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Introduction

The usefulness of the well-celebrated CAPM theory of Sharpe, Lintner, and Black to

predict cross-sectional security and portfolio returns has been challenged by researchers

such as Fama and French (1992, 1993). It is still debatable, however, whether Fama and

French’s empirical approach has invalidated the CAPM (see, for example, Berk, 1995;

Ferson and Harvey, 1999; Kothari, Shanken, and Sloan, 1995; Jagannathan and Wang,

1996; and Loughran, 1996). Moreover, as Roll (1977) has pointed out, it is difficult,

if not impossible, to devise an adequate test of the theory. Nevertheless, financial

economists have worked in several directions to improve the theory of asset pricing. The

first route has involved relaxing the underlying assumptions of the model, including

the introduction of a tax effect on dividends (e.g., Brennan (1970)), non-marketable

assets (e.g., Mayers (1972)), as well as accounting for inflation and international assets

(e.g., Stulz (1981)). A second route has been to extend the one period CAPM to

an intertemporal setting (e.g., Merton, 1973; Lucas, 1978, Breeden, 1979, and Cox,

Ingersoll and Ross, 1985). Ross1 (1976) has taken a different route by assuming that

the stochastic properties of asset returns are consistent with a factor structure, and

our approach is in that tradition. We accept the CAPM as a reasonable first order

approximation, but find that the model has different implications when we assume that

not all investors are able to hold the market portfolio.

Starting from mean variance analysis,2 the traditional CAPM theory predicts that

only market risk should be priced in equilibrium; any role for idiosyncratic risk is

completely excluded through diversifications. CAPM must surely hold if investors are

alike and can hold a combination of the market portfolio and a risk-free asset as the

theory prescribes. In reality, however, institutional investment managers will often

deliberately structure their portfolios to accept considerable idiosyncratic risk in an

attempt to obtain extraordinary returns. Even in the absence of unusual cases such as

Enron and WorldCom, these investors fully appreciate the importance of idiosyncratic

factors in affecting the risk to which they are exposed. Therefore, as Merton (1987)

wrote in his AFA presidential address, “... financial models based on frictionless markets

1Also see, for example, Chamberlain and Rothschild, 1983; Chen, Roll, and Ross, 1986; Connor,
1984; Connor and Korajczyk, 1988; Dybvig, 1983; Lehmann and Modest, 1988; Shanken, 1982; and
Shukla and Trzcinka 1990).

2This is consistent with expected utility maximization for any concave utility function (see Ross
(1976)).
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and complete information are often inadequate to capture the complexity of rationality

in action.” When one group of investors – who we call “constrained” investors – is unable

to hold the market portfolio for various reasons, such as transactions costs, incomplete

information, and institutional restrictions including limitations on short sales, taxes,

liquidity constraints, imperfect divisibility of securities, or any other exogenous factors,

then the remaining investors – labeled as “free” or “unconstrained” investors – will also

be unable to hold the market portfolio. This is so because the constrained investors’

holdings and the free investors’ holdings together make up the whole market. An

inability to hold the market portfolio will force investors to care about total risk not

simply market risk. Since the relative per capita supply will be high for those stocks that

the constrained investors do not hold or only hold in very limited amounts, the prices of

these stocks must be relatively low. In other words, an idiosyncratic risk premium can

be rationalized to compensate investors for the “over supply” or “unbalanced supply”

of some assets.

Still another intuition can be gained in terms of diversification. Suppose the ac-

tual market portfolio consists of only tradable securities. In other words, the market

portfolio is observable and measurable. Under our assumption that some investors are

constrained from holding all securities, the “available market portfolio” that uncon-

strained investors can hold will be less diversified than the actual market portfolio.

Therefore, its corresponding risk will be higher, and a larger risk premium will be re-

quired. When individual investors use the available market portfolio to price individual

securities, the corresponding risk premia tend to be higher than those under the CAPM

where all investors are able to hold the actual market portfolio. This is because some

of the systematic risk would be considered as idiosyncratic risk relative to the actual

market portfolio. Hence, idiosyncratic risk would be priced in the market. We will fully

develop this idea below and investigate the empirical implications.

There are many reasons why individual investors might not be able to hold the

market portfolio. First, transactions costs are likely to prevent individual investors

from holding large numbers of individual stocks in their portfolios. In fact, Hirshleifer

(1988) has predicted that trading costs limit the participation of some classes of traders

in commodity futures markets and that idiosyncratic risk will be priced cross-sectionally.

Furthermore, more than half of U.S. households have accounts with brokerage firms.

Because of limited resources or their desires to exploit the unique characteristics of
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individual stocks, these investors normally only hold a handful of stocks.3 In addition,

as Hirshleifer (2001) has pointed out that “there is also experimental evidence that

investors sometimes fail to form efficient portfolios and violate two-fund separation.”

Also, in order to provide financial incentives for their employees that are not charged

against corporate income, many companies now grant stock options to their employees

or match the employee contributions to 401K retirement plans with company stock.

In general, such employees are constrained from liquidating their positions or to hedge

the stocks of their own firms, hence they tend to hold very unbalanced portfolios.4

Moreover, some stock traders and market makers hold large positions in individual

stocks.

Finally, there are several thousand actively managed mutual funds and pension

funds in existence. While these funds are able to hold a market portfolio, they typically

do not do so.5 Moreover, Day, Wang, and Xu (2000) have demonstrated that the

portfolios of equity mutual funds are not even mean-variance efficient with respect to

their holdings. These “active” portfolio managers are able to obtain large management

fees because they claim to be able to find “undervalued” securities and hence offer

investors the possibility of risk-adjusted returns superior to the market averages. While

there is no evidence that they can achieve this goal even before expenses (see Jensen

(1968) and Malkiel (1995)), they do affect the relative supply of stocks available for

other investors. Equity mutual funds hold portfolios comprising almost one-third of

the total capitalization of the U.S. stock market, and thus they have the potential to

alter the supply of securities available to other investors in an important way. The fact

that investors are willing to pay the high costs to invest in non-indexed mutual funds

indicates that they do not choose to allocate their portfolios between a market portfolio

and a risk-free asset as the CAPM theory assumes.

Behavioral finance provides additional insights that help explain why institutional

3One may argue that the idiosyncratic volatility of a portfolio is close to zero when there are more
than 20 stocks. However, this conclusion is based on a random sampling. In reality, investors do not
randomly select their stocks. In addition, Campbell, Lettau, Malkiel, and Xu (2000) have shown that a
well-diversified portfolio must have 40 or more stocks in recent decades because idiosyncratic volatility
has increased.

4This practice is particularly prevalent in high technology industries.
5Institutional investors are more likely to purchase index funds than are individual investors. A

proximately 10 percent of the mutual funds held by individuals were indexed in 2002 while about one
quarter of institutional funds were indexed. Thus, the vast majority of investors do not hold the market
portfolio. According to a recent survey, about 15% of individual investors only held one stock in their
account and an average investor only owned about three stocks.
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investors may be sensitive to the idiosyncratic risk of individual securities even though

such volatility can be diversified away. The prospect theory of Kahneman and Tversky

(1979)makes clear that the major force influencing the decisions of investors is loss aver-

sion. Mutual fund managers, pension fund managers and other institutional investors

are usually required to report quarterly to their directors, trustees, etc., on their recent

investment performance. That report typically includes a discussion of the best and

worst performing stocks in their portfolios. Even if balanced by favorable performance

in other parts of the portfolio, it is extraordinarily difficult to explain why the manager

bought and held those stocks, that declined sharply in value. Trustees and directors are

quite likely to ask the indelicate question of the manager, “How could you have held

WorldCom or Enron as these common stocks had lost essentially all of their value?”

Trustees and directors are unlikely to be sympathetic to arguments that idiosyncratic

factors (accounting fraud, unexpected industry overcapacity, etc.) are valid excuses for

such investment errors. It is not unreasonable, therefore, to believe that stocks that are

sensitive to substantial idiosyncratic risks may be subject to additional risk premiums.

There is no doubt, therefore, that not every investor is willing or able to hold the

market portfolio. Indeed, even index funds that attempt to replicate the very broad

market indexes, such as the Wilshire 5000 and Russell 3000, do not hold all the stocks

in the index in order to minimize transactions costs. To what extent this distortion

will affect the CAPM is purely an empirical question. Our approach is not to conduct

a direct investigation of the portfolio holdings of investors. Instead, we will take as

given that investors are unable to hold the market portfolio. Starting from there, we

investigate the consequences.

The role of idiosyncratic risk in asset pricing has been studied in the literature to

some extent. Most theoretical works have been focused on the effect of idiosyncratic (or

uninsurable) income risk on asset pricing (see for example, Heaton and Lucas (1996),

Thaler (1994), Aiyagari (1994), Lucas (1994), Telmer (1993), Franke, Stapleton, and

Subrahmanyam (1992), and Kahn (1990)). Based on assumptions similar to ours, Levy

(1978) derived a modified CAPM that revealed possible bias in the beta estimator as

well as a possible role for idiosyncratic risk. In contrast, our model demonstrates an

explicit role of idiosyncratic risk in asset pricing. Furthermore, we show that the beta

estimator will be unbiased if idiosyncratic risk is appropriately account for. Perhaps

the most relevant study to this paper is Merton (1987). Starting from a single factor

structure of returns, he assumes that investors can only invest in securities where they

4



have exact information about the expected returns, beta loadings, and volatilities. This

assumption seems to be too restrictive in today’s investment environment. We therefore,

use assumptions from the supply side instead. Although both the Merton model and

ours yield simular pricing implications, our model is more general in two respects. First,

we do not require that idiosyncratic returns are uncorrelated across individual stocks.

If this condition is imposed, our model will reduce to that of Merton (1987). Second,

we demonstrate that the price of idiosyncratic risk for an individual stock depends on

its correlation with the aggregated undiversified idiosyncratic return. This motivates

the construction of the return proxy for the idiosyncratic risk used in our time series

study.

The CAPM is the most extensively tested model. Early empirical studies that re-

jected the model include Black, Jensen, and Scholes (1972), Douglas (1969), Lintner

(1965), and Miller and Scholes (1972). In particular, Douglas (1969) concluded that

residual variance was also priced based on a single cross-sectional regression using av-

erage returns.6 Fama and MacBeth’s (1973) important study both rejected the role

of idiosyncratic risk in the CAPM and provided a more powerful cross-sectional test.

More recently, Lehmann (1990) studied the significance of residual risk in the context

of statistical testing methodology. Some indirect evidence regarding the role of idiosyn-

cratic risk has also surfaced in recent years. Falkenstein (1996) found some evidence

that the equity holdings of mutual fund managers appeared to be related to idiosyn-

cratic volatility. Using Swedish government lottery bonds where the underlying risk is

idiosyncratic by construction, Green and Rydqvist (1997), find prices of the bonds ap-

pear to reflect aversion to idiosyncratic risk. Bessembinder (1992) finds strong evidence

that idiosyncratic risk was priced, looking at a cross-section of foreign currency and

agricultural futures. In studying the volatility linkage between national stock markets,

King, Sentana, and Wadhwani (1994) provided evidence that idiosyncratic economic

shocks are priced and that the ‘the price of risk’ is different across stock markets.

In this paper, we provide a theory of idiosyncratic risk and test some of the impli-

cations of our model with constructed portfolio returns, individual stock returns, and

equity mutual fund returns. Since most empirical evidence supporting the role of idio-

syncratic risk from early studies in asset pricing was disregarded after the comprehensive

6Miller and Scholes (1972) suggested that several sources of bias may exist including omitting the
risk free rate, errors in beta measures, and correlation between betas and residual variances. They
claimed that the errors-in-variables issue is especially important.
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study by Fama and MacBeth (1973), we start our empirical study by replicating the

Fama and MacBeth study and extending it to different settings and sample periods. In

addition, we also consider Fama and French’s (1992) frameworks. The empirical results

support our model by showing that (1) idiosyncratic volatility alone is important in

explaining cross-sectional expected return differences; (2) its explanatory power does

not seem to be taken away by other variables, such as the size, the book-to-market, and

liquidity variables; and (3) the findings are robust to Japanese stock return data.

The paper is organized as follows: A simple CAPM type of model with some con-

strained investors is constructed in the first section. After studying the implications of

the model, we discuss issues related to empirical testing and data construction in section

2. Section 3 presents cross-sectional evidence in the spirit of Fama and MacBeth (1973)

and Fama and French (1992). Times series evidence concerning the role of idiosyncratic

volatility is briefly discussed in Section 4. Section 5 presents concluding comments.
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1 The basic model and its implications

The Capital Asset Pricing Model is an equilibrium model in which the demand for

equity securities is determined under a mean-variance optimization framework. The

market clearing condition then equates demand and the exogenous supply to achieve

equilibrium. Since it is assumed that investors are homogenous and are able to hold

every asset in the market portfolio, their holdings will be similar in equilibrium. As a

result, investors’ holdings of risky stocks will be comprised of shares held in proportion

to the market portfolio, which is a value-weighted portfolio of all the securities available

for investment. In other words, the market portfolio is always feasible and will be the

only portfolio held in equilibrium. Such an available market portfolio will be altered,

however, when a group of investors does not or cannot hold every stock for any of the

reasons described in the previous section.

