5).� The function type is written as (->) and has kind � ! � ! �.� The list type is written as [] and has kind � ! �.� The tuple types are written as (,), (,,), and so on. Their kinds are � ! � ! �,� ! � ! � ! �, and so on.Use of the (->) and [] constants is described in more detail below.3. Type application. If t1 is a type of kind �1 ! �2 and t2 is a type of kind �1, thent1 t2 is a type expression of kind �2.4. A parenthesised type, having form (t), is identical to the type t .



34 4. DECLARATIONS AND BINDINGSFor example, the type expression IO a can be understood as the application of a constant,IO, to the variable a. Since the IO type constructor has kind � ! �, it follows that boththe variable a and the whole expression, IO a, must have kind �. In general, a process ofkind inference (see Section 4.6) is needed to determine appropriate kinds for user-de�neddatatypes, type synonyms, and classes.Special syntax is provided to allow certain type expressions to be written in a moretraditional style:1. A function type has the form t1 -> t2 , which is equivalent to the type (->) t1 t2 .Function arrows associate to the right.2. A tuple type has the form (t1, : : :, tk) where k � 2 , which is equivalent to the type(,. . .,) t1 : : : tk where there are k � 1 commas between the parenthesis. It denotesthe type of k-tuples with the �rst component of type t1 , the second component oftype t2 , and so on (see Sections 3.8 and 6.1.4).3. A list type has the form [t] which is equivalent to the type [] t . It denotes the typeof lists with elements of type t (see Sections 3.7 and 6.1.3).Although the tuple, list, and function types have special syntax, they are not di�erent fromuser-de�ned types with equivalent functionality.Expressions and types have a consistent syntax. If ti is the type of expression or patternei , then the expressions (\ e1 -> e2), [e1], and (e1 ; e2) have the types (t1 -> t2), [t1],and (t1 ; t2), respectively.With one exception, the type variables in a Haskell type expression are all assumed tobe universally quanti�ed; there is no explicit syntax for universal quanti�cation [3]. Forexample, the type expression a -> a denotes the type 8 a: a ! a . For clarity, however,we often write quanti�cation explicitly when discussing the types of Haskell programs.The exception referred to is that of the distinguished type variable in a class declaration(Section 4.3.1).4.1.2 Syntax of Class Assertions and Contextscontext ! classj ( class1 , : : : , classn ) (n � 1 )class ! qtycls tyvarsimpleclass ! tycls tyvartycls ! conidtyvar ! varidA class assertion has form qtycls tyvar , and indicates the membership of the parameterizedtype tyvar in the class qtycls. A class identi�er begins with an uppercase letter.



4.1 Overview of Types and Classes 35A context consists of one or more class assertions, and has the general form( C1 u1 ; : : : ; Cn un )where C1 ; : : : ; Cn are class identi�ers, and u1 ; : : : ; un are type variables; the parenthesesmay be omitted when n = 1 . In general, we use c to denote a context and we write c => tto indicate the type t restricted by the context c. The context c must only contain typevariables referenced in t . For convenience, we write c => t even if the context c is empty,although in this case the concrete syntax contains no =>.4.1.3 Semantics of Types and ClassesIn this subsection, we provide informal details of the type system. (Wadler and Blott [11]and Jones [7] discuss type and constructor classes, respectively, in more detail.)The Haskell type system attributes a type to each expression in the program. In general,a type is of the form 8 u: c ) t , where u is a set of type variables u1 ; : : : ; un . In anysuch type, any of the universally-quanti�ed type variables ui which are free in c must alsobe free in t . Furthermore, the context c must be of the form given above in Section 4.1.2;that is, it must have the form (C1 u1 ; : : : ; Cn un) where C1 ; : : : ; Cn are class identi�ers,and u1 ; : : : ; un are type variables.The type of an expression e depends on a type environment that gives types for thefree variables in e, and a class environment that declares which types are instances ofwhich classes (a type becomes an instance of a class only via the presence of an instancedeclaration or a deriving clause).Types are related by a generalization order (speci�ed below); the most general type thatcan be assigned to a particular expression (in a given environment) is called its principaltype. Haskell's extended Hindley-Milner type system can infer the principal type of all ex-pressions, including the proper use of overloaded class methods (although certain ambiguousoverloadings could arise, as described in Section 4.3.4). Therefore, explicit typings (calledtype signatures) are usually optional (see Sections 3.16 and 4.4.1).The type 8 u : c1 ) t1 is more general than the type 8 w : c2 ) t2 if and only ifthere is a substitution S whose domain is u such that:� t2 is identical to S(t1 ).� Whenever c2 holds in the class environment, S(c1 ) also holds.The main point about contexts above is that, given the type 8 u: c ) t , the presence ofC ui in the context c expresses the constraint that the type variable ui may be instantiatedas t 0 within the type expression t only if t 0 is a member of the class C . For example, considerthe function double:double x = x + xThe most general type of double is 8 a: Num a ) a ! a . double may be applied tovalues of type Int (instantiating a to Int), since Int is an instance of the class Num. However,double may not be applied to values of type Char, because Char is not an instance of classNum.



36 4. DECLARATIONS AND BINDINGS4.2 User-De�ned DatatypesIn this section, we describe algebraic datatypes (data declarations), renamed datatypes(newtype declarations), and type synonyms (type declarations). These declarations mayonly appear at the top level of a module.4.2.1 Algebraic Datatype Declarationstopdecl ! data [context =>] simpletype = constrs [deriving ]simpletype ! tycon tyvar1 : : : tyvarkconstrs ! constr1 | : : : | constrn (n � 1 )constr ! con [!] atype1 : : : [!] atypek (arity con = k ; k � 0 )j (btype j ! atype) conop (btype j ! atype) (in�x conop)j con { �elddecl1 , : : : , �elddecln } (n � 1 )�elddecl ! vars :: (type j ! atype)deriving ! deriving (dclass j (dclass1, : : : , dclassn))(n � 0 )dclass ! qtyclsThe precedence for constr is the same as that for expressions|normal constructor appli-cation has higher precedence than in�x constructor application (thus a : Foo a parses asa : (Foo a)).An algebraic datatype declaration introduces a new type and constructors over thattype and has the form:data c => T u1 : : : uk = K1 t11 : : : t1k1 | � � � | Kn tn1 : : : tnknwhere c is a context. This declaration introduces a new type constructor T with constituentdata constructors K1 ; : : : ; Kn whose types are given by:Ki :: 8 u1 : : : uk : ci ) ti1 ! � � � ! tiki ! (T u1 : : : uk )where ci is the largest subset of c that constrains only those type variables free in the typesti1 ; : : : ; tiki . The type variables u1 through uk must be distinct and may appear in c andthe tij ; it is a static error for any other type variable to appear in c or on the right-hand-side.The new type constant T has a kind of the form �1 ! : : :! �k ! � where the kinds �i ofthe argument variables ui are determined by kind inference as described in Section 4.6. Thismeans that T may be used in type expressions with anywhere between 0 and k arguments.For example, the declarationdata Eq a => Set a = NilSet | ConsSet a (Set a)introduces a type constructor Set of kind � ! �, and constructors NilSet and ConsSetwith types NilSet :: 8 a: Set aConsSet :: 8 a: Eq a ) a ! Set a ! Set a



4.2 User-De�ned Datatypes 37In the example given, the overloaded type for ConsSet ensures that ConsSet can onlybe applied to values whose type is an instance of the class Eq. The context in the datadeclaration has no other e�ect whatsoever.The visibility of a datatype's constructors (i.e. the \abstractness" of the datatype) out-side of the module in which the datatype is de�ned is controlled by the form of the datatype'sname in the export list as described in Section 5.5.The optional deriving part of a data declaration has to do with derived instances, andis described in Section 4.3.3.Labeled FieldsA data constructor of arity k creates an object with k components. These components arenormally accessed positionally as arguments to the constructor in expressions or patterns.For large datatypes it is useful to assign �eld labels to the components of a data object. Thisallows a speci�c �eld to be referenced independently of its location within the constructor.A constructor de�nition in a data declaration using the { } syntax assigns labels to thecomponents of the constructor. Constructors using �eld labels may be freely mixed withconstructors without them. A constructor with associated �eld labels may still be used asan ordinary constructor; features using labels are simply a shorthand for operations usingan underlying positional constructor. The arguments to the positional constructor occur inthe same order as the labeled �elds. For example, the declarationdata C = F { f1,f2 :: Int, f3 :: Bool}de�nes a type and constructor identical to the one produced bydata C = F Int Int BoolOperations using �eld labels are described in Section 3.15. A data declaration may usethe same �eld label in multiple constructors as long as the typing of the �eld is the samein all cases after type synonym expansion. A label cannot be shared by more than onetype in scope. Field names share the top level namespace with ordinary variables and classmethods and must not con
ict with other top level names in scope.Strictness FlagsWhenever a data constructor is applied, each argument to the constructor is evaluated ifand only if the corresponding type in the algebraic datatype declaration has a strictness
ag (!).



38 4. DECLARATIONS AND BINDINGSTranslation: A declaration of the formdata c => T u1 : : : uk = : : : | K s1 : : : sn | : : :where each si is either of the form !ti or ti , is replaced by a declaration of the formdata c => T u1 : : : uk = : : : | K 0 t1 : : : tn | : : :each occurrence of K in a pattern is replaced by K 0, where K 0 is a `hidden constructor'not directly available to the programmer. Each occurrence of K in an expression isreplaced with (\ x1 : : : xn -> ( ((K 0 op1 x1 ) op2 x2 ) : : : ) opn xn)where opi is the lazy apply function $ if si is of the form ti , and opi is the strict applyfunction `strict` (see Section 6.2.7) if si is of the form ! ti .Strictness 
ags may require the explicit inclusion of an Eval context in a data declaration(see Section 6.2.7). This occurs precisely when the context of a strict function used in theabove translation propagates to a type variable. For example, indata (Eval a) => Pair a b = MakePair !a bthe class assertion (Eval a) is required by the use of strict in the translation of theconstructor MakePair. This context must be explicitly supplied by the programmer. TheEval context may be implied by a more general one; for example, the Num class includesEval as a superclass to avoid mentioning Eval in the following:data (Integral a) => Rational a = !a :% !a -- Rational library4.2.2 Type Synonym Declarationstopdecl ! type simpletype = typesimpletype ! tycon tyvar1 : : : tyvarkA type synonym declaration introduces a new type that is equivalent to an old type. It hasthe form type T u1 : : : uk = twhich introduces a new type constructor, T . The type (T t1 : : : tk ) is equivalent to the typet [t1 =u1 ; : : : ; tk=uk ]. The type variables u1 through uk must be distinct and are scopedonly over t ; it is a static error for any other type variable to appear in t . The kind ofthe new type constructor T is of the form �1 ! : : : ! �k ! � where the kinds �i of thearguments ui and � of the right hand side t are determined by kind inference as describedin Section 4.6. For example, the following de�nition can be used to provide an alternativeway of writing the list type constructor:



4.2 User-De�ned Datatypes 39type List = []Type constructor symbols T introduced by type synonym declarations cannot be partiallyapplied; it is a static error to use T without the full number of arguments.Although recursive and mutually recursive datatypes are allowed, this is not so for typesynonyms, unless an algebraic datatype intervenes. For example,type Rec a = [Circ a]data Circ a = Tag [Rec a]is allowed, whereastype Rec a = [Circ a] -- invalidtype Circ a = [Rec a] --is not. Similarly, type Rec a = [Rec a] is not allowed.4.2.3 Datatype RenamingsType synonyms are a strictly syntactic mechanism to make type signatures more readable.A synonym and its de�nition are completely interchangeable.topdecl ! newtype [context =>] simpletype = con atype [deriving ]simpletype ! tycon tyvar1 : : : tyvarkA declaration of the form newtype c => T u1 : : : uk = N tis valid if and only if data c => T u1 : : : uk = N !tis valid (see Section 4.2.1). The type ( T u1 : : : uk ) renames the datatype t .A newtype declaration introduces a new type whose representation is the same as anexisting type. It di�ers from a type synonym in that it creates a distinct type which must beexplicitly coerced to or from the original type. The constructor N in an expression coercesa value from type t to type ( T u1 : : : uk ). Using N in a pattern coerces a value fromtype ( T u1 : : : uk) to type t . These coercions are free of any execution time overhead;newtype does not change the underlying representation of an object.New instances (see Section 4.3.2) can be de�ned for a type de�ned by newtype but maynot be de�ned for a type synonym. A type created by newtype di�ers from an algebraicdatatype in that the representation of an algebraic datatype has an extra level of indirection.This di�erence makes access to the representation less e�cient. The di�erence is re
ectedin di�erent rules for pattern matching (see Section 3.17). Unlike algebraic datatypes, thenewtype constructor N is unlifted, so that N ? is the same as ?.The following examples clarify the di�erences between data (algebraic datatypes), type(type synonyms), and newtype (renaming types.) Given the declarations



40 4. DECLARATIONS AND BINDINGSdata D1 = D1 Intdata D2 = D2 !Inttype S = Intnewtype N = N Intd1 (D1 i) = 42d2 (D2 i) = 42s i = 42n (N i) = 42the expressions ( d1 ? ), ( d2 ? ) and (d2 (D2? ) ) are all equivalent to ?, whereas( n ? ), ( n ( N ? ) ), ( d1 ( D1 ? ) ) and ( s ? ) are all equivalent to 42. In partic-ular, ( N ? ) is equivalent to ? while ( D1 ? ) is not equivalent to ?.The optional deriving part of a newtype declaration is treated in the same way as thederiving component of a data declaration; see Section 4.3.3.4.3 Type Classes and Overloading4.3.1 Class Declarationstopdecl ! class [context =>] simpleclass [where { cbody [;] }]cbody ! [ cmethods [ ; cdefaults ] ]cmethods ! signdecl1 ; : : : ; signdecln (n � 1 )cdefaults ! valdef1 ; : : : ; valdefn (n � 1 )A class declaration introduces a new class and the operations (class methods) on it. A classdeclaration has the general form:class c => C u where { v1 :: c1 => t1 ; : : : ; vn :: cn => tn ;valdef1 ; : : : ; valdefm }This introduces a new class name C ; the type variable u is scoped only over the class methodsignatures in the class body. The context c speci�es the superclasses of C , as describedbelow; the only type variable that may be referred to in c is u . The class declaration intro-duces new class methods v1 ; : : : ; vn , whose scope extends outside the class declaration,with types: vi :: 8u; w: (Cu; ci)) tiThe ti must mention u ; they may mention type variables w other than u , and the type ofvi is polymorphic in both u and w . The ci may constrain only w ; in particular, the ci maynot constrain u . For example:class Foo a whereop :: Num b => a -> b -> aHere the type of op is 8 a; b: (Foo a; Num b) ) a ! b ! a .Default class methods for any of the vi may be included in the class declaration as anormal valdef ; no other de�nitions are permitted. The default class method for vi is usedif no binding for it is given in a particular instance declaration (see Section 4.3.2).



4.3 Type Classes and Overloading 41Class methods share the top level namespace with variable bindings and �eld names;they must not con
ict with other top level bindings in scope. That is, a class method cannot have the same name as a top level de�nition, a �eld name, or another class method.A class declaration with no where part may be useful for combining a collection ofclasses into a larger one that inherits all of the class methods in the original ones. Forexample:class (Read a, Show a) => Textual aIn such a case, if a type is an instance of all superclasses, it is not automatically an instanceof the subclass, even though the subclass has no immediate class methods. The instancedeclaration must be given explicitly with no where part.The superclass relation must not be cyclic; i.e. it must form a directed acyclic graph.4.3.2 Instance Declarationstopdecl ! instance [context =>] qtycls inst [where { valdefs [;] }]inst ! gtyconj ( gtycon tyvar1 : : : tyvark ) (k � 0 ; tyvars distinct)j ( tyvar1 , : : : , tyvark ) (k � 2 ; tyvars distinct)j [ tyvar ]j ( tyvar1 -> tyvar2 ) tyvar1 and tyvar2 distinctvaldefs ! valdef1 ; : : : ; valdefn (n � 0 )An instance declaration introduces an instance of a class. Letclass c => C u where { cbody }be a class declaration. The general form of the corresponding instance declaration is:instance c 0 => C (T u1 : : : uk ) where { d }where k � 0 and T is not a type synonym. The constructor being instanced, (T u1 : : : uk ),is a type constructor applied to simple type variables u1 ; : : : uk , which must be distinct.This prohibits instance declarations such as:instance C (a,a) where ...instance C (Int,a) where ...instance C [[a]] where ...The constructor (T u1 : : : uk ) must have an appropriate kind for the class C ; this canbe determined using kind inference as described in Section 4.6. The declarations d maycontain bindings only for the class methods of C . The declarations may not contain anytype signatures since the class method signatures have already been given in the classdeclaration.If no binding is given for some class method then the corresponding default class methodin the class declaration is used (if present); if such a default does not exist then the classmethod of this instance is bound to undefined and no compile-time error results.



42 4. DECLARATIONS AND BINDINGSAn instance declaration that makes the type T to be an instance of class C is calleda C-T instance declaration and is subject to these static restrictions:� A type may not be declared as an instance of a particular class more than once in theprogram.� The class and type must have the same kind.� Assume that the type variables in the instance type (T u1 : : : uk ) satisfy the con-straints in the instance context c 0. Under this assumption, the following two conditionsmust also be satis�ed:1. The constraints expressed by the superclass context c[(T u1 : : : uk)=u] of Cmust be satis�ed. In other words, T must be an instance of each of C 's super-classes and the contexts of all superclass instances must be implied by c 0.2. Any constraints on the type variables in the instance type that are required forthe class method declarations in d to be well-typed must also be satis�ed.In fact, except in pathological cases it is possible to infer from the instance declarationthe most general instance context c 0 satisfying the above two constraints, but it isnevertheless mandatory to write an explicit instance context.The following illustrates the restrictions imposed by superclass instances:class Foo a => Bar a where ...instance (Eq a, Show a) => Foo [a] where ...instance Num a => Bar [a] where ...This is perfectly valid. Since Foo is a superclass of Bar, the second instance declarationis only valid if [a] is an instance of Foo under the assumption Num a. The �rst instancedeclaration does indeed say that [a] is an instance of Foo under this assumption, becauseEq and Show are superclasses of Num.If the two instance declarations instead read like this:instance Num a => Foo [a] where ...instance (Eq a, Show a) => Bar [a] where ...then the program would be invalid. The second instance declaration is valid only if [a] isan instance of Foo under the assumptions (Eq a, Show a). But this does not hold, since[a] is only an instance of Foo under the stronger assumption Num a.Further examples of instance declarations may be found in Appendix A.4.3.3 Derived InstancesAs mentioned in Section 4.2.1, data and newtype declarations contain an optional derivingform. If the form is included, then derived instance declarations are automatically generated



4.3 Type Classes and Overloading 43for the datatype in each of the named classes. These instances are subject to the samerestrictions as user-de�ned instances. When deriving a class C for a type T , instances forall superclasses of C must exist for T , either via an explicit instance declaration or byincluding the superclass in the deriving clause.Derived instances provide convenient commonly-used operations for user-de�ned data-types. For example, derived instances for datatypes in the class Eq de�ne the operations ==and /=, freeing the programmer from the need to de�ne them.The only classes in the Prelude for which derived instances are allowed are Eq, Ord,Enum, Bounded, Show, and Read, all de�ned in Figure 5, page 66. The precise details of howthe derived instances are generated for each of these classes are provided in Appendix D,including a speci�cation of when such derived instances are possible. Instances of classEval are always implicitly derived for algebraic datatypes. The class Eval is may not beexplicitly listed in a deriving form or de�ned by an explicit instance declaration. Classesde�ned by the standard libraries may also be derivable.A static error results if it is not possible to derive an instance declaration over a classnamed in a deriving form. For example, not all datatypes can properly support classmethods in Enum. It is also a static error to give an explicit instance declaration for a classthat is also derived.If the deriving form is omitted from a data or newtype declaration, then no instancedeclarations (except for Eval) are derived for that datatype; that is, omitting a derivingform is equivalent to including an empty deriving form: deriving ().4.3.4 Defaults for Overloaded Numeric Operationstopdecl ! default (type1 , : : : , typen) (n � 0 )A problem inherent with Haskell-style overloading is the possibility of an ambiguous type.For example, using the read and show functions de�ned in Appendix D, and supposing thatjust Int and Bool are members of Read and Show, then the expressionlet x = read "..." in show x -- invalidis ambiguous, because the types for show and read,show :: 8 a: Show a ) a ! Stringread :: 8 a: Read a ) String ! acould be satis�ed by instantiating a as either Int in both cases, or Bool. Such expressionsare considered ill-typed, a static error.We say that an expression e is ambiguously overloaded if, in its type 8 u : c ) t , thereis a type variable u in u which occurs in c but not in t . Such types are invalid.For example, the earlier expression involving show and read is ambiguously overloadedsince its type is 8 a: Show a; Read a ) String.



