Functions from a Set to a Set

Czesław Byliński Warsaw University Białystok

Summary. The article is a continuation of [1]. We define the following concepts: a function from a set X into a set Y, denoted by "Function of X,Y", the set of all functions from a set X into a set Y, denoted by Funcs(X,Y), and the permutation of a set (mode Permutation of X, where X is a set). Theorems and schemes included in the article are reformulations of the theorems of [1] in the new terminology. Also some basic facts about functions of two variables are proved.

MML Identifier: FUNCT 2.

WWW: http://mizar.org/JFM/Vol1/funct_2.html

The articles [4], [3], [5], [6], [7], [1], and [2] provide the notation and terminology for this paper.

1. Functions from a set to a set

In this paper P, Q, X, Y, Z, x, x_1 , x_2 , y, z are sets.

Let us consider *X*, *Y* and let *R* be a relation between *X* and *Y*. We say that *R* is quasi total if and only if:

(Def. 1)(i) $X = \text{dom } R \text{ if if } Y = \emptyset, \text{ then } X = \emptyset,$

(ii) $R = \emptyset$, otherwise.

Let us consider X, Y. Observe that there exists a relation between X and Y which is quasi total and function-like.

Let us consider X, Y. One can verify that every partial function from X to Y which is total is also quasi total.

Let us consider X, Y. A function from X into Y is a quasi total function-like relation between X and Y.

We now state several propositions:

- $(3)^1$ Every function f is a function from dom f into rng f.
- (4) For every function f such that rng $f \subseteq Y$ holds f is a function from dom f into Y.
- (5) For every function f such that dom f = X and for every x such that $x \in X$ holds $f(x) \in Y$ holds f is a function from X into Y.
- (6) For every function f from X into Y such that $Y \neq \emptyset$ and $x \in X$ holds $f(x) \in \operatorname{rng} f$.
- (7) For every function f from X into Y such that $Y \neq \emptyset$ and $x \in X$ holds $f(x) \in Y$.

¹ The propositions (1) and (2) have been removed.

- (8) For every function f from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ and rng $f \subseteq Z$ holds f is a function from X into Z.
- (9) For every function f from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ and $Y \subseteq Z$ holds f is a function from X into Z.

In this article we present several logical schemes. The scheme FuncEx1 deals with sets \mathcal{A} , \mathcal{B} and a binary predicate \mathcal{P} , and states that:

There exists a function f from \mathcal{A} into \mathcal{B} such that for every x such that $x \in \mathcal{A}$ holds $\mathcal{P}[x, f(x)]$

provided the following condition is met:

• For every x such that $x \in \mathcal{A}$ there exists y such that $y \in \mathcal{B}$ and $\mathcal{P}[x, y]$.

The scheme Lambda1 deals with sets \mathcal{A} , \mathcal{B} and a unary functor \mathcal{F} yielding a set, and states that: There exists a function f from \mathcal{A} into \mathcal{B} such that for every x such that $x \in \mathcal{A}$ holds $f(x) = \mathcal{F}(x)$

provided the following condition is met:

• For every x such that $x \in \mathcal{A}$ holds $\mathcal{F}(x) \in \mathcal{B}$.

Let us consider X, Y. The functor Y^X yielding a set is defined as follows:

(Def. 2) $x \in Y^X$ iff there exists a function f such that x = f and dom f = X and rng $f \subseteq Y$.

We now state two propositions:

- (11)² For every function f from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ holds $f \in Y^X$.
- (12) For every function f from X into X holds $f \in X^X$.

Let X be a set and let Y be a non empty set. One can verify that Y^X is non empty.

Let X be a set. Note that X^X is non empty.