1.1 Asset returns in a traditional CAPM world

For ease of exposition, we assume that there are three risky stocks denoted a, b, and c

that generate a return vector R = [Ra, Rb, Rc]
′ and one riskless bond that pays interest

rate r. Not all of the stocks are necessarily on the traditional mean-variance efficient

frontier. The final result will not depend on the number of stocks assumed since we

use vector notations. The risk structure for the three stocks is represented by their

variance-covariance matrix of returns, V =




σ2
a σab σbc

σab σ2
b σca

σca σbc σ2
c


. Each investor has the

following utility function,

u(W ) = E(W ) − 1

2τ
V ar(W ), (1)

where W represents future wealth and τ is the coefficient of risk tolerance. This partic-

ular utility function is consistent with the family of exponential utility functions when

future wealth has a normal distribution. If we denote Xj = [xa,j, xb,j , xc,j ] as investor

j’s dollar amount invested in the three stocks, the corresponding budget constraint can

be written as,

Wj = W0,j(1 + r) + X′
j(R − r1), (2)
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where W0,j is the initial endowment. Utility maximization of equation (1) subject to the

budget constraint represented by equation (2) leads to the following demand function,

Xj = τV−1(µ − r1), (3)

where µ = E(R) is the vector of expected returns of individual stocks. Note that de-

mand is independent of investors’ initial wealth because we do not constrain borrowing

at the rate r on riskless bonds. Although the variances and covariances among stock

returns are given exogenously in this framework, the expected returns should be deter-

mined in equilibrium by total supply. In other words, the equity market clears with

the condition of
∑n

j Xj = S, where S = [Sa, Sb, Sc] is the total supply of individual

stocks and n is the total number of investors. The equilibrium expected returns in this

unrestricted world can thus be written as,

µ − r1 =
1

nτ
VS. (4)

Following convention, we define the market portfolio as α = 1
M

S, where M = S1′ =

Sa + Sb + Sc. Under this notation, the expected market return and market volatility

can be expressed as µm = α′µ and σ2
m = α′Vα. Equation (4) can thus be converted

into the traditional CAPM,

µ − r1 = β(µm − r), (5)

where β = [βa, βb, βc] = 1
σ2

m
Vα is the conventional measure of systematic risk. Sub-

stituting equation (5) back into equation (3), it is clear that, in an economy where

investors are homogenous and unconstrained, only a linear combination of the risk-free

bond and the (efficient) market portfolio m generated from all the individual stocks will

be held. What makes this single factor model a truly equilibrium model is the existence

of an equilibrium market portfolio, which is determined by the aggregate supply. Since

the variance-covariance structure and the total supply of stocks are common knowl-

edge, this market portfolio can be constructed by an econometrician even when there

are limited investment opportunities.7

7For illustrative purposes, if we assume that only the NYSE/AMEX/NASDAQ listed stocks form
the entire universe of investment assets, the conventional market index portfolio, such as the value
weighted NYSE/AMEX/NASDAQ index, is indeed the market portfolio and is observable to everyone.
Since we will study the effect of limited investment opportunities under such a scenario where we know
the market portfolio, Roll’s (1977) critique is inapplicable in this context.
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Equation (5) says that only systematic risk, represented by the scaled covariance

between individual stock returns and the market return, matters for valuation. Idio-

syncratic risk can be diversified away in this framework, and will not command a risk

premium. Based on equation (5), we can express individual stock returns as,

Ri,t − rf,t = βi(Rm,t − rf,t) + εi,t, (6)

where εi,t is the idiosyncratic return. In the discussion that follows, we will use idio-

syncratic volatility to measure idiosyncratic risk. In light of equation (6), idiosyncratic

volatility Vε can simply be calculated as,

Vε = V − βσ2
mβ′. (7)

1.2 Asset returns under an imperfect market portfolio

While the CAPM must prevail when all individuals are unconstrained in holding un-

derlying assets, this assumption is frequently violated in practice. When some investors

can not or do not hold every security for the reasons discussed in the previous section,

the CAPM will fail to hold. For ease of exposition, we assume that there are three

groups of investors. While the “free” investors in the second group have full investment

opportunities and can hold all securities, the first and the third groups of investors

are assumed to be constrained from holding the first and the third stocks, respectively.

Following the same steps, we can derive demand equations similar to equation (3) for

representative investors in each group as,

X(1) = τ

[
0 0′

0 Σ−1
bc

]
(µ − r1),

X(2) = τV−1(µ − r1),

X(3) = τ

[
Σ−1

ab 0
0′ 0

]
(µ − r1),

where

Σab =

[
σ2

a σab

σab σ2
b

]
, and Σbc =

[
σ2

b σbc

σbc σ2
c

]
.

If there are n1, n2, and n3 number of investors in the first, the second, and the third

groups, respectively, the market clearing condition leads to the following,

S = n1X(1) + n2X(2) + n3X(3) = nτ [η1.3(V∗)−1 + η2V
−1](µc − r1), (8)
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where µc is the vector of expected equilibrium stock returns in this constrained world,

and V∗ = ( n1

n1+n3

[
0 0′

0 Σ−1
bc

]
+ n3

n1+n3

[
Σ−1

ab 0
0′ 0

]
)−1 is the aggregate variance-covariance

matrix perceived by constrained investors. η1.3 = (n1 + n3)/n is the proportion of

constrained investors and η2 = n2/n = 1 − η1.3 is the proportion of “free” investors.

The expected equilibrium return vector µc is then determined by the following equation,

µc − r1 =
1

nτ
[η1.3(V∗)−1 + η2V

−1]−1S. (9)

Equation (9) says that in a constrained market, investors apply an altered variance-

covariance matrix [η1.3(V∗)−1 + η2V
−1]−1 to price stocks instead of using the true

variance-covariance matrix V of stock returns. In other words, a CAPM would prevail

if the altered variance-covariance matrix represented the true risk structure. However,

since the risk structure is given, we should rewrite equation (9) alternatively as,

µc − r1 =
1

nτ
V[η1.3(V∗)−1V + η2I]

−1S =
1

nτ
VS∗. (10)

where S∗ is the effective supply. Therefore, equation (10) can be interpreted as if

investors are subject to an altered market portfolio8 α∗(= S∗
S′∗1

). In other words, a

CAPM type of relationship continues to hold with regard to the altered market portfolio

in equilibrium. But the CAPM relationship will not hold with respect to the actual total

market portfolio.

Equation (10) also suggests that S∗ properly normalized is a tangency portfolio in the

space of (µc, V ). However, since we (the econometricians) do not know the distribution

of investors among different groups, it is difficult to test equation (10) directly. When

investors determine individual stock returns with respect to the altered market portfolio

available to them, the econometricians tend to find an imperfect CAPM. This is because

econometricians can only use the market return Rm
† derived from the actual observable

market portfolio weights α constructed from all of the outstanding shares of stocks,

that is Rm
† = α′R. The net effect is that we will perceive that idiosyncratic risk is a

priced factor with respect to the actual observed market portfolio.

By recognizing the differences, perhaps it is possible to test the model indirectly. In

order to illustrate the point, we rewrite equation (9) in the following way;

µc − r1 =
1

nτ
[V−1 − η1.3(V

−1 − V−1
∗ )]−1S

8In the case of two risky stocks, it is the actual market portfolio less the holdings of the constrained
investors.
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=
1

nτ
VS +

η1.3

nτ
V[(I − V−1

∗ V)−1 − η1.3I]
−1S

=
1

nτ
VS +

η1.3

nτ
Vω, (11)

where ω is the supply adjustment. Equation (11) reveals that the equilibrium expected

returns will adjust both to the actual total supply, which is prescribed by the traditional

CAPM, and to the supply adjustment from constrained investors. When the number of

constrained investors is relatively small, i.e., η1.3 ≈ 0, the supply adjustment is trivial.

Expected returns will not deviate much from those predicted by a traditional CAPM

(equation (4)). However, if the aggregate demand from the constrained investors is

large, as we suggest it is, substantial adjustments will be required. Next, we multiply

both sides of equation (11) by the actual market portfolio weights α, that is,

µm
† − r =

M

nτ
α′Vα +

M

nτ
η1.3α

′Vω∗ =
M

nτ
σ2

m +
M

nτ
η1.3σ

2
mβ′ω∗, (12)

where µm
† = α′µc is the observed expected market return, and ω∗ = 1

M
ω is the relative

supply adjustment. Substituting equation (12) back into equation (11) and applying

equation (7), we have the following result,

µc − r1 = β
µm

† − r

1 + η1.3ω′∗β
+

(µm
† − r)/σ2

m

1 + η1.3ω′∗β
η1.3Vω∗

= β(µm
† − r) +

(µm
† − r)/σ2

m

1 + η1.3ω′∗β
η1.3[Vω∗ − βσ2

mβ′ω∗]

= β(µm
† − r) + κδSRVεω∗, (13)

where Vε is the idiosyncratic volatility defined in equation (7), κ = η1.3

1+ω′∗β
and δSR =

µm
†−r

σ2
m

are constant and the market Sharpe Ratio, respectively.

If we define the undiversified market wide idiosyncratic return with respect to equa-

tion (7) as εI
m = ε′ω∗, equation (13) can be rewritten as,

µc
i − r = βi(µm

† − r) + βI,iµε, (14)

where βI,i = Cov(Ri,ε
I
m)

V ar(εI
m)

represents the sensitivity coefficient of the market wide undiver-

sified idiosyncratic risk factor in the spirit of an APT model, and µε = κV ar(εI
m)δSR

is the market wide undiversified idiosyncratic risk premium that arises in our model

because of the constrained investors. Similar to the implication of Shanken’s (1987)
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model9, what matters here is the covariance risk between individual stocks return and

the market wide undiversified idiosyncratic risk.

Equation (14) says that, if investors cannot hold a market portfolio, the expected

return for each individual stock will be related not only to the observed market expected

return through the conventional beta measure, but will also include an extra risk pre-

mium because some undiversified idiosyncratic risk will be forced on investors by the

constraints imposed. Of course, the portfolio ω∗ is unobservable to an econometrician,

but we are able to construct an idiosyncratic risk hedging portfolio in the spirit of Fama

and French (1993) to approximate portfolio ω∗ and will briefly discuss our empirical

findings in section 4.

Similar to the CAPM model, our model offers cross-sectional implications that can

be tested directly. Similar to the assumption used in Dybvig (1983) and Grinblatt and

Titman (1983), we further assume that the idiosyncratic returns for individual stocks

have very low pairwise correlations, i.e. Cov(εi, εj) ≈ 0. Therefore, equation (13) can

be further simplified as,

µc
i − r ≈ βi(µm

† − r) + κδSRw∗,iσ2
I,i, (15)

where σ2
I,i is the conventional measure of ith stock’s idiosyncratic volatility. The ap-

pearance of the Sharpe Ratio, δSR, in addition to the idiosyncratic volatility makes

perfect sense in this context. It translates the idiosyncratic risk into a comparable risk

premium. Since there is no particular reason suggesting that stocks with large supply

adjustments will have either large or small idiosyncratic volatilities, we can assume that

w∗,i and σ2
I,i are independent cross-sectionally.

µc
i − r ≈ βi(µm

† − r) + κδSRw̄σ2
I,i + ei, (16)

where ei = κδSR(w∗,i − w̄)σ2
I,i. It is easy to see that ei is independent of σ2

I,i, which

means that the cross-sectional regression coefficient on σ2
I,i is unbiased.

Equation (16) is useful in understanding the cross-sectional implications of the pric-

ing of idiosyncratic risk. It suggests that the differences among individual stocks’ ex-

pected returns will be related not only to their firms’ systematic volatilities (β), but also

to the firms’ idiosyncratic volatilities. In other words, firms that are subject to large

9In contrast, as (the referee) points out, an asset’s deviation from a misspecified pricing relation in
Shanken’s model, say the CAPM relation, is proportional to the covariance between the assets residual
return and the correct benchmark.
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idiosyncratic shocks will tend to have high expected returns. Although the assumption

of zero residual correlation will not hold precisely in practice, with low levels of residual

correlation, the qualitative implication from equation (16) should still obtain.10 This is

the testable implication studied from the cross-sectional perspective in section 3.

In study the APT model, Dybvig (1983) and Grinblatt and Titman (1983) have

shown that the residual risk, although may be important, its influence on asset returns

are generally quite small. This may seem to be contradict to what we suggest here.

However, there are important difference in the model structure. First, they assume

that the number of factors are correctly specified. Second, each factor is correctly

represented. When we fail to correctly specify some of the factors, as is the case here,

the effect of idiosyncratic risk relative to the specified factors can be large.

10The average absolute value of correlations among residuals of the 100 portfolios constructed in the
next section is about 0.33, which can be considered relatively small. In other words, the qualitative
conclusion should hold.
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2 The data and idiosyncratic risk proxies

Three data sets are employed in this study. The first data set is the 2001 version of the

COMPUSTAT tape which is primarily used to obtain the book values for individual

stocks in the later part of the study. The second data set is from the 2000 version of

the CRSP (Center for Research in Security Prices) tape, which includes NYSE, AMEX,

and NASDAQ stock returns. Since so many papers have been written on testing the

CAPM and most researchers rely on the CRSP tapes, there might be a data snooping

concern (Leamer, 1983, and Lo and MacKinlay, 19990). In order to address this issue,

we also examine the Japanese stock market for all stocks listed on the First and Second

Sections of the Tokyo Stock Exchange (TSE). The monthly individual stock returns

and annual financial statements (for book value of equity) data are from the PACAP

Japan database.11 The period covered in this study is from 1975 to 1999. The total

number of stocks available varies from 1174 to 1607.

