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Abstract 

We evaluate a wide range of recommendation algorithms on e-commerce-related datasets. 

These algorithms include the popular user-based and item-based correlation/similarity 

algorithms as well as methods designed to work with sparse transactional data. Data 

sparsity poses a significant challenge to recommendation approaches when applied in e-

commerce applications. We experimented with approaches such as dimensionality 

reduction, generative models, and spreading activation, which are designed to meet this 

challenge. In addition, we report a new recommendation algorithm based on link 

analysis.  Initial experimental results indicate that the link analysis-based algorithm 

achieves the best overall performance across several e-commerce datasets.  
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1. Introduction 
Recommender systems are being widely used in many application settings to suggest 

products, services, and information items to potential consumers. For example, a wide 

range of companies such as Amazon.com, Netflix.com, Half.com, CDNOW, J.C. Penney, 

and Procter & Gamble have successfully deployed commercial recommender systems 

and reported increased Web and catalog sales and improved customer loyalty. Many 

software companies provide stand-alone generic recommendation technologies. The top 

five providers include Net Perceptions, Epiphany, Art Technology Group, BroadVision, 

and Blue Martini Software. These five companies combined have a total market capital of 

over $600 million as of December 2004 (finance.yahoo.com).  

At the heart of recommendation technologies are the algorithms for making 

recommendations based on various types of input data. In e-commerce, most 

recommendation algorithms take as input the following three types of data: product 

attributes, consumer attributes, and previous interactions between consumers and 

products (e.g., buying, rating, and catalog browsing).  

Models based on the product or consumer attributes attempt to explain consumer-

product interactions based on these intrinsic attributes. Intuitively these models learn 

either explicitly or implicitly rules such as “Joe likes science fiction books” and “well-

educated consumers like Harry Potter.” Techniques such as regression and classification 

algorithms have been used to derive such models. The performances of these approaches, 

however, rely heavily on high-quality consumer and product attributes that are often 

difficult or expensive to obtain.  

Collaborative filtering-based recommendation takes a different approach by utilizing 

only the consumer-product interaction data and ignoring the consumer and product 

attributes [9]. Based solely on interaction data, consumers and products are characterized 

implicitly by their previous interactions. The simplest example of recommendation based 

only on interaction data is to recommend the most popular products to all consumers. 

Collaborative filtering has been reported to be the most widely adopted and successful 

recommendation approach and researchers are actively advancing collaborative filtering 

technologies in various aspects including algorithmic design, human-computer 

interaction design, consumer incentive analysis, and privacy protection (e.g., [1, 10]).  
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Despite significant progress made in collaborative filtering research, there are several 

problems limiting its applications in e-commerce. One major problem is that most 

research has focused on recommendation from multi-graded rating data that explicitly 

indicate consumers’ preferences, whereas the available data about consumer-product 

interactions in e-commerce applications are typically binary transactional data (e.g., 

whether a purchase was made or not). Although algorithms developed for multi-graded 

rating data can be applied, typically with some modest modifications, to binary data, 

these algorithms are not able to exploit the special characteristics of binary transactional 

data to achieve more effective recommendation. A second problem is lack of 

understanding of relative strengths and weaknesses of different types of algorithms in e-

commerce applications. The need for such comparative studies is evident in many recent 

studies that have proposed new algorithms but only conducted limited comparative 

evaluation. The third problem with collaborative filtering as a general-purpose e-

commerce recommendation approach is the sparsity problem, which refers to the lack of 

prior transactional and feedback data that makes it difficult and unreliable to infer 

consumer similarity and other patterns for prediction purposes. Research on high-

performance algorithms under sparse data is emerging [5, 6, 8, 11], but substantial 

additional research effort is needed to provide solid understanding of them.  

Our research is focused on addressing the above problems. Our ultimate goal is to 

develop a meta-level guideline that “recommends” an appropriate recommendation 

algorithm for a given application that demonstrates certain data characteristics. In this 

article, we present the initial results of an experimental study towards this goal with two 

specific objectives: (a) evaluating collaborative filtering algorithms with different e-

commerce datasets, and (b) assessing the effectiveness of different algorithms with sparse 

data. 

 

2. Recommendation Algorithms 
We now present six types of representative collaborative filtering algorithms including 

three algorithms previously designed to alleviate the sparsity problem and a new 

algorithm we recently developed based on the ideas from link analysis.  



 4

We first introduce a common notation for describing a collaborative filtering problem. 

The input of the problem is an M ×  N interaction matrix A = (aij) associated with M 

consumers C = {c1, c2,…, cM} and N products P = {p1, p2, …, pN}. We focus on 

recommendation that is based on transactional data. That is, aij can take the value of 

either 0 or 1 with 1 representing an observed transaction between ci and pj (for example, 

ci has purchased pj) and 0 absence of transaction. We consider the output of a 

collaborative filtering algorithm to be potential scores of products for individual 

consumers that represent possibilities of future transactions. A ranked list of K products 

with the highest potential scores for a target consumer serves as the recommendations.  

 

2.1 User-based Algorithm 

The user-based algorithm, which has been well-studied in the literature, predicts a target 

consumer’s future transactions by aggregating the observed transactions of similar 

consumers. The algorithm first computes a consumer similarity matrix WC = (wcst), s, t = 

1, 2, …, M. The similarity score wcst is calculated based on the row vectors of A using a 

vector similarity function (such as in [1]). A high similarity score wcst indicates that 

consumers s and t may have similar preferences since they have previously purchased a 

large set of common products. WC·A gives potential scores of the products for each 

consumer. The element at the cth row and pth column of the resulting matrix aggregates 

the scores of the similarities between consumer c and other consumers who have 

purchased product p previously. In other words, the more similar to the target consumer 

are the set of consumers who bought the target product, the more likely the target 

consumer will also be interested in that product.  