The following propositions are true:

- $(14)^3$ If $X \neq \emptyset$, then $\emptyset^X = \emptyset$.
- (16)⁴ Let f be a function from X into Y. Suppose $Y \neq \emptyset$ and for every y such that $y \in Y$ there exists x such that $x \in X$ and y = f(x). Then $\operatorname{rng} f = Y$.
- (17) For every function f from X into Y such that $y \in Y$ and rng f = Y there exists x such that $x \in X$ and f(x) = y.
- (18) For all functions f_1 , f_2 from X into Y such that for every x such that $x \in X$ holds $f_1(x) = f_2(x)$ holds $f_1 = f_2$.
- (19) Let f be a function from X into Y and g be a function from Y into Z such that if $Y = \emptyset$, then $Z = \emptyset$ or $X = \emptyset$. Then $g \cdot f$ is a function from X into Z.
- (20) Let f be a function from X into Y and g be a function from Y into Z. If $Y \neq \emptyset$ and $Z \neq \emptyset$ and rng f = Y and rng g = Z, then rng $(g \cdot f) = Z$.
- (21) For every function f from X into Y and for every function g such that $Y \neq \emptyset$ and $x \in X$ holds $(g \cdot f)(x) = g(f(x))$.
- (22) Let f be a function from X into Y. Suppose $Y \neq \emptyset$. Then $\operatorname{rng} f = Y$ if and only if for every Z such that $Z \neq \emptyset$ and for all functions g, h from Y into Z such that $g \cdot f = h \cdot f$ holds g = h.
- (23) For every function f from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ holds $f \cdot id_X = f$ and $id_Y \cdot f = f$.

² The proposition (10) has been removed.

³ The proposition (13) has been removed.

⁴ The proposition (15) has been removed.

- (24) For every function f from X into Y and for every function g from Y into X such that $f \cdot g = id_Y$ holds rng f = Y.
- (25) Let f be a function from X into Y such that if $Y = \emptyset$, then $X = \emptyset$. Then f is one-to-one if and only if for all x_1, x_2 such that $x_1 \in X$ and $x_2 \in X$ and $x_1 = f(x_2)$ holds $x_1 = x_2$.
- (26) Let f be a function from X into Y and g be a function from Y into Z. Suppose if $Z = \emptyset$, then $Y = \emptyset$ and if $Y = \emptyset$, then $X = \emptyset$ and $g \cdot f$ is one-to-one. Then f is one-to-one.
- (27) Let f be a function from X into Y. Suppose $X \neq \emptyset$ and $Y \neq \emptyset$. Then f is one-to-one if and only if for every Z and for all functions g, h from Z into X such that $f \cdot g = f \cdot h$ holds g = h.
- (28) Let f be a function from X into Y and g be a function from Y into Z. If $Z \neq \emptyset$ and $\operatorname{rng}(g \cdot f) = Z$ and g is one-to-one, then $\operatorname{rng} f = Y$.
- (29) Let f be a function from X into Y and g be a function from Y into X. If $Y \neq \emptyset$ and $g \cdot f = \mathrm{id}_X$, then f is one-to-one and rng g = X.
- (30) Let f be a function from X into Y and g be a function from Y into Z. Suppose if $Z = \emptyset$, then $Y = \emptyset$ and $g \cdot f$ is one-to-one and rng f = Y. Then f is one-to-one and g is one-to-one.
- (31) For every function f from X into Y such that f is one-to-one and rng f = Y holds f^{-1} is a function from Y into X.
- (32) For every function f from X into Y such that $Y \neq \emptyset$ and f is one-to-one and $x \in X$ holds $f^{-1}(f(x)) = x$.
- (34)⁵ Let f be a function from X into Y and g be a function from Y into X. Suppose $X \neq \emptyset$ and $Y \neq \emptyset$ and rng f = Y and f is one-to-one and for all y, x holds $y \in Y$ and g(y) = x iff $x \in X$ and f(x) = y. Then $g = f^{-1}$.
- (35) For every function f from X into Y such that $Y \neq \emptyset$ and rng f = Y and f is one-to-one holds $f^{-1} \cdot f = \mathrm{id}_X$ and $f \cdot f^{-1} = \mathrm{id}_Y$.
- (36) Let f be a function from X into Y and g be a function from Y into X. If $X \neq \emptyset$ and $Y \neq \emptyset$ and rng f = Y and $g \cdot f = \mathrm{id}_X$ and f is one-to-one, then $g = f^{-1}$.
- (37) Let f be a function from X into Y. Suppose $Y \neq \emptyset$ and there exists a function g from Y into X such that $g \cdot f = \mathrm{id}_X$. Then f is one-to-one.
- (38) For every function f from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ and $Z \subseteq X$ holds $f \upharpoonright Z$ is a function from Z into Y.
- (40)⁶ For every function f from X into Y such that $X \subseteq Z$ holds $f \mid Z = f$.
- (41) For every function f from X into Y such that $Y \neq \emptyset$ and $x \in X$ and $f(x) \in Z$ holds $(Z \upharpoonright f)(x) = f(x)$.
- (43)⁷ Let f be a function from X into Y. Suppose $Y \neq \emptyset$. Let given y. If there exists x such that $x \in X$ and $x \in P$ and y = f(x), then $y \in f^{\circ}P$.
- (44) For every function f from X into Y holds $f^{\circ}P \subseteq Y$.