Our study covers both the Fama and MacBeth (1973) sample period from Janu-

ary 1935 to June 1968 and the extended Fama and French (1992) sample period from

July 1963 to June 2000. Since the Fama and MacBeth (1973) study was influential

in dismissing the role of idiosyncratic risk, we begin our investigation by replicating

their study using their choice of sample of NYSE stocks only. Like Fama and MacBeth

(1973), the whole sample period under consideration is divided into portfolio formation,

estimation, and testing periods. In particular, there are 9 consecutive testing periods

with four sample years each starting from 1935. The five-year estimation period pro-

ceeding to each testing period is used to estimate individual stocks’ betas and residual

volatilities from a market model using an equal weighted NYSE index. Since tests are

performed on portfolios, these individual estimates are aggregated into the correspond-

ing portfolio estimates using equal weights.12 According to Fama and MacBeth (1973),

20 portfolios are constructed based on each stock’s beta obtained from the seven-year

portfolio formation period prior to the corresponding estimation period.13 Portfolio be-

11We are grateful to Yasushi Hamao for providing the data.
12As Miller and Scholes (1972) pointed out, the residual variance will bias the coefficient estimate

of the beta variable in an cross-sectional regression. Therefore, we only use the orthogonal part of the
residual variance to the beta variable in the cross-sectional regressions of Tables 5 and 6. However,
we still use the original residual variance in Table 4 in order to make our results comparable to the
original Fama and MacBeth (1973) study.

13The first portfolio formulation period has only four years from 1926 to 1929. According to Fama
and MacBeth (1973), a security available in the first month of a testing period must also have data for
all five years of the preceding estimation period and for at least four years of the portfolio formation
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tas and idiosyncratic volatilities are time varying due to delisting and annual updates

in the same way as Fama and MacBeth (1973).

For ease of comparison, we show in Table 1 the number of stocks, portfolio betas,

and portfolio idiosyncratic volatilities in the four selected portfolio estimation periods

reported in Table 2 of Fama and MacBeth (1973). Note that we tend to select a few more

stocks than that of Fama-MacBeth. For example, during the estimation period of 1934-

38, there are 581 stocks selected in our sample versus 576 stocks in Fama-MacBeth.

This could due to the fact that CRSP constantly updates their stock files over the

years. Therefore, we do not have an exact replication of the Fama-MacBeth portfolios.

Although our portfolio beta estimates in each of the estimation period are similar in

magnitude to those of Fama and MacBeth, they do not increase monotonically over the

20 portfolios as was the case in the Fama and MacBeth study. However, the portfolio

idiosyncratic volatility measures are extremely close to those of Fama and MacBeth.

Insert Table 1

The size variable is one of the most important variables studied in Fama and French

(1992) and has been widely used in later research. We have also incorporate the size

variable in the Fama and MacBeth (1973) framework in the following way. Stocks are

first sorted into five size groups according to their market capitalization in the month

prior to each testing period. There is no particular reason to choose five size groups

except for insuring that the portfolios have sufficient numbers of stocks. Within each

size group, stocks are then sorted into ten beta portfolios as in the original study.

Since volatilities, especially idiosyncratic volatilities, are unobservable, we need esti-

mates in order to perform empirical tests of equation (15). Presumably these estimates

can be obtained from the residuals of an asset pricing model. Empirically, however, it

is very difficult to interpret the residuals from the CAPM or even a multi-factor model

as solely reflecting idiosyncratic risk. One can always argue that these residuals simply

represent omitted factors. Therefore, we can only assert that the residuals from a mar-

ket model measure idiosyncratic risk in the context of that model. In other words, it

would be legitimate to measure idiosyncratic volatility using the mean square of resid-

uals as suggested in the model discussed in the previous section. In fact, this is the

period. In order to have comparable numbers of stocks selected for the first period, we require each
stock have at least three years of data in the portfolio formation period.
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approach used in Fama and MacBeth (1973). We also realize that the current literature

has leaned toward a three-factor model of Fama and French (1993) such as shown in

equation (17) below,

Ri,t = βm,iRm,t + βsmb,iRsmb,t + βhml,iRhml,t + εi,t, (17)

where Rm,t is the market return, with Rsmb and Rhml respectively representing the

returns on portfolios formed to capture the size effect and the book-to-market equity

effect.14 Therefore, in this part of the investigation, we use idiosyncratic volatility

estimates both from a market model and from the above Fama-French three-factor

model.

Forming large portfolios not only reduces the errors-in-variables problem in the

beta estimates, but also makes the residual variance estimates more accurate. At the

same time, due to diversification effects, idiosyncratic volatilities do not have much

variability across portfolios when there are too many stocks in each portfolio. In order

to increase the power of our tests, we have also investigated a different specification

with 50 portfolios in our empirical study. As a result the average standard error of the

50 portfolio betas will be in the order of one half to one-eleventh that of individual

stocks.15 Moreover, we extend the Fama and MacBeth study to the sample period from

1963 to 2000 for NYSE/AMEX stocks.

The essential characteristics for the 50 portfolios over the same sample period are

shown in Table 2. We report the average monthly returns for each of the 50 portfolios

sorted on both size and beta computed from a market model. In general, portfolio

returns decrease with the portfolio sizes except for the portfolio with the lowest beta

and smallest size. Portfolio returns also increase with portfolio betas. But this relation

weakens when portfolio size increases and when betas are large. At the same time

portfolio betas are monotonic over both the beta group and the size group. Although

these betas range from 0.64 to 1.72, only one-quarter of the portfolios have betas less

than one. It is also interesting to note that portfolio size does not vary much across beta

groups. In contrast, portfolio idiosyncratic volatilities aggregated from the root mean

squared residuals of individual stocks computed from a market model, vary considerably

14We are grateful to Eugene Fama for making these data available to us.
15Fama and MacBeth (1973) reported the average standard error of the twenty portfolio betas is of

the order of one-third to one-seventh that of individual stocks. When 50 portfolios are used instead, the
relative increase in the standard error is about

√
50/20 = 1.58. In fact, the empirical results suggests

that the significance of beta variable is not affected by this grouping approach.
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both across the size groups and beta deciles. This suggests that the idiosyncratic

volatility variable may be more useful in explaining the cross-sectional return difference

than the size variable.

Insert Table 2

For the recent sample period from 1963 to 2000, as show in Table 3, the average

log market capitalizations of the 50 portfolio have gone up between 40% to 60%. For

example, the overall average portfolio size for Fama and MacBeth period is 3.4 while

that for the current sample period is 5.2 (not shown in the table). The increase in

the portfolio size are uniform across portfolios. However, portfolio returns seem to vary

much less both across the size groups and beta deciles than those in the previous sample

period. This suggests that cross-sectional test results might be weaker for the recent

sample period. Similarly, variations in portfolio betas are also much smaller from 0.64

to 1.37 and are more symmetrical around 1. In contrast, variations in the portfolio

aggregate idiosyncratic volatilities increase across beta deciles but decrease across size

quintiles.

Insert Table 3

Perhaps a more powerful test is to run cross-sectional regressions on individuals

stocks in the spirit of Fama and French (1992). Similar to their study, portfolio betas

of the 100 portfolios are assigned to each individual stock within each portfolio in order

to reduce errors-in-variables problems. In particular, since there are so many small

NASDAQ stocks in terms of market capitalization, portfolio breakdowns are determined

using only NYSE stocks to avoid the small size portfolios from being too small. Each

year, all NYSE stocks on the CRSP tapes are sorted in groups according to their size.

The ten NYSE size deciles are then used to split the whole sample. At the same time,

the beta of each stock is estimated from a market model using the previous 24 to 60

months of sample returns. Within each size group for NYSE stocks only, stocks are

sorted again by their betas into ten equal number groups. Similarly, the break points

thus obtained are used to sort all the stocks in our sample. All portfolios are rebalanced

on June each year. The 100 portfolios thus constructed are very close to those used

in Fama and French (1992), except that we have extended the sample period to June
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2000. Using the whole sample period returns, we then estimate individual portfolio

betas from the sum of the beta coefficients of regressing individual portfolio returns

on the market and the lagged markets (see Fama and French, 1992). These portfolio

beta estimates are then assigned to individual stocks in the corresponding portfolios.

Individual stocks used in this part of the study should also have book values identifiable

from the COMPUSTAT tape. One average, we have 2537 stocks per month for the

extended sample period. Finally, we use NYSE/AMEX/NASDAQ index returns as the

market returns and the 3-month treasury-bill rates from Ibbotson Associates (2001) as

the risk-free rates.

In this part of the investigation, we use two measures of idiosyncratic volatility.

As mentioned in the last section, we can reasonably assume that the supply adjust-

ment and the idiosyncratic volatility of individual stocks are uncorrelated with each

other. Under this assumption, we can use the June’s residual root mean square error

of individual stocks estimated from either a market model or the Fama and French

(1992) three-factor model using the previous 24 to 60 months of sample returns as the

idiosyncratic volatility measure in the cross-sectional regressions. At the same time, if

we consider the residual risk of a non randomly selected portfolio as the undiversified

idiosyncratic risk, the size-beta sorted portfolio idiosyncratic volatility measures can

also be used in the cross-sectional regression of individual stocks. This is legitimate

since our model suggests that it is the undiversified idiosyncratic volatilities that affect

individual stocks returns. Using portfolios’ idiosyncratic volatilities also makes sense

under the independence assumption between the supply adjustment and the idiosyn-

cratic volatility. The supply adjustment is unlikely to vary much across portfolios.

Finally, by assigning portfolio idiosyncratic volatility to each individual stock within

each portfolio will also reduce errors-in-variables problems if individual betas can not

be accurately estimated. We also recognize that, due to the diversification effect, a

portfolio’s idiosyncratic volatility will not be representative of individual stocks’ un-

diversified idiosyncratic volatilities in the portfolio when there are too many stocks.

Therefore, in order to balance the benefit of accurate estimates and the diversification

effect, we use 200 portfolios’ idiosyncratic volatilities to approximate those of the indi-

vidual stocks within each portfolio. For robustness, we also use portfolio residuals from

Fama-French three-factor model.
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3 The cross-sectional evidence

Ever since doubts were raised about the CAPM model by Fama and French (1992),

considerable attention has been devoted to risk measurement. For example, Jagan-

nathan and Wang (1996) have argued that a conditional CAPM behaves well. Some

have argued that the variables used by Fama and French are not robust (see for example

Loughran (1996), and Kothari, Shanken, and Sloan (1995)). Others have suggested that

a multifactor model in the spirit of the Merton’s (1973) ICAPM model provides a bet-

ter explanation of returns than a single factor CAPM model.16 As noted by Fama and

French (1992) and others, the most significant factors in “explaining” cross-sectional re-

turns appear to be the market capitalization (size) and book to market ratios. These are

largely empirical findings rather than equilibrium implications. Therefore, it is difficult

to understand why these factors should matter in determining expected returns unless

they are proxies for other (systematic) risk factors. Moreover, combining time series

evidence of return predictability and cross-sectional testing in a conditional framework,

Ferson and Harvey (1999) have rejected the three-factor model advocated by Fama and

French (1993) as a conditional asset pricing model. Meanwhile, Malkiel and Xu (1997)

have found that size and idiosyncratic volatility are highly correlated. Therefore, the

so-called size effect may just as well be attributed to idiosyncratic risk. Guided by

our theoretical model, we will study the empirical significance of idiosyncratic risk in

addition to other factors from both cross-sectional and time series perspectives.

As suggested by our model (16), idiosyncratic volatilities for individual securities

and their expected returns will be related. In other words, we need cross-sectional ev-

idence to conclude that return differences among securities can be partially explained

by differences in their idiosyncratic volatilities. In order to provide an overview of the

relationship, we first plot the average monthly returns versus the average idiosyncratic

volatility calculated from the residuals to the three-factor model for the ten decile port-

folios in Figure 1. Clearly there is a positive association between idiosyncratic volatility

and average returns. The significance of such a relationship is further demonstrated in

the following cross-sectional tests.

Insert Figure 1

16This does not mean that the market factor is unimportant, only that other factors are important
as well.
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3.1 The Fama and MacBeth (1973) study revisited

The Fama and MacBeth (1973) study is an important one not only in terms of its testing

methodology, which was widely used in later studies, but also in terms of its empirical

results that support the CAPM model. In addition, this study also reversed earlier

findings on the role of idiosyncratic risk. As a natural starting point in investigating

the cross-sectional implications of idiosyncratic risk, we try to replicate Fama and Mac-

Beth’s (1973) Table 3 in our Table 4. In particular, we report the time series averages of

the gamma estimates from cross-sectional regressions for each time t. For example, we

calculate the time series average γ̄x = 1
T

∑T
t=1 γ̂x,t for the cross-sectional estimates γ̂x,t.

The corresponding t ratio in Fama and MacBeth (1973) and Fama and French (1992)

is defined as tγ =
√

T γ̄x/std(γ̂x,t). Since the betas used in the cross-sectional regression

are themselves generated regressors, starting with Table 517, we use the Shanken (1992)

correction factor (1 + µ̂2
m/σ̂2

m). In addition, since there might be autocorrelation in the

estimates γ̂x,t, we use Newey and West (1987) estimator,18

σ2(γ̄x) =
k∑

j=−k

(
k − |j|

k

)
1

T

T∑
t=1

(γ̂x,tγ̂x,t−j).

Because we are using monthly data, k is set to 6.