44 4. DECLARATIONS AND BINDINGSOverloading ambiguity can only be circumvented by input from the user. One way isthrough the use of expression type-signatures as described in Section 3.16. For example, forthe ambiguous expression given earlier, one could write:let x = read "..." in show (x::Bool)which disambiguates the type.Occasionally, an otherwise ambiguous expression needs to be made the same type assome variable, rather than being given a �xed type with an expression type-signature. Thisis the purpose of the function asTypeOf (Appendix A): x `asTypeOf` y has the value ofx , but x and y are forced to have the same type. For example,approxSqrt x = encodeFloat 1 (exponent x `div` 2) `asTypeOf` x(See Section 6.3.6.)Ambiguities in the class Num are most common, so Haskell provides another way toresolve them|with a default declaration:default (t1 , : : : , tn)where n � 0 , and each ti must be a monotype for which Num ti holds. In situations where anambiguous type is discovered, an ambiguous type variable is defaultable if at least one of itsclasses is a numeric class (that is, Num or a subclass of Num) and if all of its classes are de�nedin the Prelude or a standard library (Figures 6{7, pages 73{74 show the numeric classes,and Figure 5, page 66, shows the classes de�ned in the Prelude.) Each defaultable variableis replaced by the �rst type in the default list that is an instance of all the ambiguousvariable's classes. It is a static error if no such type is found.Only one default declaration is permitted per module, and its e�ect is limited to thatmodule. If no default declaration is given in a module then it assumed to be:default (Int, Double)The empty default declaration default ()must be given to turn o� all defaults in a module.4.4 Nested DeclarationsThe following declarations may be used in any declaration list, including the top level of amodule.4.4.1 Type Signaturessigndecl ! vars :: [context =>] typeA type signature speci�es types for variables, possibly with respect to a context. A typesignature has the form: v1 ; : : : ; vn :: c => t



4.4 Nested Declarations 45which is equivalent to asserting vi :: c => t for each i from 1 to n. Each vi must have avalue binding in the same declaration list that contains the type signature; i.e. it is invalidto give a type signature for a variable bound in an outer scope. Moreover, it is invalid togive more than one type signature for one variable.As mentioned in Section 4.1.1, every type variable appearing in a signature is universallyquanti�ed over that signature, and hence the scope of a type variable is limited to the typesignature that contains it. For example, in the following declarationsf :: a -> af x = x :: a -- invalidthe a's in the two type signatures are quite distinct. Indeed, these declarations contain astatic error, since x does not have type 8 a: a . (The type of x is dependent on the type off; there is currently no way in Haskell to specify a signature for a variable with a dependanttype; this is explained in Section 4.5.3.)If a given program includes a signature for a variable f , then each use of f is treated ashaving the declared type. It is a static error if the same type cannot also be inferred forthe de�ning occurrence of f .If a variable f is de�ned without providing a corresponding type signature declaration,then each use of f outside its own declaration group (see Section 4.5) is treated as havingthe corresponding inferred, or principal type . However, to ensure that type inference is stillpossible, the de�ning occurrence, and all uses of f within its declaration group must havethe same monomorphic type (from which the principal type is obtained by generalization,as described in Section 4.5.2).For example, if we de�nesqr x = x*xthen the principal type is sqr :: 8 a: Num a ) a ! a , which allows applications suchas sqr 5 or sqr 0.1. It is also valid to declare a more speci�c type, such assqr :: Int -> Intbut now applications such as sqr 0.1 are invalid. Type signatures such assqr :: (Num a, Num b) => a -> b -- invalidsqr :: a -> a -- invalidare invalid, as they are more general than the principal type of sqr.Type signatures can also be used to support polymorphic recursion. The followingde�nition is pathological, but illustrates how a type signature can be used to specify a typemore general than the one that would be inferred:data T a = K (T Int) (T a)f :: T a -> af (K x y) = if f x == 1 then f y else undefinedIf we remove the signature declaration, the type of f will be inferred as T Int -> Int dueto the �rst recursive call for which the argument to f is T Int. Polymorphic recursionallows the user to supply the more general type signature, T a -> a.



46 4. DECLARATIONS AND BINDINGS4.4.2 Function and Pattern Bindingsdecl ! valdefvaldef ! lhs = exp [where decllist ]j lhs gdrhs [where decllist ]lhs ! pat0j funlhsfunlhs ! var apat f apat gj pat i+1 varop(a;i) pat i+1j lpat i varop( l;i) pat i+1j pat i+1 varop( r;i) rpat igdrhs ! gd = exp [gdrhs ]gd ! | exp0We distinguish two cases within this syntax: a pattern binding occurs when lhs is pat ;otherwise, the binding is called a function binding. Either binding may appear at thetop-level of a module or within a where or let construct.Function bindings. A function binding binds a variable to a function value. The generalform of a function binding for variable x is:x p11 : : : p1k match1: : :x pn1 : : : pnk matchnwhere each pij is a pattern, and where each matchi is of the general form:= e where { decls }or | gi1 = ei1: : :| gimi = eimiwhere { declsi }and where n � 1 , 1 � i � n, mi � 1 . The former is treated as shorthand for a particularcase of the latter, namely: | True = e where { decls }Note that all clauses de�ning a function must be contiguous, and the number of patternsin each clause must be the same. The set of patterns corresponding to each match must belinear|no variable is allowed to appear more than once in the entire set.



4.5 Static Semantics of Function and Pattern Bindings 47Alternative syntax is provided for binding functional values to in�x operators. Forexample, these two function de�nitions are equivalent:plus x y z = x+y+zx �plus� y = \ z -> x+y+zTranslation: The general binding form for functions is semantically equivalent to theequation (i.e. simple pattern binding):x x1 x2 ::: xk = case (x1, :::, xk) of (p11 ; : : : ; p1k) match1: : :(pm1 ; : : : ; pmk) matchmwhere the xi are new identi�ers.Pattern bindings. A pattern binding binds variables to values. A simple pattern bindinghas form p = e. The pattern p is matched \lazily" as an irrefutable pattern , as if therewere an implicit ~ in front of it. See the translation in Section 3.12.The general form of a pattern binding is p match , where a match is the same structureas for function bindings above; in other words, a pattern binding is:p | g1 = e1| g2 = e2: : :| gm = emwhere { decls }Translation: The pattern binding above is semantically equivalent to this simplepattern binding:p = let decls inif g1 then e1 elseif g2 then e2 else:::if gm then em else error "Unmatched pattern"4.5 Static Semantics of Function and Pattern BindingsThe static semantics of the function and pattern bindings of a let expression or whereclause are discussed in this section.



48 4. DECLARATIONS AND BINDINGS4.5.1 Dependency AnalysisIn general the static semantics are given by the normal Hindley-Milner inference rules.A dependency analysis transformation is �rst performed to enhance polymorphism. Twovariables bound by value declarations are in the same declaration group if either1. they are bound by the same pattern binding, or2. their bindings are mutually recursive (perhaps via some other declarations which arealso part of the group).Application of the following rules causes each let or where construct (including the wherede�ning the top level bindings in a module) to bind only the variables of a single declarationgroup, thus capturing the required dependency analysis:21. The order of declarations in where/let constructs is irrelevant.2. let {d1; d2} in e = let {d1} in (let {d2} in e)(when no identi�er bound in d2 appears free in d1 )4.5.2 GeneralizationThe Hindley-Milner type system assigns types to a let-expression in two stages. First, theright-hand side of the declaration is typed, giving a type with no universal quanti�cation.Second, all type variables which occur in this type are universally quanti�ed unless theyare associated with bound variables in the type environment; this is called generalization.Finally, the body of the let-expression is typed.For example, consider the declarationf x = let g y = (y,y)in ...The type of g's de�nition is a ! (a; a). The generalization step attributes to g the poly-morphic type 8 a: a ! (a; a), after which the typing of the \..." part can proceed.When typing overloaded de�nitions, all the overloading constraints from a single dec-laration group are collected together, to form the context for the type of each variabledeclared in the group. For example, in the de�nition:f x = let g1 x y = if x>y then show x else g2 y xg2 p q = g1 q pin ...The types of the de�nitions of g1 and g2 are both a ! a ! String, and the accumulatedconstraints are Ord a (arising from the use of >), and Show a (arising from the use of show).2A similar transformation is described in Peyton Jones' book [10].



4.5 Static Semantics of Function and Pattern Bindings 49The type variables appearing in this collection of constraints are called the constrained typevariables.The generalization step attributes to both g1 and g2 the type8 a: (Ord a; Show a) ) a ! a ! StringNotice that g2 is overloaded in the same way as g1 even though the occurrences of > andshow are in the de�nition of g1.If the programmer supplies explicit type signatures for more than one variable in adeclaration group, the contexts of these signatures must be identical up to renaming of thetype variables.As mentioned in Section 4.1.3, the context of a type may constrain only type variables.Consider, for example, the de�nition:f xs y = xs == [y]Its type is given byf :: Eq a => [a] -> a -> Booland not f :: Eq [a] => [a] -> a -> BoolEven though the equality is taken at the list type, the context must be simpli�ed, using theinstance declaration for Eq on lists, before generalization. If no such instance is in scope, astatic error occurs.At generalization, the context of the generalized type must be reducible. That is, classconstraints must apply only to type variables, not more general type expressions. Forexample, the following example is invalid:f x = show (return x)The type of return is Monad m => a -> m a; the type of show is Show a => a -> String.The type of f should be (Monad m, Show (m a)) => a -> String. Since the contextShow (m a) cannot be further reduced, generalization results in a static error.4.5.3 MonomorphismSometimes it is not possible to generalize over all the type variables used in the type of thede�nition. For example, consider the declarationf x = let g y z = ([x,y], z)in ...In an environment where x has type a , the type of g's de�nition is a ! b ! ([a]; b).The generalization step attributes to g the type 8 b: a ! b ! ([a]; b); only b can beuniversally quanti�ed because a occurs in the type environment. We say that the type of gis monomorphic in the type variable a.



50 4. DECLARATIONS AND BINDINGSThe e�ect of such monomorphism is that the �rst argument of all applications of g mustbe of a single type. For example, it would be valid for the \..." to be(g True, g False)(which would, incidentally, force x to have type Bool) but invalid for it to be(g True, g 'c')In general, a type 8 u: c ) t is said to be monomorphic in the type variable a if a is freein 8 u: c ) t .It is worth noting that the explicit type signatures provided by Haskell are not powerfulenough to express types which include monomorphic type variables. For example, we cannotwrite f x = letg :: a -> b -> ([a],b)g y z = ([x,y], z)in ...because that would claim that g was polymorphic in both a and b (Section 4.4.1). In thisprogram, g can only be given a type signature if its �rst argument is restricted to a typenot involving type variables; for exampleg :: Int -> b -> ([Int],b)This signature would also cause x to have type Int.4.5.4 The Monomorphism RestrictionHaskell places certain extra restrictions on the generalization step, beyond the standardHindley-Milner restriction described above, which further reduces polymorphism in partic-ular cases.The monomorphism restriction depends on the binding syntax of a variable. Recall thata variable is bound by either a function binding or a pattern binding, and that a simplepattern binding is a pattern binding in which the pattern consists of only a single variable(Section 4.4.2).Two rules de�ne the monomorphism restriction:Rule 1. We say that a given declaration group is unrestricted if and only if:(a): every variable in the group is bound by a function binding or a simple patternbinding, and(b): an explicit type signature is given for every variable in the group which is boundby simple pattern binding.The usual Hindley-Milner restriction on polymorphism is that only type variables freein the environment may be generalized. In addition, the constrained type variablesof a restricted declaration group may not be generalized in the generalization step for



4.5 Static Semantics of Function and Pattern Bindings 51that group. (Recall that a type variable is constrained if it must belong to some typeclass; see Section 4.5.2.)Rule 2. The type of a variable exported from a module must be completely polymorphic;that is, it must not have any free type variables. It follows from Rule 1 that if alltop-level declaration groups are unrestricted, then Rule 2 is automatically satis�ed.Rule 1 is required for two reasons, both of which are fairly subtle. First, it prevents com-putations from being unexpectedly repeated. For example, genericLength is a standardfunction (in library List) whose type is given bygenericLength :: Num a => [b] -> aNow consider the following expression:let { len = genericLength xs } in (len, len)It looks as if len should be computed only once, but without Rule 1 it might be computedtwice, once at each of two di�erent overloadings. If the programmer does actually wish thecomputation to be repeated, an explicit type signature may be added:let { len :: Num a => a; len = genericLength xs } in (len, len)When non-simple pattern bindings are used, the types inferred are always monomorphic intheir constrained type variables, irrespective of whether a type signature is provided. Forexample, in(f,g) = ((+),(-))both f and g are monomorphic regardless of any type signatures supplied for f or g.Rule 1 also prevents ambiguity. For example, consider the declaration group[(n,s)] = reads tRecall that reads is a standard function whose type is given by the signaturereads :: (Read a) => String -> [(a,String)]Without Rule 1, n would be assigned the type 8 a: Read a ) a and s the type 8 a:Read a ) String. The latter is an invalid type, because it is inherently ambiguous. It isnot possible to determine at what overloading to use s. Rule 1 makes n and s monomorphicin a .Lastly, Rule 2 is required because there is no way to enforce monomorphic use of anexported binding, except by performing type inference on modules outside the currentmodule.The monomorphism rule has a number of consequences for the programmer. Anythingde�ned with function syntax usually generalizes as a function is expected to. Thus inf x y = x+ythe function f may be used at any overloading in class Num. There is no danger of recom-putation here. However, the same function de�ned with pattern syntax:



52 4. DECLARATIONS AND BINDINGSf = \x -> \y -> x+yrequires a type signature if f is to be fully overloaded. Many functions are most naturallyde�ned using simple pattern bindings; the user must be careful to a�x these with typesignatures to retain full overloading. The standard prelude contains many examples of this:sum :: (Num a) => [a] -> asum = foldl (+) 04.6 Kind InferenceThis section describes the rules that are used to perform kind inference, i.e. to calculate asuitable kind for each type constructor and class appearing in a given program.The �rst step in the kind inference process is to arrange the set of datatype, synonym,and class de�nitions into dependency groups. This can be achieved in much the same wayas the dependency analysis for value declarations that was described in Section 4.5. Forexample, the following program fragment includes the de�nition of a datatype constructorD, a synonym S and a class C, all of which would be included in the same dependency group:data C a => D a = Foo (S a)type S a = [D a]class C a wherebar :: a -> D a -> BoolThe kinds of variables, constructors, and classes within each group are determined usingstandard techniques of type inference and kind-preserving uni�cation [7]. For example, inthe de�nitions above, the parameter a appears as an argument of the function constructor(->) in the type of bar and hence must have kind �. It follows that both D and S musthave kind � ! � and that every instance of class C must have kind �.It is possible that some parts of an inferred kind may not be fully determined by thecorresponding de�nitions; in such cases, a default of � is assumed. For example, we couldassume an arbitrary kind � for the a parameter in each of the following examples:data App f a = A (f a)data Tree a = Leaf | Fork (Tree a) (Tree a)This would give kinds (� ! �) ! � ! � and � ! � for App and Tree, respectively, forany kind �, and would require an extension to allow polymorphic kinds. Instead, using thedefault binding � = �, the actual kinds for these two constructors are (� ! �)! � ! � and� ! �, respectively.Defaults are applied to each dependency group without consideration of the ways inwhich particular type constructor constants or classes are used in later dependency groupsor elsewhere in the program. For example, adding the the following de�nition to those abovedo not in
uence the kind inferred for Tree (by changing it to (� ! �) ! �, for instance),and instead generates a static error because the kind of [], � ! �, does not match the kind� that is expected for an argument of Tree:



4.6 Kind Inference 53type FunnyTree = Tree [] -- invalidThis is important because it ensures that each constructor and class are used consistentlywith the same kind whenever they are in scope.



54 5. MODULES5 ModulesA module de�nes a collection of values, datatypes, type synonyms, classes, etc. (see Sec-tion 4) in an environment created by a set of imports, resources brought into scope fromother modules, and exports some of these resources, making them available to other mod-ules. We use the term entity to refer to a value, type, or classes de�ned in, imported into,or perhaps exported from a module.A Haskell program is a collection of modules, one of which, by convention, must becalled Main and must export the value main. The value of the program is the value of theidenti�er main in module Main, and main must have type IO () (see Section 7).Modules may reference other modules via explicit import declarations, each giving thename of a module to be imported and specifying its entities to be imported. Modules maybe mutually recursive.The name-space for modules is 
at, with each module being associated with a uniquemodule name (which are Haskell identi�ers beginning with a capital letter; i.e. modid).There is one distinguished module, Prelude, which is imported into all programs by default(see Section 5.3), plus a set of standard library modules which may be imported as required(see the Haskell Library Report[9]).5.1 Module StructureA module de�nes a mutually recursive scope containing declarations for value bindings,data types, type synonyms, classes, etc. (see Section 4).module ! module modid [exports ] where bodyj bodybody ! { [impdecls ;] [[�xdecls ;] topdecls [;]] }j { impdecls [;] }modid ! conidimpdecls ! impdecl1 ; : : : ; impdecln (n � 1 )topdecls ! topdecl1 ; : : : ; topdecln (n � 0 )A module begins with a header: the keyword module, the module name, and a listof entities (enclosed in round parentheses) to be exported. The header is followed byan optional list of import declarations that specify modules to be imported, optionallyrestricting the imported bindings. This is followed by an optional list of �xity declarationsand the module body. The module body is simply a list of top-level declarations (topdecls),as described in Section 4.An abbreviated form of module is permitted which consists only of the module body. Ifthis is used, the header is assumed to be `module Main(main) where'. If the �rst lexemein the abbreviated module is not a {, then the layout rule applies for the top level of themodule.



