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Abstract— We propose to use Markov regenerative process
(MRGP) models to study the availability of Internet-based
services perceived by a Web user, which capture the interactions
between the service facility and the user. The necessity of the
sophisticated MRGP modeling is evidenced by the comparisons
with the corresponding continuous time Markov chain (CTMC)
models, which show that the popular convenient CTMC models
tend to overestimate user-perceived service unavailabilities by
26% to 125%.

We study two different online service scenarios: (1) single-
user-single-host and (2) single-user-multiple-host. It is found that
user-perceived service unavailability depends not only on the
infrastructure’s failure-recovery characteristics but also, more
importantly, on the user’s behavior. Also, for a service provider, to
improve users’ satisfaction, inventing a fast recovery mechanism
is more effective than striving for a more reliable platform given
the platform availability is the same.

Index Terms— User-perceived online service availability, Web
user behavior, Markov regenerative process (MRGP)

I. I NTRODUCTION

The trend of e-commerce poses an increasingly imperative
demand on the availability and reliability of the Internet-based
services. The so-called “24×7” (24-hours-a-day-and-7-days-
a-week) requirement for online services presents an unprece-
dented technical challenge given the fact that the exponentially
growing Internet is of such a large-scaled, vastly distributed
and heterogeneous nature. To design high-availability (HA)
service systems, it is critical to deepen our understanding of
not only the causes of the failure-and-recovery behaviors of
the service infrastructure, but also the users behaviors and their
subjective perceptions and reactions to the provided services.
There have been separated research efforts oneither behaviors
of the underlying infrastructuresor the online user behaviors.
However, the lack of effort connecting the two is obvious. This
paper intends to fill this gap by providing a more complete
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modeling for online service availability that is a result of the
interactions between service platforms and users.

The unavailability of the Internet-based services stems from
various type of failures, malfunctions, and planned outages
from a broad range of network components, service provider
equipments, and user accessing facilities. Govindanet al.
revealed that both the route availability and the mean reach-
ability duration have degraded with the Internet growth [1].
Li et al. studied Webserver aging phenomenon and proactive
software rejuvenation techniques [2]. Longet al. evaluated
mean time to failure (MTTF), mean time to repair (MTTR),
and availability and reliability of a sample of hosts by
repeatedly polling the hosts and discovered that daily and
weekly shutdowns appeared very commonly in the Internet
[3]. By periodically collecting data on a set of nearly 100
popular Web sites, Kalyanakrishnanet al. in [4] found that
the mean availability of Internet hosts is two-nines,i.e., about
0.99, which is far below that of telephone systems. The
aforementioned research efforts all focused on the study of
platform outage-recovery of Internet-based services. However,
for a particular Web user, a more important performance index
is service availability perceived by himself, the probability that
the users service request is fulfilled. Studying the platform
availability alone is apparently inadequate for this purpose.
We have yet to characterize the behavior of online users and
reveal the interplay between the service platform and users.

It is widely accepted that the behavior of Web browsers is
fairly complicated. Deng of then-GTE lab proposed a tractable
empirical model, which was able to capture the behavior
of World-wide-web (WWW) browsers [5]. The activity of a
Web browser is modeled as an ON-OFF process, with the
ON period having a Weibull distribution and the OFF time
following a long-tailed Pareto distribution. ON periods are
initiated by the users clicking on the hypertext links on a Web
service page while OFF periods are those in which the user
is reading and/or thinking and hence no requests is generated.
In this study, we adopt this model as the starting point of user
behavior modeling.

The purpose of this paper is to evaluate the service avail-
ability for the Web users. We assume that the time to failure
(TTF) and the time to repair/recovery (TTR) of the Internet



hosts are exponentially distributed, and leave the more general
case to future work. The behavior of Web user is captured by
Deng’s ON-OFF model. Due to the non-exponential Pareto and
Weibull distributions in users’ behavior, Markov regenerative
process (MRGP) is needed to model the interactions between
a Web user and the supporting platform. We then solve the
MRGP model for steady-state probabilities, from which the
service availability expression is derived.

This paper is organized as follows: In Section II we discuss
the failure and recovery in the Internet, the retry mechanism
of HTTP 1.1, and the user behaviors. Section III describes
the user-perceived MRGP availability models of two different
scenarios, and a brief introduction to solution techniques and
availability indices. Numerical results and detailed discussion
of the two MRGP models are included in Section IV. Com-
parisons with corresponding CTMC models are included as
well. Section V is the conclusion.