 

2.2 Item-based Algorithm 

The item-based algorithm is different from the user-based algorithm only in that product 

similarities are computed instead of consumer similarities. This algorithm first computes 

a product similarity matrix WP = (wpst), s, t = 1, 2, …, N. Here, the similarity score wpst 

is calculated based on column vectors of A. A high similarity score wpst indicates that 

products s and t are similar in the sense that they have been co-purchased by many 

consumers. A·WP gives the potential scores of the products for each consumer. Here, the 
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element at the cth row and pth column of the resulting matrix aggregates the scores of the 

similarities between product p and other products previously purchased by consumer c. 

The intuition behind this algorithm is similar: the more similar to the target product are 

the products purchased by the target consumer, the more likely he/she will also be 

interested in that product. This algorithm has been shown to provide higher efficiency 

and comparable or better recommendation quality than the user-based algorithm for many 

datasets [3]. 

 

2.3 Dimensionality Reduction Algorithm 

The dimensionality reduction-based algorithm first condenses the original interaction 

matrix and generates recommendations based on the condensed and less sparse matrix to 

alleviate the sparsity problem [11]. The standard singular vector decomposition 

procedure is applied to decompose the interaction matrix A into 'VZU ⋅⋅ , where U and V 

are two orthogonal matrices of size RM ×  and RN ×  respectively and R is the rank of 

matrix A. Z is a diagonal matrix of size RR×  having all singular values of matrix A as its 

diagonal entries. The matrix Z is then reduced by retaining only k largest singular values 

to obtain Zk. U and V are reduced accordingly to obtain Uk and Vk. As a result, 

'kkk VZU ⋅⋅  provides the best lower rank approximation of the original interaction matrix 

A that preserves the primary data patterns exist in the data after the “noises” are removed. 

Consumer similarities can then be derived from the compact representation based on kU  

and 2/1
kZ . Recommendations are then generated in the same fashion as described in the 

user-based algorithm. 

 

2.4 Generative Model Algorithm 

Under this approach, latent class variables are introduced to explain the patterns of 

interactions between consumers and products [5, 12]. Typically one can use one latent 

class variable to represent the unknown cause that governs the interactions between 

consumers and products. The interaction matrix A is considered to be generated from the 

following probabilistic process: (1) select a consumer with probability P(c); (2) choose a 

latent class with probability P(z|c);  and (3) generate an interaction between consumer c 
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and product p (i.e., setting acp to be 1) with probability P(p|z). Thus the probability of 

observing an interaction between c and p is given by ∑= z
zpPczPcPpcP )|()|()(),( . 

Based on the interaction matrix A as the observed data, the relevant probabilities and 

conditional probabilities are estimated using a maximum likelihood procedure called 

Expectation Maximization (EM). Based on the estimated probabilities, P(c, p) gives the 

potential score of product p for consumer c.  

 

2.5 Spreading Activation Algorithm 

In our previous research, we have proposed a graph-based recommendation approach 

based on the ideas of associative information retrieval [6]. This approach addresses the 

sparsity problem by exploring transitive associations between consumers and products in 

a bipartite consumer-product graph that corresponds with the interaction matrix A. The 

spreading activation algorithms developed in associative information retrieval can then be 

adopted to accomplish transitive association exploration efficiently. In this study we used 

an algorithm with competitive performance in recommendation applications, the Hopfield 

net algorithm [6]. In this approach, consumers and products are represented as nodes in a 

graph, each with an activation level μj, j = 1, …, N. To generate recommendations for 

consumer c, the corresponding node is set to have activation level 1 (μc = 1). Activation 

levels of all other nodes are set at 0. After initialization the algorithm repeatedly performs 

the following activation procedure: μj(t + 1) = ( )⎥
⎦

⎤
⎢
⎣

⎡∑
−

=

1

0

n

i
iijs ttf μ , where fs is the continuous 

SIGMOID transformation function or other normalization functions; tij equals η if i and j 

correspond to an observed transaction and 0 otherwise (0 < η < 1). The algorithm stops 

when activation levels of all nodes converge. The final activation levels μj of the product 

nodes give the potential scores of all products for consumer c. In essence this algorithm 

achieves efficient exploration of the connectedness of a consumer-product pair within the 

consumer-product graph context. The connectedness concept corresponds to the number 

of paths between the pair and their lengths and serves as the predictor of occurrence of 

future interaction. 
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2. 6 Link Analysis Algorithm 

The last algorithm is a new recommendation algorithm which we recently developed 

based on the ideas from link analysis research. Link analysis algorithms have found 

significant application in Web page ranking and social network analysis (notably, HITS 

[7] and PageRank [2]). Our algorithm is an adaptation of the HITS algorithm in the 

recommendation context.  

The original HITS algorithm distinguishes between two types of Web pages that 

pertain to a certain topic: authoritative pages, which contain definitive high-quality 

information, and hub pages, which are comprehensive lists of links to authoritative pages. 

A given webpage i in the Web graph has two distinct measures of merit, its authority 

score ai and its hub score hi. The quantitative definitions of the two scores are recursive. 