5.1 Module Structure 555.1.1 Export Listsexports ! ( export1 , : : : , exportn [ , ] ) (n � 0 )export ! qvarj qtycon [(..) j ( qcname1 , : : : , qcnamen )] (n � 1 )j qtycls [(..) j ( qvar1 , : : : , qvarn )] (n � 0 )j module modidqcname ! qvar j qconAn export list identi�es the entities to be exported by a module declaration. A moduleimplementation may only export an entity that it declares, or that it imports from someother module. If the export list is omitted, all values, types and classes de�ned in themodule are exported, but not those that are imported.Entities in an export list may be named as follows:1. Ordinary values, whether declared in the module body or imported, may be named bygiving the name of the value as a qvarid . Operators should be enclosed in parenthesesto turn them into qvarid 's.2. An algebraic datatype T declared by a data or newtype declaration may be namedin one of three ways:� The form T names the type but not the constructors or �eld names. The abilityto export a type without its constructors allows the construction of abstractdatatypes (see Section 5.5).� The form T(qcname1, : : :,qcnamen), where all and only the constructors and�eld names are listed without duplications, names the type and all its construc-tors and �eld names.� The abbreviated form T(..) names the type and all its constructors and �eldnames.Data constructors and �eld names cannot be named in export lists in any other way.3. A type synonym T declared by a type declaration may be named by the form T .4. A class C with operations f1; : : : ; fn declared in a class declaration may be namedin one of three ways:� The form C names the class but not the class methods.� The form C(f1, : : :,fn), where all and only the class methods in that class arelisted without duplications, names the class and all its methods.� The abbreviated form C(..) names the class and all its methods.Class methods may not be named in export lists in any other way.



56 5. MODULES5. The set of all entities brought into scope from a module m by one or more unquali�edimport declarations may be named by the form `module m ', which is equivalent tolisting all of the entities imported from the module. For example:module Queue( module Stack, enqueue, dequeue ) whereimport Stack...Here the module Queue uses the module name Stack in its export list to abbreviateall the entities imported from Stack.6. A module can name its own local de�nitions in its export list using its name in the`module m' syntax. For example:module Mod1(module Mod1, module Mod2) whereimport Mod2import Mod3Here module Mod1 exports all local de�nitions as well as those from imported fromMod2 but not those imported from Mod3.The quali�er (Section 5.1.2) on a name only identi�es the module an entity is importedfrom; this may be di�erent from the module in which the entity is de�ned. For example, ifmodule A exports B.c, this is referenced as `A.c', not `A.B.c'. In consequence, names inexport lists must remain distinct after quali�ers are removed. For example:module A ( B.f, C.f, g, B.g ) where -- an invalid moduleimport qualified B(f,g)import qualified C(f)g = TrueThere are name clashes in the export list between B.f and C.f and between g and B.g eventhough there are no name clashes within module A.5.1.2 Import Declarationsimpdecl ! import [qualified] modid [as modid ] [impspec]impspec ! ( import1 , : : : , importn [ , ] ) (n � 0 )j hiding ( import1 , : : : , importn [ , ] ) (n � 0 )import ! varj tycon [ (..) j ( cname1 , : : : , cnamen )] (n � 1 )j tycls [(..) j ( var1 , : : : , varn )] (n � 0 )cname ! var j conThe entities exported by a module may be brought into scope in another module withan import declaration at the beginning of the module. The import declaration names themodule to be imported and optionally speci�es the entities to be imported. A single modulemay be imported by more than one import declaration. Imported names serve as top level



5.1 Module Structure 57declarations: they scope over the entire body of the module but may be shadowed by localnon-top-level bindings. The e�ect of multiple import declarations is cumulative: an entityis in scope if it named by any of the import declarations in a module. The ordering ofimports is irrelevant.Exactly which entities are to be imported can be speci�ed in one of three ways:1. The imported entities can be speci�ed explicitly by listing them in parentheses. Itemsin the list have the same form as those in export lists, except quali�ers are not per-mitted and the `module modid ' entity is not permitted.The list must name only entities exported by the imported module. The list may beempty, in which case nothing except the instances are imported.2. Entities can be excluded by using the form hiding(import1 , : : : , importn ), whichspeci�es that all entities exported by the named module should be imported exceptfor those named in the list. The e�ect of multiple import declarations is strictlycumulative: hiding an entity on one import declaration does not prevent the sameentity from being imported by another import from the same module.3. Finally, if impspec is omitted then all the entities exported by the speci�ed moduleare imported.When an import declaration uses the qualified keyword, the names brought into scopemust be pre�xed by the name of the imported module (or a local alias, if an as clause ispresent). A quali�ed name is written as modid.name. This allows full programmer controlof the unquali�ed namespace: a locally de�ned entity can share the same name as a quali�edimport:module Ring whereimport qualified Prelude -- All Prelude names must be qualifiedl1 + l2 = l1 ++ l2 -- This + differs from the one in the Preludel1 * l2 = nub (l1 + l2)succ = (Prelude.+ 1)The quali�er does not change the syntactic treatment of a name: Prelude.+ is an in�xoperator with the same �xity as the de�nition of + in the Prelude. Quali�ers may beapplied to names imported by an unquali�ed import; this allows a quali�ed import to bereplaced with an unquali�ed one without forcing changes in the references to the importednames.Imported modules may be assigned a local alias in the importing module using the asclause. For example, inimport qualified Complex as Centities must be referenced using `C.' as a quali�er instead of `Complex.'. This also allowsa di�erent module to be substituted for Complex without changing the quali�ers used forthe imported module. It is an error for more than one module in scope to use the same



58 5. MODULESquali�er. Quali�ers can only be used for imported entities: locally de�ned names within amodule may not include a quali�er.Since quali�er names are part of the lexical syntax, no spaces are allowed between thequali�er and the name. Sample parses are shown below.This Lexes as thisf.g f . g (three tokens)F.g F.g (quali�ed `g')f.. f .. (two tokens)F.. F.. (quali�ed `.')F. F . (two tokens)It may be that a particular entity is imported into a module by more than one route| for example, because it is exported by two modules, both of which are imported by athird module. Benign name clashes of this form are allowed, but it is a static error for twodi�erent entities to have the same name. When two entities have the same name, they areconsidered to be the same object if and only if they are de�ned by the same module. Twodi�erent quali�ed names may refer to the same entity; the name of the importing moduledoes not a�ect the identity of an entity.It is an error for two di�erent entities to have the same name. This is valid:module Aimport B(f)import qualified C(f)as long as only one imported f is unquali�ed and f is not de�ned at the top level of A.Quali�ers are the only way to resolve name clashes between imported entities.5.1.3 Importing and Exporting Instance DeclarationsInstance declarations cannot be explicitly named on import or export lists. All instancesin scope within a module are always exported and any import brings all instances in fromthe imported module. Thus, an instance declaration is in scope if and only if a chain ofimport declarations leads to the module containing the instance declaration. For example,import M() would not bring any new names in scope from module M, but would bring inany instance visible in M.5.2 ClosureEvery module in a Haskell programmust be closed. That is, every name explicitly mentionedby the source code must be either de�ned locally or imported from another module. Entitieswhich the compiler requires for type checking or other compile time analysis need not beimported if they are not mentioned by name. The Haskell compilation system is responsiblefor �nding any information needed for compilation without the help of the programmer.That is, the import of a variable x does not require that the datatypes and classes in the



5.3 Standard Prelude 59signature of x be brought into the module along with x unless these entities are referencedby name in the user program. The Haskell system silently imports any information whichmust accompany an entity for type checking or any other purposes. Such entities need noteven be explicitly exported: the following program is valid even though T does not escapeM1: module M1(x) wheredata T = Tx = Tmodule M2 whereimport M1(x)y = xIn this example, there is no way to supply an explicit type signature for y since T is notin scope. Whether or not T is explicitly exported, module M2 knows enough about T tocorrectly type check the program.The type of an exported entity is una�ected by non-exported type synonyms. Forexample, inmodule M(x) wheretype T = Intx :: Tx = 1the type of x is both T and Int; these are interchangeable even when T is not in scope.That is, the de�nition of T is available to any module which encounters it whether or notthe name T is in scope. The only reason to export T is to allow other modules to refer it byname; the type checker �nd the de�nition of T if needed whether or not it is exported.5.3 Standard PreludeMany of the features of Haskell are de�ned in Haskell itself as a library of standard da-tatypes, classes, and functions, called the \Standard Prelude." In Haskell, the Prelude iscontained in the the module Prelude. There are also many prede�ned library moduleswhich provide less frequently used functions and types. For example, arrays, tables, andmost of the input/output are all part of the standard libraries. These are de�ned in theHaskell Library Report[9], a separate document. Separating libraries from the Prelude hasthe advantage of reducing the size and complexity of the Prelude, allowing it to be moreeasily assimilated, and increasing the space of useful names available to the programmer.Prelude and library modules di�er from other modules in that their semantics (but nottheir implementation) are a �xed part of the Haskell language de�nition. This means, forexample, that a compiler may optimize calls to functions in the Prelude without beingconcerned that a future change to the program will alter the semantics of the Preludefunction.



60 5. MODULES5.3.1 The Prelude ModuleThe Prelude module is imported automatically into all modules as if by the statement`import Prelude', if and only if it is not imported with an explicit import declaration.This provision for explicit import allows values de�ned in the Prelude to be hidden fromthe unquali�ed name space. The Prelude module is always available as a quali�ed import:an implicit `import qualified Prelude' is part of every module and names pre�xed by`Prelude.' can always be used to refer to entities in the Prelude.The semantics of the entities in Prelude is speci�ed by an implementation of Preludewritten in Haskell, given in Appendix A. Some datatypes (such as Int) and functions(such as Int addition) cannot be speci�ed directly in Haskell. Since the treatment of suchentities depends on the implementation, they are not formally de�ned in the appendix. Theimplementation of Prelude is also incomplete in its treatment of tuples: there should be anin�nite family of tuples and their instance declarations, but the implementation only givesa scheme.5.3.2 Shadowing Prelude NamesThe rules about the Prelude have been cast so that it is possible to use Prelude names fornonstandard purposes; however, every module that does so must have an import declarationthat makes this nonstandard usage explicit. For example:module A whereimport Prelude hiding (null)null x = []Module A rede�nes null, but it must indicate this by importing Prelude without null.Furthermore, A exports null, but every module that imports null unquali�ed from A mustalso hide null from Prelude just as A does. Thus there is little danger of accidentallyshadowing Prelude names.It is possible to construct and use a di�erent module to serve in place of the Prelude.Other than the fact that it is implicitly imported, the Prelude is an ordinary Haskell module;it is special only in that some objects in the Prelude are referenced by special syntacticconstructs. Rede�ning names used by the Prelude does not a�ect the meaning of thesespecial constructs. For example, inmodule B whereimport qualified Preludeimport MyPrelude...B imports nothing from Prelude, but the explicit import qualified Prelude declarationprevents the automatic import of Prelude. import MyPrelude brings the non-standardprelude into scope. As before, the standard prelude names are hidden explicitly. Specialsyntax, such as lists or tuples, always refers to prelude entities: there is no way to rede�nethe meaning of [x] in terms of a di�erent implementation of lists.



5.4 Separate Compilation 615.4 Separate CompilationDepending on the Haskell implementation used, separate compilation of mutually recursivemodules may require that imported modules contain additional information so that theymay be referenced before they are compiled. Explicit type signatures for all exported valuesmay be necessary to deal with mutual recursion. The precise details of separate compilationare not de�ned by this report.5.5 Abstract DatatypesThe ability to export a datatype without its constructors allows the construction of abstractdatatypes (ADTs). For example, an ADT for stacks could be de�ned as:module Stack( StkType, push, pop, empty ) wheredata StkType a = EmptyStk | Stk a (StkType a)push x s = Stk x spop (Stk _ s) = sempty = EmptyStkModules importing Stack cannot construct values of type StkType because they do nothave access to the constructors of the type.It is also possible to build an ADT on top of an existing type by using a newtypedeclaration. For example, stacks can be de�ned with lists:module Stack( StkType, push, pop, empty ) wherenewtype StkType a = Stk [a]push x (Stk s) = Stk (x:s)pop (Stk (x:s)) = Stk sempty = Stk []5.6 Fixity Declarations�xdecls ! �x1 ; : : : ; �xn (n � 1 )�x ! infixl [digit ] opsj infixr [digit ] opsj infix [digit ] opsops ! op1 , : : : , opn (n � 1 )op ! varop j conopA �xity declaration gives the �xity and binding precedence of a set of operators. Fixitydeclarations must appear only at the start of a module and may only be given for identi�ersde�ned in that module. Fixity declarations cannot subsequently be overridden, and anidenti�er can only have one �xity de�nition.There are three kinds of �xity, non-, left- and right-associativity (infix, infixl, andinfixr, respectively), and ten precedence levels, 0 to 9 inclusive (level 0 binds least tightly,



62 5. MODULESand level 9 binds most tightly). If the digit is omitted, level 9 is assumed. Any operatorlacking a �xity declaration is assumed to be infixl 9 (See Section 3 for more on the use of�xities). Table 2 lists the �xities and precedences of the operators de�ned in the Prelude.Prec- Left associative Non-associative Right associativeedence operators operators operators9 !! .8 ^, ^^, **7 *, /, `div`,`mod`, `rem`, `quot`6 +, -5 \\ :, ++4 ==, /=, <, <=, >, >=,`elem`, `notElem`3 &&2 ||1 >>, >>=0 $, `seq`Table 2: Precedences and �xities of prelude operatorsFixity is a property of the name of an identi�er or operator: the same �xity attaches toevery occurrence of an operator name in a module, whether at the top level or rebound atan inner level. For example:module Fooimport Barinfix 3 `op`f x = ... where p `op` q = ...Here `op` has �xity 3 wherever it is in scope, provided Bar does not export the identi�erop. If Bar does export op, then the example becomes invalid, because the �xity (or lackthereof) of op is de�ned in Bar (or wherever Bar imported op from). If op is imported asa quali�ed name from Bar, no con
ict may occur: the �xity of a quali�ed name does nota�ect unquali�ed uses of the same name.



636 Prede�ned Types and ClassesThe Haskell Prelude contains prede�ned classes, types, and functions which are implicitlyimported into every Haskell program. In this section, we describe the types and classesfound in the Prelude. Most functions are not described in detail here as they can easily beunderstood from their de�nitions as given in Appendix A. Other prede�ned types such asarrays, complex numbers, and rationals are de�ned in the Haskell Library Report.6.1 Standard Haskell TypesThese types are de�ned by the Haskell Prelude. Numeric types are described in Section6.3. When appropriate, the Haskell de�nition of the type is given. Some de�nitions maynot be completely valid on syntactic grounds but they faithfully convey the meaning of theunderlying type.6.1.1 Booleansdata Bool = False | True deriving(Read, Show, Eq, Ord, Enum, Bounded)The boolean type Bool is an enumeration.The basic boolean functions are && (and), ||(or), and not. The name otherwise is de�ned as True to make guarded expressions morereadable.6.1.2 Characters and StringsThe character type Char is an enumeration and consists of 256 values, conforming to theISO 8859-1 standard [6]. The lexical syntax for characters is de�ned in Section 2.5; characterliterals are nullary constructors in the datatype Char. Type Char is an instance of theclasses Read, Show, Eq, Ord, Enum, and Bounded. The toEnum and fromEnum functions,standard functions over bounded enumerations, map characters onto Int values in therange [ 0 ; 255 ].Note that ASCII control characters each have several representations in character liter-als: numeric escapes, ASCII mnemonic escapes, and the \^X notation. In addition, thereare the following equivalences: \a and \BEL, \b and \BS, \f and \FF, \r and \CR, \t and\HT, \v and \VT, and \n and \LF.A string is a list of characters:type String = [Char]Strings may be abbreviated using the lexical syntax described in Section 2.5. For example,"A string" abbreviates[ 'A',' ','s','t','r', 'i','n','g']



64 6. PREDEFINED TYPES AND CLASSES6.1.3 Listsdata [a] = [] | a : [a] deriving (Eq, Ord)Lists are an algebraic datatype of two constructors, although with special syntax, as de-scribed in Section 3.7. The �rst constructor is the null list, written `[]' (\nil"), and thesecond is `:' (\cons"). The module PreludeList (see Appendix A.1) de�nes many standardlist functions. Arithmetic sequences and list comprehensions, two convenient syntaxes forspecial kinds of lists, are described in Sections 3.10 and 3.11, respectively. Lists are aninstance of classes Read, Show, Eq, Ord, Monad, MonadZero, and MonadPlus.6.1.4 TuplesTuples are algebraic datatypes with special syntax, as de�ned in Section 3.8. Each tupletype has a single constructor. There is no upper bound on the size of a tuple. However, someHaskell implementations may restrict the size of tuples and limit the instances associatedwith larger tuples. The Prelude and libraries de�ne tuple functions such as zip for tuplesup to a size of 7. All tuples are instances of Eq, Ord, Bounded, Read, and Show. Classesde�ned in the libraries may also supply instances for tuple types. The constructor for a tupleis written by omitting the expressions surrounding the commas: thus (x,y) and (,) x yproduce the same value. The following functions are de�ned for pairs (2-tuples): fst, snd,curry, and uncurry. Similar functions are not prede�ned for larger tuples.6.1.5 The Unit Datatypedata () = () deriving (Eq, Ord, Bounded, Enum, Read, Show)The unit datatype () has one non-? member, the nullary constructor (). See also Sec-tion 3.9.6.1.6 The Void Datatypedata VoidThe Void has no constructors; only ? is an instance of this type.6.1.7 Function TypesFunctions are an abstract type: no constructors directly create functional values. Functionsare an instance of the Show class but not Read. The following simple functions are foundthe Prelude: id, const, (.), flip, ($), and until.