Let us consider X, Y, let f be a function from X into Y, and let us consider P. Then $f \circ P$ is a subset of Y.

Next we state three propositions:

(45) For every function f from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ holds $f^{\circ}X = \operatorname{rng} f$.

⁵ The proposition (33) has been removed.

⁶ The proposition (39) has been removed.

⁷ The proposition (42) has been removed.

- (46) For every function f from X into Y such that $Y \neq \emptyset$ and for every x holds $x \in f^{-1}(Q)$ iff $x \in X$ and $f(x) \in Q$.
- (47) For every partial function f from X to Y holds $f^{-1}(Q) \subseteq X$.

Let us consider X, Y, let f be a partial function from X to Y, and let us consider Q. Then $f^{-1}(Q)$ is a subset of X.

The following propositions are true:

- (48) For every function f from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ holds $f^{-1}(Y) = X$.
- (49) For every function f from X into Y holds for every y such that $y \in Y$ holds $f^{-1}(\{y\}) \neq \emptyset$ iff rng f = Y.
- (50) For every function f from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ and $P \subseteq X$ holds $P \subseteq f^{-1}(f^{\circ}P)$.
- (51) For every function f from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ holds $f^{-1}(f^{\circ}X) = X$.
- (53)⁸ Let f be a function from X into Y and g be a function from Y into Z. If if $Z = \emptyset$, then $Y = \emptyset$ and if $Y = \emptyset$, then $X = \emptyset$, then $f^{-1}(Q) \subseteq (g \cdot f)^{-1}(g^{\circ}Q)$.
- (55) For every function f such that dom $f = \emptyset$ holds f is a function from \emptyset into Y.
- (59)¹⁰ For every function f from \emptyset into Y holds $f^{\circ}P = \emptyset$.
- (60) For every function f from \emptyset into Y holds $f^{-1}(Q) = \emptyset$.
- (61) For every function f from $\{x\}$ into Y such that $Y \neq \emptyset$ holds $f(x) \in Y$.
- (62) For every function f from $\{x\}$ into Y such that $Y \neq \emptyset$ holds rng $f = \{f(x)\}$.
- (64)¹¹ For every function f from $\{x\}$ into Y such that $Y \neq \emptyset$ holds $f^{\circ}P \subseteq \{f(x)\}$.
- (65) For every function f from X into $\{y\}$ such that $x \in X$ holds f(x) = y.
- (66) For all functions f_1 , f_2 from X into $\{y\}$ holds $f_1 = f_2$.

Let us consider X and let f, g be functions from X into X. Then $g \cdot f$ is a function from X into X.

One can prove the following propositions:

- (67) For every function f from X into X holds dom f = X and rng $f \subseteq X$.
- (70)¹² For every function f from X into X and for every function g such that $x \in X$ holds $(g \cdot f)(x) = g(f(x))$.
- $(73)^{13}$ For all functions f, g from X into X such that rng f = X and rng g = X holds rng $(g \cdot f) = X$.
- (74) For every function f from X into X holds $f \cdot id_X = f$ and $id_X \cdot f = f$.
- (75) For all functions f, g from X into X such that $g \cdot f = f$ and $\operatorname{rng} f = X$ holds $g = \operatorname{id}_X$.
- (76) For all functions f, g from X into X such that $f \cdot g = f$ and f is one-to-one holds $g = id_X$.
- (77) Let f be a function from X into X. Then f is one-to-one if and only if for all x_1, x_2 such that $x_1 \in X$ and $x_2 \in X$ and $f(x_1) = f(x_2)$ holds $x_1 = x_2$.