Insert Table 4

When the portfolio beta variable β̂p,t−1 is used alone in the cross-sectional regres-

sions, the gamma estimates and the corresponding t-ratios closely match those of Fama

and MacBeth over both the whole sample period from 1935 to June 1968 and the

six five-year subsample periods. After introducing the additional variable of portfolio

beta squared, β̂2
p,t−1, our estimates suggest that the beta variable is very significant com-

pared with only marginal significance in Fama and MacBeth study. The main difference

arises in the first two subsample period. When the additional variable introduced in

the cross-sectional regressions is idiosyncratic volatility (residual standard deviation)

s̄p,t−1(ε) instead, Fama and MacBeth’s result continue to hold except that the gamma

17The purpose of Table 4 is to replicate Fama and MacBeth (1973). We do not adjust the t ratios
in the table.

18In order to truthfully replicate Fama and MacBeth’s (1973) results, we use std(γ̂x,t) to compute t
ratios in Table 4.
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estimate is much smaller and is statistically insignificant for the whole sample period.

Examining the gamma estimates from each subsample period, we have a reasonable

match except for the first subsample period.

Finally, we include both the β̂2
p,t−1 variable and the s̄p,t−1(ε) variable in addition to

the beta variable in the cross-sectional regressions. In contrast to Fama and MacBeth’s

finding that only the beta variable is marginally significant, we find that both the beta

variable and the beta-square variable are statistically significant at a 5% level for the

whole sample period. Therefore, Fama and MacBeth would have concluded that the

asset pricing relationship is non-linear if the current version of the CRSP tape is used.

It is also interesting to note that, despite the fact that the idiosyncratic risk variable

is still insignificant, it has made the squared beta variable significant. This suggests

that the two variables might be correlated with each other. In Panel A of Table 5, we

find that each of the three variables is very significant when used alone from the cross-

sectional regressions over the whole sample period even adjusted for bias and possible

autocorrelations. Therefore, we cannot totally ignore the idiosyncratic risk factor.

Insert Table 5

One caveat is that the significance of idiosyncratic volatility variable could be due to

a bias created when beta and the residual variable are correlated, as has been pointed out

by Miller and Scholes (1972). Since the Fama and MacBeth procedure is more powerful

than the simple cross-sectional regression using average returns that was popular in the

early studies and the beta variable itself is not significant when used alone except for the

case of early sample period, we do not believe that this is the case here. Nevertheless,

we only use the orthogonal part of the idiosyncratic volatility to the corresponding beta

variable in the cross-sectional regressions in the rest of the paper.

It is also possible that idiosyncratic volatility does not have sufficient variability

when grouped into 20 portfolios and is swamped by the beta variable. Since there is no

particular reason for Fama and MacBeth to choose 20 portfolios except for combating

the errors-in-variables problem, we have increased the number of portfolios to 50 in

Panel B of Table 5 using the same portfolio grouping procedure.19 Surprisingly, not

only do all the three individual variables continue to be statistically significant at a

19As mentioned earlier, this may only have moderate impact on estimation errors (see footnote 11).
Similar results hold when grouping into 30 or 40 portfolios.
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1% level when used alone in cross-sectional regressions, but also all the variables are

now statistically significant in the multiple cross-sectional regressions with all the three

variables as well. This result weakens a little when the value weighted index is used to

estimate the market model as shown in the second block of Panel B of Table 5. The

idiosyncratic volatility variable is now only significant at a 5% level when used alone

and at a 1% level in the multiple cross-sectional regression. In contrast, both beta

variables are insignificant when used alone. Therefore, we conclude that both beta and

idiosyncratic volatility appear to be important in explaining the cross-sectional return

differences for the early sample period. This evidence supports our model implications.

The Fama and French (1992) study and the Fama and MacBeth (1973) study con-

ducted under a different framework, came to different conclusions regarding the impor-

tance of the beta variable. For consistency, it is important to study the same issue

within the same framework. Since AMEX stocks were introduced into CRSP tape after

July 1962, we examine NYSE/AMEX stocks in this part of the study over the extended

Fama and French (1992) sample period from 1963 to 2000 using both 20 and 50 port-

folio groupings. When an equally weighted index is used in the market model, only the

idiosyncratic volatility variable is significant at a 10% level when used alone as shown

in Panel C of Table 5. None of the three variables are statistically significant at a 5%

level in the multiple cross-sectional regressions. However, when a value-weighted index

is used in the market model that estimates both beta and idiosyncratic volatility, the

idiosyncratic volatility variable is again statistically significant at a 1% level while the

beta squared variable is significant at a 5% level. Although, the significance of the beta

variable is not robust in terms of number of grouped portfolios as shown in Panel D

of Table 5, the idiosyncratic volatility variable becomes even more significant. There-

fore, the difference in the significance of beta found in the two studies is largely due to

differences in sample periods and in portfolio groupings. In contrast, the idiosyncratic

volatility variable is significant in both sample periods. One may wonder why idiosyn-

cratic volatility variable is significant in the multivariate regression when none of the

variable is significant individually as in the left block of Panel D in Table 5.20 One

explanation is that there is substantial and correlated noise in all the three variables.

If the true beta variable does not have much explanatory power to begin with, noise in

the beta variable may help to cancel out noise in the idiosyncratic volatility variable

20The beta variable and the idiosyncratic volatility variable are orthogonal to each other at the
individual stock level.

22



when used jointly.

3.2 The role of the size and the idiosyncratic volatility vari-
ables in the framework of Fama and MacBeth (1973)

Differences in the two studies mentioned above could also have contributed to different

results with respect to the size variable. In addition, as suggested by Malkiel and

Xu (1997), portfolio size and idiosyncratic volatility are highly correlated, therefore,

one could argue that the significance of the idiosyncratic volatility simply captures the

well-documented size effect. It is necessary, therefore, to consider the size variable

simultaneously. Thus, we extend the basic Fama-MacBeth sorting procedure by first

sorting stocks into five size group.21 Stocks in each size group are then sorted into ten

beta portfolio using exact procedure used in Fama and MacBeth (1973). The details of

this procedure was described in the previous section. For robustness, we apply both the

market model and the Fama-French three-factor model to estimate the idiosyncratic

volatilities used in estimation. The cross-sectional regression results for the 50 size-beta

sorted portfolios are reported in Table 6.

Insert Table 6

For the early sample period of Fama and MacBeth (1973), using a market model to

obtain beta and idiosyncratic volatility, results in the first block of Panel A in Table 6

show that all the four individual variables (β̂p,t−1, β̂2
p,t−1, log(MEp,t−1), and s̄p,t−1(ε))

are statistically significant at a 1% level with correct signs when used alone in cross-

sectional regressions. Under the original specification of Fama-MacBeth, the three

variables–β̂p,t−1, β̂2
p,t−1, and s̄p,t−1(ε) are simultaneously significant at a 1% level, which

not only confirms our finding from Table 5 using a different sorting approach but also

supports our model suggesting a role for idiosyncratic risk. If we replace the idiosyn-

cratic volatility measure with the size measure of log(MEp,t−1), a very similar result

holds. This also suggests that idiosyncratic volatility and size are likely to be highly

correlated. Therefore, we examine the cross-sectional regressions including both the

size and the idiosyncratic volatility variables. The result shows that the idiosyncratic

21The reason for five size groups instead of ten groups as in Fama and French (1992) is to have 50
portfolios that are consistent with Table 5 and to allow for enough stocks in each portfolio for the early
sample period to reduce the errors-in-variables problem.
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volatility is still significant at a 5% level while the size variable is insignificant. When

all the variables are used simultaneously, all the variables, except the size variable,

continue to be significant. This means that the size variable will not replace the role

of idiosyncratic risk in asset pricing. Moreover, the significance of the beta and beta

squared variables is consistent with Table 5.

Results are little different when idiosyncratic volatilities are estimated from the

residuals of the Fama-French three-factor model. From the second block of Panel A in

Table 6 we see that the significance of the idiosyncratic volatility variable is virtually

unchanged. When both the size variable and the idiosyncratic volatility variable are

used in the cross-sectional regression, only the latter variable is statistically significant

at a 5% level. In other words, the idiosyncratic volatility variable take away all the

explanatory power of the size variable. When all the variables are included in the last

equation of the right block of Panel A, the size variable is again statistically insignificant

while idiosyncratic volatility variable continues to be very significant. Therefore, the

results are robust to different specifications of idiosyncratic risk estimates.

For the most recent sample period of 1963-2000, results are not as strong as those

of the previous sample period in general. This is partly due to the fact that portfolio

returns are not as variable as before. Although the size variable and the idiosyncratic

variable are statistically significant at 5% and 7% levels, respectively when used alone,

only the idiosyncratic volatility variable continue to be significant at a 6% level in the

multiple cross-sectional regression while the size variable is insignificant (see the left

block of Panel B in Table 6). Although this specification is different from that of the

Fama and French (1992), which was based on individual stocks, the insignificance of

the beta variable is confirmed here. It is also interesting to see in a multiple cross-

sectional regression without the size variable that the idiosyncratic volatility variable

is significant at a 3% level. Therefore, our hypothesis that the size variable is a proxy

for the idiosyncratic volatility variable, is again confirmed from evidence for the most

recent sample period. When idiosyncratic volatility is estimated from the Fama-French

three-factor model, results do not change very much.

We, therefore, conclude that (1) beta estimated from a market model is important

in explaining return differences for the early sample period but its role has substantially

weakened in the recent sample period; (2) the idiosyncratic volatility variable is very

important especially in the previous sample period no matter how it is measured; (3)
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the size variable is useful when used alone; and (4) the size effect is swamped by the

idiosyncratic risk factor in both sample periods.

3.3 A further look at the role of idiosyncratic volatility and
other variables in the framework of Fama and French (1992)

The fundamental difference between Fama and French (1992) and Fama and MacBeth

(1973) studies are that (1) the cross-sectional regressions are run for individual stocks;

(2) new variables such as size are considered; and (3) portfolio betas (βp) are assigned

to individual stocks within the portfolio, in the former study. We extend the Fama

and French study by extending their sample period to June 2000 and introducing the

idiosyncratic volatility variable in order to show its importance in explaining the cross-

sectional return difference. Note that we have dropped the beta-squared variable (β2
p)

introduced in Fama and MacBeth’s (1973) study since it is insignificant for current

sample period. While the log size variable (MEi,t−1) can be specified accurately, idio-

syncratic volatility is unobservable and has to be estimated. Just like beta estimates for

individual stocks that suffer from errors-in-variables problems, idiosyncratic volatility

estimates for individual stocks face the same challenge since they are estimated from

the same models. In order to mitigate the problems, we apply the same approach as

Fama and French (1992) by assigning the portfolio idiosyncratic volatility (sp) to each

stock within the portfolio. As pointed out earlier, we face the diversification challenge

when using portfolio idiosyncratic volatility for that of individual stocks. Therefore,

we increase the number of portfolios in computing the idiosyncratic volatilities to 200.

Using portfolios’ idiosyncratic volatilities is also justified by the fact that it is the undi-

versified idiosyncratic risk that matters in determining the asset prices from our model.

For a robustness check, we also include individual stocks’ June idiosyncratic volatilities

(si,t−1) in the cross-sectional regression. Similar to Fama and French (1992), we use the

book value from the last fiscal year to compute the log book-to-market value (B/Mi,t−1).

The results reported in Table 7 are for all the NYSE/AMEX/NASDAQ stocks over the

sample period from July 1963 to June 2000.

Insert Table 7

Comparable to Fama and French’s (1992) results, the first equation in Panel A

of Table 2 shows a statistically insignificant estimate for the beta variable when used
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alone although it is a little stronger now. This result provides supplemental evidence

that beta does not appear to be useful in explaining the cross-sectional stock return

differences. However, as noted by Fama and French (1992), the size variable does appear

to explain the cross sectional variability of returns as shown in the third equation with

an estimate of −.0019 and a t−value of −3.50. This is much stronger than Fama and

French’s (1992) estimates using a shorter sample period. The size variable continues

to be very important when both the beta variable βp and the size variable MEi,t−1 are

added in the cross-sectional regression. In addition, the book-to-market variable the

similar estimate to that of Fama and French no matter whether it is used alone or with

other variables. As predicted by equation (15), high idiosyncratic risk, measured by

idiosyncratic volatility, is associated with high returns on average. This is exactly the

case as shown in the fourth equation for sp and in the fifth equation for si of Panel

A. The significance of the book-to-market, the size, and the idiosyncratic volatility

variables remain when the beta variable is also added in the cross-sectional regression.

The first idiosyncratic volatility measure (sp) again takes away the explanatory power

of the size variable. However, the result is reversed when si is used instead. This could

indicate that si is noisy proxy for the undiversified idiosyncratic volatility.

More importantly, including the B/Mi variable does not alter the gamma estimate

of the idiosyncratic volatility variable as shown in equations 13 and 14. Therefore,

controlling for the book-to-market variable does not have a large impact on the sig-

nificance of the idiosyncratic volatility variable. In other words, our conclusion with

regard to the role of idiosyncratic volatility appears also to be robust whether or not

the additional variable B/Mi is accounted for. Finally, when all the four variables are

used, both the size and the idiosyncratic volatility variables continue to be statistically

significant, while the size variable is insignificant in the regression with the sp variable.

3.4 The Robustness of Our Results

When both idiosyncratic volatility measures sp and si are computed from the residuals

of a three factor model, the fourth and the fifth equation from Panel B shows that the

positive relationship between return and idiosyncratic risk continues to be significant

at the 1% and the 5% levels, respectively. In fact, all the results for either of the

idiosyncratic volatility measures used with other variables only change slightly relative

to those using the CAPM residuals. Therefore, using the more restrictive definition for
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idiosyncratic volatility does not affect our result.