6.2 Standard Haskell Classes 656.1.8 The IO and IOError TypesThe IO type serves as a tag for operations (actions) which interact with the outside world.The IO type is abstract: no constructors are visible to the user. IO is an instance of theMonad and Show classes. Section 7 describes I/O operations.IOError is an abstract type representing errors raised by I/O operations. It is aninstance of Show and Eq. Values of this type are constructed by the various I/O functionsand are not presented in any further detail in this report. The Library Report containsmany other I/O functions.6.1.9 Other Typesdata Maybe a = Nothing | Just a deriving (Eq, Ord, Read, Show)data Either a b = Left a | Right b deriving (Eq, Ord, Read, Show)data Ordering = LT | EQ | GT deriving(Eq, Ord, Bounded, Enum, Read, Show)The Maybe type is an instance of classes Functor, Monad, MonadZero and MonadPlus. TheOrdering type is used by compare in the class Ord. The functions maybe and either arefound in the Prelude.6.2 Standard Haskell ClassesFigure 5 shows the hierarchy of Haskell classes de�ned in the Prelude and the Prelude typeswhich are instances of these classes. The Void type is not mentioned in this �gure since itis not a member of any classes.
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6.2 Standard Haskell Classes 676.2.1 The Eq Classclass Eq a where(==), (/=) :: a -> a -> Boolx /= y = not (x == y)All basic datatypes except for functions and IO are instances of this class. Instances of Eqcan be derived for any user-de�ned datatype whose constituents are also instances of Eq.6.2.2 The Ord Classclass (Eq a) => Ord a wherecompare :: a -> a -> Ordering(<), (<=), (>=), (>) :: a -> a -> Boolmax, min :: a -> a -> acompare x y| x == y = EQ| x <= y = LT| otherwise = GTx <= y = compare x y /= GTx < y = compare x y == LTx >= y = compare x y /= LTx > y = compare x y == GT-- note that (min x y, max x y) = (x,y) or (y,x)max x y | x >= y = x| otherwise = ymin x y | x < y = x| otherwise = yThe Ord class is used for totally ordered datatypes. All basic datatypes except for functionsand IO are instances of this class. Instances of Ord can be derived for any user-de�neddatatype whose constituent types are in Ord. The declared order of the constructors in thedata declaration determines the ordering in derived Ord instances. The Ordering datatypeallows a single comparison to determine the precise ordering of two objects. The defaultsallow a user to create an Ord instance either with a type-speci�c compare function or withtype-speci�c == and <= functions.



68 6. PREDEFINED TYPES AND CLASSES6.2.3 The Read and Show Classestype ReadS a = String -> [(a,String)]type ShowS = String -> Stringclass Read a wherereadsPrec :: Int -> ReadS areadList :: ReadS [a]class Show a whereshowsPrec :: Int -> a -> ShowSshowList :: [a] -> ShowSThe Read and Show classes are used to convert values to or from strings. Derived instancesof Read and Show replicate the style in which a constructor is declared: in�x constructorsand �eld names are used on input and output. Strings produced by showsPrec are usuallyreadable by readsPrec. Functions and the IO type are not in Read.For convenience, the Prelude provides the following auxiliary functions:reads :: (Read a) => ReadS areads = readsPrec 0shows :: (Show a) => a -> ShowSshows = showsPrec 0read :: (Read a) => String -> aread s = case [x | (x,t) <- reads s, ("","") <- lex t] of[x] -> x[] -> error "PreludeText.read: no parse"_ -> error "PreludeText.read: ambiguous parse"show :: (Show a) => a -> Stringshow x = shows x ""shows and reads use a default precedence of 0. The show function returns a String insteadof a ShowS; the read function reads input from a string which must be completely consumedby the input process. The lex function used by read is also part of the Prelude.



6.2 Standard Haskell Classes 696.2.4 The Enum Classclass (Ord a) => Enum a wheretoEnum :: Int -> afromEnum :: a -> IntenumFrom :: a -> [a] -- [n..]enumFromThen :: a -> a -> [a] -- [n,n'..]enumFromTo :: a -> a -> [a] -- [n..m]enumFromThenTo :: a -> a -> a -> [a] -- [n,n'..m]enumFromTo n m = takeWhile (<= m) (enumFrom n)enumFromThenTo n n' m= takeWhile (if n' >= n then (<= m) else (>= m))(enumFromThen n n')Class Enum de�nes operations on sequentially ordered types. The toEnum and fromEnumfunctions map values from a type in Enum onto Int. These functions are not meaningful forall instances of Enum: 
oating point values or Integer may not be mapped onto an Int.An runtime error occurs if either toEnum or fromEnum is given a value not mappable tothe result type. Instances of Enum may be derived for any enumeration type (types whoseconstructors have no �elds). There are also Enum instances for 
oats.6.2.5 Monadic Classesclass Functor f wheremap :: (a -> b) -> (f a -> f b)class Monad m where(>>=) :: m a -> (a -> m b) -> m b(>>) :: m a -> m b -> m breturn :: a -> m aclass (Monad m) => MonadZero m wherezero :: m aclass (MonadZero m) => MonadPlus m where(++) :: m a -> m a -> m aThese classes de�ne the basic monadic operations. See Section 7 for more information aboutmonads. The monadic classes serve to organize a set of operations common to a number ofrelated types. These types are all container types: that is, they contain a value or values ofanother type. (To be precise, types in these classes must have kind � ! �.) In the Prelude,lists, Maybe, and IO are all prede�ned container types.The Functor class is used for types which can be mapped over. Lists, IO, and Maybe arein this class. The IO type, Maybe, and lists are instances of Monad. The do syntax providesa more readable notation for the operators in Monad. Both lists and Maybe are instancesof the MonadZero class. The MonadPlus class provides a `monadic addition' operator: ++.In the Prelude, Maybe and lists are in this class. For lists, ++ de�nes concatenation. ForMaybe, the ++ function returns the �rst non-empty value (if any).



70 6. PREDEFINED TYPES AND CLASSESInstances of these classes should satisfy the following laws:map id = idmap (f . g) = map f . map gmap f xs = xs >>= return . freturn a >>= k = k am >>= return = mm >>= (\x -> k x >>= h)) = (m >>= k) >>= hm >> zero = zerozero >>= m = zerom ++ zero = mzero ++ m = mAll instances de�ned in the Prelude satisfy these laws.The Prelude provides the following auxiliary functions:accumulate :: Monad m => [m a] -> m [a]sequence :: Monad m => [m a] -> m ()mapM :: Monad m => (a -> m b) -> [a] -> m [b]mapM_ :: Monad m => (a -> m b) -> [a] -> m ()guard :: MonadZero m => Bool -> m ()6.2.6 The Bounded Classclass Bounded a whereminBound, maxBound :: aThe Bounded class is used to name the upper and lower limits of a type. Ord is nota superclass of Bounded since types that are not totally ordered may also have upper andlower bounds. The types Int, Char, Bool, (), Ordering, and all tuples are instances ofBounded. The Bounded class may be derived for any enumeration type; minBound is the�rst constructor listed in the data declaration and maxBound is the last. Bounded may alsobe derived for single-constructor datatypes whose constituent types are in Bounded.6.2.7 The Eval Classclass Eval a wherestrict :: (a -> b) -> a -> bseq :: a -> b -> bstrict f x = x `seq` f xClass Eval is a special class for which no instances may be explicitly de�ned. An Evalinstance is implicitly derived for every datatype. Functions as well as all other built-intypes are in Eval. (As a consequence, ? is not the same as \x -> ? since seq can be usedto distinguish them.)



6.3 Numbers 71The functions seq and strict are de�ned by the equations:seq ? b = ?seq a b = b; if a 6= ?strict f x = seq x (f x)These functions are usually introduced to improve performance by avoiding unneeded lazi-ness. Strict datatypes (see Section 4.2.1) are de�ned in terms of the strict function. Thisclass explicitly marks functions and types which employ polymorphic strictness.The Eval instance for a type T with a constructor C implicitly derived by the compileris: instance Eval T wherex `seq` y = case x ofC -> y_ -> y -- catches any other constructors in TThe case is used to force evaluation of the �rst argument to `seq` before returning thesecond argument. The constructor mentioned by seq is arbitrary: any constructor from Tcan be used.6.3 NumbersHaskell provides several kinds of numbers; the numeric types and the operations uponthem have been heavily in
uenced by Common Lisp and Scheme. Numeric function namesand operators are usually overloaded, using several type classes with an inclusion relationshown in Figure 5, page 66. The class Num of numeric types is a subclass of Eq, sinceall numbers may be compared for equality; its subclass Real is also a subclass of Ord,since the other comparison operations apply to all but complex numbers (de�ned in theComplex library). The class Integral contains both �xed- and arbitrary-precision integers;the class Fractional contains all non-integral types; and the class Floating contains all
oating-point types, both real and complex.The Prelude de�nes only the most basic numeric types: �xed sized integers (Int), ar-bitrary precision integers (Integer), single precision 
oating (Float), and double precision
oating (Double). Other numeric types such as rationals and complex numbers are de�nedin libraries. In particular, the type Rational is a ratio of two Integer values, as de�nedin the Rational library.The default 
oating point operations de�ned by the Haskell Prelude do not conform tocurrent language independent arithmetic (LIA) standards. These standards require consid-erable more complexity in the numeric structure and have thus been relegated to a library.Some, but not all, aspects of the IEEE standard 
oating point standard have been accountedfor in class RealFloat.Table 3 lists the standard numeric types. The type Int covers at least the range[ � 2 29 ; 2 29 � 1 ]. As Int is an instance of the Bounded class, maxBound and minBoundcan be used to determine the exact Int range de�ned by an implementation. Float is



72 6. PREDEFINED TYPES AND CLASSESType Class DescriptionInteger Integral Arbitrary-precision integersInt Integral Fixed-precision integers(Integral a) => Ratio a RealFrac Rational numbersFloat RealFloat Real 
oating-point, single precisionDouble RealFloat Real 
oating-point, double precision(RealFloat a) => Complex a Floating Complex 
oating-pointTable 3: Standard Numeric Typesimplementation-de�ned; it is desirable that this type be at least equal in range and precisionto the IEEE single-precision type. Similarly, Double should cover IEEE double-precision.The results of exceptional conditions (such as over
ow or under
ow) on the �xed-precisionnumeric types are unde�ned; an implementation may choose error (?, semantically), atruncated value, or a special value such as in�nity, inde�nite, etc.The standard numeric classes and other numeric functions de�ned in the Prelude areshown in Figures 6{7. Figure 5 shows the class dependencies and built-in types which areinstances of the numeric classes.6.3.1 Numeric LiteralsThe syntax of numeric literals is given in Section 2.4. An integer literal represents the ap-plication of the function fromInteger to the appropriate value of type Integer. Similarly,a 
oating literal stands for an application of fromRational to a value of type Rational(that is, Ratio Integer). Given the typings:fromInteger :: (Num a) => Integer -> afromRational :: (Fractional a) => Rational -> ainteger and 
oating literals have the typings (Num a) => a and (Fractional a) => a,respectively. Numeric literals are de�ned in this indirect way so that they may be interpretedas values of any appropriate numeric type. See Section 4.3.4 for a discussion of overloadingambiguity.6.3.2 Arithmetic and Number-Theoretic OperationsThe in�x class methods (+), (*), (-), and the unary function negate (which can also bewritten as a pre�x minus sign; see section 3.4) apply to all numbers. The class methodsquot, rem, div, and mod apply only to integral numbers, while the class method (/) appliesonly to fractional ones. The quot, rem, div, and mod class methods satisfy these laws:(x �quot� y)*y + (x �rem� y) == x(x �div� y)*y + (x �mod� y) == x



6.3 Numbers 73class (Eq a, Show a, Eval a) => Num a where(+), (-), (*) :: a -> a -> anegate :: a -> aabs, signum :: a -> afromInteger :: Integer -> aclass (Num a, Ord a) => Real a wheretoRational :: a -> Rationalclass (Real a, Enum a) => Integral a wherequot, rem, div, mod :: a -> a -> aquotRem, divMod :: a -> a -> (a,a)toInteger :: a -> Integerclass (Num a) => Fractional a where(/) :: a -> a -> arecip :: a -> afromRational :: Rational -> aclass (Fractional a) => Floating a wherepi :: aexp, log, sqrt :: a -> a(**), logBase :: a -> a -> asin, cos, tan :: a -> aasin, acos, atan :: a -> asinh, cosh, tanh :: a -> aasinh, acosh, atanh :: a -> aFigure 6: Standard Numeric Classes and Related Operations, Part 1`quot` is integer division truncated toward zero, while the result of `div` is truncatedtoward negative in�nity. The quotRem class method takes a dividend and a divisor asarguments and returns a (quotient, remainder) pair; divMod is de�ned similarly:quotRem x y = (x �quot� y, x �rem� y)divMod x y = (x �div� y, x �mod� y)Also available on integral numbers are the even and odd predicates:even x = x �rem� 2 == 0odd = not . evenFinally, there are the greatest common divisor and least common multiple functions: gcd xy is the greatest integer that divides both x and y . lcm x y is the smallest positive integerthat both x and y divide.



74 6. PREDEFINED TYPES AND CLASSESclass (Real a, Fractional a) => RealFrac a whereproperFraction :: (Integral b) => a -> (b,a)truncate, round :: (Integral b) => a -> bceiling, floor :: (Integral b) => a -> bclass (RealFrac a, Floating a) => RealFloat a wherefloatRadix :: a -> IntegerfloatDigits :: a -> IntfloatRange :: a -> (Int,Int)decodeFloat :: a -> (Integer,Int)encodeFloat :: Integer -> Int -> aexponent :: a -> Intsignificand :: a -> ascaleFloat :: Int -> a -> aisNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE:: a -> BoolfromIntegral :: (Integral a, Num b) => a -> bgcd, lcm :: (Integral a) => a -> a-> a(^) :: (Num a, Integral b) => a -> b -> a(^^) :: (Fractional a, Integral b) => a -> b -> afromRealFrac :: (RealFrac a, Fractional b) => a -> batan2 :: (RealFloat a) => a -> a -> aFigure 7: Standard Numeric Classes and Related Operations, Part 26.3.3 Exponentiation and LogarithmsThe one-argument exponential function exp and the logarithm function log act on 
oating-point numbers and use base e. logBase a x returns the logarithm of x in base a . sqrtreturns the principal square root of a 
oating-point number. There are three two-argumentexponentiation operations: (^) raises any number to a nonnegative integer power, (^^)raises a fractional number to any integer power, and (**) takes two 
oating-point argu-ments. The value of x^0 or x^^0 is 1 for any x , including zero; 0**y is unde�ned.6.3.4 Magnitude and SignA number has a magnitude and a sign. The functions abs and signum apply to any numberand satisfy the law:abs x * signum x == xFor real numbers, these functions are de�ned by:



6.3 Numbers 75abs x | x >= 0 = x| x < 0 = -xsignum x | x > 0 = 1| x == 0 = 0| x < 0 = -16.3.5 Trigonometric FunctionsThe circular and hyperbolic sine, cosine, and tangent functions and their inverses are pro-vided for 
oating-point numbers. A version of arctangent taking two real 
oating-pointarguments is also provided: For real 
oating x and y , atan2 y x di�ers from atan (y/x)in that its range is ( �� ; � ] rather than (� � = 2 ; � = 2 ) (because the signs of thearguments provide quadrant information), and that it is de�ned when x is zero.The precise de�nition of the above functions is as in Common Lisp, which in turnfollows Pen�eld's proposal for APL [8]. See these references for discussions of branch cuts,discontinuities, and implementation.6.3.6 Coercions and Component ExtractionThe ceiling, floor, truncate, and round functions each take a real fractional argumentand return an integral result. ceiling x returns the least integer not less than x , andfloor x , the greatest integer not greater than x . truncate x yields the integer nearest xbetween 0 and x , inclusive. round x returns the nearest integer to x , the even integer if xis equidistant between two integers.The function properFraction takes a real fractional number x and returns a pair com-prising x as a proper fraction: an integral number with the same sign as x and a fractionwith the same type and sign as x and with absolute value less than 1. The ceiling, floor,truncate, and round functions can be de�ned in terms of this one.Two functions convert numbers to type Rational: toRational returns the rationalequivalent of its real argument with full precision; approxRational takes two real fractionalarguments x and � and returns the simplest rational number within � of x , where a rationalp=q in reduced form is simpler than another p0=q0 if jpj � jp0j and q � q0. Every real intervalcontains a unique simplest rational; in particular, note that 0=1 is the simplest rational ofall. The class methods of class RealFloat allow e�cient, machine-independent access tothe components of a 
oating-point number. The functions floatRadix, floatDigits, andfloatRange give the parameters of a 
oating-point type: the radix of the representation,the number of digits of this radix in the signi�cand, and the lowest and highest values theexponent may assume, respectively. The function decodeFloat applied to a real 
oating-point number returns the signi�cand expressed as an Integer and an appropriately scaledexponent (an Int). If decodeFloat x yields (m,n), then x is equal in value to mbn ,



76 6. PREDEFINED TYPES AND CLASSESwhere b is the 
oating-point radix, and furthermore, either m and n are both zero orelse bd�1 � m < bd , where d is the value of floatDigits x. encodeFloat performs theinverse of this transformation. The functions significand and exponent together providethe same information as decodeFloat, but rather than an Integer, significand x yieldsa value of the same type as x, scaled to lie in the open interval (�1 ; 1 ). exponent 0 is zero.scaleFloat multiplies a 
oating-point number by an integer power of the radix.The functions isNaN, isInfinite, isDenormalized, isNegativeZero, and isIEEE allsupport numbers represented using the IEEE standard. For non-IEEE 
oating point num-bers, these may all return false.Also available are the following coercion functions:fromIntegral :: (Integral a, Num b) => a -> bfromRealFrac :: (RealFrac a, Fractional b) => a -> b



777 Basic Input/OutputThe I/O system in Haskell is purely functional, yet has all of the expressive power found inconventional programming languages. To achieve this, Haskell uses a monad to integrateI/O operations into a purely functional context.The I/O monad used by Haskell mediates between the values natural to a functionallanguage and the actions which characterize I/O operations and imperative programmingin general. The order of evaluation of expressions in Haskell is constrained only by datadependencies; an implementation has a great deal of freedom in choosing this order. Actions,however, must be ordered in a well-de�ned manner for program execution { and I/O inparticular { to be meaningful. Haskell's I/O monad provides the user with a way to specifythe sequential chaining of actions, and an implementation is obliged to preserve this order.The term monad comes from a branch of mathematics known as category theory. Fromthe perspective of a Haskell programmer, however, it is best to think of a monad as anabstract datatype. In the case of the I/O monad, the abstract values are the actions men-tioned above. Some operations are primitive actions, corresponding to conventional I/Ooperations. Special operations (methods in the class Monad, see Section 6.2.5) sequentiallycompose actions, corresponding to sequencing operators (such as the semi-colon) in imper-ative languages. Finally, the hidden implementation can be thought of as the system state;i.e. the state of the world.7.1 Standard I/O FunctionsAlthough Haskell provides fairly sophisticated I/O facilities, as de�ned in the IO library, itis possible to write many Haskell programs using only the few simple functions which areexported from the Prelude, and which are described in this section.Output Functions These functions write to the standard output device (this is normallythe user's terminal).putChar :: Char -> IO ()putStr :: String -> IO ()putStrLn :: String -> IO () -- adds a newlineprint :: Show a => a -> IO ()The print function outputs a value of any printable type to the standard output device(this is normally the user's terminal). Printable types are those which are instances of classShow; print converts values to strings for output using the show operation and adds anewline.For example, a program to print the �rst 20 integers and their powers of 2 could bewritten as:main = print ([(n, 2^n) | n <- [0..19]])