The authority score of a page is proportional to the sum of hub scores of pages linking to 

it, and conversely, its hub score is proportional to the authority scores of the pages to 

which it links. These definitions translate to a set of linear equations: jj jii hGa ∑=  

and jj iji aGh ∑= , where G is the matrix representing the links in the Web graph. Using 

the vector notation, a = (a1, a2, …, an) and h = (h1, h2, …, hn), we can express the 

equations in compact matrix form: a  = G' · h = G' · G · a and h = G · a = G · G' · h. The 

solutions of the above equations correspond to eigenvectors of G' · G (for a) and G · G' 

(for h). Computationally, it is often more efficient to start with arbitrary values of a and h 

and repeatedly apply a = G' · h and h = G · a with a certain normalization procedure at 

each iteration. Subject to some mild assumptions, this iterative procedure is guaranteed to 

converge to the solutions [7]. 

In our recommendation application, consumer-product relationship forms a bipartite 

graph consisting of two types of nodes, consumer and product nodes.  

A link between a consumer node c and a product node p indicate that p has the potential 

to represent part of c’s interest and at the same time c could partially represent product p's 

consumer base. Compared to Web page ranking, recommendation requires the 

identification of products of interest for individual consumers rather than generally 

popular products. As such, we adapt the original authority and hub scores definitions as 

follows. We define a product representativeness score pr(p, c0) of product p with respect 



 8

to consumer c0, which can be viewed as a measure of the "authority" of product p in 

terms of the level of interest it will have for consumer c0. Similarly, we define a 

consumer representativeness score cr(c, c0) of c with respect to consumer c0, which 

measures how well consumer c, as a "hub" for c0, associates with products of interest to 

c0. 

In contrast to the vector representation of Web page authority and hub scores, we 

denote by PR = (prik) the N ×  M product representativeness matrix where prik = pr(i, k), 

and by CR = (crit) the M ×  M consumer representativeness matrix where crit = cr(i, t). 

Directly following the idea of the recursive definition of authority and hub scores, one 

would define the product and consumer representativeness scores as PR = A' · CR and CR 

= A · PR. Intuitively, the sum of the product representativeness scores of the products 

linked to a consumer gives the consumer representativeness score and vice versa.  

These obvious extensions of the score definitions have several inherent problems. 

First, if a consumer has links to all products, that consumer will have the highest 

representativeness scores for all target consumers. However, such a consumer’s behavior 

actually provides little information for predicting the behavior of the target consumer. A 

more fundamental problem with these definitions is that with the convergence property 

shown in [7], PR and CR defined above will converge to matrices with identical columns, 

amounting to scores representing product ranking independent of particular consumers, 

thus providing only limited value for recommendation.  

To address these problems, we have developed the following new consumer 

representativeness score definition: CR = B · PR + CR0, where B = (bij) is an M ×  N 

matrix derived from A: 
∑

=
j ij

ij
ij a

a
b γ)(

 and CR0 is the source consumer representativeness 

score matrix: 
⎩
⎨
⎧ =

=
 otherwise ,0

   ,  if  ,0 ji
crij

η
 (i.e., CR0 = η IM, where IM is an M ×  M identity 

matrix). This new definition borrows ideas similar to those successfully applied in 

network spreading activation models. With the introduction of matrix B, we normalize 

the representativeness score a consumer receives from linked products by dividing it by 

the total number of products she is linked to.  In other words, a consumer who has 

purchased more products needs to have more overlapping purchases with the target 
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consumer than a consumer with a smaller number of total purchases to be considered 

equally representative of the target consumer's interest. The parameter γ  controls the 

extent to which a consumer is penalized because of having made large numbers of 

purchases. This type of adjustment is well studied in modeling the decaying strength in 

the spreading activation literature. We have experimented various values of γ within the 

range of 0 to 1, and used 0.9 in our final experiments. The source matrix CR0 is included 

to maintain the high representativeness scores for the target consumers themselves and to 

customize the representativeness score updating process for each individual consumer. In 

order to maintain consistent levels of consumer self-representativeness, in the actual 

computation we normalize the matrix multiplication result B · PR before adding the 

source matrix CR0. The normalization process is such that each column of B · PR 

(corresponding to the consumer representativeness score for each target consumer) adds 

up to 1. Such normalization also helps to avoid numerical problems when repeatedly 

computing multiplications of large-scale matrices. 

The complete procedure of our new link analysis recommendation algorithm is 

summarized as follows:  

Step 1. Construct the interaction matrix A and the associating matrix B based on the 

sales transaction data: A = (aij) and B = (bij), where 
∑

=
j ij

ij
ij a

a
b γ)(

. 

Step 2. Set the source consumer representativeness matrix CR0 to be ηIM and let it be 

the initial consumer representativeness matrix: CR(0) = CR0.  

Step 3. At each iteration t, perform the following:  

Step 3.1. PR(t) = A' ∙ CR(t -1) ; 

Step 3.2. CR(t) = B ∙ PR(t) ; 

Step 3.3. Normalize CR(t), such that 1
1

=∑ =

M

i ijcr ; 

Step 3.4. CR(t) = CR(t) + CR0. 

Perform Step 3.1 to 3.4 until convergence or the specified number of iterations T 

is reached (Setting T to 5 is sufficient in our experiments). 
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2.7 Illustration of the Six Collaborative Filtering Algorithms 

We now use a simple hypothetical interaction matrix as input to illustrate the six 

recommendation algorithms introduced above. In the left panel of Figure 1, we show the 

interaction matrix and consumer-product graph representations of a simple transactional 

recommendation dataset that involves 3 consumers, 4 products, and 7 observed 

transactions (1’s in the matrix and links in the graph). The computational steps of the six 

algorithms are shown on the right panels of Figure 1.  

