
364 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 11, NO. 4, JULY 2007

A Field Theoretical Approach to Medical Natural
Language Processing

Ricky K. Taira, Vijayaraghavan Bashyam, and Hooshang Kangarloo

Abstract—A parser for medical free text reports has been devel-
oped that is based on a chemistry/physics inspired “field theory” for
word–word sentence-level dependencies. The transition from the
linguistic world to the world of interacting particles with potential
energies is guided by a psycholinguistics thought experiment re-
lated to the amount of “work” required to bring a reference word
into an anchored configuration of words. Calibration experiments
involving four and five grams were conducted. Data from these
experiments were used as a knowledge source for estimating field
conditions for words in sentences sampled from a corpus of medical
reports. The result of the parser is a dependency tree that repre-
sents the global minimum energy state of the system of words for
a given sentence. The system was trained and tested on a corpus of
radiology reports. Preliminary performance, as quantified by link
recall and precision statistics, is 84.9% and 89.9%, respectively.

Index Terms—Knowledge representation, natural language pro-
cessing (NLP), structured medical reporting.

I. INTRODUCTION

THE GOAL of the medical natural language processing
(NLP) is to transform the information content contained

within a free text report (e.g., radiology) into a representation
that is computer understandable. The representation is typically
a first-order logic representation (without quantification) such
as a conceptual graph or logic-based frames [1], [2]. Several
medical NLP systems have been developed for a variety of
high-end applications including automatic coding of patient re-
ports [3], [4], extraction of findings documented in diagnostic
reports [5]–[8], automatic flagging of alarm conditions [9], iden-
tification of patients with particular conditions [10], and analysis
of co-occurrence relations among radiological findings [11].

Syntactic parsing is a subtask of NLP and generally agreed to
be an important intermediate step toward the goal of a deep un-
derstanding of free text. Our “parser” combines the traditionally
separate stages of syntactic parsing and semantic interpretation
into a single unifying step, as discussed later. The input to the
parser/semantic interpreter (henceforth, referred to as the parser)
is word tokens from a single sentence tagged with basic part-
of-speech and semantic class labels. Currently, there exist about
450 semantic tags and 12 part-of-speech categories within our
lexicon [12], [13]. Table I shows an example input to the parser
from this lexical analysis step. The output of the parser is a de-
pendency graph that emphasizes semantics (Fig. 1) [14]–[16].
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TABLE I
INPUT TO OUR PARSER IS THE RESULTS FROM A LEXICAL ANALYSIS STEP

THAT ASSIGNS PART-OF-SPEECH AND SEMANTIC TAGS TO EACH

WORD TOKEN WITHIN A SENTENCE

Briefly, a dependency graph [17], [18] describes the structure
of a sentence in terms of binary head-modifier (also called de-
pendency) relations. A dependency relation is an asymmetric
relation between a word called the head (also governor or par-
ent), and a word called the modifier (also dependent, daughter,
or child). A word in the sentence can play the role of the head in
several dependency relations (i.e., it can have several modifiers)
but each word can play the role of the modifier exactly once.
One special word, named the root, does not play the role of the
modifier in any relation. For consistency, we will use the con-
vention that the root is linked to the end of the sentence marker,
so that all the words in the sentence are used in a modifier role
(i.e., form an attachment). The set of dependency relations that
can be defined on a sentence form a tree, which is called the
dependency tree.

The remainder of this paper is organized as follows.
Section II briefly provides a background on the related work
in the area of NLP, focusing on both medical and general ap-
proaches. Section III enumerates desiderata for an ideal medical
NLP system. Section IV provides an introduction to our field the-
ory paradigm, followed by a discussion of a set of experiments
performed to explore the field patterns within a training corpus
of reports (Section V). Section VI describes the implementation
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Fig. 1. Example of a word–word dependency diagram for the sentence tokenized in Table I. Individual link probabilities are not shown. eos: end of sentence.

of the parser execution using the empirically derived interaction
tables. A preliminary evaluation of the parser performance, as
summarized by recall and precision statistics within the domain
of the radiology reports, is presented in Section VII. Finally,
Section VIII concludes with a discussion of significant contri-
butions of this work and future directions for this project.