II. BACKGROUND AND RELATED WORK

To proceed, we would like to use the termsplatform,
infrastructure, and system interchangeably to refer to the
underlying infrastructure that supports the online service.

Following [6], we classify platform failures into three types:
“near-user”, “in-middle”, and “near-host”. A failure in “near-
user” portion, which typically is the user’s subnet, disallows
the user to access the rest of the Internet. Analogously, a
“near-host” failure makes the Web host unreachable from the
outside world. The “in-middle” failure usually refers to the
Internet backbone connection malfunctions that separate the
user and the specific service host, but the user still may visit
a non-trivial part of the Internet. In this study, we use a
unified failure-recovery model that assumes time to failure
(TTF) and time to recover (TTR) are exponentially distributed
for all of the three cases discussed above. The model thus
can be parameterized with MTTF and MTTR,i.e., λ−1 and
µ−1, respectively. To study failures from different portions
in the platform, we may simply vary parameters to reflect
the difference in failure behaviors in different parts of the
supporting platform. The steady-state unavailability of the
platform can be simply given (e.g., see [7]) asAS = λ/(λ+µ).

HTTP 1.1 (Hypertext Transfer Protocol) [8], the major
protocol for WWW services, has an automatic retry and
recovery mechanism to achieve reliable data transfers. When
the destined Web site is unreachable, the user is unaware of the
problem although his request is not fulfilled during the HTTP
retries. This is a temporary interruption of service because the
remote Web host may be reconnected during this time. If the
HTTP retry fails, an error message is explicitly returned to
the user, and the user knows the existence of the problem and
may switch to another Web site or try again later.

An empirical and tractable ON-OFF model of Web user
behavior was proposed by Deng [5]. The ON period follows a
Weibull distribution with the cumulative distribution function
(cdf) F (t) = 1 − e−(t/θ)k

. Typically, the shape parameterk
= 0.77 to 0.91 and the scale parameterθ = e4.4 to e4.6 as
in [5]. The duration of OFF period follows a general Pareto

distribution with the cdfG(t) = C(1 − (m
t )α),m ≤ t ≤ n,

and 0, otherwise, whereα,m, n are constants, with typical
values areα = 0.5 to 0.9 (α is the “shape parameter” of the
Pareto distribution),m = 60, and n = 6000. The constant
m is the so-called “ON-OFF threshold” (m is also referred
as the scale parameter of the general Pareto distribution)
which means a series of requests with inter-arrival times within
m is considered constituting an ON period, and a request
occurs more than timem after the previous request marks
an OFF period. The constantn is the “session threshold”,
which indicates that requests with inter-arrival times greater
thann are considered as belonging to separate sessions.C =
1/(1 − ( n

m )α) is the normalization factor.

III. SERVICE AVAILABILITY MRGP MODELS

In this paper, we build two different service availability
models for two different scenarios.

• Model-1: Single-User-Single-Host
The first scenario includes one online user and one service
host. The user isdedicated to the host, meaning that the
user will not switch to other sites even in the presence
of service outage.

• Model-2: Single-User-Multiple-Host
The second scenario includes one online user and a large
number of hosts, each of which provides a certain service
that the user is interested in. The user in this case is
not dedicated,i.e., in the event of service failure, the
user is able to switch to another service site. The failure
and recovery characteristics of all the hosts in the pool
are assumed to be homogeneous. In fact, the MTTF and
MTTR parameters used in the next section are the average
of a sizeable group of real world Internet data.

A. Model-1: Single-User-Single-Host Model

As mentioned above, only one Web user and one Web host
are involved in this model. In real life, this corresponds to the
case that the failure occurs in user’s subnet or in theonly Web
site of interest, and the user cannot or does not access any web
sites until the failure is recovered. The failure in user subnet,
or near-user failure, may be caused by link disconnection, or
DNS failure, or congestion in the subnet gateway, and the Web
host failure, or near-host failure, may be caused by overloaded
server, expected/unexpected server outages,etc.
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Fig. 1. Service Availability Model-1: Single-User-Single-Host