For the user-based and item-based algorithms, the consumer similarity matrix WC and 

product similarity matrix WP are shown. The calculation follows the normalized 

procedures described in [1] that take into account the global frequency of consumers and 

products participating in transactions. The two resulting potential score matrices show 

small difference but with similar patterns in rows and columns. For the dimensionality 

reduction algorithm, the singular vector decomposition results are shown. We then show 

the compact consumer representation based on a rank-2 approximation and the consumer 

similarity matrix computed using the Cosine similarity function based on this compact 

representation. For the generative model algorithm we specified the number of latent 

classes to be 2 and present the estimates of the latent class probabilities P(z) and 

conditional probabilities P(z|c) and P(z|p) on the latent class model. For the spreading 

activation algorithm, we have shown the activation scores of the consumer/product nodes 

of several iterations when each of the consumers is set as the starting node. Finally, for 

the link analysis algorithm we show matrix B, the normalized version of the interaction 

matrix A, and the matrix CR0. We then show the matrices PR and CR of the first three 

iterations of computation. In this example, we did not perform the normalization at each 

iteration to make it easy to follow the matrix multiplication calculations. 
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Link Analysis Algorithm

Spreading Activation Algorithm

Generative Model Algorithm

Dimensionality Reduction Algorithm

Item-based Algorithm

User-based AlgorithmInput

Consumer Similarity Matrix: WC

c 1 c 2 c 3

c 1 1 0.82 0
c 2 0.82 1 0.2
c 3 0 0.2 1

Potential Score Matrix: WC·A

p 1 p 2 p 3 p 4

c 1 0 1.82 0.82 1.82
c 2 0.2 1.82 1.2 1.82
c 3 1 0.2 1.2 0.2

Potential Score Matrix: A·WP

p 1 p 2 p 3 p 4

c 1 0 2 0.29 2
c 2 0.92 2.15 1.29 2.15
c 3 1.92 0.15 1.92 0.15

p 1 p 2 p 3 p 4

c 1 0.56 0.45 -0.70 2.19 0 0 0.13 0.61 0.48 0.61
c 2 0.78 0.00 0.63 · 0 1.41 0 · -0.6 0.32 -0.6 0.32
c 3 0.28 -0.89 -0.35 0 0 0.46 -0.8 -0.2 0.6 -0.2

Singular Vector Decomposition: A =

p 1 p 2 p 3 p 4

p 1 1 0 0.92 0
p 2 0 1 0.15 1
p 3 0.92 0.15 1 0.15
p 4 0 1 0.15 1

Product Similarity Matrix: WP

c 1 c 2 c 3

c 1 1 0.84 -0.2
c 2 0.84 1 0.36
c 3 -0.2 0.36 1

Consumer Similarity Matrix

p 1 p 2 p 3 p 4

c 1 -0.2 1.84 0.64 1.84
c 2 0.36 1.84 1.36 1.84
c 3 1 0.16 1.36 0.16

Potential Score Matrix

c 1 0.83 0.53 0
c 2 1.15 0.00 0
c 3 0.41 -1.06 0

Compact Consumer
Representation:             .

Product
Nodes

Consumer
Nodes

Latent Class

p3p1 p2 p4

z1 z2

c1 c2 c3

P(z)

P(z|c)

P(z|p)

0.77 0.23

0.34 0.090.47 0.30 0.19 0.61

0.11
0.24

0.37

0.02
0.20

0.57

0.32
0.17

Potential Score Matrix

p 1 p 2 p 3 p 4

c 1 0.027 0.142 0.057 0.06
c 2 0.057 0.141 0.115 0.116
c 3 0.058 0.003 0.115 0.11

Target:
Iteration 1 2 3 4 5 1 2 3 4 1 2 3 4 5

c 1 0.0474 0.0207 0.0191 0.019 0.01831 0.0197 0.0191 0.01902 0.0186 0.019
c 2 0.0197 0.0191 0.0194 0.01903 0.0474 0.0217 0.0195 0.01939 0.0188 0.0187 0.0193 0.01937
c 3 0.0183 0.01901 0.0188 0.0187 0.019 0.0474 0.0207 0.0191 0.019 0.01902
p 1 0.01903 0.0183 0.01865 0.0474 0.0197 0.0187 0.0187 0.01866
p 2 0.0474 0.0197 0.0191 0.019 0.01902 0.0474 0.0197 0.0191 0.01903 0.0183 0.0187 0.01901
p 3 0.0183 0.0187 0.01938 0.0474 0.0197 0.0191 0.01903 0.0474 0.0197 0.0191 0.019 0.01903
p 4 0.0474 0.0197 0.0191 0.019 0.01865 0.0474 0.0197 0.0191 0.01903 0.0183 0.0183 0.01901