II. BACKGROUND AND RELATED WORK

Research in the cognitive sciences have demonstrated that
language processing is extremely complex, involving a large
number of fundamental intercommunicating processing cen-
ters (neurons) [19]. At one level, a cluster of neurons (memory
structures) is activated by the individual words. These cluster
centers induce perceptions of a number of possible concepts
of direct and/or indirect correlation to the input word. Com-
binations of words quickly allow the mind to localize specific
interpretations/contexts from which past referential experiences
are loaded into the fore-memory.

Words, then, are central to the processing of language and
serve as the fundamental processing units of our system. This
design around word processors is consistent with the beliefs of
other NLP investigators [20]–[22]. Small and Rieger treat each
word of language as a complex procedural knowledge source
that contains decision pathways reflecting the range of linguis-
tic and other world knowledge about the word necessary to
understand the word in a broad variety of contexts [21]. Their
model’s structure rests on the hypotheses that: 1) human knowl-
edge about language is organized primarily as knowledge about
words rather than as knowledge about rules and 2) language un-
derstanding is largely the coordination of information exchange
among word experts as each examines its own involvement in
its linguistic and conceptual environment. Rather than the rule
application or grammatical pattern matching, the essence of the
NLP is, therefore, one of mediating the passing of linguistic sig-
nals and concept fragments among the word experts as each goes
about its own comprehension activities. They develop a theory
around control (processing) regularities rather than around data
regularities.

Language structure is observed to have a number of character-
istics that can give clues as to how we can synthesize or analyze
such configurations. For example, language consists of a set of
reusable units that can combine hierarchically and recursively.
Thus, context-free grammars using pushdown automata [23],
[24] and probabilistic generative variants [25]–[27] have been

the mainstream approach to language processing. Additionally,
the formation rules of higher order constituents in language is
strongly correlated to what the constituent means (i.e., function).
Thus, semantically driven grammars that utilize hybrid bottom-
up and top-down knowledge have emerged recently [28]. These
semantically driven grammars may be especially appropriate for
medical NLP systems, where the domain is limited and the types
of communications are relatively confined. In fact, although the
medical NLP systems have traditionally lacked the robust lower
level statistical language models of the general NLP commu-
nity, high-performance medical applications have been realized
mostly as a result of a more comprehensive view of the final se-
mantic representation structures for both concepts (e.g., UMLS,
SNoMED-CT), and specific entity–relation–attribute models,
e.g., radiology findings [1], [29], caBIG and CDE frames for
cancer,1 neuro-informatics (GENIE [30], BIRN [31]), and nurs-
ing informatics [2]. The Semantic Knowledge Representation
project initiated by the National Library of Medicine is targeted
for the biomedical free text.

Research in the area of complex systems science may be par-
ticularly relevant to language processing given the commonal-
ity of the hierarchical complexity of structures (words, phrases,
thoughts, topics, etc.). Emergent-related approaches are being
developed in various application areas that incorporate both
bottom-up and top-down features. The trend toward such global
optimization approaches is motivated by the possibility to create
robust and adaptive solutions that may be important in medical
NLP applications requiring both high recall and precision.

III. DESIDERATA

Our desiderata for robust medical NLP systems are as follows:
1) Adaptability to New Domains: Efforts to adapt state-of-

the-art statistical parsers [32], [33] to medical corpora
have mainly consisted of the incorporation of the medi-
cal lexicons (i.e., word-level knowledge) [34], [35]. These
initial efforts to adapt general NLP engines to medical
documents have resulted in good lexical coverage, yet,
they have ignored the modification of grammar models.
Grammatical styles and communicative goals in medicine
are quite distinct from, for example, newswire articles
from which these systems have been trained. Each sub-
specialty of medicine may have different language models

1National Cancer Institute’s Cancer Biomedical Informatics Grid (caBIG).
[Online]. Available: http://cabig.nci.nih.gov (last accessed Sep. 25, 2005).
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(in the statistical sense). The relative frequency of words,
the types of phrases used, and the grammatical constructs
used to express specific communicative goals are differ-
ent within targeted medical domains [36]. Methods to train
existing NLP engines for new domains by individuals who
are not the primary developers remain.

2) Robustness to Unseen Patterns and Noisy Underlying Ev-
idence: We desire a grammatical model that can intelli-
gently generalize decisions for which it has incomplete
and/or uncertain knowledge.

