
The obnoxious center problem on a tree ∗

Rainer E. Burkard † Helidon Dollani † Yixun Lin ‡ Günter Rote §

June 15, 1998, revised July 26, 2001

Abstract. The obnoxious center problem in a graph G asks for a location on
an edge of the graph such that the minimum weighted distance from this point
to a vertex of the graph is as large as possible. We derive algorithms with linear
running time for the cases when G is a path or a star, thus improving previous
results of Tamir. For subdivided stars we present an algorithm of running time
O(n log n). For general trees, we improve an algorithm of Tamir by a factor of
log n. Moreover, a linear algorithm for the unweighted center problem on an
arbitrary tree with neutral and obnoxious vertices is described.

Keywords: Location problems, center problem, obnoxious facilities, linear-time
algorithm

AMS-classification: 90B80, 90B85, 90C35, 90C27

1 Introduction

In the center problem, a set of clients on certain locations (sites) is given. The center
problem asks for finding a location for a new facility from which the farthest client (site)
can be reached in minimum time. It occurs if a fast service in the case of an emergency is
needed. This problem has received strong interest since Hakimi (1964) published the first
paper on this topic, see also Kariv and Hakimi (1979). For a survey on center problems see
Handler (1990), for a study of algorithms with respect to a good complexity see Megiddo
and Tamir (1983). In particular the case has been considered that the clients are modeled
as vertices of a tree. In this case it has been shown that the objective function is convex on
each path, which implies that a local optimum solution is also a global optimum. Exploiting
this, Megiddo (1983) gave a linear algorithm for the center problem in trees.

Recently, obnoxious location problems find an increasing interest. In contrast to the
usual problem, the center should be as far away as possible from the given sites. Thus we
have to maximize the minimum (weighted) distance from the center to the sites. A formal
definition of the problem is given in Section 2. Such a problem occurs for example if the
center is a facility which produces toxic agents which should be as far away as possible from
the given locations of cities.

∗This research has been supported by the Spezialforschungsbereich F 003 “Optimierung und Kontrolle”,
Projektbereich Diskrete Optimierung.

†Technische Universität Graz, Institut für Mathematik, Steyrergasse 30, A-8010 Graz, Austria. e-mail
addresses: burkard@opt.math.tu-graz.ac.at, dollani@opt.math.tu-graz.ac.at

‡Department of Mathematics, Zhengzhou University, Zhengzhou 450052, P.R.China. e-mail address:
linyixun@mail.zzu.edu.cn

§Freie Universität Berlin, Institut für Informatik, Takustraße 9, D-14195 Berlin, Germany. e-mail address:
rote@inf.fu-berlin.de

1

Another case where this model is applicable is a facility which is to be located as far away
as possible from obnoxious sites. The center in this case might be some sensitive facility like
an observatory or a radio station, which is affected by moisture from lakes, pollution from
cities, traffic from airports, or the like. In such models, it is unnatural to use the metaphor
of “clients” for the given locations; thus we prefer the neutral term sites.

Complexity issues regarding the placement of several facilities in an obnoxious setting
were considered by Tamir (1991). If we again consider the model where the sites are vertices
of a tree, the objective function is no longer convex or concave. Drezner and Wesolowsky
(1985) solve the obnoxious center problem on a tree with n vertices in O(n3) time. Tamir
(1991, 1988) gives two algorithms of O(n log2 n) and O(kn log2 n) time, respectively, where k
is a parameter that depends on the structure of the tree. In Section 6 we will make a simple
observation which reduces the time bound of the second algorithm to O(kn log n) time by
the use of different data structures. Tamir shows that the obnoxious center problem on a
path or a star with n vertices can be solved in O(n log n) time. In this paper we show that
the center problem on a path or a star can even be solved in linear time (in Sections 3 and 4,
respectively). In Section 5, we treat extended stars, which can be obtained from stars by
subdividing edges and introducing additional vertices on them. We show that an obnoxious
center in an extended star graph with b branches can be found in O(n + b log n) time.

In Section 6 we design as well a linear algorithm for the obnoxious center problem on
a tree where all sites have the same weight. Even in this case the objective function does
not have any useful convexity properties. Obnoxious center problems for locating a center
in the plane have also been considered. Melachrinoudis and MacGregor Smith (1995) used
weighted Voronoi diagrams to find a weighted obnoxious center inside a convex m-gon with
n sites in O(mn2) time.