Fig. 1 depicts the MRGP service availability model for the
user’s subnet failure case. The circles in Fig. 1 represent the



states of our model, and the arcs represent state transitions.
Each state is denoted by a 2-tuple (s, u), wheres ∈ ΩS (the
state space of the platform) andu ∈ ΩU (the state space
of the user status).ΩS = {U,D} includes the situations
that underlying system is up and down, respectively, and
ΩU = {T,A, F} contains the user status of thinking, active,
and seeing a failure, respectively. Our model’s state space
Ω = {(U, T ), (D,T ), (U,A), (D,A), (U,F ), (D,F )} is the
combination ofΩS andΩU . The system fails at rateλ (from
(U, u) to (D,u)), and is repaired at rateµ (from (D,u) to
(U, u)). After the user is active for certain amount of time,
which has a distribution ofF (.), s/he enters thinking state
(from (s,A) to (s, T )), and comes back to active (from (s, T )
to (s,A)) after some time (with distributionG(.)). If s/he is
active and the network is down (state (D,A)), the browser
retries after some time with distributionT (.). The repair of
the system in state(D,A) will be detected immediately by
the automatic HTTP recovery mechanism. If the retry fails,
the user sees a failure (state (s, F )). The user re-attempts to
connect to the Web host, which is represented by transition
with distributionR(.).

Note that transitionsF (.), G(.), T (.), andR(.) have general
distributions (solid thick arcs in Fig. 1), hence the model de-
scribed above is not a continuous-time Markov chain (CTMC)
nor is it a semi-Markov process (SMP) because of the exis-
tence of “local behaviors”, which are known as state changes
between two consecutive “regenerative points”. For example,
if the failure transition from(U,A) to (D,A) occurs, the
user active transitionF (.) is not present in state(D,A). This
exponential transition is known as “competitive exponential
transition” (represented by solid thin arcs) and its firing marks
a regenerative point. On the other hand, the transitions of the
server going up and down in states(U, T ) and(D,T ) do not
affect (add, remove or reset the general transitions) the user
thinking process which is generally distributed. They are called
“concurrent exponential transitions” (represented by dashed
thin arcs), and their occurrences are just local behaviors. Refer
to [9], [10] for definitions of these MRGP concepts. In this
paper, we assume the user retry distributionR(.) is exponential
with rater. 1

B. Model-2: Single-User-Multiple-Host Model

In this model we consider the failures of individual Web
hosts (near-host failures) which are located on the other side
of the Internet, and the in-middle failures. After such a failure
occurs, the user may switch to another Web hosts after some
time which is assumed to be exponentially distributed with a
mean of1/γ.2

The MRGP model is shown in Fig. 2, which resembles the
previous one in Fig. 1. One of the differences is that we do
not have state(U,F ), i.e., the user may visit another Web site
after his browser’s HTTP retry fails (transition from(D,F ) to

1If the user retry time is generally distributed, our model is still an MRGP
because there is still only one general transition enabled in any single state.

2As in Model-1, even if the user switch time is generally distributed, our
model is still an MRGP.

(U,A)). Since the unavailability of all Web hosts isAS , the
chance the user sees another bad Web host isAS (transition
from (D,F ) to (D,A)), and that for a good one is(1−AS)
(transition from(D,F ) to (U,A)).
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Fig. 2. Service Availability Model-2: Single-User-Multiple-Host

C. Model Solution Techniques and Unavailability Indices

We are interested in the steady-state unavailability perceived
by the online user. The following procedure [9], [11], [10] is
used to obtain the steady-state probabilities for the MRGP
models.

1) An MRGP model is governed by its local and global
kernels, E(t) and K(t). So the first step is to construct
E(t) and K(t) of the MRGP.

2) To calculate α =
∫ ∞
0

E(t)dt, and µ = αeT , where e
is a row vector with all elements of 1.

3) To obtain the one-step transition probability matrix
K(∞), and solve ν = νK(∞) for ν, where νeT = 1.

4) Steady-state probability vector is given by P = να
νµ .

We are interested in the unavailability the user experiences,
i.e., the fraction of time during which the user cannot send
requests (state (s, F )) or his requests are not fulfilled (state
(D,A)) divided by the fraction of time that the user is
seeking service (state (s,A) and (s, F )). This user-perceived
unavailability is denoted by

AU ≡




PU,F + PD,F + PD,A

PU,F + PD,F + PD,A + PU,A
, for Model-1,

PD,F + PD,A

PD,F + PD,A + PU,A
, for Model-2.

D. Comparison with CTMC Models

The traditional and convenient CTMC models are often used
in stochastic analysis mostly for simplicity reasons. Cao et al.
found that under certain conditions, an all-exponential model
is a good approximation of a stochastic model with general
distributions [12]. However, CTMC is not a good substitution
of MRGP model in our case as we will see in the next Section.