c 1 c 2 c 3

p 1 p 2 p 3 p 4

c 1 0 1 0 1
c 2 0 1 1 1
c 3 1 0 1 0

c 1 c 2 c 3

c 1 2.23 0.93 0
c 2 1.23 2.39 0.62
c 3 0 0.46 2.23

p 1 p 2 p 3 p 4

c 1 0 3.16 0.93 3.16
c 2 0.62 3.62 3.01 3.62
c 3 2.23 0.46 2.69 0.46

c 1 c 2 c 3

c 1 4.89 3.36 0.57
c 2 4.46 5.75 2.23
c 3 0.57 1.68 4.03

p 1 p 2 p 3 p 4

c 1 0.57 8.24 3.93 8.24
c 2 2.23 10.2 7.98 10.2
c 3 4.03 2.25 5.71 2.25

c 1 c 2 c 3

c 1 11.2 9.46 2.77
c 2 12.6 14.2 6.28
c 3 2.77 4.73 7

p 1 p 2 p 3 p 4

c 1 0 1 0 1
c 2 0 1 1 1
c 3 1 0 1 0

p 1 p 2 p 3 p 4

c 1 0 0.62 0 0.62
c 2 0 0.46 0.46 0.46
c 3 0.62 0 0.62 0

c 1 c 2 c 3

c 1 1 0 0
c 2 0 1 0
c 3 0 0 1

Interaction Matrix A Matrix B Consumer Representativeness
Source Matrix: CR0

Product
Representativeness

Matrix: PR

Consumer
Representativeness

Matrix: CR

Iteration 1 Iteration 2 Iteration 3

Interaction Matrix: A

p 1 p 2 p 3 p 4

c 1 0 1 0 1
c 2 0 1 1 1
c 3 1 0 1 0

p4p3p2

c3c2

Product
Nodes

Consumer
Nodes

p1

c1

Consumer-product Graph

2/1
2ZU ⋅

 'VZU ⋅⋅

∑z
zpPczPcP )|()|()(

 

Figure 1. Six Recommendation algorithms illustrated with a simple example 



 12

An interesting comparison in this simple example involves the recommendation of 

product p1 to consumer c1. The user-based and item-based algorithms only exploit the 

direct consumer/product neighborhood information, thus both algorithms result in 0 

potential score for the pair <c1, p1>. When exploring the transitive neighborhood 

information, we can see that c3 can be considered as a transitive neighbor of c1 through a 

common neighbor c2 and that p2 and p4 can be considered as transitive neighbors of p1 

through a common neighbor p3. The other four algorithms indeed obtained non-zero 

potential scores for <c1, p1>, showing their capability in capturing transitive associations 

to make recommendations.  

3. Evaluation of Recommendation Algorithms 

Several previous studies have been devoted to evaluating multiple recommendation 

algorithms [1, 4], but they mainly focused on variations of the user-based algorithms. 

Furthermore, newly proposed algorithms are typically only compared with the user-based 

algorithms. As a result, a comprehensive understanding of existing recommendation 

algorithms’ performance is far from complete.  

In our study, we selected 20% most recent interactions of each consumer’s 

interactions to form the testing set and designated the remaining earlier 80% to be the 

training set. To understand the performance of the algorithms under sparse data, we also 

study recommendation performance with a reduced training set by randomly selecting 

from the training set (referred to as the unreduced training set) only 40% of the 

consumer’s total interactions. All the algorithms were set to generate a ranked list of 

recommendations of K products. For each consumer, the recommendation quality was 

measured based on the number of hits (recommendations that matched the products in the 

testing set) and their positions in the ranked list. We adopt the following recommendation 

quality metrics from the literature regarding the relevance, coverage, and ranking quality 

of the ranked list recommendation (e.g., [1]):  

(1) Precision:  Pc = 
K

hitsofNumber ,   

(2) Recall: Rc = 
set  testingin the with interacted consumer  products ofNumber 

ofNumber
c

hits ,  
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(3) F Measure: Fc = 
cc

cc

RP
RP

+
××2 , and  

(4) Rank Score: ∑ −−=
j hj

cj
c

q
RS )1/()1(2

, where j is the index for the ranked list; h is the 

viewing half-life (the rank of the product on the list such that there is a 50% chance the 

user will purchase that product); 
⎩
⎨
⎧

=
                       otherwise  0,  

set,  testings'in  is  if  1, cj
qcj . 

The precision and recall measures are essentially competing measures. As the number 

of recommendation K increases, one expects to see lower precision and higher recall. For 

this reason, the precision, recall, and F measures might be sensitive to the number of 

recommendations. The rank score measure was proposed in [1] and adopted in many 

follow-up studies (e.g., [3, 4, 6]) to evaluate the ranking quality of the recommendation 

list. The number of recommendations has a similar but minor effect on the rank score, as 

the rank score of individual recommendations decreases exponentially with the list index.  

We also adopt a Receiver Operating Characteristics (ROC) curve-based measure to 

complement precision and recall. Such measures are used in several recent 

recommendation evaluation studies [4, 8]. The ROC curve attempts to measure the extent 

to which a learning system can successfully distinguish between signal (relevance) and 

noise (non-relevance). For our recommendation task, we define relevance based on 

consumer-product pairs: a recommendation that corresponds to a transaction in the 

testing set is deemed as relevant and otherwise as non-relevant. The x-axis and y-axis of 

the ROC curve are the percent of non-relevant recommendations and the percent of 

relevant recommendations, respectively. The entire set of non-relevant recommendations 

consists of all possible consumer-product pairs that appear neither in the training set (not 

recommended) nor in the testing set (not relevant). The entire set of relevant 

recommendations corresponds to the transactions in the testing set. As we increase the 

number of recommendations from 1 to the total number of products, a ROC can be 

plotted based on the corresponding relevance and non-relevance percentages at each step. 

The area under ROC curve (AUC) gives a complete characterization of the performance 

of the algorithm across all possible numbers of recommendations. An ideal 

recommendation model that ranks all the future purchases of each consumer at the top of 
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their individual recommendation list would expect to have steep increase in the beginning 

and to flat out in the end, with AUC close to 1. A random recommendation model would 

be a 45-degree line with AUC at 0.5.  

For precision, recall, and F measure, an average value over all consumers tested was 

adopted as the overall metric for the algorithm. For the rank score, an aggregated rank 

score RS for all consumers tested was derived as 
∑
∑=

c c

c c

RS
RS

RS max100 , where max
cRS was 

the maximum achievable rank score for consumer c if all future purchases had been at the 

top of a ranked list. The AUC measure was used directly as an overall measure for all 

consumers.  