The counterpart to the center problem is the median problem, where a location should
be found such that the sum of weighted distances from the median to the sites is minimized.
A version including obnoxious sites has recently been treated in Burkard and Krarup (1998).
They showed that the median problem where the friendly and/or obnoxious sites correspond
to the vertices of a cactus, can be solved in linear time. (A cactus is a graph where any two
cycles have at most one vertex in common.) Some further questions for future research will
be mentioned in the concluding Section 7.

2 Obnoxious center problems

Let G = (V, E) be a simple graph with a set of n vertices V = {v1, . . . , vn} and a set E of
m edges. Each edge (vi, vj) ∈ E has a positive length cij . Thus we can interpret each edge
as the image of a closed real interval [0, cij] of length cij. For any point z in this interval we
have a corresponding point P , and we define its distance to vi as |z| and its distance to vj as
|cij − z|. This enables us to define the shortest distance between any point P on an edge of
G and a vertex v of G. The distance between P and v, denoted by d(P, v), is thus the length
of a shortest path from P to v. Moreover, we consider each vertex vi of G as a site (client)
and attach a positive weight wi to it. The center problem on a graph G is to minimize

f(P) = max
vi∈V

wid(P, vi)

over all points P on the edges of G. This objective function reflects the goal to locate a
facility (center) P as close to the clients vi as possible, so that the clients can quickly get
services from the center in case of an emergency.

2

In the case of an obnoxious facility one wants to maximize

g(P) = min
vi∈V

wid(P, vi).

This objective function places the new location as far away as possible from the sites (vertices)
vi of G. Note that the significance of weights is contrary to the usual case: Important and
highly sensitive sites (or highly obnoxious sites) receive small weights. Vertices which contain
no sites should get weight ∞.

3 Obnoxious center problems on paths

If the input graph is a path, we may put the n vertices on the real line and identify them
with real numbers such that

0 = x1 < x2 < · · · < xn

and d(xi, xj) = |xi − xj |. Then the objective function is

g(z) = min{wi|z − xi| : i = 1, . . . , n } = min{g+(z), g−(z)},
with

g+(z) = min{wi(z − xi) : xi ≤ z },
g−(z) = min{wi(xi − z) : xi ≥ z }.

In this section we give a linear time algorithm which finds the maximum of g(z) along a
path. We first describe how to compute g+(z) from left to right. We can compute g−(z) in
an analogous ways from right to left, and then it is easy to compute g(z) and to find the
maximum.

We incrementally compute the functions g+
1 , g+

2 , . . . , g+
n−1, which are defined as follows:

g+
j : [xj , xn] → R≥0, with g+

j (z) := min{wi(z − xi) : i = 1, . . . , j }
The following properties are straightforward consequences of the definition, except for the
statement about the number of breakpoints in part (e), which we shall prove later.

Lemma 1 (a) For xj ≤ z < xj+1, we have g+(z) = g+
j (z).

(b) g+
j is a piecewise linear concave and increasing function.

(c) g+
1 (z) = w1(z − x1).

(d) For j = 2, . . . , n − 1, g+
j (z) = min{wj(z − xj), g

+
j−1(z)} in the domain of g+

j (i. e., for
z ≥ xj).

(e) The function g+(z) is piecewise linear and has at most 2n − 3 linear pieces.

Lemma 1(b) and (e) suggests a way to represent the functions g+
j and g+: as a list of

adjacent intervals, together with the coefficients a, b of a linear function az + b for each
interval. Actually, the list for g+

j can be conveniently organized as a stack, because we will
only modify the list at its left end. In the sequel, when we speak of an interval, we will
include the coefficient of a linear function defined on that interval without mentioning it.

Lemma 1(c–d) opens the way for an incremental construction of these lists, see Figure 1.

3

first scan second scan

z

g+
j−1(z)

xjxj−1

wj(z − xj)

x̄

Figure 1: The construction of g+
j from g+

j−1.