3) Guidance from Higher Order Knowledge: A large effort
in concept modeling is ongoing in medical informatics;
these symbolic models can help guide an NLP parser as to
linkages that are sanctioned and/or disallowed based on a
phenomenological view. For example, a solid tumor would
not have properties normally associated with a liquid (e.g.,
flow). These higher order constraints may assist in resolv-
ing ambiguities at the word (i.e., sense) or word–word
(syntactic parse) levels. Globally consistent solutions are,
thus, preferred over methods that utilize strict linear low-
to high-level processing pipelines. It should be noted that
a syntactic parse is an intermediate step within NLP.

4) Intuitive Features: A review of NLP feature descriptions
indicate how complex and voluminous the feature space
is for current state-of-the-art parsers [37]. The number
of the state–space patterns, depending upon the level of
detail (e.g., lexicalize context-free grammars, lexicalized
semantic-role context-free grammars, etc.) can lead to
hundreds of thousands of features incorporated into a sin-
gle statistical model [38]. Features that are intuitive rather
than clouded by technical jargon are desirable.

5) Mechanistic Model: Additionally, one can rarely visual-
ize the connection between features; causal or influen-
tial diagrams that provide some understanding of how the
available evidence propagates among variables would be
helpful in organizing our knowledge. Some fundamental
organizing concepts and principles of how words interact
and link would help promote a more mechanistic theory
for language.

IV. FIELD THEORY PARADIGM

A. Overview

Language processing is undoubtedly a complex signal-
processing operation. We attempt, therefore, to formulate our
theory in terms of this foundation. We start our signal processor
model with the premise that words within a sentence should be
viewed as active entities within an evolving environment, much
like a cell in a biological system or an electron or atom in a
quantum mechanical system. The nature of the word particles
and the forces of nature within this virtual world are the im-
portant fundamental problems that we need to investigate. We
use words as the central focus of abstraction for the system,
knowing that other representations are also possible (e.g., a set
of primitive semantic units).

We view parsing as a dynamics problem involving the “move-
ment” and “bonding” of the atomic (i.e., single words) and

Fig. 2. Initial configuration of words is along the diagonal within our lattice
representation. The final configuration corresponds to a minimum energy state,
which represents the parse tree of the sentence.

molecular (phrase/compound) units. It is useful to conceptualize
the movement of these word particles within a linguistic world.
First, let us consider the probabilistic boundaries of a word. The
boundaries for a reference word are defined by the range of sig-
nals it can receive from other words within the document. As a
first perspective, we limit the signal propagation of words to a
single sentence. That is, let us assume all words live in a world
in which there is no communication of information beyond its
sentence limits. This implies that the start and the end of a sen-
tence impose such boundary conditions on the signals radiating
from a word that such signals cannot escape the sentence. The
end points of the sentence represent infinite impedance to all the
signals emanating from within the sentence. If there is no com-
munication of information beyond the sentence boundaries, we
can say that the sentence is the “world” in which a word exists.
The sentence comprises an isolated system. Our “system” for a
word is the sentence.

Having defined the scope of our system, let us expand the
details of the environment (space) in which words exist. In tra-
ditional linguistics, the “attachment” of the words is diagramed
using a surface parse tree [39]. In our representation, we utilize
a two-dimensional orthogonal matrix to assist in describing the
state, word movement dynamics, and structure of our system of
words (see Fig. 2). If the sentence contains N words, we define
this matrix to be of dimensions (N + 2) × (N + 2). (As part of
our formalization, we add two special words to each sentence: 1)
sos, start-of-sentence word and 2) eos, end-of-sentence word.)
This matrix defines the field coordinates within our representa-
tion and will impose some physical constraints on the movement
of word particles.

The computing steps for our parser are as follows:
1) Initialize the system of words along the diagonal of the

matrix. This represents a state characterized by the absence
of forces and, hence, bonds between any of the constituent
words of the system. Certainly, the identity matrix is not
the “minimum energy,” stable state of our system, unless
there is absolutely no correlation (i.e., mutual information)
between the words.

2) We now bring each word out of isolation and allow word–
word interactions. In our representation, words may reside
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Fig. 3. The conceptualization of the potential energy of a reference word
(“large”) at the position of “mass” given a left and right context word is viewed
to be related to the amount of “work” one needs to bring a reference particle
(e.g., “large”) into a system of anchored words.

only along their respective rows. Their column position in-
dicates the head word it is interacting with (i.e., linking to).

3) A configuration for the system of words is proposed.
Note that there are an exponentially large number of such
configurations.