78 7. BASIC INPUT/OUTPUTInput Functions These functions read input from the standard input device (normallythe user's terminal).getChar :: IO ChargetLine :: IO StringgetContents :: IO Stringinteract :: (String -> String) -> IO ()readIO :: Read a => String -> IO areadLine :: Read a => IO aBoth getChar and getLine raise an exception on end-of-�le; the IOError value associatedwith end-of-�le is de�ned in a library. The getContents operation returns all user input asa single string which is read lazily as it is needed. The interact function takes a functionof type String->String as its argument. The entire input from the standard input device(normally the user's terminal) is passed to this function as its argument, and the resultingstring is output on the standard output device. The readIO function is similar to readexcept that it signals parse failure to the I/O monad instead of terminating the program.The readLine function combines getLine and readIO.By default, these input functions echo to standard output. Functions in the I/O libraryprovide full control over echoing.The following program simply removes all non-ASCII characters from its standard inputand echoes the result on its standard output. (The isAscii function is de�ned in a library.)main = interact (filter isAscii)Files These functions operate on �les of characters. Files are named by strings using someimplementation-speci�c method to resolve strings as �le names.The writeFile and appendFile functions write or append the string, their secondargument, to the �le, their �rst argument. The readFile function reads a �le and returnsthe contents of the �le as a string. The �le is read lazily, on demand, as with getContents.type FilePath = StringwriteFile :: FilePath -> String -> IO ()appendFile :: FilePath -> String -> IO ()readFile :: FilePath -> IO StringNote that writeFile and appendFile write a literal string to a �le. To write a value ofany printable type, as with print, use the show function to convert the value to a string�rst.main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]])



7.2 Sequencing I/O Operations 797.2 Sequencing I/O OperationsThe two monadic binding functions, methods in the Monad class, are used to compose aseries of I/O operations. The >> function is used where the result of the �rst operation isuninteresting, for example when it is (). The >>= operation passes the result of the �rstoperation as an argument to the second operation.(>>=) :: IO a -> (a -> IO b) -> IO b(>>) :: IO a -> IO b -> IO bFor example,main = readFile "input-file" >>= \ s ->writeFile "output-file" (filter isAscii s) >>putStr "Filtering successful\n"is similar to the previous example using interact, but takes its input from "input-file"and writes its output to "output-file". A message is printed on the standard outputbefore the program completes.The do notation allows programming in a more imperative syntactic style. A slightlymore elaborate version of the previous example would be:main = doputStr "Input file: "ifile <- getLineputStr "Output file: "ofile <- getLines <- readFile ifilewriteFile ofile (filter isAscii s)putStr "Filtering successful\n"The return function is used to de�ne the result of an I/O operation. For example,getLine is de�ned in terms of getChar, using return to de�ne the result the monad:getLine :: IO StringgetLine = do c <- getCharif c == '\n' then return ""else do s <- getLinereturn (c:s)7.3 Exception Handling in the I/O MonadThe I/O monad includes a simple exception handling system. Any I/O operation may raisean exception instead of returning a result. Exceptions in the I/O monad are represented byvalues of type IOError. This is an abstract type: its constructors are hidden from the user.The IO library de�nes functions which construct and examine IOError values. The only



80 7. BASIC INPUT/OUTPUTPrelude function which creates an IOError value is userError. User error values includean string describing the error.Exceptions are raised and caught using the following functions:fail :: IOError -> IO acatch :: IO a -> (IOError -> IO a) -> IO aThe fail function raises an exception; the catch function establishes a handler whichreceives any exception raised in the action protected by catch. An exception is caughtby the most recent handler established by catch. These handlers are not selective: allexceptions are caught. Exception propagation must be explicitly provided in a handler byre-raising any unwanted exceptions. For example, inf = catch g (\e -> if IO.isEofError e then return [] else fail e)the function f returns [] when an end-of-�le exception occurs in g; otherwise, the exceptionis propagated to the next outer handler. The isEofError function is part of IO library.When an exception propagates outside the main program, the Haskell system prints theassociated IOError value and exits the program.The exceptions raised by the I/O functions in the Prelude are de�ned in the LibraryReport.



81A Standard PreludeIn this appendix the entire Haskell prelude is given. It is organized into a root moduleand three sub-modules. Primitives which are not de�nable in Haskell, indicated by namesstarting with prim, are de�ned in a system dependent manner in module PreludeBuiltinand are not shown here. Instance declarations which simply bind primitives to class methodsare omitted. Some of the more verbose instances with obvious functionality have been leftout for the sake of brevity.Declarations for special types such as Integer, (), or (->) are included in the Preludefor completeness even though the declaration may be incomplete or syntacticly invalid.



82 A. STANDARD PRELUDEmodule Prelude (module PreludeList, module PreludeText, module PreludeIO,Bool(False, True),Maybe(Nothing, Just),Either(Left, Right),Ordering(LT, EQ, GT),Char, String, Int, Integer, Float, Double, IO, Void,-- List type: []((:), [])-- Tuple types: (,), (,,), etc.-- Trivial type: ()-- Functions: (->)Eq((==), (/=)),Ord(compare, (<), (<=), (>=), (>), max, min),Enum(toEnum, fromEnum, enumFrom, enumFromThen,enumFromTo, enumFromThenTo),Bounded(minBound, maxBound),Eval(seq, strict),Num((+), (-), (*), negate, abs, signum, fromInteger),Real(toRational),Integral(quot, rem, div, mod, quotRem, divMod, toInteger),Fractional((/), recip, fromRational),Floating(pi, exp, log, sqrt, (**), logBase, sin, cos, tan,asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh),RealFrac(properFraction, truncate, round, ceiling, floor),RealFloat(floatRadix, floatDigits, floatRange, decodeFloat,encodeFloat, exponent, significand, scaleFloat, isNaN,isInfinite, isDenormalized, isIEEE, isNegativeZero),Monad((>>=), (>>), return),MonadZero(zero),MonadPlus((++)),Functor(map),succ, pred,mapM, mapM_, guard, accumulate, sequence, filter, concat, applyM,maybe,(&&), (||), not, otherwise,subtract, even, odd, gcd, lcm, (^), (^^),fromIntegral, fromRealFrac, atan2,fst, snd, curry, uncurry, id, const, (.), flip, ($), until,asTypeOf, error, undefined ) whereimport PreludeBuiltin -- Contains all `prim' valuesimport PreludeListimport PreludeTextimport PreludeIOimport Ratio(Ratio, Rational, (%), numerator, denominator)



83infixr 9 .infixr 8 ^, ^^, **infixl 7 *, /, `quot`, `rem`, `div`, `mod`infixl 6 +, -infixr 5 ++infix 4 ==, /=, <, <=, >=, >infixr 3 &&infixr 2 ||infixr 1 >>, >>=infixr 0 $, `seq`-- Standard types, classes, instances and related functions-- Equality and Ordered classesclass Eq a where(==), (/=) :: a -> a -> Boolx /= y = not (x == y)class (Eq a) => Ord a wherecompare :: a -> a -> Ordering(<), (<=), (>=), (>):: a -> a -> Boolmax, min :: a -> a -> a-- An instance of Ord should define either compare or <=-- Using compare can be more efficient for complex types.compare x y| x == y = EQ| x <= y = LT| otherwise = GTx <= y = compare x y /= GTx < y = compare x y == LTx >= y = compare x y /= LTx > y = compare x y == GTmax x y | x >= y = x| otherwise = ymin x y | x < y = x| otherwise = y



84 A. STANDARD PRELUDE-- Enumeration and Bounded classesclass (Ord a) => Enum a wheretoEnum :: Int -> afromEnum :: a -> IntenumFrom :: a -> [a] -- [n..]enumFromThen :: a -> a -> [a] -- [n,n'..]enumFromTo :: a -> a -> [a] -- [n..m]enumFromThenTo :: a -> a -> a -> [a] -- [n,n'..m]enumFromTo n m = takeWhile (<= m) (enumFrom n)enumFromThenTo n n' m= takeWhile (if n' >= n then (<= m) else (>= m))(enumFromThen n n')succ, pred :: Enum a => a -> asucc = toEnum . (+1) . fromEnumpred = toEnum . (subtract 1) . fromEnumclass Bounded a whereminBound, maxBound :: a-- Numeric classesclass (Eq a, Show a, Eval a) => Num a where(+), (-), (*) :: a -> a -> anegate :: a -> aabs, signum :: a -> afromInteger :: Integer -> ax - y = x + negate yclass (Num a, Ord a) => Real a wheretoRational :: a -> Rationalclass (Real a, Enum a) => Integral a wherequot, rem, div, mod :: a -> a -> aquotRem, divMod :: a -> a -> (a,a)toInteger :: a -> Integern `quot` d = q where (q,r) = quotRem n dn `rem` d = r where (q,r) = quotRem n dn `div` d = q where (q,r) = divMod n dn `mod` d = r where (q,r) = divMod n ddivMod n d = if signum r == - signum d then (q-1, r+d) else qrwhere qr@(q,r) = quotRem n d



85class (Num a) => Fractional a where(/) :: a -> a -> arecip :: a -> afromRational :: Rational -> arecip x = 1 / xclass (Fractional a) => Floating a wherepi :: aexp, log, sqrt :: a -> a(**), logBase :: a -> a -> asin, cos, tan :: a -> aasin, acos, atan :: a -> asinh, cosh, tanh :: a -> aasinh, acosh, atanh :: a -> ax ** y = exp (log x * y)logBase x y = log y / log xsqrt x = x ** 0.5tan x = sin x / cos xtanh x = sinh x / cosh xclass (Real a, Fractional a) => RealFrac a whereproperFraction :: (Integral b) => a -> (b,a)truncate, round :: (Integral b) => a -> bceiling, floor :: (Integral b) => a -> btruncate x = m where (m,_) = properFraction xround x = let (n,r) = properFraction xm = if r < 0 then n - 1 else n + 1in case signum (abs r - 0.5) of-1 -> n0 -> if even n then n else m1 -> mceiling x = if r > 0 then n + 1 else nwhere (n,r) = properFraction xfloor x = if r < 0 then n - 1 else nwhere (n,r) = properFraction x



86 A. STANDARD PRELUDEclass (RealFrac a, Floating a) => RealFloat a wherefloatRadix :: a -> IntegerfloatDigits :: a -> IntfloatRange :: a -> (Int,Int)decodeFloat :: a -> (Integer,Int)encodeFloat :: Integer -> Int -> aexponent :: a -> Intsignificand :: a -> ascaleFloat :: Int -> a -> aisNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE:: a -> Boolexponent x = if m == 0 then 0 else n + floatDigits xwhere (m,n) = decodeFloat xsignificand x = encodeFloat m (- floatDigits x)where (m,_) = decodeFloat xscaleFloat k x = encodeFloat m (n+k)where (m,n) = decodeFloat x-- Numeric functionssubtract :: (Num a) => a -> a -> asubtract = flip (-)even, odd :: (Integral a) => a -> Booleven n = n `rem` 2 == 0odd = not . evengcd :: (Integral a) => a -> a -> agcd 0 0 = error "Prelude.gcd: gcd 0 0 is undefined"gcd x y = gcd' (abs x) (abs y)where gcd' x 0 = xgcd' x y = gcd' y (x `rem` y)lcm :: (Integral a) => a -> a -> alcm _ 0 = 0lcm 0 _ = 0lcm x y = abs ((x `quot` (gcd x y)) * y)(^) :: (Num a, Integral b) => a -> b -> ax ^ 0 = 1x ^ n | n > 0 = f x (n-1) xwhere f _ 0 y = yf x n y = g x n whereg x n | even n = g (x*x) (n `quot` 2)| otherwise = f x (n-1) (x*y)_ ^ _ = error "Prelude.^: negative exponent"



87(^^) :: (Fractional a, Integral b) => a -> b -> ax ^^ n = if n >= 0 then x^n else recip (x^(-n))fromIntegral :: (Integral a, Num b) => a -> bfromIntegral = fromInteger . toIntegerfromRealFrac :: (RealFrac a, Fractional b) => a -> bfromRealFrac = fromRational . toRationalatan2 :: (RealFloat a) => a -> a -> aatan2 y x = case (signum y, signum x) of( 0, 1) -> 0( 1, 0) -> pi/2( 0,-1) -> pi(-1, 0) -> -pi/2( _, 1) -> atan (y/x)( _,-1) -> atan (y/x) + pi( 0, 0) -> error "Prelude.atan2: atan2 of origin"-- Monadic classesclass Functor f wheremap :: (a -> b) -> f a -> f bclass Monad m where(>>=) :: m a -> (a -> m b) -> m b(>>) :: m a -> m b -> m breturn :: a -> m am >> k = m >>= \_ -> kclass (Monad m) => MonadZero m wherezero :: m aclass (MonadZero m) => MonadPlus m where(++) :: m a -> m a -> m aaccumulate :: Monad m => [m a] -> m [a]accumulate = foldr mcons (return [])where mcons p q = p >>= \x -> q >>= \y -> return (x:y)sequence :: Monad m => [m a] -> m ()sequence = foldr (>>) (return ())mapM :: Monad m => (a -> m b) -> [a] -> m [b]mapM f as = accumulate (map f as)mapM_ :: Monad m => (a -> m b) -> [a] -> m ()mapM_ f as = sequence (map f as)



88 A. STANDARD PRELUDEguard :: MonadZero m => Bool -> m ()guard p = if p then return () else zero-- This subsumes the list-based filter function.filter :: MonadZero m => (a -> Bool) -> m a -> m afilter p = applyM (\x -> if p x then return x else zero)-- This subsumes the list-based concat function.concat :: MonadPlus m => [m a] -> m aconcat = foldr (++) zeroapplyM :: Monad m => (a -> m b) -> m a -> m bapplyM f x = x >>= f-- Eval Classclass Eval a whereseq :: a -> a -> bstrict :: (a -> b) -> a -> bstrict f x = x `seq` f x-- Trivial typedata () = () deriving (Eq, Ord, Enum, Bounded)-- Function typedata a -> b -- No constructor for functions is exported.-- Empty typedata Void -- No constructor for Void is exported. Import/Export-- lists must use Void instead of Void(..) or Void()-- Boolean typedata Bool = False | True deriving (Eq, Ord, Enum, Read, Show, Bounded)-- Boolean functions(&&), (||) :: Bool -> Bool -> BoolTrue && x = xFalse && _ = FalseTrue || _ = TrueFalse || x = xnot :: Bool -> Boolnot True = Falsenot False = True



89otherwise :: Boolotherwise = True-- Character typedata Char = ... 'a' | 'b' ... -- 265 ISO valuesinstance Eq Char wherec == c' = fromEnum c == fromEnum c'instance Ord Char wherec <= c' = fromEnum c <= fromEnum c'instance Enum Char wheretoEnum = primIntToCharfromEnum = primCharToIntenumFrom c = map toEnum [fromEnum c .. fromEnum (maxBound::Char)]enumFromThen c c' = map toEnum [fromEnum c,fromEnum c' .. fromEnum lastChar]where lastChar :: CharlastChar | c' < c = minBound| otherwise = maxBoundinstance Bounded Char whereminBound = '\0'maxBound = '\255'type String = [Char]-- Maybe typedata Maybe a = Nothing | Just a deriving (Eq, Ord, Read, Show)maybe :: b -> (a -> b) -> Maybe a -> bmaybe n f Nothing = nmaybe n f (Just x) = f xinstance Functor Maybe wheremap f Nothing = Nothingmap f (Just a) = Just (f x)instance Monad Maybe where(Just x) >>= k = k xNothing >>= k = Nothingreturn = Justinstance MonadZero Maybe wherezero = Nothing



90 A. STANDARD PRELUDEinstance MonadPlus Maybe whereNothing ++ ys = ysxs ++ ys = xs-- Either typedata Either a b = Left a | Right b deriving (Eq, Ord, Read, Show)either :: (a -> c) -> (b -> c) -> Either a b -> ceither f g (Left x) = f xeither f g (Right y) = g y-- IO typedata IO a -- abstractinstance Functor IO wheremap f x = x >>= (return . f)instance Monad IO where ...-- Ordering typedata Ordering = LT | EQ | GT deriving (Eq, Ord, Enum, Read, Show, Bounded)-- Standard numeric types. The data declarations for these types cannot-- be expressed directly in Haskell since the constructor lists would be-- far too large.data Int = minBound ... -1 | 0 | 1 ... maxBoundinstance Eq Int where ...instance Ord Int where ...instance Num Int where ...instance Real Int where ...instance Integral Int where ...instance Enum Int where ...instance Bounded Int where ...data Integer = ... -1 | 0 | 1 ...instance Eq Integer where ...instance Ord Integer where ...instance Num Integer where ...instance Real Integer where ...instance Integral Integer where ...instance Enum Integer where ...