Incremental Step: Construction of g+
j from g+

j−1. First Scan. We scan the list of
intervals of g+

j−1 from xj−1 until we reach xj . This list of intervals is removed and copied to
the list of intervals that define the function g+, according to Lemma 1(a). In general, the
point xj lies in the middle of an interval. That interval is then split into a left part, which
is contributed to g+, and the right part, which remains as part of the definition of g+

j−1.
Second Scan. After this transformation, the domain of the function has been reduced

to [xj , xn], which is the domain of the function g+
j that we wish to compute. We now apply

Lemma 1(d). The function g+
j will start with an interval where g+

j (z) = wj(z − xj). This
interval extends until this linear function intersects the graph of g+

j−1(z); from then on, g+
j (z)

coincides with g+
j−1(z). More precisely, this is done as follows.

We scan the list of (remaining) intervals of g+
j−1 from the left and compare each interval

to the function wj(z − xj); as long as this function is smaller than g+
j−1 in the whole range

of the interval, we remove that interval from the list. When the two functions intersect, we
split the interval at the intersection point x̄, and we replace the left half by an interval [xj , x̄]
where the function wj(z − xj) is used.

This concludes the construction of g+
j .

We can now prove the bound of 2n−3 on the total number of linear pieces of g+. Initially,
g+
1 has one piece. In the first scan, each piece that is contributed to the final function g+ is

removed from g+
j−1, except for one additional piece that results from splitting one interval.

In the second scan, the function g+
j gets one additional piece (and it may lose other pieces).

This gives a total of 1 + (n − 2)(1 + 1) = 2n − 3 pieces altogether, taking into account that
the last iteration terminates by copying everything from g+

n−1 to g+ in the first scan.
It is easy to see that the number of 2n − 3 pieces can actually be attained.
The computation of g− proceeds in the same way from right to left. Finally, we vary

z from x1 to xn and compute g(z) = max{g+(z), g−(z)}, simultaneously scanning the two
lists of intervals for g+ and g−, and we return the solution z attaining the maximum of this
function.

Theorem 1 The above algorithm solves the weighted obnoxious center problem on a path in
linear time.

Proof. The computation of g+ (and g−) takes linear time: each interval that is looked
at in the first scan, contributes one piece to the function g+. So the total time for the first
scan is O(n), by Lemma 1(e). The time for the second scan is O(1 + k), where k is the

4

number of intervals that are removed from the list of intervals. Since the total number of
removed intervals cannot be bigger than the total number of intervals that were ever added
to the list, the total time for the second scan is also O(n). Note that the comparison of two
linear functions and determining the intersection point in each interval can be executed in
constant time.

The final scan of the algorithm is easily done in O(n) time.

We remark that the essence of the above algorithm for computing g+ is the same as
an incremental algorithm for computing the intersection of half-spaces H1 ∩ · · · ∩ Hi, for
i = 1, . . . , n, if the half-spaces are inserted in the order of their intersection with a fixed line
(the x-axis in our case). In our case, we have the half-spaces Hj := { (z, y) : y ≤ wj(z−xj) },
and we are actually only interested in the part lying above the x-axis. The algorithm is
geometrically dual to (and algebraically identical to) an incremental algorithm for computing
the convex hull for points in the plane which are sorted by x-coordinate, cf. for example
Preparata and Shamos (1985) for a description of this duality and for the linear-time convex
hull algorithm for sorted points.

The unweighted version of this problem is essentially the Max-Gap problem of finding
the longest edge (or the maximum gap) between two successive numbers which can be solved
in linear time even if the numbers xi are not given in sorted order, see Gonzalez (1975).

4 Obnoxious centers in star graphs

A star is a complete bipartite graph K1,n. It is a tree T = (V, E) consisting of a central
vertex v0 which has edges to n other vertices {v1, . . . , vn}. Denote xi := c0i, for i = 1, . . . , n,
and x0 = 0. The subproblem of determining a locally optimum solution on the edge (v0, vi)
will be denoted by Si. It is equivalent to the problem on a path as follows: we put all vertices

h(z)

v0 viz(i)︸ ︷︷ ︸

v1, . . . , vn

z

y

Figure 2: Graphical representation of subproblem Si. The shaded region is the feasible region
of (3). Adding the constraint indicated by the dotted line does not change the problem.

on the real line such that v0 = 0, vi is to the right of v0 with distance |vi − v0| = xi, and all
other vertices vj (j 6= i) are to the left of v0 with distance |vj − v0| = xj . In problem Si we
have to maximize the function

gi(z) = min{min
j 6=i

wj(xj + z), wi(xi − z)} (1)

5

for 0 ≤ z ≤ xi (see Fig. 2). We can omit the condition j 6= i from (1) without changing

z∗

h(z)