4) For a given configuration, we estimate each word’s energy
based on its local field conditions to be explained later; the
energy of the system of words is the sum of the individual
word energies.

5) We explore the configuration space either exhaustively for
short sentences or via a genetic algorithm to search for a
global minimum energy state for the sentence (sum of the
energies of the individual words). This minimum energy
configuration represents the final dependency tree for the
sentence.

B. Word–Word Interactions

The key to the field theory approach is the estimation of
the energy of a reference word wi with respect to its sentence
position x. Thus, we assume that some sort of hypothetical
linguistic force field F (x) exists. For example, we conceive
of a system in which words are attracted or repelled from one
another depending upon their affinities for one another. The
thought experiment that motivates our work is as follows: in
order to estimate the potential energy for a reference word wi

at position x (i.e., word i links to word x), we conceptualize
the notion of how much “work” U would be required to bring
the reference word (e.g., “large”) from infinity into an isolated
system of n other anchored words (see Fig. 3). We define the
energy of a particle at infinity to be zero

U(x) = −
∫ x

x0

F (x) dx + U(x0). (1)

The potential energy of the particle relates to its attachment
probability of the particle associated with the column position x;
the lower the potential energy U(x), the higher the probability
for the particle to occupy the position x. Our problem can now be
viewed as defining the energy of a traveling particle with respect

to its position along the sentence (i.e., as it attempts to move to an
off-diagonal position). The total sum system energy is what we
need to minimize. The final topology of the distribution of words
within the matrix, we claim, should reflect the configuration of
the best dependency parse tree for a given sentence. Note that the
definition of the potential energy is not confined to just words,
but can involve reference entities that are larger constituents.
This definition applies to all the involved particles (reference,
target, left context, and right context). We discretize this energy
into the following three categories (also see Fig. 4):

1) Ui(x) > 0: Energy is required to bring the reference word
wi at position x. This corresponds to a prototypical situ-
ation where there is a repulsion between two words (i.e.,
not semantically compatible).

2) Ui(x) = 0: No work is required to bring the reference
word wi at position x. This corresponds to a prototypical
situation where the target word wx is transparent (i.e.,
neutral) to the reference word wi.

3) Ui(x) < 0: There is an attraction between the reference
word wi and the target attachment word wx. This corre-
sponds to a situation where there is an affinity between
two words that indicates a more favorable configuration
for the reference word.

A word particle in motion within the sentence lattice can,
thus, be visualized as a ball rolling on a potential energy surface.
Equilibrium phrasal structures or other complex constituencies
correspond to the positions of the minima in the valleys on
such a potential energy surface [see Fig. 4(a)]. Fig. 4 shows a
conceptualized potential energy profile for the reference word
“large” under three different field conditions described previ-
ously. Either left-to-right or right-to-left attachments can be
modeled.

V. EXPERIMENTS

Our first task for assessing the viability of the field theory
approach was to investigate the reliability of the potential energy
wells [Fig. 4(a)] as a strong indicator for word–word attachment.
Since we do not fully understand the nature of our proposed
word–word interactions, we first compile a table recording their
behaviors performing what amounts to laboratory experiments.
We consider two types of attachment scenarios, Type I and
Type II, defined as follows:

� Type 1 Links are direct links, with a typical example being
an adjective–noun link.

� Type II Links are mediated links, with typical exam-
ples being a noun1–preposition–noun2 link and a noun1–
transitive verb–noun2 link.

A. Construction of Type I Interaction Tables

Let us first consider, practically, how we can estimate an
interaction probability for a given pair of words (A, B) given a
sentence S and a proposed parse configuration PT. In this initial
investigation, we seek to identify the features of Type I profiles
that we hypothesize strongly indicate an A to B attachment.
Specifically, a Type I forward-link profile is characterized by a
free unstable reference word A experiencing a potential hill to



368 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 11, NO. 4, JULY 2007

Fig. 4. Three basic energy landscapes. (a) Attraction. (b) Neutral. (c) Repulsion profiles for Type I links. Left and right context words provide improved
determination of these profiles.

its left (L), a potential well B to its right, and a potential hill (R)
to the right of B [see Fig. 4(a)]. We define the word stability to
be directly related to the potential energy of the reference word
at position x that is discretized into three energy states: negative
attractive potential present at position x, neutral free state, or
positive repulsive barrier potential. The most direct evidence
associated with a Type I link is hypothesized to consist of four
latent variables:

1) Is there a high potential barrier experienced by the refer-
ence word to the left?