⁸ The proposition (52) has been removed.

⁹ The proposition (54) has been removed.

¹⁰ The propositions (56)–(58) have been removed.

The proposition (63) has been removed.

¹² The propositions (68) and (69) have been removed.

¹³ The propositions (71) and (72) have been removed.

- (79)¹⁴ For every function f from X into X holds $f^{\circ}X = \operatorname{rng} f$.
- (82)¹⁵ For every function f from X into X holds $f^{-1}(f^{\circ}X) = X$.

Let X, Y be sets and let f be a function from X into Y. We say that f is onto if and only if:

(Def. 3) $\operatorname{rng} f = Y$.

Let us consider X, Y and let f be a function from X into Y. We say that f is bijective if and only if:

(Def. 4) f is one-to-one and onto.

Let X, Y be sets. Observe that every function from X into Y which is bijective is also one-to-one and onto and every function from X into Y which is one-to-one and onto is also bijective.

Let us consider X. One can check that there exists a function from X into X which is bijective.

Let us consider X. A permutation of X is a bijective function from X into X.

We now state two propositions:

- (83) For every function f from X into X such that f is one-to-one and rng f = X holds f is a permutation of X.
- (85)¹⁶ Let f be a function from X into X. Suppose f is one-to-one. Let given x_1, x_2 . If $x_1 \in X$ and $x_2 \in X$ and $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Let us consider X and let f, g be permutations of X. Then $g \cdot f$ is a permutation of X.

Let us consider *X*. Observe that every function from *X* into *X* which is reflexive and total is also bijective.

Let us consider X and let f be a permutation of X. Then f^{-1} is a permutation of X. Next we state four propositions:

- (86) For all permutations f, g of X such that $g \cdot f = g$ holds $f = id_X$.
- (87) For all permutations f, g of X such that $g \cdot f = \mathrm{id}_X$ holds $g = f^{-1}$.
- (88) For every permutation f of X holds $f^{-1} \cdot f = \mathrm{id}_X$ and $f \cdot f^{-1} = \mathrm{id}_X$.
- $(92)^{17}$ For every permutation f of X such that $P \subseteq X$ holds $f^{\circ}f^{-1}(P) = P$ and $f^{-1}(f^{\circ}P) = P$.

In the sequel C, D, E denote non empty sets.

Let us consider X, D. Note that every partial function from X to D which is quasi total is also total.

Let us consider X, D, Z, let f be a function from X into D, and let g be a function from D into Z. Then $g \cdot f$ is a function from X into Z.

In the sequel c denotes an element of C and d denotes an element of D.

Let C be a non empty set, let D be a set, let f be a function from C into D, and let f be an element of f. Then f (f) is an element of f.

Now we present two schemes. The scheme FuncExD deals with non empty sets \mathcal{A} , \mathcal{B} and a binary predicate \mathcal{P} , and states that:

There exists a function f from \mathcal{A} into \mathcal{B} such that for every element x of \mathcal{A} holds $\mathcal{P}[x, f(x)]$

provided the following condition is met:

• For every element x of \mathcal{A} there exists an element y of \mathcal{B} such that $\mathcal{P}[x,y]$.

The scheme LambdaD deals with non empty sets \mathcal{A} , \mathcal{B} and a unary functor \mathcal{F} yielding an element of \mathcal{B} , and states that:

There exists a function f from \mathcal{A} into \mathcal{B} such that for every element x of \mathcal{A} holds $f(x) = \mathcal{F}(x)$

for all values of the parameters.

We now state several propositions:

¹⁴ The proposition (78) has been removed.

¹⁵ The propositions (80) and (81) have been removed.

¹⁶ The proposition (84) has been removed.

¹⁷ The propositions (89)–(91) have been removed.