(z∗, y∗)

0

y

z

Figure 3: The feasible region of the linear program (4)

the problem because, for z ≥ 0, wi(xi + z) is always larger than the second term of the
expression, wi(xi − z):

gi(z) = min{ min
j=0,...,n

wj(xj + z), wi(xi − z)} (2)

Let the maximum be attained in z(i). Obviously, the point z(i) is a solution of the
following linear program in two variables y and z (see Fig. 2):

min{ z : y ≤ wj(xj + z) for j = 0, . . . , n, y ≥ wi(xi − z) } (3)

The constraints which are common to all problems Si can be written as y ≤ h(z), where

h(z) := min
j=0,...,n

wj(xj + z).

Obviously, h(z) is a piecewise linear and increasing function. The point z(i) is the intersection
point of h(z) with wi(xi−z). Due to the monotonicity of h(z), the obnoxious center problem
asks for z∗ := max z(i). But this z∗ can now be obtained as optimal solution of the linear
program (see Fig. 3)

min{ z : y ≤ wj(xj + z) for j = 0, . . . , n; y ≥ wj(xj − z) for j = 1, . . . , n }. (4)

Theorem 2 Consider an optimal solution (z∗, y∗) of the linear program (4). Then the opti-
mal objective function value of the obnoxious center problem is y∗, and the optimal locations
problem are the points at distance z∗ from the central vertex v0 on all edges (v0, vi) for which
y∗ = wi(xi − z∗) holds.

Proof. Note first that h(z∗) = y∗, and y∗ = wi(xi−z∗) must hold for at least one index i,
because otherwise there would be a solution of (4) with z < z∗. It is easy to check that the
locations which are constructed in the theorem have the claimed objective function value.

We still have to show that there is no other solution. Consider a point P on edge (v0, vi)
at distance z from v0. If z < z∗, then h(z) < h(z∗) = y∗, and hence there is a site vj whose
distance d(P, vj) from P is h(z)/wj , which means that wjd(P, vj) < y∗. If z > z∗, or if z = z∗

6

and i is not one of the indices j for which y∗ = wj(xj − z∗) holds, then y∗ > wi(xi − z∗) and
d(P, vi) = xi − z < y∗/wi, and thus wid(P, vi) < y∗.

The linear program (4) has 2n constraints and 2 variables. By the algorithm of Megiddo
(1983) it can be solved in linear time. Thus the obnoxious center in a star graph can be
found in linear time.

5 Obnoxious centers in extended star graphs

An extended star graph is a tree which has a single vertex v0 with degree greater than 2.
The remaining vertices form paths from v0 to the leaves of the graph. We call these paths
the branches of the tree. This class of graphs is a mixture between paths and stars, which
were considered in the previous two sections. We will show that an obnoxious center in an
extended star with n vertices and b branches can be found in O(n+ b log n) time. When b is
relatively small, the algorithm runs in linear time. However, when for example all branches
contain two edges and b ≈ n/2, the time complexity is O(n log n). We do not see how to
solve the problem in linear time even in this special case.

As in Section 4, we denote xi := c0i. First we consider a local subproblem for each branch
separately: We move the center P on the i-th branch using z := d(P, v0) as a parameter.
We construct the “local” objective function gi(z), considering only sites on the i-th branch
(starting at v0) and ignoring all vertices on other branches. This function is defined on some
interval 0 ≤ z ≤ Zi, where Zi is the length of the branch. The vertex v0 corresponds to
z = 0. By the methods of Section 3, all piecewise linear functions gi can be constructed in
linear time.

We also consider the function

h(z) := min
j=0,...,n

wj(z + xj).

As in the previous section, the optimum value is now given by

y∗ = max
i=1,...,b

max
0≤z≤Zi

min{h(z), gi(z)}. (5)

It is clear that this optimum is located either at a local maximum of some function gi or at
an intersection point of the graph of gi with the graph of h.

The overall approach for solving this problem can roughly be described as follows. The
function h is a piecewise linear concave and increasing function. We perform a binary search
among its breakpoints (ẑ, ŷ) to find the range of y values in which the optimum value lies.
To do this, we need to test whether y∗ ≥ ŷ, for a given point ŷ = h(ẑ) on the function h.