As noted above, portfolio size is strongly related to idiosyncratic volatility. Stocks

of smaller size tend to have larger idiosyncratic risks than stocks of larger size. Thus,

the size effect in Fama and French and our idiosyncratic volatility effect may be sub-

stitutes. Although Berk (1995) and Cochrane (2001) have forcefully argued that the

characteristic based variables, such as the size variable, can not be a risk factor, the size

variable can effectively serve as a proxy for the idiosyncratic risk. As Loughran (1996)

has found that the size effect may have concentrated on small stocks, we need to study

the robustness of the idiosyncratic risk factor relative to small stocks. NASDAQ stocks

were added to the CRSP tape in July, 1973 and the additions mostly consisted of small

stocks. A natural empirical design is to exclude these NASDAQ stocks from our study.

Results for NYSE/AMEX stocks only are reported in Table 8.

Insert Table 8

Comparing estimates with those shown in Table 7, the overall results are a little

weaker for any single variable. For example, the size variable is now significant at a

5% level. Despite the fact that individual stocks’ idiosyncratic volatility si is now only

significant at a 7% level variable, the sp measure is still very significant at a 1% level

when estimated from the CAPM residual shown in Panel A of Table 8. It is interesting

to note that when the si variable is used with the beta variable, it is again significant

at a 5% level.22 both idiosyncratic volatility measures continue to be significant at a

conventional level even controlling for the book-to-market effect as shown in equations

(13) and (14) of Panel A. The size variable is insignificant when all the variables are

used in the cross-sectional regression. However, the sp variable continue to be significant

at a 1% level. The insignificance of the si in the last equation could simply due to the

multicollinearity problem with the size variable.

When idiosyncratic volatilities are estimated from the Fama and French three-factor

model, results are again very similar as shown in Panel B of Table 8. Therefore, we

conclude that the usefulness of idiosyncratic volatility variables is also robust when the

sample includes only large stocks. At the same time, the difference in the significance

of the two idiosyncratic volatility measure, sp versus si, suggests that the undiversified

22si is orthogonal to individual stocks’ beta measure. It is not necessarily orthogonal to the portfolio
beta used in the cross-sectional regression.
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idiosyncratic risk is more relevant in explaining the cross-sectional return difference of

individual stocks.

The evidence continues to support our hypothesis that idiosyncratic volatility helps

to explain the cross-sectional variability in average returns in an important way. It is

also reasonable to conclude that the idiosyncratic risk factor is more robust than the size

variable in explaining the cross-sectional difference of asset returns over the different

sample periods considered here.

3.5 The Liquidity Effect

Liquidity may play an important role in affecting asset prices. Although different re-

searchers have offered different definitions, it is generally believed that liquidity mea-

sures how easy to trade a large amount of shares without altering the share prices.

There are many theoretical papers including Amihud and Mendelson (1986), Constan-

tinides (1986), Heaton and Lucas (1996), and Huang (2002), that tie liquidity to asset

prices. Intuitively, assets that are “difficult to trade” should have lower prices, other

things being equal, in order to compensate investors for the inability to trade or for

increasing the cost of trading. Indeed, many empirical studies, such as Amihud and

Mendelson (1986), Brennan, Chordia, and Subrahmanyam (1998), and Datar, Naik,

and Radcliffe (1998) have generally found a negative relationship between liquidity and

expected stock returns. Alternatively, using market wide liquidity as a state variable

(or factor), Pastor and Stambaugh (2002) and Jones (2002) find stocks with high covari-

ance with the market liquidity generally offers high expected return. This is reasonable

since those stocks will face severe liquidity problems when the market liquidity is low.

If liquidity is indeed priced, residuals from any asset pricing model that excludes

liquidity factor will reflect it. In other words, the idiosyncratic volatility measure con-

structed from residuals could potentially capture some of the liquidity effect. In this

section, we will control for it. The bid-ask spread is often used in the literature as a

measure of liquidity. Due to data availability, we use trading volume in this study as

the liquidity measure since it is the most important determinant of the bid-ask spread

(see Stoll, 1978). Unlike Brennan, Chordia, and Subrahmanyam (1998), we use relative

volume defined as the ratio between share volume and share outstanding instead of log

dollar volume. When both log size and log dollar volume are used in the cross-sectional
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regressions, they share log price as the common component. Therefore, we believe it

is better to use the relative volume variable here. In particular, we use last month’s

relative volume in the cross-sectional regression of current month. In this part of the

study, we use the sp constructed from the CAPM residuals as the idiosyncratic risk

measure. The results are reported in Table 9.

Insert Table 9

For all stocks, the volume variable is statistically significant at a 1% level when used

alone. Surprisingly, however, the sign is wrong.23 Potentially, the size variable could be

correlated with the volume variable. One could argue that large stocks are more actively

traded than small stocks. Therefore, the positive sign on the relative volume variable

could simply due to the size effect. This is confirmed in the multiple regression with

the size variable as shown in the fifth equation of Panel A of Table 9. The size variable

virtually takes away all the explanatory power of the volume variable. When the idio-

syncratic volatility and the volume variable are use simultaneously, the significance of

the idiosyncratic volatility is unchanged. This suggests that our idiosyncratic volatility

measure is not contaminated by liquidity. More importantly, the volume variable now

has the right sign although it is still insignificant. From previous results, we under-

stand that this is due to the fact that the idiosyncratic volatility has taken away some

of the “size effect” in the volume variable. Equation (7) is similar to Brennan, Chordia,

and Subrahmanyam’s (1998) specification except for the lagged return variables. The

liquidity proxy is again statistically insignificant with the right sign. We do not want

to attach too much significance to this result since we did not use the lagged cumu-

lative returns in the regression. When all the variables are used in the cross-sectional

regression as shown in the last equation, both the magnitude and the significance of the

idiosyncratic volatility variable is virtually unchanged. Very similar results continue

to hold when only the NYSE/AMEX stocks are used in the cross-sectional regression

shown in the Panel B of Table 9. Therefore, we conclude that liquidity variable will not

have much impact to the significance of the idiosyncratic volatility variable.

23We obtain similar results when the log dollar volume is used instead. Since Brennan, Chordia, and
Subrahmanyam (1998) did not report univariate regression result, we do not know if similar results
would occur in their framework.
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3.6 Idiosyncratic Risk in a Different Market

Considerable recent attention has been paid to data snooping problems in empirical

studies. Since the CAPM debate is mostly based on the same data source, i.e., the

CRSP tape for US stock data, such a problem is inevitable at least conceptually. In

order to avoid the problem, we also study Japanese stock returns. The available data

set runs from 1975 to 1999, and we use the first five years of data to do the presorting in

constructing our portfolios. Therefore, the actual sample used in the study runs from

1980 to 1999. During this particular episode, the Japanese stock market went through

dramatic changes–from the pre bubble period (1980-1984) to the bubble period (1985-

1989), and followed by a decade of post-crash market slump (1990-1999). Therefore, we

also study the two subsample period: 1980-1989 and 1990-1999. The average numbers

of stocks in each sub-period are 1321 and 1564, respectively. We followed the exact

procedures employed with U.S. data to construct portfolios and perform cross-sectional

regressions. The results are shown in Table 10.

Insert Table 10

First, note that the beta variable is insignificant no matter whether it is used alone

or with other variables in the cross-sectional regressions. The same results hold for

different subsample periods. This reconfirms our results from the US data. In contrast

to the US experience, however, the size variable is insignificant in all of the cross-

sectional regressions. The book-to-market variable is significant for the whole sample

period both when used alone and together with other variables. It is interesting to note,

however, that the significance mostly arises from the effect in the post crash period.

As for the idiosyncratic volatility variable, it is significant at a 6% level for the whole

sample period when used alone. It is very significant during the first subsample period

but not in the second subsample period when used alone. What is most interesting is

that the idiosyncratic volatility variable is always very significant when used with the

size measure, as shown in the last equation of all the three blocks of Table 10. This

again provides evidence that the idiosyncratic volatility variable is much stronger than

the size variable. Moreover, the size variable helps reduce the measurement error in the

idiosyncratic volatility variable. Therefore, Japanese stock market data also support

the important role of idiosyncratic volatility in explaining cross-sectional returns.
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While there are some (usually short) periods in which beta measures do appear to

play some role in explaining the cross-sectional pattern of returns in accordance with the

CAPM, the general conclusion is that book value/market value and especially idiosyn-

cratic volatility are the only variables that show a consistently strong relationship with

returns. Of course, it is possible to interpret our measures of idiosyncratic volatility as

simply an approximation for size as well as for some omitted systematic risk factor(s).

However, at the very least, our model seems to offer a consistent and empirically sup-

ported explanation for some of the deficiencies of popular asset pricing models. It is also

true that beta does not perform as well in the framework of Fama and French (1992)

as in the framework of Fama and MacBeth (1973). As pointed out by Xu (2001), this

is partly due to the procedure used by Fama and French to estimate portfolio betas.

Their procedure is subject to a particularly large errors-in-variables problem because of

the high correlations between alphas and betas estimated from the market model. In

any case, what is clear is that the beta of the capital asset pricing model appears to be

a very imperfect measure of the risk that is related to securities returns.
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4 Preliminary Time Series Evidence on Idiosyncratic

Risk

Generally speaking, two approaches have been applied in testing the CAPM. Cross-

sectional studies of the return and risk implications of the CAPM have received con-

siderable recent attention. This is what we have undertaken in the previous section by

showing that idiosyncratic volatility appears to be an independent pricing factor. As

our model predicts, it is also important to examine an alternative time-series approach

that utilizes the constraint on the intercept of a market model. Given the emphasis of

this paper, however, we will only present some preliminary results on the explanatory

power of idiosyncratic volatility from an ex post perspective.

We study the time series behavior for the same 100 portfolios constructed in the

cross-sectional studies. In order to perform time series tests on equation (14), we need

a proxy for the market wide undiversified idiosyncratic risk factor. The proxy RI,t that

we propose to use here is the idiosyncratic risk hedging portfolio. In order to motivate

it, we rewrite the time-series CAPM and our model (equation (14)) as the followings,

I : R̃i,t − Rf,t = βi(RM,t − Rf,t) + εi,t,

II : R̃i,t − Rf,t = βi(RM,t − Rf,t) + βI,iRI,t + ξi,t
(18)

where R̃i, Rf,t, and R̃M are the returns for security i, the risk free rate, and the market

portfolio respectively. If model II is indeed true, the part of βI,iRI,t+ξi,t will be specified

as εi,t in the CAPM specification of model I. Therefore, firms that are more sensitive

to RI,t will likely to have large σ(εi,t). Since RM,t and RI,t are independent, the two

portfolios constructed by sorting stocks according to their σ(εi,t) will have similar beta

sensitivities to RM,t and very different beta sensitivities to RI,t.

In implementation, we follow the logic of Fama and French (1993) by constructing six

size-idiosyncratic volatility sorted portfolios. We split the sample into two size groups.

Within each size group, stocks are sorted again by their idiosyncratic volatilities into

three groups of equal numbers of securities.24 The idiosyncratic volatility measure for

each stock is estimated using the mean squared residuals from the CAPM model over

the previous 24 to 60 month period in order to be consistent with our model. We denote

B as big size, S as small size, H as high idiosyncratic volatility, M as median idiosyncratic

volatility, and L as low idiosyncratic volatility. The six portfolios can be characterized

24The actual breakdowns are based on NYSE stocks only for the same reason discussed previously.
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as the B/L portfolio, the B/M portfolio, the B/H portfolio, the S/L portfolio, the S/M

portfolio, and the S/H portfolio. The return proxy for the market wide idiosyncratic risk

factor is then calculated as the difference between the average returns for portfolios B/L

and S/L and the average returns for portfolios B/H and S/H. Therefore, our method

of constructing the idiosyncratic risk hedging portfolio is consistent with our model.

Our empirical results in this section are based on the portfolio returns of the 100

size-beta sorted portfolios obtained by equally weighting each security’s returns in the

portfolio. As a first step, we report the average and the standard deviation of coefficient

estimates for individual portfolios in Table 11. For comparison, we report estimates for

both the Fama and MacBeth sample period (1935.1-1968.6) and the extended Fama and

French sample period (1963.7-2000.6). Although the average R2s across all the portfolios

are relatively high with 69.9% and 67.10% for each of the sample periods respectively,

the CAPM has failed to hold because most of the individual regressions have significant

intercept α In general, adding additional variables to the CAPM specification does not

reduce either the magnitude or the significance of alpha. However, the idiosyncratic

risk factor is very significant in both sample periods. In particular, the distribution

of the beta estimates on RI,t is on the positive side and far from zero. On average,

each percentage increase in the idiosyncratic hedging proxy RI,t is associated with .57%

increase in return, over the early sample period and .31% in the recent sample period.

For individual portfolios, the idiosyncratic hedging proxy is significant at a 5% level

for over 80% of these portfolios in both sample periods. At the same time, the average

adjusted R2 across all the portfolios jumps to 77.1% for the early sample period and

73.3% for the recent sample period. Therefore, the preliminary results support our

model in equation (14).