 

4. An Experimental Study and Observations 

We used three e-commerce datasets in our experimental study: a retail dataset provided 

by a leading U.S. online clothing merchant, a book dataset provided by a Taiwan online 

bookstore, and a movie rating dataset available from the MovieLens Project. The retail 

dataset contained 3 months of transaction data with about 16 million transactions 

(household-product pairs) involving about 4 million households and 128,000 products. 

The book dataset contained 3 years of transactions of a sample of 2,000 customers. There 

were about 18,000 transactions and 9,700 books involved in this dataset. The movie 

dataset contained about 1 million ratings on about 6,000 movies given by 3,500 users 

over 3 years. For the movie rating dataset we treated a rating on product p by consumer c 

as a transaction (acp = 1) and ignored the actual rating. Such adaptation has been adopted 

in several recent studies such as [3]. Assuming that a user rates a movie based on her 

experience with the movie, we recommend only whether a consumer will watch a movie 

in the future and do not deal with the question of whether or not she will like it. 

For our experiments, we used samples from these three datasets. We included 

consumers who had interacted with 5 to 100 products for meaningful testing of the 

recommendation algorithms. This range constraint resulted in 851 consumers for the 

book dataset. For comparison purposes, we sampled 1,000 consumers within this range 

from the retail and movie datasets for the experiment. The details about the final samples 

we used are shown in Table 1. In addition to the numbers of consumers, products and 
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transactions, we also report each dataset’s density level, which is defined as the 

percentage of matrix elements valued at 1 in the interaction matrix. The movie dataset 

has the highest density level (1.75%), followed by the book dataset (0.19%) and then the 

retail dataset (0.13%). We also report the average number of purchases per consumer and 

the average number of interacting consumers. The comparison among the three datasets 

is consistent with the three density measures. The statistics of the complete datasets are 

also reported in Table 1 in the parentheses.  

 

Dataset # of 
Consumers 

# of 
Products 

# of 
Transactions

Density 
Level 

Avg. # of 
purchases per 

consumer 

Avg. 
sales per 
product 

Retail 1,000 
(~4 million) 

7,328 
(~128,000) 

 9,332 
(~16 million) 

0.1273% 
(~0.0031%)

9.33 
(~4) 

1.27 
(~125) 

Book 851 
(~2,000) 

8,566 
(~9,700) 

13,902 
(~18,000) 

0.1907% 
(0.0928%) 

16.34 
(~9) 

1.62 
(~1.86) 

Movie 1,000 
 (~3,500) 

 2,900 
(~6,000) 

50,748 
(~1 million) 

1.7499%  
(4.7619%) 

50.75 
(~166) 

17.50 
(~285.71) 

 
Table 1. Characteristics of the datasets  

 

Following the evaluation procedure described above, we prepared an unreduced 

training set, a reduced training set, and a testing set for evaluation. Thus we had six 

experimental configurations (3 datasets by 2 training sets) for each of the algorithms 

under investigation. We set the number of recommendations to be 10 (K = 10) and the 

half-life for the rank score to be 2 (h = 2). As for the algorithms examined, in addition to 

the six collaborative filtering algorithms discussed above, we also included a simple 

approach (referred to as the “Top-N Most Popular” or “Top-N” algorithm) that 

recommends to a consumer the top 10 most popular unseen products as a comparison 

benchmark.  

Based on the existing literature and our understanding of the algorithms, we expect to 

have the following findings: (1) Most algorithms should generally achieve better 

performance with the unreduced (dense) dataset; (2) Algorithms that were specifically 

designed for alleviating the sparsity problem should generally outperform the standard 

correlation/similarity-based algorithms and the “Top-N” algorithm, especially for the 

reduced (sparse) datasets; (3) The link analysis algorithm, with the global link structure 
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taken into consideration and a flexible control on penalizing frequent consumers and 

products, is hypothesized to generally outperform other collaborative filtering algorithms. 