91data Floatinstance Eq Float where ...instance Ord Float where ...instance Num Float where ...instance Real Float where ...instance Fractional Float where ...instance Floating Float where ...instance RealFrac Float where ...instance RealFloat Float where ...data Doubleinstance Eq Double where ...instance Ord Double where ...instance Num Double where ...instance Real Double where ...instance Fractional Double where ...instance Floating Double where ...instance RealFrac Double where ...instance RealFloat Double where ...-- The Enum instances for Floats and Doubles are slightly unusual.-- The `toEnum' function truncates numbers to Int. The definitions-- of enumFrom and enumFromThen allow floats to be used in arithmetic-- series: [0,0.1 .. 1.0]. However, roundoff errors make these somewhat-- dubious. This example may have either 10 or 11 elements, depending on-- how 0.1 is represented.instance Enum Float wheretoEnum = fromIntegralfromEnum = fromInteger . truncate -- may overflowenumFrom = numericEnumFromenumFromThen = numericEnumFromTheninstance Enum Double wheretoEnum = fromIntegralfromEnum = fromInteger . truncate -- may overflowenumFrom = numericEnumFromenumFromThen = numericEnumFromThennumericEnumFrom :: (Real a) => a -> [a]numericEnumFromThen :: (Real a) => a -> a -> [a]numericEnumFrom = iterate (+1)numericEnumFromThen n m = iterate (+(m-n)) n-- Listsdata [a] = [] | a : [a] deriving (Eq, Ord)



92 A. STANDARD PRELUDEinstance Functor [] wheremap f [] = []map f (x:xs) = f x : map f xsinstance Monad [] wherem >>= k = concat (map k m)return x = [x]instance MonadZero [] wherezero = []instance MonadPlus [] wherexs ++ ys = foldr (:) ys xs-- Tuplesdata (a,b) = (a,b) deriving (Eq, Ord, Bounded)data (a,b,c) = (a,b,c) deriving (Eq, Ord, Bounded)-- component projections for pairs:-- (NB: not provided for triples, quadruples, etc.)fst :: (a,b) -> afst (x,y) = xsnd :: (a,b) -> bsnd (x,y) = y-- curry converts an uncurried function to a curried function;-- uncurry converts a curried function to a function on pairs.curry :: ((a, b) -> c) -> a -> b -> ccurry f x y = f (x, y)uncurry :: (a -> b -> c) -> ((a, b) -> c)uncurry f p = f (fst p) (snd p)-- Functions-- Standard value bindings-- identity functionid :: a -> aid x = x-- constant functionconst :: a -> b -> aconst x _ = x-- function composition(.) :: (b -> c) -> (a -> b) -> a -> cf . g = \ x -> f (g x)



93-- flip f takes its (first) two arguments in the reverse order of f.flip :: (a -> b -> c) -> b -> a -> cflip f x y = f y x-- right-associating infix application operator (useful in continuation--- passing style)($) :: (a -> b) -> a -> bf $ x = f x-- until p f yields the result of applying f until p holds.until :: (a -> Bool) -> (a -> a) -> a -> auntil p f x | p x = x| otherwise = until p f (f x)-- asTypeOf is a type-restricted version of const. It is usually used-- as an infix operator, and its typing forces its first argument-- (which is usually overloaded) to have the same type as the second.asTypeOf :: a -> a -> aasTypeOf = const-- error stops execution and displays an error messageerror :: String -> aerror = primError-- It is expected that compilers will recognize this and insert error-- messages which are more appropriate to the context in which undefined-- appears.undefined :: aundefined = error "Prelude.undefined"



94 A. STANDARD PRELUDEA.1 Prelude PreludeList-- Standard list functionsmodule PreludeList(head, last, tail, init, null, length, (!!),foldl, foldl1, scanl, scanl1, foldr, foldr1, scanr, scanr1,iterate, repeat, replicate, cycle,take, drop, splitAt, takeWhile, dropWhile, span, break,lines, words, unlines, unwords, reverse, and, or,any, all, elem, notElem, lookup,sum, product, maximum, minimum, concatMap,zip, zip3, zipWith, zipWith3, unzip, unzip3)whereimport qualified Char(isSpace)infixl 9 !!infix 4 `elem`, `notElem`-- head and tail extract the first element and remaining elements,-- respectively, of a list, which must be non-empty. last and init-- are the dual functions working from the end of a finite list,-- rather than the beginning.head :: [a] -> ahead (x:_) = xhead [] = error "PreludeList.head: empty list"last :: [a] -> alast [x] = xlast (_:xs) = last xslast [] = error "PreludeList.last: empty list"tail :: [a] -> [a]tail (_:xs) = xstail [] = error "PreludeList.tail: empty list"init :: [a] -> [a]init [x] = []init (x:xs) = x : init xsinit [] = error "PreludeList.init: empty list"null :: [a] -> Boolnull [] = Truenull (_:_) = False



A.1 Prelude PreludeList 95-- length returns the length of a finite list as an Int; it is an instance-- of the more general genericLength, the result type of which may be-- any kind of number.length :: [a] -> Intlength [] = 0length (_:l) = 1 + length l-- List index (subscript) operator, 0-origin(!!) :: [a] -> Int -> a(x:_) !! 0 = x(_:xs) !! n | n > 0 = xs !! (n-1)(_:_) !! _ = error "PreludeList.!!: negative index"[] !! _ = error "PreludeList.!!: index too large"-- foldl, applied to a binary operator, a starting value (typically the-- left-identity of the operator), and a list, reduces the list using-- the binary operator, from left to right:-- foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn-- foldl1 is a variant that has no starting value argument, and thus must-- be applied to non-empty lists. scanl is similar to foldl, but returns-- a list of successive reduced values from the left:-- scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]-- Note that last (scanl f z xs) == foldl f z xs.-- scanl1 is similar, again without the starting element:-- scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]foldl :: (a -> b -> a) -> a -> [b] -> afoldl f z [] = zfoldl f z (x:xs) = foldl f (f z x) xsfoldl1 :: (a -> a -> a) -> [a] -> afoldl1 f (x:xs) = foldl f x xsfoldl1 _ [] = error "PreludeList.foldl1: empty list"scanl :: (a -> b -> a) -> a -> [b] -> [a]scanl f q xs = q : (case xs of[] -> []x:xs -> scanl f (f q x) xs)scanl1 :: (a -> a -> a) -> [a] -> [a]scanl1 f (x:xs) = scanl f x xsscanl1 _ [] = error "PreludeList.scanl1: empty list"



96 A. STANDARD PRELUDE-- foldr, foldr1, scanr, and scanr1 are the right-to-left duals of the-- above functions.foldr :: (a -> b -> b) -> b -> [a] -> bfoldr f z [] = zfoldr f z (x:xs) = f x (foldr f z xs)foldr1 :: (a -> a -> a) -> [a] -> afoldr1 f [x] = xfoldr1 f (x:xs) = f x (foldr1 f xs)foldr1 _ [] = error "PreludeList.foldr1: empty list"scanr :: (a -> b -> b) -> b -> [a] -> [b]scanr f q0 [] = [q0]scanr f q0 (x:xs) = f x q : qswhere qs@(q:_) = scanr f q0 xsscanr1 :: (a -> a -> a) -> [a] -> [a]scanr1 f [x] = [x]scanr1 f (x:xs) = f x q : qswhere qs@(q:_) = scanr1 f xsscanr1 _ [] = error "PreludeList.scanr1: empty list"-- iterate f x returns an infinite list of repeated applications of f to x:-- iterate f x == [x, f x, f (f x), ...]iterate :: (a -> a) -> a -> [a]iterate f x = x : iterate f (f x)-- repeat x is an infinite list, with x the value of every element.repeat :: a -> [a]repeat x = xs where xs = x:xs-- replicate n x is a list of length n with x the value of every elementreplicate :: Int -> a -> [a]replicate n x = take n (repeat x)-- cycle ties a finite list into a circular one, or equivalently,-- the infinite repetition of the original list. It is the identity-- on infinite lists.cycle :: [a] -> [a]cycle xs = xs' where xs' = xs ++ xs'



A.1 Prelude PreludeList 97-- take n, applied to a list xs, returns the prefix of xs of length n,-- or xs itself if n > length xs. drop n xs returns the suffix of xs-- after the first n elements, or [] if n > length xs. splitAt n xs-- is equivalent to (take n xs, drop n xs).take :: Int -> [a] -> [a]take 0 _ = []take _ [] = []take n (x:xs) | n > 0 = x : take (n-1) xstake _ _ = error "PreludeList.take: negative argument"drop :: Int -> [a] -> [a]drop 0 xs = xsdrop _ [] = []drop n (_:xs) | n > 0 = drop (n-1) xsdrop _ _ = error "PreludeList.drop: negative argument"splitAt :: Int -> [a] -> ([a],[a])splitAt 0 xs = ([],xs)splitAt _ [] = ([],[])splitAt n (x:xs) | n > 0 = (x:xs',xs'') where (xs',xs'') = splitAt (n-1) xssplitAt _ _ = error "PreludeList.splitAt: negative argument"-- takeWhile, applied to a predicate p and a list xs, returns the longest-- prefix (possibly empty) of xs of elements that satisfy p. dropWhile p xs-- returns the remaining suffix. Span p xs is equivalent to-- (takeWhile p xs, dropWhile p xs), while break p uses the negation of p.takeWhile :: (a -> Bool) -> [a] -> [a]takeWhile p [] = []takeWhile p (x:xs)| p x = x : takeWhile p xs| otherwise = []dropWhile :: (a -> Bool) -> [a] -> [a]dropWhile p [] = []dropWhile p xs@(x:xs')| p x = dropWhile p xs'| otherwise = xsspan, break :: (a -> Bool) -> [a] -> ([a],[a])span p [] = ([],[])span p xs@(x:xs')| p x = (x:xs',xs'') where (xs',xs'') = span p xs| otherwise = (xs,[])break p = span (not . p)



98 A. STANDARD PRELUDE-- lines breaks a string up into a list of strings at newline characters.-- The resulting strings do not contain newlines. Similary, words-- breaks a string up into a list of words, which were delimited by-- white space. unlines and unwords are the inverse operations.-- unlines joins lines with terminating newlines, and unwords joins-- words with separating spaces.lines :: String -> [String]lines "" = []lines s = let (l, s') = break (== '\n') sin l : case s' of[] -> [](_:s'') -> lines s''words :: String -> [String]words s = case dropWhile Char.isSpace s of"" -> []s' -> w : words s''where (w, s'') =break Char.isSpace s'unlines :: [String] -> Stringunlines = concatMap (++ "\n")unwords :: [String] -> Stringunwords [] = ""unwords ws = foldr1 (\w s -> w ++ ' ':s) ws-- reverse xs returns the elements of xs in reverse order. xs must be finite.reverse :: [a] -> [a]reverse = foldl (flip (:)) []-- and returns the conjunction of a Boolean list. For the result to be-- True, the list must be finite; False, however, results from a False-- value at a finite index of a finite or infinite list. or is the-- disjunctive dual of and.and, or :: [Bool] -> Booland = foldr (&&) Trueor = foldr (||) False-- Applied to a predicate and a list, any determines if any element-- of the list satisfies the predicate. Similarly, for all.any, all :: (a -> Bool) -> [a] -> Boolany p = or . map pall p = and . map p



A.1 Prelude PreludeList 99-- elem is the list membership predicate, usually written in infix form,-- e.g., x `elem` xs. notElem is the negation.elem, notElem :: (Eq a) => a -> [a] -> Boolelem x = any (== x)notElem x = all (not . (/= x))-- lookup key assocs looks up a key in an association list.lookup :: (Eq a) => a -> [(a,b)] -> Maybe blookup key [] = Nothinglookup key ((x,y):xys)| key == x = Just y| otherwise = lookup key xys-- sum and product compute the sum or product of a finite list of numbers.sum, product :: (Num a) => [a] -> asum = foldl (+) 0product = foldl (*) 1-- maximum and minimum return the maximum or minimum value from a list,-- which must be non-empty, finite, and of an ordered type.maximum, minimum :: (Ord a) => [a] -> amaximum [] = error "PreludeList.maximum: empty list"maximum xs = foldl1 max xsminimum [] = error "PreludeList.minimum: empty list"minimum xs = foldl1 min xsconcatMap :: (a -> [b]) -> [a] -> [b]concatMap f = concat . map f-- zip takes two lists and returns a list of corresponding pairs. If one-- input list is short, excess elements of the longer list are discarded.-- zip3 takes three lists and returns a list of triples. Zips for larger-- tuples are in the List libraryzip :: [a] -> [b] -> [(a,b)]zip = zipWith (,)zip3 :: [a] -> [b] -> [c] -> [(a,b,c)]zip3 = zipWith3 (,,)-- The zipWith family generalises the zip family by zipping with the-- function given as the first argument, instead of a tupling function.-- For example, zipWith (+) is applied to two lists to produce the list-- of corresponding sums.zipWith :: (a->b->c) -> [a]->[b]->[c]zipWith z (a:as) (b:bs) = z a b : zipWith z as bszipWith _ _ _ = []



100 A. STANDARD PRELUDEzipWith3 :: (a->b->c->d) -> [a]->[b]->[c]->[d]zipWith3 z (a:as) (b:bs) (c:cs)= z a b c : zipWith3 z as bs cszipWith3 _ _ _ _ = []-- unzip transforms a list of pairs into a pair of lists.unzip :: [(a,b)] -> ([a],[b])unzip = foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([],[])unzip3 :: [(a,b,c)] -> ([a],[b],[c])unzip3 = foldr (\(a,b,c) ~(as,bs,cs) -> (a:as,b:bs,c:cs))([],[],[])



A.2 Prelude PreludeText 101A.2 Prelude PreludeTextmodule PreludeText (ReadS, ShowS,Read(readsPrec, readList),Show(showsPrec, showList),reads, shows, show, read, lex,showChar, showString, readParen, showParen ) where-- The omitted instances can be implemented in standard Haskell but-- they have been omitted for the sake of brevityimport Char( isSpace, isAlpha, isDigit, isAlphanum, isHexDigit )type ReadS a = String -> [(a,String)]type ShowS = String -> Stringclass Read a wherereadsPrec :: Int -> ReadS areadList :: ReadS [a]readList = readParen False (\r -> [pr | ("[",s) <- lex r,pr <- readl s])where readl s = [([],t) | ("]",t) <- lex s] ++[(x:xs,u) | (x,t) <- reads s,(xs,u) <- readl' t]readl' s = [([],t) | ("]",t) <- lex s] ++[(x:xs,v) | (",",t) <- lex s,(x,u) <- reads t,(xs,v) <- readl' u]class Show a whereshowsPrec :: Int -> a -> ShowSshowList :: [a] -> ShowSshowList [] = showString "[]"showList (x:xs)= showChar '[' . shows x . showl xswhere showl [] = showChar ']'showl (x:xs) = showString ", " . shows x . showl xsreads :: (Read a) => ReadS areads = readsPrec 0shows :: (Show a) => a -> ShowSshows = showsPrec 0



102 A. STANDARD PRELUDEread :: (Read a) => String -> aread s = case [x | (x,t) <- reads s, ("","") <- lex t] of[x] -> x[] -> error "PreludeText.read: no parse"_ -> error "PreludeText.read: ambiguous parse"show :: (Show a) => a -> Stringshow x = shows x ""showChar :: Char -> ShowSshowChar = (:)showString :: String -> ShowSshowString = (++)showParen :: Bool -> ShowS -> ShowSshowParen b p = if b then showChar '(' . p . showChar ')' else preadParen :: Bool -> ReadS a -> ReadS areadParen b g = if b then mandatory else optionalwhere optional r = g r ++ mandatory rmandatory r = [(x,u) | ("(",s) <- lex r,(x,t) <- optional s,(")",u) <- lex t ]-- This lexer is not completely faithful to the Haskell lexical syntax.-- Current limitations:-- Qualified names are not handled properly-- A `--' does not terminate a symbol-- Octal and hexidecimal numerics are not recognized as a single tokenlex :: ReadS Stringlex "" = [("","")]lex (c:s) | isSpace c = lex (dropWhile isSpace s)lex ('\'':s) = [('\'':ch++"'", t) | (ch,'\'':t) <- lexLitChar s,ch /= "'" ]lex ('"':s) = [('"':str, t) | (str,t) <- lexString s]wherelexString ('"':s) = [("\"",s)]lexString s = [(ch++str, u)| (ch,t) <- lexStrItem s,(str,u) <- lexString t ]lexStrItem ('\\':'&':s) = [("\\&",s)]lexStrItem ('\\':c:s) | isSpace c= [("\\&",t) | '\\':t <- [dropWhile isSpace s]]lexStrItem s = lexLitChar s



A.2 Prelude PreludeText 103lex (c:s) | isSingle c = [([c],s)]| isSym c = [(c:sym,t) | (sym,t) <- [span isSym s]]| isAlpha c = [(c:nam,t) | (nam,t) <- [span isIdChar s]]| isDigit c = [(c:ds++fe,t) | (ds,s) <- [span isDigit s],(fe,t) <- lexFracExp s ]| otherwise = [] -- bad characterwhereisSingle c = c `elem` ",;()[]{}_`"isSym c = c `elem` "!@#$%&*+./<=>?\\^|:-~"isIdChar c = isAlphanum c || c `elem` "_'"lexFracExp ('.':s) = [('.':ds++e,u) | (ds,t) <- lexDigits s,(e,u) <- lexExp t]lexFracExp s = [("",s)]lexExp (e:s) | e `elem` "eE"= [(e:c:ds,u) | (c:t) <- [s], c `elem` "+-",(ds,u) <- lexDigits t] ++[(e:ds,t) | (ds,t) <- lexDigits s]lexExp s = [("",s)]lexDigits :: ReadS StringlexDigits = nonnull isDigitnonnull :: (Char -> Bool) -> ReadS Stringnonnull p s = [(cs,t) | (cs@(_:_),t) <- [span p s]]lexLitChar :: ReadS StringlexLitChar ('\\':s) = [('\\':esc, t) | (esc,t) <- lexEsc s]wherelexEsc (c:s) | c `elem` "abfnrtv\\\"'" = [([c],s)]lexEsc s@(d:_) | isDigit d = lexDigits slexEsc _ = []lexLitChar (c:s) = [([c],s)]lexLitChar "" = []instance Show Int where ...instance Read Int where ...instance Show Integer where ...instance Read Integer where ...instance Show Float where ...instance Read Float where ...instance Show Double where ...instance Read Double where ...