Insert Table 11

Fama and French (1993) have argued that a size proxy and a book-to-market proxy

are also very important in explaining return fluctuations over time. Their three-factor

model is reconfirmed in the third equation of Table 11. As expected, the average ad-

justed R2 has been improved dramatically to 79.5% and 81.1% for the previous and

recent sample periods, respectively. At the same time, as we suggested in discussing

the cross-sectional evidence, the size factor may very well be measuring the idiosyn-

cratic risk. In this case, the idiosyncratic risk factor will be more appropriate, which is
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represented in the fourth equations of Table 11. For both sample periods, we see that

the corresponding coefficient estimates of both the idiosyncratic hedging factor and the

book-to-market factor are distributed far from zero. The number of individual portfolios

showing statistical significant estimates on the two factors at a 5% level also resembles

that of the three factor model in the recent sample period. Similar results hold for the

early sample period. Therefore, idiosyncratic volatility also appears to capture the size

effect in the time series framework.

One might argue that our idiosyncratic risk proxies do nothing more than to capture

the size and book-to-market factors. Thus, it is important to put our model in perspec-

tive relative to these two additional factors. In the last equation, we control for both

the size and book-to-market effect. It is evident that, for the Fama-MacBeth sample

period, the majority of the portfolios have statistically significant estimates on the idio-

syncratic risk factor. For example, after controlling for the size and the book-to-market

factors, there are still 54% of the portfolios showing statistically significant estimates at

the 5% level on the idiosyncratic risk factor. In other words, there is a strong connec-

tion between idiosyncratic risk and individual portfolio returns, even in the presence of

size and book-to-market effects. For the Fama and French sample period, the percent-

age of portfolios with statistically significant estimates on the idiosyncratic risk factor

increases to 77%.

While a more detailed time series analysis is required for more conclusive results, the

preliminary evidence from individual portfolios supports our theoretical prediction that

idiosyncratic volatility appears to be important in explaining asset return fluctuations

over time. Note also that the significant beta estimates from the time series regressions

do not contradict Fama and Frenchs (1992) findings that were discussed in our cross-

sectional study.

One may argue that the role we ascribe to idiosyncratic volatility may result from

our inability to define the market portfolio. Perhaps idiosyncratic risk is just an artifact

of approximation error. If so, we view our argument here as deepening the critique of

Roll. In this paper, we have argued, however, that even if investors are shortsighted

and only pay attention to tradable financial assets, in which case Roll’s critique is

irrelevant, we may still find an imperfect CAPM from an econometrician’s point of

view. The essence of our argument is that such an imperfection can be ameliorated by

including an idiosyncratic risk measure.

34



5 Concluding comments

In this paper, we have made some progress in understanding the role of idiosyncratic

risk in asset pricing both theoretically and empirically. Other things being equal, idio-

syncratic risk will affect asset returns when not every investor is able to hold the market

portfolio. Even after controlling for factors such as size, book-to-market, and liquidity,

evidence from both individual US stocks and a sample of Japanese equities supports the

predictions of our model. Most importantly, the cross-sectional results demonstrate that

idiosyncratic volatility variable is more powerful than either beta or size measures in

explaining the cross section of returns. We also suggested that beta performs relatively

well in a non-linear way for the early sample period and poorly in the recent sample

period. At the very least, our results provide a unique perspective in understanding the

possible role of idiosyncratic risk in asset pricing.
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Table 1: Fama-MacBeth Portfolio Characteristics in Estimation Periods
This table reports the portfolio beta and idiosyncratic volatility for the 20 Fama-MacBeth portfolios in
four selected estimation periods. It is meant to replicate Table 2 of Fama-MacBeth (1973). In general,
stocks from the NYSE are selected into one of the 20 portfolios according to the selection period (seven
years) betas estimated from a market model utilizing an equal-weighted index. Beta estimates from the
estimation period (next five years) are used in cross-sectional regressions using data from the following
four years. Details are available in Fama-MacBeth (1973). β̂p,t−1 and s̄p,t−1(ε) denote portfolio beta
and portfolio residual standard deviation, respectively, which are equal-weighted averages of individual
stocks’ betas and residual standard deviations.

Pfl. Period:1934-38 Period:1942-46 Period:1950-54 Period:1958-62
N=581 N=708 N=812 N=869

No. β̂p,t−1 s̄p,t−1(ε) β̂p,t−1 s̄p,t−1(ε) β̂p,t−1 s̄p,t−1(ε) β̂p,t−1 s̄p,t−1(ε)
1 0.288 0.077 0.465 0.054 0.446 0.040 0.648 0.050
2 0.690 0.084 0.532 0.053 0.609 0.043 0.622 0.050
3 0.485 0.069 0.616 0.064 0.658 0.046 0.708 0.054
4 0.702 0.090 0.607 0.054 0.830 0.050 0.794 0.059
5 0.792 0.094 0.709 0.056 0.730 0.049 0.814 0.064
6 0.684 0.077 0.759 0.065 0.800 0.052 0.863 0.060
7 0.922 0.115 0.768 0.062 0.942 0.052 0.977 0.067
8 0.955 0.105 0.827 0.062 0.950 0.053 0.910 0.068
9 0.970 0.111 0.810 0.065 1.007 0.056 1.000 0.067
10 1.053 0.095 0.859 0.067 0.987 0.053 0.924 0.065
11 1.013 0.096 0.940 0.070 1.101 0.058 1.003 0.069
12 1.153 0.130 1.048 0.079 1.131 0.062 1.018 0.066
13 1.110 0.119 0.955 0.070 1.131 0.059 1.047 0.065
14 1.236 0.124 1.075 0.088 1.227 0.063 1.056 0.068
15 1.186 0.118 1.416 0.108 1.118 0.066 1.047 0.061
16 1.318 0.131 1.254 0.091 1.275 0.063 1.080 0.067
17 1.299 0.124 1.322 0.081 1.239 0.063 1.100 0.077
18 1.371 0.158 1.344 0.088 1.281 0.068 1.112 0.071
19 1.415 0.138 1.658 0.120 1.447 0.071 1.217 0.067
20 1.496 0.175 1.610 0.114 1.531 0.088 1.414 0.079
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Table 2: Size-Beta Portfolio Characteristics (Sample Period: January 1935-
June 1968)
This table reports the average return, average beta, average log size, and average residual standard
deviation for the 50 size-beta sorted portfolios over the Fama and MacBeth (1973) sample period
of January 1935 to June 1968. Stocks from the NYSE/AMEX are first sorted into five size groups
according their market capitalization in December of the last year of the estimation period. Each group
of stocks is then sorted again into decile portfolios according to the selection period betas. Detailed
information on portfolio selection, estimation, and testing periods are available in Fama and MacBeth
(1973). Both the reported betas and the idiosyncratic volatilities as well as betas used in sorting are
estimated from a market model with a value-weighted index.

Low-β β2 β3 β4 β5 β6 β7 β8 β9 High-β
Average Monthly Returns (in Percent)

Small-ME 1.08 1.89 1.83 2.00 1.82 1.96 2.03 2.38 2.50 1.89
ME-2 2.14 1.18 1.23 1.55 1.69 1.52 1.87 1.72 1.81 1.87
ME-3 1.73 1.30 1.39 1.22 1.27 1.46 1.41 1.51 1.36 1.52
ME-4 1.32 .889 1.08 1.04 1.24 1.34 1.27 1.25 1.21 1.22

Large-ME 1.44 .806 .896 1.03 1.01 1.16 1.27 1.16 1.02 1.12
Average portfolio beta

Small-ME .990 1.11 1.24 1.41 1.31 1.31 1.45 1.53 1.71 1.72
ME-2 .806 .901 1.07 1.22 1.31 1.39 1.49 1.50 1.59 1.68
ME-3 .719 .909 1.06 1.17 1.26 1.35 1.35 1.44 1.54 1.69
ME-4 .644 .841 .991 1.10 1.11 1.20 1.27 1.31 1.52 1.57

Large-ME .643 .723 .845 0.911 1.00 1.11 1.15 1.19 1.28 1.41
Average portfolio log size

Small-ME 1.66 1.68 1.61 1.67 1.61 1.61 1.64 1.62 1.61 1.63
ME-2 2.59 2.49 2.51 2.56 2.52 2.60 2.58 2.58 2.56 2.54
ME-3 3.40 3.36 3.33 3.31 3.38 3.39 3.37 3.34 3.34 3.28
ME-4 4.28 4.28 4.26 4.32 4.26 4.27 4.24 4.21 4.25 4.25

Large-ME 5.85 5.82 5.82 6.00 5.80 5.96 5.76 5.83 5.60 5.58
Average portfolio idiosyncratic volatility (in Percent)

Small-ME 12.2 11.8 13.2 13.1 12.3 13.2 14.2 13.7 15.0 14.7
ME-2 7.76 8.12 9.13 9.52 9.80 10.3 10.5 10.2 10.6 11.8
ME-3 6.77 7.09 7.64 8.11 7.86 8.24 8.46 8.10 8.80 9.36
ME-4 5.64 6.29 6.46 7.02 7.06 7.07 7.33 7.31 8.97 8.43

Large-ME 4.70 4.78 5.17 5.04 5.36 5.73 6.05 5.73 6.39 6.53
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Table 3: Size-Beta Portfolio Characteristics (Sample Period: 1963-2000)
This table reports the average return, average beta, average log size, and average residual standard
deviation for the 50 size-beta sorted portfolios over the extended Fama and French (1992) sample
period of 1963-2000. Stocks from the NYSE/AMEX are first sorted into five size groups according
their market capitalization in December of the last year of the estimation period. Each group of stocks
is then sorted again into decile portfolios according to the selection period betas. Detailed information
on portfolio selection, estimation, and testing periods are available in Fama and MacBeth (1973). Both
the reported betas and the idiosyncratic volatilities as well as betas used in sorting are estimated from
a market model with a value-weighted index.

Low-β β2 β3 β4 β5 β6 β7 β8 β9 High-β
Average Monthly Returns (in Percent)

Small-ME 1.04 1.52 1.31 1.45 1.58 1.22 1.63 1.69 1.75 1.67
ME-2 1.78 1.15 1.16 1.35 1.33 1.48 1.44 1.25 1.32 1.30
ME-3 1.43 1.04 1.12 1.28 1.16 1.43 1.26 1.27 1.19 1.29
ME-4 1.43 1.01 1.13 1.09 1.15 1.17 1.36 1.17 1.20 1.20

Large-ME 1.09 1.03 1.09 1.09 1.13 1.22 1.03 1.10 1.10 .969
Average portfolio beta

Small-ME .783 .932 .939 1.04 1.05 1.10 1.19 1.18 1.28 1.37
ME-2 .576 .798 .928 1.00 1.10 1.19 1.21 1.26 1.37 1.44
ME-3 .635 .805 .945 1.02 1.10 1.15 1.20 1.28 1.36 1.51
ME-4 .628 .735 .934 1.00 1.05 1.09 1.14 1.18 1.30 1.45

Large-ME .643 .786 .860 .908 .999 1.03 1.06 1.07 1.16 1.25
Average portfolio log size

Small-ME 2.63 2.75 2.78 2.70 2.80 2.81 2.73 2.80 2.67 2.77
ME-2 4.10 4.08 4.11 4.14 4.13 4.17 4.17 4.22 4.18 4.10
ME-3 5.19 5.25 5.25 5.23 5.28 5.22 5.21 5.17 5.23 5.27
ME-4 6.27 6.33 6.32 6.38 6.35 6.34 6.41 6.32 6.35 6.32

Large-ME 7.65 7.94 7.88 8.06 7.82 7.88 7.83 7.90 7.64 7.55
Average portfolio idiosyncratic volatility (in Percent)

Small-ME 10.2 11.5 11.3 12.1 11.9 12.4 13.1 12.8 14.2 14.6
ME-2 6.41 7.54 8.51 8.99 9.11 9.93 10.2 10.2 10.8 11.6
ME-3 6.32 6.58 7.38 7.64 8.00 8.14 8.60 8.89 9.73 10.1
ME-4 5.38 5.80 6.50 6.56 6.92 7.01 7.17 7.74 8.10 8.94

Large-ME 5.11 5.26 5.71 5.71 5.84 5.93 6.09 6.18 6.63 7.31
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Table 4: Replicating Fama-MacBeth Cross-sectional Regression on Portfolios
This table is intended to replicate the cross-sectional regression results reported in Fama-MacBeth
(1973) Table 3. In general, stocks from the NYSE are selected into one of 20 portfolios according to the
selection period (seven years) with betas estimated from a market model. Details are available in Fama-
MacBeth (1973). Both the beta estimates and idiosyncratic volatility estimates used in cross-sectional
regressions of the testing periods are from the estimation period (next five years). In particular, the
independent variables β̂p,t−1, β̂2

p,t−1, and s̄p,t−1(ε) are equal-weighted averages of individual stocks’
beta, beta squared, and residual standard deviation, respectively, estimated using a market model
with an equal weighted index.