For comparison purpose, we also construct and solve the
corresponding CTMC models of Model-1 and Model-2, i.e.,
replacing all the general distributions with exponential distri-
butions with the same means (in other words, our original
MRGP models are simplified to CTMC models). We denote
the user-perceived service unavailability of the CTMC models
by A′

U . As we will see in the numerical analysis, the conve-
nient all-exponential assumption may predict user-perceived



TABLE I

SUMMARY OF MODEL PARAMETERS

Parameter Default Value Comment
k 0.88 Shape parameter of Weibull distribution
θ e4.5 Scale parameter of Weibull distribution
α 0.5 Shape parameter of Pareto distribution
m 60 seconds Scale parameter of Pareto distribution

(ON-OFF threshold)
n 6000 seconds Truncation point of Pareto distribution

(session threshold)
1/r 100 seconds Mean time between user retries upon failure
1/γ 100 seconds Mean time to switch site upon failure
T 10 seconds HTTP retry time

1/λ 105 seconds Platform MTTF
1/µ 2581 seconds Platform MTTR

unavailability inaccurately. The over- or under-estimation is
indicated by ϑ = (A′

U − AU )/AU .

IV. NUMERICAL ANALYSIS

A. Parameters Used

We tabulate the parameters with default values used in
numerical solution in Table I partly based on [5] and [13].
The mean time between user retries r−1 and mean time to
switch Web site γ−1 upon failure are assumed to have default
value of 100 seconds.

The platform unavailabilities and intervals between failures
or outages and the durations of the outages (repair or recovery)
of the supporting platform from different studies appear to vary
in fairly large ranges. It is found that the average platform
unavailability AS is from 0.0036 to 0.07, the typical MTTF
λ−1 is 346,982 seconds (about 4 days), and the MTTR µ−1 is
from 200 seconds to 2581 seconds (about 4 minutes)[6], [4].

In the following evaluation, we do not explicitly differentiate
the failure and repair rates of various parts in the supporting
platform, such as user’s subnet, routers between subnets,
average Web hosts, or commercial Web hosts. Instead, broad
spectrums of λ, µ, and AS are used to accommodate the wide
ranges of failure and repair rates.

B. Model-1 Results

One might think that the user-perceived service unavail-
ability is as simple as the probability that the platform being
unavailable AS . This is not true as shown in Fig. 3, in which
AS = 0.007, because the user’s behavior is coupled with the
platform failure-recovery process. As seen in Fig. 3, user-
perceived unavailability could be several times larger than
system unavailability, due to the fact that the user’s behavior is
not independent of the platform behavior. Whenever the user
sees a failure, s/he is no longer able to go back to “ thinking”
states ((s, T )). Instead, s/he enters (s, F ) states, assuming the
service is not accessible. This actually extends the failure
duration that user experiences, and makes the user-perceived
unavailability higher than the system unavailability.

The relationship between the user-perceived unavailability
and user retry rate is given by Fig. 3(a). If the user retries
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Fig. 3. User-Perceived Unavailability AU , A′
U with Platform Unavailability

AS = 0.007. (a)(b) for Model-1, (c)(d) for Model-2.

more frequently (r becomes higher), the user wastes less time
idling after the system is recovered, resulting in a lower AU .
The shape of AU curve in Fig. 3(a) indicates that when the
user retry rate r is small, a small increase of r can bring a
significant improvement of the availability seen by the user.
However, indefinitely increasing the user retry rate after a
certain value may no longer decrease AU significantly, since
retries before the completion of repair or recovery are useless
in terms of improving the user-perceived availability. More
retries means more unsuccessful HTTP attempts, and more
time wasted. The total unavailability AU is nearly independent
of r when r is sufficiently large. Fig. 3(a) shows that a retry
rate of 0.003 to 0.005, or mean time to retry of about 200
seconds to 300 seconds, is a good candidate.

Fig. 3(b) deserves more attention. In this scenario the system
unavailability is set to a constant 0.007 while the failure rate
λ and repair rate µ vary accordingly. Note that when AS is
small, λ ≈ µAS , which implies a higher failure rate requires
a higher repair rate to maintain the total unavailability level.
Fig. 3(b) illustrates that given a AS , increasing µ will lower
AU . In other words, if there are two systems with the same
availability, the one with shorter MTTF and MTTR looks
better from a user’s perspective than the other. This conclusion
is not evident. Our analysis indicates that the originality
of this characteristic is complex, including the asymmetry
of the underlying process. This finding suggests a valuable
strategy of maximizing the customer satisfaction with limited
resources.