104 A. STANDARD PRELUDEinstance Show () whereshowsPrec p () = showString "()"instance Read () wherereadsPrec p = readParen False(\r -> [((),t) | ("(",s) <- lex r,(")",t) <- lex s ] )instance Show Char where ...instance Read Char where ...instance (Show a) => Show [a] whereshowsPrec p = showListinstance (Read a) => Read [a] wherereadsPrec p = readList-- Tuplesinstance (Show a, Show b) => Show (a,b) whereshowsPrec p (x,y) = showChar '(' . shows x . showChar ',' .shows y . showChar ')'instance (Read a, Read b) => Read (a,b) wherereadsPrec p = readParen False(\r -> [((x,y), w) | ("(",s) <- lex r,(x,t) <- reads s,(",",u) <- lex t,(y,v) <- reads u,(")",w) <- lex v ] )-- et cetera-- Functionsinstance Show (a -> b) whereshowsPrec p f = showString "<<function>>"instance Show (IO a) whereshowsPrec p f = showString "<<IO action>>"



A.3 Prelude PreludeIO 105A.3 Prelude PreludeIOmodule PreludeIO (FilePath, IOError, fail, userError, catch,putChar, putStr, putStrLn, print,getChar, getLine, getContents, interact,readFile, writeFile, appendFile, readIO, readLn) whereimport PreludeBuiltintype FilePath = Stringdata IOError -- The internals of this type are system dependantinstance Show IOError where ...instance Eq IOError where ...fail :: IOError -> IO afail = primFailuserError :: String -> IOErroruserError = primUserErrorcatch :: IO a -> (IOError -> IO a) -> IO acatch = primCatchputChar :: Char -> IO ()putChar = primPutCharputStr :: String -> IO ()putStr s = mapM_ s putCharputStrLn :: String -> IO ()putStrLn s = do putStr sputStr "\n"print :: Show a => IO ()print x = putStrLn (show x)getChar :: IO ChargetChar = primGetChargetLine :: IO StringgetLine = do c <- getCharif c == '\n' then return "" elsedo s <- getLinereturn (c:s)



106 A. STANDARD PRELUDEgetContents :: IO StringgetContents = primGetContentsinteract :: (String -> String) -> IO ()interact f = do s <- getContentsputStr (f s)readFile :: FilePath -> IO StringreadFile = primReadFilewriteFile :: FilePath -> String -> IO ()writeFile = primWriteFileappendFile :: FilePath -> String -> IO ()appendFile = primAppendFilereadIO :: Read a => String -> IO a-- raises an exception instead of an errorreadIO s = case [x | (x,t) <- reads s, ("","") <- lex t] of[x] -> return x[] -> fail (userError "PreludeIO.readIO: no parse")_ -> fail (userError"PreludeIO.readIO: ambiguous parse")readLn :: Read a => IO areadLn = do l <- getLiner <- readIO lreturn r



107B SyntaxB.1 Notational ConventionsThese notational conventions are used for presenting syntax:[pattern] optionalfpatterng zero or more repetitions(pattern) groupingpat1 j pat2 choicepathpat 0i di�erence|elements generated by patexcept those generated by pat 0fibonacci terminal syntax in typewriter fontBNF-like syntax is used throughout, with productions having the form:nonterm ! alt1 j alt2 j : : : j altnThere are some families of nonterminals indexed by precedence levels (written as asuperscript). Similarly, the nonterminals op, varop , and conop may have a double index: aletter l , r , or n for left-, right- or nonassociativity and a precedence level. A precedence-level variable i ranges from 0 to 9; an associativity variable a varies over fl ; r ; ng. Thus,for exampleaexp ! ( expi+1 qop(a;i) )actually stands for 30 productions, with 10 substitutions for i and 3 for a .In both the lexical and the context-free syntax, there are some ambiguities that are tobe resolved by making grammatical phrases as long as possible, proceeding from left toright (in shift-reduce parsing, resolving shift/reduce con
icts by shifting). In the lexicalsyntax, this is the \consume longest lexeme" rule. In the context-free syntax, this meansthat conditionals, let-expressions, and lambda abstractions extend to the right as far aspossible.B.2 Lexical Syntaxprogram ! f lexeme j whitespace glexeme ! varid j conid j varsym j consym j literal j special j reservedop j reservedidliteral ! integer j 
oat j char j stringspecial ! ( j ) j , j ; j [ j ] j _ j � j { j }whitespace ! whitestu� fwhitestu� gwhitestu� ! whitechar j comment j ncommentwhitechar ! newline j vertab j formfeed j space j tab j nonbrkspc
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B.3 Layout 109varsym ! ( symbol fsymbol j :g )hreservedopiconsym ! (: fsymbol j :g)hreservedopireservedop ! .. j :: j = j \ j | j <- j -> j @ j ~ j =>specialop ! - j !varid (variables)conid (constructors)tyvar ! varid (type variables)tycon ! conid (type constructors)tycls ! conid (type classes)modid ! conid (modules)qvarid ! [ modid . ] varidqconid ! [ modid . ] conidqtycon ! [ modid . ] tyconqtycls ! [ modid . ] tyclsqvarsym ! [ modid . ] varsymqconsym ! [ modid . ] consymdecimal ! digitfdigitgoctal ! octitfoctitghexadecimal! hexitfhexitginteger ! decimalj 0o octal j 0O octalj 0x hexadecimal j 0X hexadecimal
oat ! decimal . decimal [(e j E)[- j +]decimal ]char ! ' (graphich' j \i j space j escapeh\&i) 'string ! " fgraphich" j \i j space j escape j gapg "escape ! \ ( charesc j ascii j decimal j o octal j x hexadecimal )charesc ! a j b j f j n j r j t j v j \ j " j ' j &ascii ! ^cntrl j NUL j SOH j STX j ETX j EOT j ENQ j ACKj BEL j BS j HT j LF j VT j FF j CR j SO j SI j DLEj DC1 j DC2 j DC3 j DC4 j NAK j SYN j ETB j CANj EM j SUB j ESC j FS j GS j RS j US j SP j DELcntrl ! ASClarge j @ j [ j \ j ] j ^ j _gap ! \ whitechar fwhitecharg \B.3 LayoutDe�nitions: The indentation of a lexeme is the column number indicating the start of thatlexeme; the indentation of a line is the indentation of its leftmost lexeme. To determinethe column number, assume a �xed-width font with this tab convention: tab stops are 8



110 B. SYNTAXcharacters apart, and a tab character causes the insertion of enough spaces to align thecurrent position with the next tab stop.In the syntax given in the rest of the report, declaration lists are always preceded bythe keyword where, let, do, or of, and are enclosed within curly braces ({ }) with theindividual declarations separated by semicolons (;). For example, the syntax of a letexpression is: let { decl1 ; decl2 ; ::: ; decln [;] } in expHaskell permits the omission of the braces and semicolons by using layout to convey thesame information. This allows both layout-sensitive and -insensitive styles of coding, whichcan be freely mixed within one program. Because layout is not required, Haskell programscan be straightforwardly produced by other programs.The layout (or \o�-side") rule takes e�ect whenever the open brace is omitted after thekeyword where, let, do, or of. When this happens, the indentation of the next lexeme(whether or not on a new line) is remembered and the omitted open brace is inserted (thewhitespace preceding the lexeme may include comments). For each subsequent line, if itcontains only whitespace or is indented more, then the previous item is continued (nothingis inserted); if it is indented the same amount, then a new item begins (a semicolon isinserted); and if it is indented less, then the declaration list ends (a close brace is inserted).A close brace is also inserted whenever the syntactic category containing the declarationlist ends; that is, if an illegal lexeme is encountered at a point where a close brace would belegal, a close brace is inserted. The layout rule matches only those open braces that it hasinserted; an explicit open brace must be matched by an explicit close brace. Within theseexplicit open braces, no layout processing is performed for constructs outside the braces,even if a line is indented to the left of an earlier implicit open brace.Given these rules, a single newline may actually terminate several declaration lists. Also,these rules permit:f x = let a = 1; b = 2g y = exp2in exp1making a, b and g all part of the same declaration list.To facilitate the use of layout at the top level of a module (an implementation mayallow several modules may reside in one �le), the keyword module and the end-of-�le tokenare assumed to occur in column 0 (whereas normally the �rst column is 1). Otherwise, alltop-level declarations would have to be indented.Section 1.5 gives an example which uses the layout rule.



B.4 Context-Free Syntax 111B.4 Context-Free Syntaxmodule ! module modid [exports ] where bodyj bodybody ! { [impdecls ;] [[�xdecls ;] topdecls [;]] }j { impdecls [;] }impdecls ! impdecl1 ; : : : ; impdecln (n � 1 )exports ! ( export1 , : : : , exportn [ , ] ) (n � 0 )export ! qvarj qtycon [(..) j ( qcname1 , : : : , qcnamen )] (n � 1 )j qtycls [(..) j ( qvar1 , : : : , qvarn )] (n � 0 )j module modidqcname ! qvar j qconimpdecl ! import [qualified] modid [as modid ] [impspec]impspec ! ( import1 , : : : , importn [ , ] ) (n � 0 )j hiding ( import1 , : : : , importn [ , ] ) (n � 0 )import ! varj tycon [ (..) j ( cname1 , : : : , cnamen )] (n � 1 )j tycls [(..) j ( var1 , : : : , varn )] (n � 0 )cname ! var j con�xdecls ! �x1 ; : : : ; �xn (n � 1 )�x ! infixl [digit ] opsj infixr [digit ] opsj infix [digit ] opsops ! op1 , : : : , opn (n � 1 )topdecls ! topdecl1 ; : : : ; topdecln (n � 0 )topdecl ! type simpletype = typej data [context =>] simpletype = constrs [deriving ]j newtype [context =>] simpletype = con atype [deriving ]j class [context =>] simpleclass [where { cbody [;] }]j instance [context =>] qtycls inst [where { valdefs [;] }]j default (type1 , : : : , typen) (n � 0 )j decl



112 B. SYNTAXdecls ! decl1 ; : : : ; decln (n � 0 )decl ! signdeclj valdefdecllist ! { decls [;] }signdecl ! vars :: [context =>] typevars ! var1 , : : :, varn (n � 1 )type ! btype [-> type] (function type)btype ! [btype] atype (type application)atype ! gtyconj tyvarj ( type1 , : : : , typek ) (tuple type; k � 2 )j [ type ] (list type)j ( type ) (parenthesised constructor)gtycon ! qtyconj () (unit type)j [] (list constructor)j (->) (function constructor)j (,f,g) (tupling constructors)context ! classj ( class1 , : : : , classn ) (n � 1 )class ! qtycls tyvarsimpletype ! tycon tyvar1 : : : tyvarkconstrs ! constr1 | : : : | constrn (n � 1 )constrs ! constr1 | : : : | constrn (n � 1 )constr ! con [!] atype1 : : : [!] atypek (arity con = k ; k � 0 )j (btype j ! atype) conop (btype j ! atype) (in�x conop)j con { �elddecl1 , : : : , �elddecln } (n � 1 )�elddecl ! vars :: (type j ! atype)deriving ! deriving (dclass j (dclass1, : : : , dclassn))(n � 0 )dclass ! qtyclssimpleclass ! tycls tyvarcbody ! [ cmethods [ ; cdefaults ] ]cmethods ! signdecl1 ; : : : ; signdecln (n � 1 )cdefaults ! valdef1 ; : : : ; valdefn (n � 1 )



B.4 Context-Free Syntax 113inst ! gtyconj ( gtycon tyvar1 : : : tyvark ) (k � 0 ; tyvars distinct)j ( tyvar1 , : : : , tyvark ) (k � 2 ; tyvars distinct)j [ tyvar ]j ( tyvar1 -> tyvar2 ) tyvar1 and tyvar2 distinctvaldefs ! valdef1 ; : : : ; valdefn (n � 0 )valdef ! lhs = exp [where decllist ]j lhs gdrhs [where decllist ]lhs ! pat0j funlhsfunlhs ! var apat f apat gj pat i+1 varop(a;i) pat i+1j lpat i varop( l;i) pat i+1j pat i+1 varop( r;i) rpat igdrhs ! gd = exp [gdrhs ]gd ! | exp0exp ! exp0 :: [context =>] type (expression type signature)j exp0expi ! expi+1 [qop( n;i) expi+1 ]j lexpij rexpilexpi ! (lexpi j expi+1 ) qop( l;i) expi+1lexp6 ! - exp7rexpi ! expi+1 qop( r;i) (rexpi j expi+1 )exp10 ! \ apat1 : : : apatn -> exp (lambda abstraction; n � 1 )j let decllist in exp (let expression)j if exp then exp else exp (conditional)j case exp of { alts [;] } (case expression)j do { stmts [;] } (do expression)j fexpfexp ! [fexp] aexp (function application)aexp ! qvar (variable)j gcon (general constructor)j literalj ( exp ) (parenthesised expression)



114 B. SYNTAXj ( exp1 , : : : , expk ) (tuple; k � 2 )j [ exp1 , : : : , expk ] (list; k � 1 )j [ exp1 [, exp2 ] .. [exp3 ] ] (arithmetic sequence)j [ exp | qual1 , : : : , qualn ] (list comprehension; n � 1 )j ( expi+1 qop(a;i) ) (left section)j ( qop(a;i) expi+1 ) (right section)j qcon { fbind1 , : : : , fbindn } (labeled construction; n � 0 )j aexpfqcong { fbind1 , : : : , fbindn } (labeled update; n � 1 )qual ! pat <- expj let decllistj expalts ! alt1 ; : : : ; altn (n � 1 )alt ! pat -> exp [where decllist ]j pat gdpat [where decllist ]gdpat ! gd -> exp [ gdpat ]stmts ! exp [; stmts ]j pat <- exp ; stmtsj let decllist ; stmtsfbinds ! { fbind1 , : : : , fbindn } (n � 0 )fbind ! var j var = exppat ! var + integer (successor pattern)j pat0pat i ! pat i+1 [qconop( n;i) pat i+1 ]j lpat ij rpat ilpat i ! (lpat i j pat i+1 ) qconop( l;i) pat i+1lpat6 ! - (integer j 
oat) (negative literal)rpat i ! pat i+1 qconop( r;i) (rpat i j pat i+1 )pat10 ! apatj gcon apat1 : : : apatk (arity gcon = k ; k � 1 )apat ! var [ @ apat ] (as pattern)j gcon (arity gcon = 0 )j qcon { fpat1 , : : : , fpatk } (labeled pattern; k � 0 )j literal



B.4 Context-Free Syntax 115j _ (wildcard)j ( pat ) (parenthesised pattern)j ( pat1 , : : : , patk ) (tuple pattern; k � 2 )j [ pat1 , : : : , patk ] (list pattern; k � 1 )j ~ apat (irrefutable pattern)fpat ! var = patj vargcon ! ()j []j (,f,g)j qconvar ! varid j ( varsym ) (variable)qvar ! qvarid j ( qvarsym ) (quali�ed variable)con ! conid j ( consym ) (constructor)qcon ! qconid j ( qconsym ) (quali�ed constructor)varop ! varsym j � varid� (variable operator)qvarop ! qvarsym j � qvarid� (quali�ed variable operator)conop ! consym j � conid� (constructor operator)qconop ! qconsym j � qconid� (quali�ed constructor operator)op ! varop j conop (operator)qop ! qvarop j qconop (quali�ed operator)



116 C. LITERATE COMMENTSC Literate commentsThe \literate comment" convention, �rst developed by Richard Bird and Philip Wadler forOrwell, and inspired in turn by Donald Knuth's \literate programming", is an alternativestyle for encoding Haskell source code. The literate style encourages comments by makingthem the default. A line in which \>" is the �rst character is treated as part of the program;all other lines are comment. Within the program part, the usual \--" and \{- -}" commentconventions may still be used. To capture some cases where one omits an \>" by mistake,it is an error for a program line to appear adjacent to a non-blank comment line, where aline is taken as blank if it consists only of whitespace.By convention, the style of comment is indicated by the �le extension, with \.hs"indicating a usual Haskell �le and \.lhs" indicating a literate Haskell �le. Using this style,a simple factorial program would be:This program prompts the user for a number and prints the factorialof that number:> main :: IO ()> main = do putStr "Enter a number: "> l <- readLine> putStr "n!= "> print (fact (read l))This is the factorial function.> fact :: Integer -> Integer> fact 0 = 1> fact n = n * fact (n-1)An alternative style of literate programming is particularly suitable for use with theLaTeX text processing system. In this convention, only those parts of the literate programwhich are entirely enclosed between \begin{code}: : :\end{code} delimiters are treated asprogram text; all other lines are comment. It is not necessary to insert additional blanklines before or after these delimiters, though it may be stylistically desirable. For example,\documentstyle{article}\begin{document}\section{Introduction}This is a trivial program that prints the first 20 factorials.\begin{code}main :: IO ()main = print [ (n, product [1..n]) | n <- [1..20]]\end{code}\end{document}



117This style uses the same �le extension. It is not advisable to mix these two styles in thesame �le.



118 D. SPECIFICATION OF DERIVED INSTANCESD Speci�cation of Derived InstancesA derived instance is an instance declaration which is generated automatically in conjunctionwith a data or newtype declaration. The body of a derived instance declaration is derivedsyntacticly from the de�nition of the associated type. Derived instances are possible onlyfor classes known to the compiler: those de�ned in either the Prelude or a standard library.In this appendix, we describe the derivation of classes de�ned by the Prelude.If T is an algebraic datatype declared by:data c => T u1 : : : uk = K1 t11 : : : t1k1 | � � � | Kn tn1 : : : tnknderiving (C1, : : :, Cm)(where m � 0 and the parentheses may be omitted if m = 1 ) then a derived instancedeclaration is possible for a class C if these conditions hold:1. C is one of Eq, Ord, Enum, Bounded, Show, or Read.2. There is a context c 0 such that c 0 ) C tij holds for each of the constituent types tij .3. If C is Bounded, the type must be either an enumeration (all constructors must bynullary) or have only one constructor.4. If C is Enum, the type must be an enumeration.5. There must be no explicit instance declaration elsewhere in the program which makesT u1 : : : uk an instance of C .For the purposes of derived instances, a newtype declaration is treated as a data declarationwith a single constructor.If the deriving form is present, an instance declaration is automatically generated forT u1 : : : uk over each class Ci . If the derived instance declaration is impossible for any ofthe Ci then a static error results. If no derived instances are required, the deriving formmay be omitted or the form deriving () may be used.Each derived instance declaration will have the form:instance (c, C 01 u 01, : : :, C 0j u 0j ) => Ci (T u1 : : : uk ) where { d }where d is derived automatically depending on Ci and the data type declaration for T (aswill be described in the remainder of this section), and u 01 through u 0j form a subset of u1through uk . When inferring the context for the derived instances, type synonyms must beexpanded out �rst. Free names in the declarations d are all de�ned in the Prelude; thequali�er `Prelude.' is implicit here. The remaining details of the derived instances for eachof the derivable Prelude classes are now given.



119Derived instances of Eq and Ord. The class methods automatically introduced by de-rived instances of Eq and Ord are (==), (/=), compare, (<), (<=), (>), (>=), max, and min.The latter seven operators are de�ned so as to compare their arguments lexicographicallywith respect to the constructor set given, with earlier constructors in the datatype declara-tion counting as smaller than later ones. For example, for the Bool datatype, we have that(True > False) == True.Derived comparisons always traverse constructors from left to right. These examplesillustrate this property:(1,undefined) == (2,undefined) ) False(undefined,1) == (undefined,2) ) ?Derived instances of Enum Derived instance declarations for the class Enum are onlypossible for enumerations. The nullary constructors are assumed to be numbered left-to-right with the indices 0 through n � 1. Enum introduces the class methods toEnum,fromEnum, enumFrom, enumFromThen, enumFromTo, and enumFromThenTo, which are used tode�ne arithmetic sequences as described in Section 3.10.The toEnum and fromEnum operators map enumerated values to and from the Int type.enumFrom n returns a list corresponding to the complete enumeration of n's type starting atthe value n. Similarly, enumFromThen n n' is the enumeration starting at n, but with secondelement n', and with subsequent elements generated at a spacing equal to the di�erencebetween n and n'. enumFromTo and enumFromThenTo are as de�ned by the default classmethods for Enum (see Figure 5, page 66). For example, given the datatype:data Color = Red | Orange | Yellow | Green deriving (Enum)we would have:[Orange..] == [Orange, Yellow, Green]fromEnum Yellow == 2Derived instances of Bounded. The Bounded class introduces the class methods minBoundand maxBound, which de�ne the minimal and maximal elements of the type. For an enumer-ation, the �rst and last constructors listed in the data declaration are the bounds. For atype with a single constructor, the constructor is applied to the bounds for the constituenttypes. For example, the following datatype:data Pair a b = Pair a b deriving Boundedwould generate the following Bounded instance:instance (Bounded a,Bounded b) => Bounded (Pair a b) whereminBound = Pair minBound minBoundmaxBound = Pair maxBound maxBound



120 D. SPECIFICATION OF DERIVED INSTANCESDerived instances of Read and Show. The class methods automatically introduced byderived instances of Read and Show are showsPrec, readsPrec, showList, and readList.They are used to coerce values into strings and parse strings into values.The function showsPrec d x r accepts a precedence level d (a number from 0 to 10),a value x, and a string r. It returns a string representing x concatenated to r. showsPrecsatis�es the law:showsPrec d x r ++ s == showsPrec d x (r ++ s)The representation will be enclosed in parentheses if the precedence of the top-level con-structor operator in x is less than d. Thus, if d is 0 then the result is never surrounded inparentheses; if d is 10 it is always surrounded in parentheses, unless it is an atomic expres-sion. The extra parameter r is essential if tree-like structures are to be printed in lineartime rather than time quadratic in the size of the tree.The function readsPrec d s accepts a precedence level d (a number from 0 to 10) anda string s, and returns a list of pairs (x,r) such that showsPrec d x r == s. readsPrecis a parse function, returning a list of (parsed value, remaining string) pairs. If there is nosuccessful parse, the returned list is empty.showList and readList allow lists of objects to be represented using non-standarddenotations. This is especially useful for strings (lists of Char).readsPrec will parse any valid representation of the standard types apart from lists, forwhich only the bracketed form [. . .] is accepted. See Appendix A for full details.A precise de�nition of the derived Read and Show instances for general types is beyondthe scope of this report. However, the derived Read and Show instances have the followingproperties:� The result of show is a syntactically correct Haskell expression containing only con-stants given the �xity declarations in force at the point where the type is declared.� The result of show is readable by read if all component types are readable. (Thisis true for all instances de�ned in the Prelude but may not be true for user-de�nedinstances.)� The instance generated by Read allows arbitrary whitespace between tokens on theinput string. Extra parenthesis are also allowed.� The result of show contains only the constructor names de�ned in the data type,parenthesis, and spaces. When labeled constructor �elds are used, braces, commas,�eld names, and equal signs are also used. No leading or trailing spaces are generated.Parenthesis are only added where needed. No line breaks are added.� If a constructor is de�ned using labeled �eld syntax then the derived show for thatconstructor will this same syntax; the �elds will be in the order declared in the datadeclaration. The derived Read instance will require this same syntax: all �elds mustbe present and the declared order must be maintained.