Replicating results Fama-MacBeth Table 3
Const. β̂p,t−1 β̂2

p,t−1 s̄p,t−1(ε) R̄2 Const. β̂p,t−1 β̂2
p,t−1 s̄p,t−1(ε) R̄2

1935-6/68 .0061 .0087 .30 .0061 .0085 .29
t Ratio 3.26 2.69 3.24 2.57
1935-40 .0012 .0125 .22 .0024 .0109 .23
t Ratio .155 .950 .320 .790
1941-45 .0071 .0212 .36 .0056 .0229 .37
t Ratio 1.72 2.46 1.27 2.55
1946-50 .0048 .0031 .39 .0050 .0029 .39
t Ratio 1.22 .511 1.27 .480
1951-55 .0122 .0026 .24 .0123 .0024 .24
t Ratio 4.98 0.576 5.06 .530
1956-60 .0148 -.0058 .23 .0148 -.0059 .22
t Ratio 5.62 -1.34 5.68 -1.37

1961-6/68 .0013 .0141 .33 .0001 .0143 .32
t Ratio .351 2.73 .030 2.81

1935-6/68 .0027 .0165 -.0037 .33 .0049 .0105 -.0008 .32
t Ratio 1.04 2.72 -1.46 1.92 1.79 -.290
1935-40 -.0056 .0302 -.0091 .23 .0013 .0141 -.0017 .24
t Ratio -.669 1.44 -1.21 .160 .75 .190
1941-45 .0094 .0166 .0018 .38 .0148 .0004 .0108 .39
t Ratio 1.63 1.72 .277 2.28 .030 1.15
1946-50 -.0004 .0143 -.0047 .45 -.0008 .0152 -.0051 .44
t Ratio -.092 1.09 -1.14 -.180 1.14 -1.24
1951-55 .0004 .0280 -.0120 .28 .0004 .0281 -.0122 .28
t Ratio .089 2.53 -2.63 .100 2.55 -2.72
1956-60 .0124 -.0003 -.0025 .26 .0128 -.0015 -.0020 .25
t Ratio 3.18 -.028 -.676 3.38 -.160 -.540

1961-6/68 .0030 .0101 .0021 .35 .0029 .0077 .0034 .34
t Ratio .429 .665 .299 .420 .530 .510
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Table 2–Continued
Replicating Results Fama-MacBeth Table 3

Const. β̂p,t−1 β̂2
p,t−1 s̄p,t−1(ε) R̄2 Const. β̂p,t−1 β̂2

p,t−1 s̄p,t−1(ε) R̄2

1935-6/68 .0058 .0083 .0037 .33 .0054 .0072 .0198 .32
t Ratio 2.45 2.36 .085 2.10 2.20 .460
1935-40 .0027 .0152 -.0450 .25 .0036 .0119 -.0170 .25
t Ratio .324 1.09 -.653 .370 .970 -.190
1941-45 .0021 .0102 .1610 .39 -.0006 .0085 .2053 .41
t Ratio .309 1.65 1.29 -.080 1.25 1.46
1946-50 .0076 .0095 -.1230 .44 .0069 .0081 -.0920 .42
t Ratio 1.46 1.07 -1.33 1.56 .950 -1.41
1951-55 .0149 .0072 -.1230 .28 .0150 .0069 -.1185 .27
t Ratio 3.95 1.29 -1.33 4.05 1.24 -1.31
1956-60 .0122 -.0086 .0925 .26 .0127 -.0081 .0728 .26
t Ratio 2.54 -1.41 .569 2.68 -1.40 .480

1961-6/68 .0000 .0123 .0483 .34 -.0014 .0122 .0570 .33
t Ratio .001 1.97 .523 -.320 2.12 .640

1935-6/68 -.0011 .0175 -.0061 .0630 .34 .0020 .0114 -.0026 .0516 .34
t Ratio -.315 2.85 -2.21 1.32 -.550 1.85 -.860 1.11
1935-40 -.0083 .0320 -.0117 .0224 .26 .0009 .0156 -.0029 .0025 .26
t Ratio -.760 1.51 -1.35 .300 .070 .780 -.290 .030
1941-45 -.0076 .0235 -.009 .2370 .40 .0015 .0073 .014 .1767 .43
t Ratio -.684 2.46 -1.43 1.63 .120 .520 .150 1.16
1946-50 .0032 .0136 -.0029 -.0719 .44 .0011 .0141 -.0040 -.0313 .44
t Ratio .576 1.05 -.749 -.984 .180 1.03 -.730 -.410
1951-55 .0034 .0275 -.0104 -.0773 .30 .0023 .0277 -.0112 -.0443 .29
t Ratio .691 2.50 -2.33 -.860 .480 2.53 -2.54 -.530
1956-60 .0087 -.0042 -.0028 .1370 .28 .0103 -.0047 -.0020 .0979 .28
t Ratio 1.21 -.430 -.649 .717 1.63 -.470 -.490 .590

1961-6/68 -.0025 .0120 -.0008 .1130 .37 -.0017 .0088 .0013 .0957 .35
t Ratio -.310 .767 -.110 1.12 -.210 .580 .190 1.02
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Table 5: Fama-MacBeth Cross-sectional Regression on Portfolios
This table reports the cross-sectional regression results for portfolios over both the Fama-MacBeth
(1973) sample period of January 1935 to June 1968 and the extended Fama-French (1992) sample period
of January 1963 to December 2000. In general, stocks from the NYSE/AMEX are selected into one of 20
portfolios according to the selection period (seven years) betas estimated from a market model. Details
are available in Fama-MacBeth (1973). Both the beta estimates and idiosyncratic volatility estimates
used in the cross-sectional regressions of the testing periods are from the estimation period (next five
years). In particular, the independent variables β̂p,t−1, β̂2

p,t−1, and s̄p,t−1(ε) are equal-weighted averages
of individual stock’s beta, beta squared, and residual standard deviation, respectively, estimated using
a market model.

Equally-Weighted Index Value-Weighted Index
Eq. # Const. β̂p,t−1 β̂2

p,t−1 s̄p,t−1(ε) Const. β̂p,t−1 β̂2
p,t−1 s̄p,t−1(ε)

Panel A: 1935-1968/6 with 20 portfolios
1 γ̄ .0061 .0087 .0073 .0057

t(γ̄) 2.75 2.34 3.12 1.91
2 γ̄ .0101 .0039 .0106 .0020

t(γ̄) 4.07 2.32 4.26 1.73
3 γ̄ -.0075 .0769 -.0022 .0574

t(γ̄) -1.10 2.27 -0.34 1.77
4 γ̄ -.0079 .0161 -.0057 .0459 .0014 .0187 -.0056 -.0070

t(γ̄) -1.17 2.40 -2.11 1.50 0.21 2.85 -2.52 -0.26
Panel B: 1935-1968/6 with 50 portfolios

1 γ̄ .0067 .0080 .0076 .0054
t(γ̄) 3.15 2.24 3.41 1.86

2 γ̄ .0105 .0036 .0110 .0018
t(γ̄) 4.11 2.33 4.33 1.64

3 γ̄ -.0055 .0701 -.0019 .0560
t(γ̄) -0.94 2.31 -0.34 1.93

4 γ̄ -.0075 .0123 -.0045 .0507 -.0084 .0136 -.0049 .0475
t(γ̄) -1.44 1.92 -1.99 2.36 -1.55 2.74 -2.94 2.17

Panel C: 1963-2000 with 20 portfolios
1 γ̄ .0081 .0045 .0079 .0043

t(γ̄) 3.84 1.42 3.51 1.43
2 γ̄ .0103 .0020 .0101 .0018

t(γ̄) 4.99 1.20 5.08 1.32
3 γ̄ .0006 .0460 .0018 .0387

t(γ̄) 0.01 1.66 0.32 1.47
4 γ̄ .0019 .0091 -.0047 .0227 -.0100 .0107 -.0069 .0666

t(γ̄) 0.26 1.26 -1.44 0.71 -1.41 1.36 -1.97 2.48
Panel D: 1963-2000 with 50 portfolios

1 γ̄ .0084 .0043 .0082 .0040
t(γ̄) 4.00 1.39 3.73 1.37

2 γ̄ .0105 .0018 .0104 .0016
t(γ̄) 5.09 1.12 5.15 1.24

3 γ̄ .0011 .0417 .0028 .0348
t(γ̄) 0.20 1.60 0.53 1.44

4 γ̄ .0025 .0083 -.0035 .0187 -.0043 .0057 -.0035 .0529
t(γ̄) 0.51 1.24 -1.22 0.92 -.791 0.96 -1.36 2.59
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Table 6: Cross-sectional Regression for Size-Beta Portfolios
This table reports the cross-sectional regression results on the 50 size-beta sorted portfolios over both
the Fama-MacBeth (1973) sample period of January 1935 to June 1968 and the extended Fama-French
(1992) sample period of January 1963 to December 2000. Stocks from the NYSE/AMEX are first
sorted into five size groups according their market capitalization in December of the last year of
the estimation period. Each group of stocks is then sorted again into decile portfolios according to
the selection period betas. Detailed information on the portfolio selection, estimation, and testing
periods are available in Fama and MacBeth (1973). Under the column ‘Based on CAPM’, both the
reported betas and the idiosyncratic volatilities as well as betas used in sorting are estimated from a
market model with a value-weighted index. Similarly, under the column ‘Based on FF3 Model’, the
idiosyncratic volatilities are estimated from the Fama and French (1993) three-factor model instead.
Both the beta estimates and idiosyncratic volatility estimates used in cross-sectional regressions of the
testing periods are from the estimation period. In particular, the independent variables β̂p,t−1, β̂2

p,t−1,
log(MEp,t−1), and s̄p,t−1(ε) are equal-weighted averages of individual stock’s beta, beta squared, log
size, and residual standard deviation, respectively.

Eq. Based on CAPM Based on FF3 Model
# β̂p,t−1 β̂2

p,t−1 log(MEp,t−1) s̄p,t−1(ε) β̂p,t−1 β̂2
p,t−1 log(MEp,t−1) s̄p,t−1(ε)

Panel A: For sample period of 1935-1968/6
1 γ̄ .0077 .0077

t(γ̄) 2.24 2024
2 γ̄ .0027 .0027

t(γ̄) 2.13 2.13
3 γ̄ -.0022 -.0022

t(γ̄) -2.74 -2.74
4 γ̄ 0.070 0.077

t(γ̄) 2.61 2.61
5 γ̄ .0141 -.0045 -.0018 .0141 -.0045 -.0018

t(γ̄) 2.46 -2.29 -2.73 2.46 2.29 -2.73
6 γ̄ .0134 -.0055 0.073 .0124 -.0049 0.077

t(γ̄) 2.55 -3.10 2.69 2.36 -2.76 2.70
7 γ̄ -.0004 0.062 -.0004 0.067

t(γ̄) -0.77 2.03 -0.76 2.03
8 γ̄ .0163 -.0063 -.0004 0.053 .0157 -.0058 -.0005 0.051

t(γ̄) 2.95 -3.36 -0.96 2.16 2.83 -3.12 -1.13 2.09
Panel B: For sample period of 1963-2000

1 γ̄ .0044 .0044
t(γ̄) 1.57 1.57

2 γ̄ .0018 .0018
t(γ̄) 1.48 1.48

3 γ̄ -.0009 -.0009
t(γ̄) -1.94 -1.94

4 γ̄ 0.043 0.048
t(γ̄) 1.81 1.88

5 γ̄ .0089 -.0029 -.0009 .0089 -.0029 -.0009
t(γ̄) 1.30 -1.13 -2.05 1.30 -1.13 -2.05

6 γ̄ .0059 -.0033 0.054 .0055 -.0031 0.059
t(γ̄) 0.97 -1.33 2.16 0.92 -1.26 2.19

7 γ̄ -.0003 0.034 -.0003 0.036
t(γ̄) -0.69 1.36 -0.83 1.36

8 γ̄ .0072 -.0036 -.0003 0.041 .0071 -.0035 -.0003 0.040
t(γ̄) 1.08 -1.39 -0.69 1.86 1.06 -1.37 -0.82 1.76
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Table 7: Cross-sectional Fama and French Regression for Individual
NYSE/AMEX/NASDAQ Stocks (1963-2000)
This table reports the cross-sectional regression results for all NYSE/AMEX/NASDAQ individual
stocks over the extended Fama-French (1992) sample period of July 1963 to June 2000. The beta
estimates (βp) used in the cross-sectional regressions are estimated from the 100 size-beta sorted
portfolios and then assigned to individual stocks. Portfolio breakdowns in each year are determined by
first sorting the NYSE stocks only into 10 size groups according their market capitalization in June of
each year. Each group of the NYSE stocks is then sorted again into decile portfolios according to their
beta estimates computed using the sum of the betas from a market model (with lagged market returns)
of previous 24 to 60 monthly returns. Similarly, the idiosyncratic volatility measure sp(ε) is the root
mean square error of either the market model or the Fama-French (1993) three-factor model for each
of the 20(size) × 10(beta) portfolios and then assigned to individual stocks. In June of each year, we
also compute si,t−1(ε) as the root mean square error of either a market model or the three-factor model
for stock i based on the previous 24 to 60 monthly returns. This measure is used in the cross-sectional
regression of the next 12 months. MEi,t−1 and B/Mi,t−1 are June’s log market capitalization and last
fiscal year’s log book to market measure, respectively. In Panel A, both idiosyncratic volatility measures
are estimated from the market model. While in Panel B, both idiosyncratic volatility measures are
estimated from the Fama and French (1993) three-factor model.