This test is carried out as follows. We successively look at each function gi, decreasing z
from the maximum permitted value Zi down to ẑ. We stop this scan as soon as some value
gi(z) ≥ ŷ with z ≥ ẑ is found. We have found a feasible solution with value ŷ and hence
y∗ ≥ ŷ. On the other hand, if we have scanned all domains z ≥ ẑ for all branches i without
finding a value gi(z) ≥ ŷ, we know that y∗ < ŷ.

As we scan the functions gi, we remember the highest value ỹ that we have encountered. If
we later get another query with a different point (ẑ, ŷ), we may be able to answer immediately
because ỹ ≥ ŷ. Otherwise, we continue the right-to-left scan of each function gi at the value z
where we left off during the last previous scan of this function.

Note that we scan only intervals where we know that gi(z) ≤ h(z). This means that linear
pieces of gi which were examined need not be examined again, because the feasible value ỹ

7

is an upper bound of gi(z) over all intervals that were examined. So the time complexity
for answering a sequence of tests of the condition y∗ ≥ ŷ is bounded by the total number
of pieces of all functions gi, which is O(n), plus an overhead of O(b) for each test. The
overhead comes from the fact that we may have to spend constant time for each branch i
to just “look at” this branch: For example, if we stopped the previous scan of gi because
the point ẑ was reached, we may have to repeatedly examine the single linear piece to which
this point belongs.

We will now describe more precisely how the binary search among the breakpoints of h is
carried out. The function h is the lower envelope of n + 1 increasing linear functions, whose
slopes are given by the weights wi. We start by finding the median ŵ of the n+1 slopes and
identifying the leftmost point ŷ = h(ẑ) on the graph where the slope becomes ≤ ŵ. This
point can be identified by solving the linear program

max{ y − ŵz : z ≥ 0, y ≤ wj(z + xj) for j = 0, . . . , n } (6)

in the two variables y and z. Actually, this linear program may yield any point with slope ŵ,
not necessarily the leftmost point with slope ŵ or smaller. The leftmost point can be found
by perturbing the objective function or by solving the following auxiliary linear program:

min{ z : y − ŵz = K∗, z ≥ 0, y ≤ wj(z + xj) for j = 0, . . . , n },
where K∗ is the optimum value of (6). (This is a linear program in only one variable, after
using the equation to eliminate y.)

Now we test the condition y∗ ≥ ŷ as described above. If we find that y∗ ≥ ŷ, we can
discard the first half of the linear functions, with slopes > ŵ, from consideration in h(z),
because we know that the optimum cannot lie in the range z < ẑ. Otherwise, if y∗ < ŷ,
we can discard the other half of the linear functions from the definition of h(z), because
they play no role for restricting the optimum of (5). (In fact, in this case, we have actually
scanned the part with z ≥ ẑ of all branches, and we can restrict the remaining search to the
range z < ẑ.)

We continue this process by finding the median of the remaining pieces of h, and so on,
until only one linear piece of h is left. It is then easy to find the optimum value of (5) directly
in linear time.

Since the median of n numbers can be found in linear time by the algorithm of Blum,
Floyd, Pratt, Rivest, and Tarjan (1973), (see also Aho, Hopcroft, and Ullman 1983), the
overall effort for the binary search is

O(n) + O(n/2) + O(n/4) + · · · = O(n).

To this we must add the effort for the O(log n) queries, which is

O(log n) · O(b) + O(n),

as discussed above. Summarizing, we have

Theorem 3 The weighted obnoxious center problem on an extended star tree with n vertices
and b branches can be found in O(n + b log n) time and O(n) space.

6 The obnoxious center problem in general trees

In this section we consider the obnoxious center problem in weighted and unweighted trees.

8

6.1 Finding an obnoxious center in weighted trees

Tamir (1991, 1988) gives two algorithms of O(n log2 n) and O(kn log2 n) time complexity,
respectively, for solving the obnoxious center problem on an arbitrary tree with n vertices.
The parameter k depends on the structure of the tree. For paths and stars k = O(1),
for balanced trees k = O(log n), but there exist trees such that k = Θ(n). By an easy
observation Tamir’s algorithm of 1988 can be improved by a factor of logn. Tamir notes
that, if the center is restricted to a single edge, the objective function is a lower envelope
of n linear functions. When one goes from an edge to an adjacent edge, not all of these
linear functions have to be changed. We can obtain the lower envelope of the functions for
the adjacent edge by removing some linear functions and adding new ones. Tamir showed
that one can successively obtain the objective function for all edges with a total of O(kn)
insertions and deletions of linear functions.