Fig. 3(a)(b) showed that A′
U (user-perceived unavailability

predicted by corresponding CTMC model) is about 26% to
124% larger than AU , i.e., the corresponding CTMC model
overestimates the user-perceived unavailability by a significant
percentage. We note that when µ is higher, the CTMC model
gives a more pessimistic result, and when µ is unchanged, the
overestimation appears unchanged. This µ-dependency is the



result of underlying process asymmetry, the ON-OFF threshold
m and the special shape of the Pareto pdf. When µ becomes
larger, the overestimation of the competence of G(.) worsens.
This result justifies the necessity and importance of MRGP
modeling.

C. Model-2 Results

As shown in Fig. 3(c)(d), the user-perceived unavailability
AU of Model-2 (AU is from 2% to 84% of AS = 0.007) is
much smaller than that of Model-1. In other words, in most
cases only a small fraction of the system unavailability is seen
by the user, while in Model-1, the user-perceived unavailability
is several times larger than the platform unavailability. This is
because in the single-user-multiple-host case, the user may
switch to other Web sites without waiting for the completion
of repair or recovery.

This correlation of AU and γ is given in Fig. 3(c). Appar-
ently, when the user waits for less time to switch Web site,
the probability that s/he receives service from another Web
host is relatively high (AS = 1 − AS). As a result when
γ rises, AU drops considerably. If we keep AS unchanged
and increase µ, λ is increased almost proportionally, and Fig.
3(d) demonstrates that AU grows too. Although this appears
radically different from Fig. 3(b) at the first glance, it stands on
its own reason. Again, in Model-2, since the user can switch
to another Web site quickly when s/he encounters a failure, the
repair rate µ does not play a role as important as the failure
rate λ, given AS is fixed. Usually the user does not know (or
care) the status of the failed Web host as long as s/he has the
choice of going to other Web sites. However, a higher failure
rate λ for all Web hosts does impact the user’s visiting directly.
Thus in Fig. 3(d), higher µ means higher λ, which leads to
higher AU .

Similar to Model-1, Fig. 3(c) and 3(d) show that the all-
exponential counterpart of the MRGP model overestimates the
user-perceived unavailability by about 28% to 125%.

V. CONCLUSION

Although many efforts have been dedicated to identifying
causes of the Internet unavailability [6], [4], [13], [3] and
statistically quantifying activities of online users [5], there
have been very few studies that connect these two and analyze
the Web service availability from an end user’s perspective.
In this paper, we have developed Markov Regenerative Pro-
cess (MRGP)-based models that incorporate both the failure-
recovery behaviors of the service-supporting infrastructure and
the online user behaviors, and evaluated the dependency of
the user-perceived unavailability on parameters including the
service platform failure rate/repair rate, user retry rate, and
user switching rate.

We have found that the corresponding all exponential mod-
els (i.e., replacing all general distributions by exponential dis-
tributions with same means) overestimated the user-perceived
unavailability by about 26% to 125%. This substantial differ-
ence shows that the oversimplified but popular all-exponential
assumption, which under certain conditions serves as a good

approximation, is inadequate in our case, and MRGP modeling
is necessary and important.

The MRGP models are solved numerically for steady-
state probabilities, and the user-perceived unavailability was
found to be very different from the system unavailability. For
Model-1, the ratio of user-perceived unavailability and the
platform unavailability is much larger than that of Model-2.
This disparity of the two models is because in Model-2, the
user may switch to another Web host without having to wait
for the repair of a failed Web host.

From the models, we have also discovered some interesting
properties of user-perceived unavailability of online services
that may be useful for online service providers/designers as
well as end-users.

• For Web end users, they should try to switch to other
Web site first when seeing a failure. If for some reason
s/he has to stay with the failed site, do not wait too long
to retry. On the other hand, unreasonably frequent retries
do not help in improving the user-perceived availability.
Our analysis showed that a mean time to retry from 200
seconds to 300 seconds seems appropriate with given
parameters.

• For Web site/subnet owners, fast recovery is more ef-
fective than high reliability. Our analysis indicated that
the user-perceived availability is more sensitive to the
platform repair rate, i.e., for two systems with same
availability, the one with faster recovery is better than the
one with higher reliability from an end user’s perspective.

Our future work includes comparisons of the aforemen-
tioned analytical results with those from testbed experiments
and trace-driven simulations.
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