Reduced Unreduced Reduced Unreduced Reduced Unreduced
User-based 0.0041 0.0088 0.0103 0.0202 0.0460 0.0648 4.17
Item-based 0.0044 0.0096 0.0045 0.0091 0.0460 0.0759 4.50
Dimensionality Reduction 0.0050 0.0064 0.0097 0.0191 0.0384 0.0530 5.50
Generative Model 0.0069 0.0066 0.0283 0.0260 0.0377 0.0471 3.83
Spreading Activation 0.0063 0.0130 0.0201 0.0231 0.0437 0.0607 3.67
Link Analysis 0.0081 0.0133 0.0218 0.0267 0.0471 0.0624 1.67
Top-N Most Popular 0.0069 0.0062 0.0268 0.0258 0.0373 0.0452 4.67
User-based 0.0359 0.0663 0.0534 0.1041 0.0503 0.0686 4.33
Item-based 0.0359 0.0711 0.0251 0.0454 0.0538 0.0864 4.33
Dimensionality Reduction 0.0411 0.0408 0.0564 0.1026 0.0428 0.0580 5.17
Generative Model 0.0429 0.0356 0.1616 0.1320 0.0382 0.0468 3.83
Spreading Activation 0.0531 0.0863 0.1070 0.1155 0.0457 0.0618 3.33
Link Analysis 0.0703 0.0891 0.1212 0.1282 0.0510 0.0649 2.17
Top-N Most Popular 0.0429 0.0326 0.1553 0.1316 0.0377 0.0440 4.83
User-based 0.0072 0.0153 0.0165 0.0320 0.0458 0.0634 4.33
Item-based 0.0077 0.0166 0.0072 0.0142 0.0473 0.0769 4.17
Dimensionality Reduction 0.0088 0.0109 0.0157 0.0305 0.0386 0.0528 5.33
Generative Model 0.0113 0.0107 0.0454 0.0406 0.0362 0.0447 4.00
Spreading Activation 0.0111 0.0219 0.0320 0.0362 0.0426 0.0583 3.67
Link Analysis 0.0144 0.0224 0.0349 0.0415 0.0466 0.0605 1.83
Top-N Most Popular 0.0113 0.0100 0.0431 0.0405 0.0357 0.0425 4.67
User-based 1.8750 4.6519 3.8270 7.8635 4.5250 7.4500 4.17
Item-based 2.0313 4.8527 1.0261 3.1281 4.2167 8.7500 4.33
Dimensionality Reduction 3.4896 3.0120 3.0227 6.9486 4.1000 6.8000 5.17
Generative Model 1.8490 1.4056 12.8120 10.7443 4.1250 5.1000 4.67
Spreading Activation 3.7500 5.2209 8.6800 9.4955 4.7500 7.4000 3.00
Link Analysis 4.4035 6.4074 9.9902 10.3835 5.3387 7.4319 2.00
Top-N Most Popular 2.0052 1.3889 12.8397 10.7814 3.7000 5.0750 4.67
User-based 0.4308 0.4628 0.3798 0.5287 0.7984 0.8544 5.67
Item-based 0.4463 0.4810 0.3873 0.5558 0.8289 0.8930 4.33
Dimensionality Reduction 0.4908 0.5663 0.5535 0.6894 0.8051 0.8602 3.00
Generative Model 0.6166 0.6164 0.7246 0.7630 0.7849 0.8179 2.33
Spreading Activation 0.4510 0.5194 0.4908 0.6569 0.7962 0.8325 4.67
Link Analysis 0.4603 0.5852 0.6333 0.7462 0.7789 0.8058 3.83
Top-N Most Popular 0.5296 0.5575 0.6487 0.7013 0.7772 0.8045 4.17

320 498 601 674 1000 1000

Measure Algorithm
Dataset Avg. 

Algorithm 
Rank

Retail Book Movie

Precision

Recall

F

Rank 
Score

Area 
Under 
ROC 
Curve

# of target consumers  
Table 2. Experimental results: performance measures 

 

We report the five recommendation quality measures of the six experimental 

configurations in Table 2. The boldfaced precision, recall, and F measures correspond to 

the algorithms that were not significantly different from the highest measure in each 

configuration at the 10% significance level. The boldfaced rank score and AUC measures 

correspond to the best performing algorithm within each configuration. To provide a 

summary of each algorithm’s overall performance across different datasets, we also 

report the average rank of each algorithm across the six configurations. For example, for 

the precision measure the link analysis algorithm’s average rank is 1.67, which 
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corresponds to the average of its ranks for individual configurations (1, 1, 3, 1, 1, and 3). 

Boldfaced average ranks are the top average ranks. As collaborative filtering algorithms 

can only recommend products that appeared in the training transactions, for consumers 

who do not have recommendable products in the testing set no successful 

recommendation is possible. To make the performance measures meaningful, we only 

evaluate recommendations for target consumers for whom successful recommendations 

are possible. Therefore, for the same dataset the reduced and unreduced training sets had 

different numbers of target consumers, which are reported in the bottom of Table 2.  
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Figure 2.  Experimental results: performance measures relative to the Top-N algorithm 

For easy visualization of the results, we present in Figure 2 the relative precision, 

recall, F, and rank score measures of the individual algorithms computed as the actual 

measures divided by those corresponding measures obtained by the “Top-N” algorithm. 

For example, the link analysis algorithm’s value in the precision diagram for the 

unreduced retail dataset was 2.13, meaning its precision was 113% higher than that 

achieved by the “Top-N” algorithm.  



 18

In Figure 3 we present the AUC measures of each algorithm across the six 

configurations. We also show the actual ROC curves for the unreduced and reduced retail 

dataset as examples.  

Area Under ROC Curve
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book reduced book
unreduced

movie reduced movie
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User-based Item-based Dimensionality Reduction Generative Model
Spreading Activation Link Analysis Top-N Most Popular  

 
Figure 3. AUC measures and the ROC curves for the retail dataset 

Based on these results we report the following observations. 

• All algorithms achieved better performance with the unreduced data. The 

performance measures shown in Table 2 were generally better with the unreduced 

datasets than with the reduced datasets. The difference is even more significant 

when the numbers of target consumers are taken into account. For example, the 

average precision measure of 0.81% for 320 target consumers under the reduced 

retail dataset should be adjusted to 0.52% (0.81%×320/498) when compared with 

the average precision of 1.33% for 498 target consumers under the unreduced 

dataset. The general upward pattern for lines in Figures 2 and 3 visually 
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demonstrates this finding. There were only 4 exceptions in the total of 105 data-

algorithm-measure configurations after the effect of the number of target 

consumers is adjusted: the recall and rank score measures of the Top-N algorithm 

under the reduced book dataset are slightly higher than their counterparts under 

the unreduced book dataset; the recall and rank score of the generative model 

algorithm under the reduced book dataset are slightly higher than its counterpart 

under the unreduced book dataset.  