Tamir used the data structure of Overmars and van Leeuwen (1981) for maintaining a
lower envelope of n linear functions under deletions and insertions. This data structure takes
linear space and O(log2 n) time for a deletion or insertion. The maximum of the current
lower envelope over some given interval can be found in O(log n) time.

However, the sequence of O(kn) insertions and deletions of linear functions can be com-
puted beforehand, and thus we can use the algorithm of Hershberger and Suri (1996) for
an off-line maintenance of the lower envelope of linear functions. This data structure needs
only O(n log n) time to process a sequence of n insertions, deletions, and queries for the
maximum, i.e., only O(log n) time per operation on the average. In total, this reduces the
complexity to O(kn log n). Note that for small k (k = O(log n)), this time complexity bound
is lower than the O(n log2 n) bound of Tamir (1991).

6.2 A linear algorithm for finding an obnoxious center in un-

weighted trees

Let us determine an obnoxious center in the tree T = (V, E) with edge lengths cxy. The
center can be placed in any vertex or on any edge of the tree, but should be as far away
as possible from the vertices of some given set V0 ⊆ V of obnoxious sites. Let us call the
vertices in V0 black vertices and the vertices outside of V0 white vertices . Thus our problem
is to maximize

g(z) = min
v∈V0

d(z, v).

The objective function g(z) is not necessarily concave along a path. For example, in the tree
shown in Figure 4 (V0 consists of the 4 black vertices), g(z) is neither convex nor concave
along the path (a, b, c, d).

z

g(z)

a b c d

e f

2 2 2
1 1

Figure 4: Nonconvexity of objective function g(z)

9

Since g(z) is concave on each edge, an O(n2) algorithm is easy to realize by examining
every edge. In the following we describe a linear algorithm.

We first select an arbitrary vertex r as the root of the tree. Then we perform a sweep
from the leaves to the root, and for each vertex u, we compute the minimum distance g+(u)
from u to a black vertex in the subtree below u (including u itself). Finally, during a root-
to-leaf sweep, for each vertex u, we compute the minimum distance g(u) from u to any black
vertex, and we also locate the optimal point on each edge.

Phase I. We denote the set of children of the vertex u by S(u). We can set g+(u) := 0 for
all black vertices. For white vertices we have

g+(u) = min
v∈S(u)

(cuv + g+(v)).

This includes the case of white leaves (S(u) = ∅), for which we can initialize g+(u) = ∞.
We then inductively compute g+(u) for all other white vertices, proceeding from the leaves
towards the root.

Phase II. We proceed from the root to the leaves. At the root r, we have g(r) := g+(r).
Now consider an edge (u, v) from a vertex u to its child v. We assume that g(u) has

already been determined correctly. For a point P at distance z from u on this edge, we claim
that the minimum distance to a black vertex is

min{g(u) + z, g+(v) + (cuv − z)}, for 0 ≤ z ≤ cuv. (7)

The second expression is clearly equal to the minimum distance from P to the nearest black
vertex in the subtree of v. On the other hand, if the path from P to the nearest black vertex
goes through u, its length is represented by the first expression in the above formula. It
follows that the expression (7) is certainly not bigger than the minimum distance from P to
a black vertex.

It is possible that the first expression g(u) + z does not correspond to a path from P to
a black vertex: It may represent a walk that starts by going from P to u, returns to v, and
continues into the subtree of v. This happens precisely when the closest black vertex of u
lies in this subtree. But then we must have g(u) = cuv + g+(v), and the second expression
is smaller than the first. We conclude that there is a black vertex whose distance from P
equals (7), and hence the claim is true.

We can now determine the optimal location for the center on the edge (u, v) in constant
time by maximizing (7) over all z. For z = cuv, we get P = v, and hence

g(v) := min{g(u) + cuv, g
+(v)}.

This formula allows us to determine g(v) for every vertex v from the value g(u) of its parent u,
and we can inductively find g(v) for all vertices.

It is obvious that the above procedure takes linear time. Thus we have shown the following
theorem.

Theorem 4 The unweighted obnoxious center problem on a tree can be solved in linear time.