- (113)¹⁸ For all functions f_1 , f_2 from X into Y such that for every element x of X holds $f_1(x) = f_2(x)$ holds $f_1 = f_2$.
- (115)¹⁹ Let P be a set, f be a function from X into Y, and given y. If $y \in f^{\circ}P$, then there exists x such that $x \in X$ and $x \in P$ and y = f(x).
- (116) For every function f from X into Y and for every y such that $y \in f^{\circ}P$ there exists an element c of X such that $c \in P$ and y = f(c).
- (118)²⁰ For all functions f_1 , f_2 from [:X, Y:] into Z such that for all x, y such that $x \in X$ and $y \in Y$ holds $f_1(\langle x, y \rangle) = f_2(\langle x, y \rangle)$ holds $f_1 = f_2$.
- (119) For every function f from [:X,Y:] into Z such that $x \in X$ and $y \in Y$ and $Z \neq \emptyset$ holds $f(\langle x, y \rangle) \in Z$.

Now we present two schemes. The scheme FuncEx2 deals with sets \mathcal{A} , \mathcal{B} , \mathcal{C} and a ternary predicate \mathcal{P} , and states that:

There exists a function f from $[:\mathcal{A},\mathcal{B}:]$ into \mathcal{C} such that for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds $\mathcal{P}[x,y,f(\langle x,y \rangle)]$

provided the parameters satisfy the following condition:

• For all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ there exists z such that $z \in \mathcal{C}$ and $\mathcal{P}[x, y, z]$.

The scheme Lambda2 deals with sets \mathcal{A} , \mathcal{B} , \mathcal{C} and a binary functor \mathcal{F} yielding a set, and states that:

There exists a function f from $[:\mathcal{A},\mathcal{B}:]$ into \mathcal{C} such that for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds $f(\langle x,y \rangle) = \mathcal{F}(x,y)$

provided the following condition is met:

• For all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds $\mathcal{F}(x,y) \in \mathcal{C}$.

The following proposition is true

(120) For all functions f_1 , f_2 from [:C, D:] into E such that for all c, d holds $f_1(\langle c, d \rangle) = f_2(\langle c, d \rangle)$ holds $f_1 = f_2$.

Now we present two schemes. The scheme FuncEx2D deals with non empty sets \mathcal{A} , \mathcal{B} , \mathcal{C} and a ternary predicate \mathcal{P} , and states that:

There exists a function f from $[:\mathcal{A}, \mathcal{B}:]$ into \mathcal{C} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} holds $\mathcal{P}[x, y, f(\langle x, y \rangle)]$

provided the parameters meet the following requirement:

• For every element x of \mathcal{A} and for every element y of \mathcal{B} there exists an element z of \mathcal{C} such that $\mathcal{P}[x,y,z]$.

The scheme Lambda2D deals with non empty sets \mathcal{A} , \mathcal{B} , \mathcal{C} and a binary functor \mathcal{F} yielding an element of \mathcal{C} , and states that:

There exists a function f from $[:\mathcal{A},\mathcal{B}:]$ into \mathcal{C} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} holds $f(\langle x,y\rangle)=\mathcal{F}(x,y)$

for all values of the parameters.

2. Partial functions from a set to a set (from [2])

Next we state the proposition

(121) For every set f such that $f \in Y^X$ holds f is a function from X into Y.

The scheme LambdalC deals with sets \mathcal{A} , \mathcal{B} , a unary functor \mathcal{F} yielding a set, a unary functor \mathcal{G} yielding a set, and a unary predicate \mathcal{P} , and states that:

There exists a function f from \mathcal{A} into \mathcal{B} such that for every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then $f(x) = \mathcal{F}(x)$ and if not $\mathcal{P}[x]$, then $f(x) = \mathcal{G}(x)$

¹⁸ The propositions (93)–(112) have been removed.

¹⁹ The proposition (114) has been removed.

²⁰ The proposition (117) has been removed.

provided the following requirement is met:

• For every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then $\mathcal{F}(x) \in \mathcal{B}$ and if not $\mathcal{P}[x]$, then $\mathcal{G}(x) \in \mathcal{B}$.