D.1 An example 121� If a constructor is de�ned in the in�x style, the derived Show instance will also usein�x style. The derived Read instance will require that the constructor be in�x.The derived Read and Show instances may be unsuitable for some uses. Some problemsinclude:� Circular structures cannot be printed or read by these instances.� The printer loses shared substructure; the printed representation of an object may bemuch larger that necessary.� The parsing techniques used by the reader are very ine�cient; reading a large structuremay be quite slow.� There is no user control over the printing of types de�ned in the Prelude. For example,there is no way to change the formatting of 
oating point numbers.D.1 An exampleAs a complete example, consider a tree datatype:data Tree a = Leaf a | Tree a :^: Tree aderiving (Eq, Ord, Read, Show)Automatic derivation of instance declarations for Bounded and Enum are not possible, as Treeis not an enumeration or single-constructor datatype. The complete instance declarationsfor Tree are shown in Figure 8, Note the implicit use of default class method de�nitions|forexample, only <= is de�ned for Ord, with the other class methods (<, >, >=, max, and min)being de�ned by the defaults given in the class declaration shown in Figure 5 (page 66).



122 D. SPECIFICATION OF DERIVED INSTANCESinfix 4 :^:data Tree a = Leaf a | Tree a :^: Tree ainstance (Eq a) => Eq (Tree a) whereLeaf m == Leaf n = m==nu:^:v == x:^:y = u==x && v==y_ == _ = Falseinstance (Ord a) => Ord (Tree a) whereLeaf m <= Leaf n = m<=nLeaf m <= x:^:y = Trueu:^:v <= Leaf n = Falseu:^:v <= x:^:y = u<x || u==x && v<=yinstance (Show a) => Show (Tree a) whereshowsPrec d (Leaf m) = showParen (d >= 10) showStrwhereshowStr = showString "Leaf " . showsPrec 10 mshowsPrec d (u :^: v) = showParen (d > 4) showStrwhereshowStr = showsPrec 5 u .showString " :^: " .showsPrec 5 vinstance (Read a) => Read (Tree a) wherereadsPrec d r = readParen (d > 4)(\r -> [(u:^:v,w) |(u,s) <- readsPrec 5 r,(":^:",t) <- lex s,(v,w) <- readsPrec 5 t]) r++ readParen (d > 9)(\r -> [(Leaf m,t) |("Leaf",s) <- lex r,(m,t) <- readsPrec 10 s]) rFigure 8: Example of Derived Instances



123E Compiler PragmasSome compiler implementations support compiler pragmas, which are used to give additionalinstructions or hints to the compiler, but which do not form part of the Haskell languageproper and do not change a program's semantics. This section summarizes this existingpractice. An implementation is not required to respect any pragma, but the pragma shouldbe ignored if an implementation is not prepared to handle it. Lexically, pragmas appear ascomments, except that the enclosing syntax is {-# #-}.E.1 Inliningdecl ! {-# inline [digit ] qvars #-}decl ! {-# notInline qvars #-}The optional digit represents the level of optimization at which the inlining is to occur. Ifomitted, it is assumed to be 0. A compiler may use a numeric optimization level setting inwhich increasing level numbers indicate increasing amounts of optimization. Trivial inliningswhich have no impact on compilation time or code size should have an optimization level of0; more complex inlinings which may lead to slow compilation or large executables shouldbe associated with higher optimization levels.Compilers will often automatically inline simple expressions. This may be prevented bythe notInline pragma.E.2 Specializationdecl ! {-# specialize spec1 , : : : , speck #-} (k � 1 )spec ! vars :: typeSpecialization is used to avoid ine�ciencies involved in dispatching overloaded functions.For example, infactorial :: Num a => a -> afactorial 0 = 0factorial n = n * factorial (n-1){-# specialize factorial :: Int -> Int,factorial :: Integer -> Integer #-}calls to factorial in which the compiler can detect that the parameter is either Int orInteger will use specialized versions of factorial which do not involved overloaded nu-meric operations.



124 E. COMPILER PRAGMASE.3 Optimizationdecl ! optdeclexp0 ! optdecl exp0optdecl ! {-# optimize optd1 , : : : , optdk #-} (k � 1 )optd ! digitj speed digitj space digitj compilationSpeed digitj debug digitThe optimize pragma provides explicit control over the optimization levels of the compiler.If used as a declaration, this applies to all values de�ned in the declaration group (andrecursively to any nested values). Used as an expression, it applies only to the pre�xedexpression. If no attribute is named, the speed attribute is assumed.
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IndexIndex entries that refer to nonterminals in the Haskell syntax are shown in an italic font.Code entities de�ned in the standard prelude (Appendix A) or in the Haskell LibraryReport[9] are shown in typewriter font. Ordinary index entries are shown in a romanfont.!!, 62, 94, 95$, 62, 83, 93&&, 63, 83, 88(), see trivial type and unit expression*, 62, 72, 73, 83, 84**, 62, 73, 74, 83, 85+, 62, 72, 73, 83, 84+, see also n+k pattern++, 62, 69, 83, 87-, 62, 72, 73, 83, 84-, see also negation., 62, 64, 83, 92/, 62, 72, 73, 83, 85/=, 62, 67, 83/=, 119:, 62, 64::, 24<, 62, 67, 83<, 119<=, 62, 67, 83<=, 119==, 62, 67, 83==, 119>, 62, 67, 83>, 119>=, 62, 67, 83>=, 119>>, 62, 69, 79, 83, 87>>=, 62, 69, 79, 83, 87@, see as-pattern[] (nil), 64?, 13^, 62, 74, 83, 86^^, 62, 74, 83, 87_, see wildcard pattern||, 62, 63, 83, 88~, see irrefutable pattern

abbreviated module, 54abs, 73, 74, 84abstract datatype, 37, 61accumulate, 70, 87acos, 73, 85acosh, 73, 85aexp, 12, 16{18, 114algebraic datatype, 36, 55, 118all, 98alt, 20, 114alts, 20, 114ambiguous type, 43and, 98ANY, 7, 108any, 7, 108any, 98ANYseq, 7, 108apat, 25, 115appendFile, 78, 106application, 15function, see function applicationoperator, see operator applicationapplyM, 88approxRational, 74, 75arctangent, 75arithmetic operator, 72arithmetic sequence, 17, 64as-pattern (@), 25, 27ascii, 10, 109ASCII character set, 6ASClarge, 7, 108ASCsmall, 7, 108ASCsymbol, 7, 108asin, 73, 85asinh, 73, 85asTypeOf, 93atan, 73, 75, 85127



128 INDEXatan2, 74, 75, 87atanh, 73, 85atype, 33, 112basic input/output, 77binding, 31function, see function bindingpattern, see pattern bindingsimple pattern, see simple pattern bind-ingbody, 31, 54, 111Bool (datatype), 63, 88boolean, 63Bounded (class), 70, 84derived instance, 43, 119instance for Char, 89break, 97btype, 33, 112case expression, 20catch, 80, 105cbody, 40, 113cdefaults, 40, 113ceiling, 74, 75, 85Char (datatype), 63, 89Char (module), 101char, 10, 109character, 63literal syntax, 10character setASCII, see ASCII character settransparent, see transparent charac-ter setcharesc, 10, 109class, 31, 40class, 34, 112class assertion, 34class declaration, 40, 55with an empty where part, 41class environment, 35class method, 32, 40, 41closure, 58cmethods, 40, 113cname, 56, 111cntrl, 10, 109coercion, 75

comment, 7end-of-line, 7nested, 7comment, 7, 108compare, 67, 83, 119con, 14, 115concat, 88concatMap, 99conditional expression, 16conid, 8, 9, 109conop, 14, 115const, 64, 92constr, 36, 112constrs, 36, 112constructed pattern, 26constructor class, v, 31constructor expression, 33consym, 8, 109context, 34context, 34, 112cos, 73, 85cosh, 73, 85cosine, 75curry, 64curry, 92Curry, Haskell B., iiicycle, 96data declaration, 22, 36datatype, 36abstract, see abstract datatypealgebraic, see algebraic datatypedeclaration, see data declarationrecursive, see recursive datatyperenaming, see newtype declarationdclass, 36, 112decimal, 9, 109decl, 31, 46, 112declaration, 31class, see class declarationdatatype, see data declarationdefault, see default declaration�xity, see �xity declarationimport, see import declarationinstance, see instance declaration
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superclass of Ord, 83error, 2, 13error, 13, 93escape, 10, 109Eval (class), 38, 70superclass of Num, 84even, 73, 86exceptionhandling, 79expi , 12, 113exp, 12, 15, 16, 19{21, 24, 113exp, 73, 74, 85exponent, 74, 76, 86exponentiation, 74export, 55, 111export list, 55exports, 55, 111expression, 2, 11case, see case expressionconditional, see conditional expressionlet, see let expressionsimple case, see simple case expres-siontype, see type expressionunit, see unit expressionexpression type-signature, 24, 44fail, 80, 105False, 63fbind, 23, 114fbinds, 114fexp, 12, 15, 113�eld label, see label, 37construction, 22selection, 22update, 23�eld names, v�elddecl, 36, 112FilePath (type synonym), 78, 105filter, 88�x, 61, 111�xdecls, 61, 111�xity, 14�xity declaration, 61flip, 64, 93Float (datatype), 71, 74, 91
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oating literal pattern, 27floatRadix, 74, 75, 86floatRange, 74, 75, 86floor, 74, 75, 85foldl, 95foldl1, 95foldr, 96foldr1, 96formal semantics, 1formfeed, 7, 108fpat, 25, 114fpats, 25, 114Fractional (class), 14, 71, 73, 85superclass of Floating, 85superclass of RealFrac, 85fromEnum, 69, 84, 119fromInteger, 14, 72, 73, 84fromIntegral, 74, 76, 87fromRational, 14, 72, 73, 85fromRealFrac, 74, 76, 87fst, 64fst, 92function, 64function binding, 46function type, 34functional language, iiifunctoon type, 33Functor (class), 69, 87instance for [], 92instance for IO, 90instance for Maybe, 89funlhs, 46, 113gap, 10, 109gcd, 73, 74, 86gcon, 14, 115gd, 20, 46, 113gdpat, 20, 114gdrhs, 46, 113generalization, 48generalization order, 35

generator, 18getChar, 78, 105getContents, 78, 106getLine, 78, 105graphic, 7, 108GT, 65gtycon, 33, 41, 112guard, 18, 20, 28guard, 70, 88Haskell, iii, 1Haskell implementations, viHaskell kernel, 2Haskell mailing list, viHaskell web pages, vihead, 94hexadecimal, 9, 109hexit, 7, 108hiding, 57, 60Hindley-Milner type system, 2, 31, 48id, 64, 92identi�er, 8if-then-else expression, see conditional ex-pressionimpdecl, 56, 111impdecls, 54, 111import, 56, 111import declaration, 56impspec, 56, 111init, 94inlining, 123inst, 41, 113instance declaration, 41, 42, see also de-rived instanceimporting and exporting, 58with an empty where part, 41Int (datatype), 71, 74, 90Integer (datatype), 74, 90integer, 9integer literal pattern, 27Integral (class), 71, 73, 84interact, 78, 106interface �le, vIO (datatype), 65, 90IOError (datatype), 65, 105
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lpat i , 25, 114LT, 65magnitude, 74Main (module), 54main, 54map, 69, 87mapM, 70, 87mapM_, 70, 87max, 67, 83, 119maxBound, 70, 84, 119maximum, 99maxInt, 74Maybe (datatype), 65, 89maybe, 65, 89method, see class methodmin, 67, 83, 119minBound, 70, 84, 119minimum, 99minInt, 74mod, 62, 72, 73, 83, 84modid, 9, 54, 109, 111module, 54module, 31, 54, 111Monad (class), 21, 69, 87instance for [], 92instance for Maybe, 89superclass of MonadZero, 87monad, 21, 69, 77MonadPlus (class), 69, 87instance for [], 92instance for Maybe, 90monads, ivMonadZero (class), 21, 69, 87instance for [], 92instance for Maybe, 89superclass of MonadPlus, 87monomorphic type variable, 29, 49, 50monomorphism restriction, 50Moose, Bullwinkle J., vin+k pattern, v, 27namequali�ed, see quali�ed namespecial, see special namenamespaces, 2, 8



132 INDEXncomment, 7, 108negate, 15, 72, 73, 84negation, 13, 15, 16newline, 7, 108newtype declaration, v, 26, 29, 39nonbrkspc, 7, 108nonnull, 103not, 63, 88notElem, 62, 94, 99Nothing, 65null, 94Num (class), 14, 44, 71, 73, 84superclass of Fractional, 85superclass of Real, 84number, 71literal syntax, 9translation of literals, 14numeric type, 72numericEnumFrom, 91numericEnumFromThen, 91octal, 9, 109octit, 7, 108odd, 73, 86o�-side rule, 3, 110, see also layoutop, 14, 61, 115operator, 8, 15operator application, 15ops, 61, 111or, 98Ord (class), 67, 71, 83derived instance, 43, 119instance for Char, 89superclass of Enum, 84superclass of Real, 84Ordering (datatype), 65, 90otherwise, 63, 89overloaded functions, 31overloaded pattern, see pattern-matchingoverloading, 40ambiguous, 43defaults, 43pat i , 25, 114pat, 25, 114pattern, 20, 25

@, see as-pattern_, see wildcard patternconstructed, see constructed patternfailure-free, 21
oating, see 
oating literal patterninteger, see integer literal patternirrefutable, 21, see irrefutable patternlinear, see linear patternn+k , see n+k patternrefutable, see refutable patternpattern binding, 46, 47pattern-matching, 24overloaded constant, 29pi, 73, 85polymorphic recursion, 45polymorphism, 2pragmas, 123precedence, 36, see also �xitypred, 84Prelude, 11Prelude (module), 59, 60, 82PreludeBuiltin (module), 82, 105PreludeIO (module), 82, 105PreludeList (module), 82, 94PreludeText (module), 82, 101principal type, 35, 45print, 77, 105product, 99program, 7, 108program structure, 1properFraction, 74, 75, 85putChar, 77, 105putStr, 77, 105putStrLn, 77, 105qcname, 55, 111qcon, 14, 115qconid, 9, 109qconop, 14, 115qconsym, 9, 109qop, 14, 15, 115qtycls, 9, 109qtycon, 9, 109qual, 18, 114quali�ed name, 9, 57
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scanl1, 95scanr, 96scanr1, 96section, 8, 16, see also operator applica-tionsemanticsformal, see formal semanticsseparate compilation, 61seq, 70, 83, 88sequence, 70, 87Show (class), 68, 101derived instance, 43, 120instance for [a], 104instance for IO, 104superclass of Num, 84show, 68, 102showChar, 102showList, 68, 101, 120showParen, 102ShowS (type synonym), 68, 101shows, 68, 101showsPrec, 68, 101, 120showString, 102sign, 74signature, see type signaturesigndecl, 40, 44, 112significand, 74, 76, 86signum, 73, 74, 84simple pattern binding, 47simpleclass, 34, 113simpletype, 36, 38, 39, 112sin, 73, 85sine, 75sinh, 73, 85small, 7, 108snd, 64snd, 92space, 7, 108span, 97special, 7, 108special name, 8, 11specialid, 8specialop, 8splitAt, 97sqrt, 73, 74, 85



134 INDEXstandard prelude, 59, see also Preludestmts, 21, 114strict, 70, 88strictness annotations, vstrictness 
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ags, 71String (type synonym), 63, 89string, 63literal syntax, 10transparent, see transparent stringstring, 10, 109subtract, 86succ, 84sum, 99superclass, 40, 41symbol, 7, 108, 109synonym, see type synonymsyntax, 107tab, 7, 108tail, 94take, 97takeWhile, 97tan, 73, 85tangent, 75tanh, 73, 85toEnum, 69, 84, 119toInteger, 84topdecl (class), 40topdecl (data), 36topdecl (default), 43topdecl (instance), 41topdecl (newtype), 39topdecl (type), 38topdecl, 31, 112topdecls, 31, 54, 112toRational, 73, 75, 84trigonometric function, 75trivial type, 17, 33, 64True, 63truncate, 74, 75, 85tuple, 17, 33, 64tuple type, 34tycls, 9, 34, 109tycon, 9, 109

type, 2, 32, 35ambiguous, see ambiguous typeconstructed, see constructed typefunction, see function typelist, see list typemonomorphic, see monomorphic typenumeric, see numeric typeprincipal, see principal typetrivial, see trivial typetuple, see tuple typetype, 33, 112type class, v, 2, 31, see classtype environment, 35type expression, 33type renaming, see newtype declarationtype signature, 35, 41, 44for an expression, see expression type-signaturetype synonym, 38, 41, 55, 118, see alsodatatyperecursive, 39tyvar, 9, 34, 109uncurry, 64uncurry, 92undefined, 13, 93unit datatype, see trivial typeunit expression, 17unlines, 98until, 64, 93unwords, 98unzip, 100unzip3, 100userError, 105valdef, 40, 46, 113valdefs, 41, 113value, 2var, 14, 115varid, 8, 9, 109varop, 14, 115vars, 44, 112varsym, 8, 109vertab, 7, 108Void (datatype), 64, 88
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