10

7 Concluding Remarks

In the study of obnoxious center problems, Tamir (1988, 1991) presented O(n logn) algo-
rithms for path trees and star trees, and an O(n log2 n) algorithm for general trees. For the
extremal cases, i.e., for paths (the trees with largest diameter) and for stars (the trees with
smallest diameter), as well as for unweighted trees, we have obtained O(n) algorithms in
this note. The question whether one can get linear time algorithms for general trees remains
open.

For the multifacility obnoxious center problem on a path, an approach based on the
O(n log n) algorithm of Tamir (1988) significantly improved the O(n3) bound of Drezner
and Wesolowsky (1985). Now, by using our linear algorithm of Section 3, the bound can be
further improved to O(n).

A natural generalization of the center problem and the obnoxious center problem is to
combine the two objective functions f(x) and g(x) for locating a center x. A similar approach
was proposed for the generalized median problem by Burkard and Krarup (1998). On one
hand, we may view

f(z) = max
vi∈V+

wid(z, vi)

as service cost for friendly sites in V+ ⊆ V in case of emergency, where wi > 0 for vi ∈ V+.
On the other hand, we may view

g(z) = M + max
vi∈V−

wid(z, vi)

as the damage cost of the obnoxious sites in V− ⊆ V in case of an emergency, where wi < 0
for vi ∈ V− and M > 0 is a constant. Let p, q be the probabilities of these two kinds of
emergency events. Then the expected cost will be

E(z) = p · f(z) + q · g(z).

The model of minimizing E(z) would be an analogue of the median problem with positive
and negative weights (see Burkard and Krarup 1998), and could be an interesting problem
for further study. First results in this respect concerning paths, stars and trees can be found
in the recent report by Burkard and Dollani (2001).

Acknowledgment. We thank Gerhard Woeginger for useful discussions.

References

[1] Aho, A. V., J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms, Addison-
Wesley, Reading (MA) 1983.

[2] Blum, M., R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, Time bounds for
selection. J. Comput. Syst. Sci. 7, 1973, 448–461.

[3] Burkard, R. E. and H. Dollani, Center problems with pos/neg weights on trees. SFB-
Report 215, Institute of Mathematics, Graz University of Technology, Graz (Austria),
February 2001.

[4] Burkard, R. E. and J. Krarup, A linear algorithm for the pos/neg-weighted 1-median
problem on a cactus. Computing 60, 1998, 193–215.

11

[5] Drezner, Z. and G. O. Wesolowsky, Location of multiple obnoxious facilities. Trans-
portation Sci. 19, 1985, 193–202.

[6] Gonzalez, T., Algorithms on sets and related problems. Technical report, Department
of Computer Science, University of Oklahoma, 1975.

[7] Hakimi, S. L., Optimum locations of switching centers and the absolute centers and
medians of a graph. Operations Research 12, 1964, 450–459.

[8] Handler, G. Y., p-center problems. In Discrete Location Theory (ed. by P. B. Mirchan-
dani and R. L. Francis), New York: J. Wiley, 1990, pp. 305–347.

[9] Hershberger, J. and S. Suri, Off-line maintenance of planar configurations. J. Algorithms
21, 1996, 453–475.

[10] Kariv, O. and S. L. Hakimi, An algorithmic approach to network location problems
I: The p-centers, II: The p-medians. SIAM Journal on Applied Mathematics 37, 1979,
513–538 and 539–560.

[11] Megiddo, N., Linear-time algorithms for linear programming in R3 and related problems.
SIAM J. Comput. 12, 1983, 759–776.

[12] Megiddo, N. and A. Tamir, New results on the complexity of p-center problems. SIAM
J. Comput. 12, 1983, 751–758.

[13] Melachrinoudis, E. and J. MacGregor Smith, An O(mn2) algorithm for the maximin
problem in E2. Oper. Res. Letters 18, 1995, 25–30.

[14] Overmars, M. H. and J. van Leeuwen, Maintenance of configurations in the plane. J.
Comput. Syst. Sci. 23, 1981, 166–204.

[15] Preparata, F. and M. I. Shamos, Computational Geometry: An Introduction, Springer-
Verlag, 1985.

[16] Tamir, A., Improved complexity bounds for center location problems on networks by
using dynamic data structures. SIAM J. Discrete Math. 1, 1988, 377–396.

[17] Tamir, A., Obnoxious facility location on graphs. SIAM J. Discr. Math. 4, 1991, 550–
567.

12