We now state a number of propositions:

- (130)²¹ For every partial function f from X to Y such that dom f = X holds f is a function from X into Y.
- (131) For every partial function *f* from *X* to *Y* such that *f* is total holds *f* is a function from *X* into *Y*.
- (132) Let f be a partial function from X to Y. Suppose if $Y = \emptyset$, then $X = \emptyset$ and f is a function from X into Y. Then f is total.
- (133) For every function f from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ holds $f_{|X \to Y|}$ is total.
- (134) For every function f from X into X holds $f_{\uparrow X \to X}$ is total.
- (136)²² Let f be a partial function from X to Y such that if $Y = \emptyset$, then $X = \emptyset$. Then there exists a function g from X into Y such that for every x such that $x \in \text{dom } f$ holds g(x) = f(x).
- $(141)^{23}$ $Y^X \subseteq X \rightarrow Y$.
- (142) For all functions f, g from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ and $f \approx g$ holds f = g.
- (143) For all functions f, g from X into X such that $f \approx g$ holds f = g.
- (145)²⁴ Let f be a partial function from X to Y and g be a function from X into Y such that if $Y = \emptyset$, then $X = \emptyset$. Then $f \approx g$ if and only if for every x such that $x \in \text{dom } f$ holds f(x) = g(x).
- (146) Let f be a partial function from X to X and g be a function from X into X. Then $f \approx g$ if and only if for every x such that $x \in \text{dom } f$ holds f(x) = g(x).
- (148)²⁵ For every partial function f from X to Y such that if $Y = \emptyset$, then $X = \emptyset$ there exists a function g from X into Y such that $f \approx g$.
- (149) For every partial function f from X to X there exists a function g from X into X such that $f \approx g$.
- (151)²⁶ Let f, g be partial functions from X to Y and h be a function from X into Y. If if $Y = \emptyset$, then $X = \emptyset$ and $f \approx h$ and $g \approx h$, then $f \approx g$.
- (152) Let f, g be partial functions from X to X and h be a function from X into X. If $f \approx h$ and $g \approx h$, then $f \approx g$.
- (154)²⁷ Let f, g be partial functions from X to Y. Suppose if $Y = \emptyset$, then $X = \emptyset$ and $f \approx g$. Then there exists a function h from X into Y such that $f \approx h$ and $g \approx h$.
- (155) Let f be a partial function from X to Y and g be a function from X into Y. If if $Y = \emptyset$, then $X = \emptyset$ and $f \approx g$, then $g \in \text{TotFuncs } f$.
- (156) For every partial function f from X to X and for every function g from X into X such that $f \approx g$ holds $g \in \text{TotFuncs } f$.
- $(158)^{28}$ Let f be a partial function from X to Y and g be a set. If $g \in \text{TotFuncs } f$, then g is a function from X into Y.

²¹ The propositions (122)–(129) have been removed.

²² The proposition (135) has been removed.

²³ The propositions (137)–(140) have been removed.

²⁴ The proposition (144) has been removed.

²⁵ The proposition (147) has been removed.

²⁶ The proposition (150) has been removed.

²⁷ The proposition (153) has been removed.

²⁸ The proposition (157) has been removed.

- (159) For every partial function f from X to Y holds TotFuncs $f \subseteq Y^X$.
- (160) TotFuncs($\emptyset_{\uparrow X \to Y}$) = Y^X .
- (161) For every function f from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ holds TotFuncs $(f_{\uparrow X \to Y}) = \{f\}$.
- (162) For every function f from X into X holds TotFuncs $(f_{\uparrow X \to X}) = \{f\}$.
- (164)²⁹ For every partial function f from X to $\{y\}$ and for every function g from X into $\{y\}$ holds TotFuncs $f = \{g\}$.
- (165) For all partial functions f, g from X to Y such that $g \subseteq f$ holds TotFuncs $f \subseteq$ TotFuncs g.
- (166) For all partial functions f, g from X to Y such that $dom g \subseteq dom f$ and $TotFuncs f \subseteq TotFuncs <math>g$ holds $g \subseteq f$.
- (167) For all partial functions f, g from X to Y such that TotFuncs $f \subseteq$ TotFuncs g and for every g holds $g \subseteq f$.
- (168) For all partial functions f, g from X to Y such that for every y holds $Y \neq \{y\}$ and TotFuncs f = TotFuncs g holds f = g.
 - Let *A*, *B* be non empty sets. Note that every function from *A* into *B* is non empty.

REFERENCES

- [1] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [2] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_1.html.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [5] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [6] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.
- [7] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset_

Received April 6, 1989

Published January 2, 2004

²⁹ The proposition (163) has been removed.