Panel A: Based on CAPM Panel B: Based on FF3 Model
Eq# βp B/Mi,t−1 MEi,t−1 sp(ε) si,t−1(ε) βp B/Mi,t−1 MEi,t−1 sp(ε) si,t−1(ε)

1 γ̄ .0047 .0047
t(γ̄) 1.37 1.37

2 γ̄ .0042 .0042
t(γ̄) 5.43 5.43

3 γ̄ -.0019 -.0019
t(γ̄) -3.50 -3.50

4 γ̄ 0.315 0.318
t(γ̄) 4.75 3.59

5 γ̄ .0534 .0515
t(γ̄) 2.53 2.43

6 γ̄ .0056 .0041 .0056 .0041
t(γ̄) 1.66 5.53 1.66 5.53

7 γ̄ -.0003 -.0020 -.0003 -.0020
t(γ̄) -0.11 -4.34 -0.11 -4.34

8 γ̄ .0054 0.327 -.0090 0.460
t(γ̄) 1.54 4.83 -3.06 5.16

9 γ̄ .0035 .0487 .0036 .0464
t(γ̄) 1.10 2.58 1.12 2.44

10 γ̄ -.0007 0.234 -.0005 0.265
t(γ̄) -1.09 3.62 -1.46 3.00

11 γ̄ -.0017 .0194 -.0017 .0165
t(γ̄) -3.66 1.27 -3.67 1.08

12 γ̄ .0016 .0030 -.0016 .0016 .0030 -.0016
t(γ̄) 0.58 4.08 -3.23 0.58 4.08 -3.23

13 γ̄ .0061 .0030 0.280 -.0066 .0030 0.405
t(γ̄) 1.77 4.15 4.05 -2.51 4.22 4.51

14 γ̄ .0042 .0044 .0556 .0043 .0044 .0546
t(γ̄) 1.35 5.84 2.90 1.37 5.85 2.82

15 γ̄ .0081 .0031 .0006 0.360 -.0070 .0030 .0003 0.446
t(γ̄) 2.44 4.16 1.65 4.87 -2.62 4.09 0.74 5.43

16 γ̄ .0019 .0035 -.0010 .0380 .0019 .0035 -.0010 .0357
t(γ̄) 0.66 5.29 -2.57 2.40 0.64 5.29 -2.67 2.3049



Table 8: Cross-sectional Fama and French Regression for Individual
NYSE/AMEX Stocks (1963-2000)
This table reports the cross-sectional regression results for NYSE/AMEX individual stocks only over
the extended Fama-French (1992) sample period of July 1963 to June 2000. The beta estimates (βp)
used in the cross-sectional regressions are estimated from the 100 size-beta sorted portfolios and then
assigned to individual stocks. Portfolio breakdowns in each year are determined by first sorting NYSE
stocks only into 10 size groups according their market capitalization in June of each year. Each group
of NYSE stocks is then sorted again into decile portfolios according to their beta estimates computed
using the sum of the betas from a market model (with lagged market returns) of previous 24 to 60
monthly returns. Similarly, the idiosyncratic volatility measure sp(ε) is the root mean square error
of either the market model or the Fama-French (1993) three-factor model for each of the 20(size) ×
10(beta) portfolios and then assigned to individual stocks. In June of each year, we also compute
si,t−1(ε) as the root mean square error of either a market model or the three-factor model for stock i
based on the previous 24 to 60 monthly returns. This measure is used in the cross-sectional regression
of the next 12 months. MEi,t−1 and B/Mi,t−1 are June’s log market capitalization and last fiscal
year’s log book to market measure, respectively. In Panel A, both idiosyncratic volatility measures
are estimated from the market model. While in Panel B, both idiosyncratic volatility measures are
estimated from the Fama and French (1993) three-factor model.

Panel A: Based on CAPM Panel B: Based on FF3 Model
Eq# βp B/Mi,t−1 MEi,t−1 sp(ε) si,t−1(ε) βp B/Mi,t−1 MEi,t−1 sp(ε) si,t−1(ε)

1 γ̄ .0039 .0039
t(γ̄) 1.19 1.19

2 γ̄ .0039 .0039
t(γ̄) 5.22 5.22

3 γ̄ -.0013 -.0013
t(γ̄) -2.47 -2.47

4 γ̄ 0.199 0.244
t(γ̄) 3.53 2.89

5 γ̄ .0404 .0379
t(γ̄) 1.86 1.71

6 γ̄ .0035 .0036 .0035 .0036
t(γ̄) 1.10 5.10 1.10 5.10

7 γ̄ -.0002 -.0014 -.0002 -.0014
t(γ̄) -0.09 -3.19 -0.09 -3.19

8 γ̄ .0043 0.213 -.0030 0.293
t(γ̄) 1.29 3.61 -1.13 3.99

9 γ̄ .0031 .0372 .0032 .0341
t(γ̄) 1.03 1.95 1.05 1.75

10 γ̄ -.0007 0.119 .0003 0.299
t(γ̄) -1.11 1.95 0.88 3.59

11 γ̄ -.0012 .0112 -.0012 .0069
t(γ̄) -2.47 0.72 -2.49 0.44

12 γ̄ .0010 .0028 -.0009 .0010 .0028 -.0009
t(γ̄) 0.38 4.35 -2.01 0.38 4.35 -2.01

13 γ̄ .0040 .0028 0.156 -.0017 .0027 0.227
t(γ̄) 1.19 4.49 2.73 -0.66 4.26 3.18

14 γ̄ .0027 .0036 .0367 .0028 .0037 .0356
t(γ̄) 0.92 5.13 1.90 0.93 5.13 1.81

15 γ̄ .0050 .0028 .0003 0.195 -.0021 .0028 .0008 0.342
t(γ̄) 1.72 4.36 0.73 3.85 -0.83 4.30 1.94 4.83

16 γ̄ .0011 .0030 -.0006 .0243 .0011 .0030 -.0006 .0216
t(γ̄) 0.40 4.96 -1.48 1.44 0.39 4.97 -1.56 1.2850



Table 9: Investigating the Liquidity Effect for Individual Stocks (1963-2000)
This table reports the cross-sectional regression results for individual stocks over the extended Fama-
French (1992) sample period of July 1963 to June 2000. The beta estimates (βp) used in the cross-
sectional regressions are estimated from the 100 size-beta sorted portfolios and then assigned to in-
dividual stocks. Portfolio breakdowns in each year are determined by first sorting NYSE stocks only
into 10 size groups according their market capitalization in June of each year. Each group of NYSE
stocks are then sorted again into decile portfolios according to their beta estimates computed using
the sum of the betas from a market model (with lagged market returns) of the previous 24 to 60
monthly returns. Similarly, the idiosyncratic volatility measure sp(ε) is the root mean square error of
the market model for each of the 20(size) × 10(beta) portfolios and then assigned to individual stocks.
V lmi,t−1 is the relative volume of the previous month. MEi,t−1 and B/Mi,t−1 are June’s log market
capitalization and the last fiscal year’s log book to market measure, respectively. In Panel A, all the
NYSE/AMEX/NASDAQ individual stocks are used in the cross-sectional regression. In Panel B, only
NYSE/AMEX stocks are used in estimation.

Panel A: NYSE/AMEX/NASDAQ Stocks Panel B: NYSE/AMEX Stocks
Eq# βp B/Mi,t−1 MEi,t−1 sp(ε) V lmi,t−1 βp B/Mi,t−1 MEi,t−1 sp(ε) V lmi,t−1

1 γ̄ 0.315 0.199
t(γ̄) 4.75 3.53

2 γ̄ .0065 .0066
t(γ̄) 2.68 2.80

3 γ̄ .0048 .0068 .0037 .0066
t(γ̄) 1.39 2.92 1.16 3.04

4 γ̄ .0042 .0039 .0038 .0031
t(γ̄) 5.37 1.72 5.16 1.48

5 γ̄ -.0019 .0001 -.0012 .0013
t(γ̄) -3.40 0.04 -2.31 0.78

6 γ̄ 0.317 -.0015 0.194 -.0011
t(γ̄) 4.79 -0.85 3.57 -0.79

7 γ̄ .0013 .0030 -.0016 -.0018 .0009 .0028 -.0009 -.0007
t(γ̄) 0.49 4.08 -3.32 -1.35 0.33 4.36 -2.04 -0.69

8 γ̄ .0060 .0030 0.284 -.0016 .0039 .0028 0.157 -.0004
t(γ̄) 1.72 4.16 4.15 -1.14 1.18 4.49 2.81 -0.37

9 γ̄ .0057 .0008 0.352 -.0021 .0036 -.0002 0.199 -.0005
t(γ̄) 1.60 0.21 4.76 -1.59 1.23 -0.60 3.93 -0.50

10 γ̄ .0078 .0031 .0006 0.360 -.0015 .0048 .0028 .0003 0.195 -.0011
t(γ̄) 2.37 4.16 1.55 4.86 -1.19 1.67 4.37 0.67 3.87 -1.03
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Table 10: Cross-sectional Regressions for Individual Japanese Stocks (Jan.
1980- Dec. 1999)
Both the beta estimates and idiosyncratic volatility estimates used in cross-sectional regressions are
estimated from 100 size-beta sorted portfolios and then assigned to individual stocks. In each year,
stocks are first sorted into 10 size groups according their market capitalization in December of the
previous year. Each group of stocks are then sorted again into decile portfolios according to their beta
estimates computed using the sum of the betas from a market model of previous 24 to 60 monthly
returns. We use all the listed stocks that also have book-to-market information over the whole sample
period. The idiosyncratic volatilities are estimated from the Fama and French (1993) three-factor
model. In particular, β̂p,t−1, β̂2

p,t−1, log(MEi,t−1), (BE/ME)i,t−1 and s̄p,t−1(ε) are the independent
variables of beta, beta squared, log size, book-to-market equity, and residual standard deviation,
respectively.

Const. βp BE/ME log(MEi,t−1) sp(ε) Const. βp BE/ME log(MEi,t−1) sp(ε)
Panel A: The whole sample

γ̄ -.00367 .0121
t(γ̄) -0.555 1.362
γ̄ 0.00523 .0081

t(γ̄) 1.163 2.569
γ̄ 0.02518 -.0016

t(γ̄) 1.651 -1.470
γ̄ 0.00332 1.358

t(γ̄) 0.935 1.867
γ̄ 0.01445 .0052 .0070 -.0013

t(γ̄) 0.991 0.707 2.375 -1.285
γ̄ 0.00076 .0003 .0071 1.306

t(γ̄) 0.123 0.037 2.312 1.871
γ̄ -.00632 -.0003 .0073 .0006 1.686

t(γ̄) -0.457 -0.041 2.466 0.701 3.354
Panel B: The first subsample Panel C: The second subsample

γ̄ 0.00843 .0132 -.01580 .0110
t(γ̄) 0.893 1.206 -1.697 0.773
γ̄ 0.01922 .0077 -.00877 .0085

t(γ̄) 3.268 1.614 -1.273 2.028
γ̄ 0.04748 -.0024 0.00289 -.0007

t(γ̄) 2.499 -1.773 0.124 -0.455
γ̄ 0.01470 1.835 -.00805 0.881

t(γ̄) 3.083 1.990 -1.501 0.801
γ̄ 0.04366 .0020 .0060 -.0024 -.01476 .0084 .0080 -.0002

t(γ̄) 1.861 0.186 1.343 -1.647 -0.891 0.782 2.017 -0.131
γ̄ 0.01603 -.0038 .0065 2.031 -.01451 .0043 .0078 0.581

t(γ̄) 1.673 -0.344 1.386 1.937 -1.847 0.419 1.891 0.654
γ̄ 0.02501 -.0034 .0062 -.0006 1.625 -.03765 .0028 .0085 .0019 1.747

t(γ̄) 1.152 -0.329 1.389 -0.510 2.435 -2.262 0.270 2.100 1.600 2.322
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Table 11: Summary Statistics for Individual Times Series Regressions of 100
Portfolios
This table reports the average and standard deviation of regression coefficients for different time-series
models. RV W,t and Ri,t denote returns from a value-weighted index and the i−th portfolio respectively;
RI,t denotes the return proxies for idiosyncratic volatility from a hedging portfolio; RSMB,t and RHML,t

denote proxies for the size and book-to-market factors respectively. The dependent variable is Ri,t.
“Ind.” counts the percentage of individual regressions for each portfolio with significant coefficients at
5% level.

α RV W,t RSML,t RHML,t RI,t R2(%)
Panel A: 1935.1-1968.6

Mean 0.105 1.279 69.94
St.D (.195) (.088) (13.48)

Ind.(%) 26.00 100.0
Mean 0.166 0.957 0.574 77.09
St.D (.166) (.082) (.141) (7.66)

Ind.(%) 39.00 97.00 82.00
Mean -0.002 1.021 0.679 0.347 79.46
St.D (.147) (.061) (.116) (.123) (7.10)

Ind.(%) 34.00 100.0 87.00 71.00
Mean 0.106 0.961 0.225 0.462 77.62

(.163) (.080) (.110) (.132) (7.47)
Ind.(%) 30.00 98.00 56.00 73.00
Mean 0.021 0.997 0.609 0.303 0.094 80.20
St.D (.155) (.079) (.125) (.105) (.160) (6.52)

Ind.(%) 27.00 99.00 91.00 77.00 54.00
Panel B: 1963.7-2000.6

Mean 0.079 1.057 67.10
St.D (.161) (.051) (11.96)

Ind.(%) 14.00 100.0
Mean 0.087 0.889 0.314 73.25
St.D (.137) (.052) (.073) (9.76)

Ind.(%) 16.00 100.0 80.00
Mean -0.091 1.019 0.577 0.311 81.13
St.D (.117) (.037) (.055) (.066) (7.08)

Ind.(%) 35.00 100.0 91.00 85.00
Mean -0.064 0.920 0.369 0.439 77.26
St.D (.130) (.049) (.076) (.055) (7.45)

Ind.(%) 27.00 100.0 88.00 87.00
Mean -0.091 1.019 0.576 0.311 0.000 82.19
St.D (.111) (.044) (.081) (.064) (.073) (6.46)

Ind.(%) 37.00 100.0 92.00 88.00 77.00
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