• The link analysis algorithm generally achieved the best performance across all 

configurations except for the movie dataset. Table 2 shows that the link analysis 

algorithm achieved the highest average ranks for the precision, recall, F, and rank 

score measures (1.67, 2.17, 1.83, and 2). The spreading activation algorithms 

achieved the second highest average ranks (3.67, 3.33, 3.67, and 3). The average 

ranks for all other algorithms were between 4 and 6. The good performance of 

both the link analysis and spreading activation algorithms seems to indicate that 

additional valuable information (such as transitive associations) in sales 

transactions can be effectively exploited by graph-based algorithms. The link 

analysis algorithm’s dominance over other algorithms was most evident with the 

unreduced retail datasets. It achieved about 150% higher precision, recall, and F 

measures and a more than 350% higher rank score than the Top-N algorithm.  

• The AUC measure generally reveals different comparison results from the other 

four measures. The generative model algorithm achieved the best AUC measures 

for the reduced retail dataset and the book datasets. The link analysis algorithm 

achieved best AUC measures for the unreduced retail datasets. The item-based 

algorithm achieved the best AUC measures for the movie datasets. The generative 

model algorithm achieved the best average rank of 2.33. The ROC curves provide 

a complete characterization of the algorithm performance for all possible numbers 

of recommendation increases. However, the AUC measure only provides an 

overall summary of an algorithm’s performance, which does not necessarily 

correspond to its performance in practical recommendation settings. For example, 

the consumers are typically much more interested in the quality of the top 10 

recommendations and the performance of the algorithm at the 100th to 1000th 
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recommendations is practically irrelevant. Take the ROC curves for the 

unreduced retail dataset in Figure 3 as an example. The ROC curves for the link 

analysis algorithm and the generative model algorithm showed comparable 

performance, which correspond to the similar AUC measure in Table 2 (0.5852 

and 0.5663, respectively). However, a more meaningful comparison is the fact 

that the ROC curve of the link analysis algorithm was much steeper than that of 

the generative model algorithm at the beginning, which corresponds to the 

significantly higher precision and recall measures than those obtained by the 

generative model algorithm (0.0133 and 0.0891 as compared to 0.0066 and 

0.0356, respectively).  

• Most other algorithms showed mixed performances under different datasets. The 

item-based algorithm performed exceptionally well for the movie datasets, but 

had relatively lower quality with the retail datasets and the worst performance 

with the book dataset. The good performance of the item-based algorithm with the 

movie dataset may be associated with the datasets’ much higher transaction 

density levels (1.75%) and average sales per product (17.50) than other datasets. 

The dimensionality reduction algorithm consistently achieved a mediocre 

performance across all configurations and the user-based algorithm was almost 

always dominated by other algorithms. The generative model algorithm always 

achieved comparable but better performance than the Top-N most popular 

algorithm, with relatively good performance with the book datasets and the 

reduced retail dataset but the worst performance with the movie datasets and the 

unreduced retail dataset. 

• An interesting observation from our experimental results is that the Top-N 

algorithm was not necessarily a low-performing algorithm for many 

configurations despite its simplicity. This is especially the case for the book 

dataset. On the other hand, a closer examination of the actual recommendations 

made by various algorithms showed that a large portion of the collaborative 

filtering recommendations were different from those given by the Top-N 

algorithm. Collaborative filtering-based recommendations therefore still provide 



 21

value to consumers, complementing simple popularity-based recommendations 

such as those made by the Top-N algorithm. 
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Figure 4.  Computational efficiency analysis 

 
We now report the empirical computational efficiency of these recommendation 

algorithms under study using the unreduced retail dataset as the testbed. Figure 4 

summaries total computing times of all algorithms. (All algorithms were implemented in 

Python, a common scripting language (www.python.org), for fast prototyping. We expect 

that a 10-50 speed-up factor can be achieved when using a more efficient implementation 

environment such as the C programming language.) The dimensionality reduction 

algorithm required the longest running time. This was because after reduction the 

interaction matrix becomes dense and pair-wise consumer similarity computation 

required significant CPU cycles. The Item-based algorithm was slow due to the large 

number of products (relative to the number of consumers) in the dataset. Both the 

spreading activation and link analysis algorithms required only a small number of 

iterations to achieve satisfactory recommendation quality, thus requiring modest 

computing times (less than that required of the item-based algorithm). The spreading 

activation algorithm was especially fast because it computes recommendations for target 

consumers only as opposed to computing recommendations for all consumers in a batch 

mode. The generative model in general is very efficient mainly because (a) a small 

number of hidden classes are required for quality recommendations and (b) the maximum 

likelihood estimation procedure converges very fast.  



 22

5. Conclusion and Future Research 

A unique contribution of the reported study is a comprehensive evaluation of a wide 

range of collaborative filtering algorithms using transactional e-commerce datasets. 

Although our link analysis-based algorithm introduced in this article achieved the best 

overall performances, no single algorithm was observed to dominate other algorithms 

across all experimental configurations.  

From a practical standpoint, our study points to the need of developing a meta-level 

guideline that “recommends” an appropriate recommendation algorithm based on the 

characteristics of the available data in specific application settings. Based on our 

experimental findings, although the overall sparsity level and the row/column density of 

the consumer-product interaction matrix have some clear influence over the relative 

performance of selected algorithms, such data characteristics are far from complete and 

lack predictive power as a foundation for the discussed meta-level guideline. Additional 

prescriptive descriptors of the interaction data clearly need to be developed. We expect 

that these descriptors should include measures from graph/network topological modeling 

literature, such as node degree distribution, average path length, and cluster coefficient. 

Our ongoing research is exploring the customized versions of these descriptors for 

recommendation analysis and using them to guide further comparative evaluations of 

various recommendation algorithms.  
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