2) Can the reference word A communicate with the target
word B?

3) Is the link A → B semantically plausible? Is there a po-
tential hill experienced by the reference word at a position
to the right of the target word?

4) Is there a potential hill experienced by the reference word
at a position to the right of the target word?

The observables in our model include the words of the sentence
and any links present in the proposed configuration.

In our first set of experiments, we attempt to characterize the
profiles using single words only (i.e., not constituent syntactic
constructions). Thus, given four words wL, wA, wB, and wR,
our goal is to determine the interaction type, given these words
are situated within the context of the thought experiment shown
in Fig. 3

p(αi|wL, wA, wB, wR) (2)

where

α = {attraction, neutral, repulsion}.

That is, given three anchored words wL, wB, wR, how much
“work” would be needed to bring the word wA from infinity to
link to word wB. (Note: Right to left attachments can also be
investigated by interchanging the roles of wA, wB.) The work
states are quantized as either positive, zero, or negative corre-
sponding to the interaction states of attraction, neutrality, and
repulsion, respectively, as illustrated in Fig. 4. Recall, Type I
interactions are typified by adjective–noun, adverb–verb, noun–
noun, and collocation word–word linkages. A comprehensive
investigation of Type I interactions would involve an exhaus-
tive combinatorial statistical characterization. Thus, if there are
M classes of words, the table consists of the upper order of

TABLE II
(a) MINED TYPE I FOUR-GRAMS UNDER CONFIGURATION WITH NO EXISTING

LINKS. IN THE CASE OF FORWARD LINKS, THE A-WORD IS THE REFERENCE

WORD AND THE B-WORD THE ATTACHMENT SITE. (b) TYPE I FOUR-GRAMS

UNDER CONFIGURATION WITH SOME EXISTING LINKS

M × M × M × M entries. (In radiology reports, the number
of unique words is of the order of 10 000; the number of unique
semantic classes of the order of 500; the number of part-of-
speech tags of the order of 20 [40].) The actual experiments
performed were conducted as follows.

1) Collection of Documents: A total of 10 000 radiology
reports collected from the UCLA Medical Center were
retrieved from our radiology information system. All the
documents of the patients were deidentified using the
software described in [41]–[43]. A total of 8000 reports
were set aside for training, 1000 for refinements, and
1000 for testing.

2) Mining of Adjacent Four-Gram: Near-exhaustive sam-
pling of the connected four-grams within a sentence were
compiled from the training corpus initially using a sliding
window of four words. For each four-gram instance,
we record the word string itself, the semantic and
part-of-speech labels, as well as the originating sentence.
Table II(a) shows the four-grams collected for the
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Fig. 5. During the process of mining new field conditions for reference words,
we can perturb the configuration of the words within our matrix and identify
new virtually adjacent n grams.

example sentence, “The bright density adjacent to the
mass is increasing.”

The four-gram represents the left context word, the reference
word, the target attachment site, and the right reference word in
Fig. 3.

3) Manual Classification of Four-Grams: A trained human
who was guided by the thought experiment of Fig. 3 and
knowledgeable of dependency tree representation for sen-
tence parsing was asked to classify each four-gram in
terms of one of the three interaction classes described
previously (attraction, neutral, repulsion); truth was as-
sisted by viewing the entire sentence for context. In some
cases, the four-gram context was not sufficient to classify
the interaction class; for example, commas and coordinat-
ing conjunctions used within the left or right context word
positions. In these cases, an extra context word was added
to the context.

4) Perturbing the Sentence Configuration: In mining for the
field patterns, we can identify other virtually connected
four-grams by perturbing the configuration for our system
of words. For example, let us suppose that we are given a
configuration shown in time step 1 in Fig. 5 that includes
two instantiated links. We specify these links based on
their favorable potential well profile as identified in the
tagging step mentioned above. Recall that the instanti-
ated links correspond to moving the reference word off
diagonal and into the column corresponding to the head
word (see Fig. 2). Under this new configuration, we must
reestimate the field conditions for each reference word.

5) Dynamic Recharacterization of Field Conditions: Now,
given a new configuration characterized by a proposed
set of links, we must update the field conditions for each
reference word. A few questions come to mind in our
simple example.

a) What should be the net effect of instantiating a link?
What is the end product of such an operation? Is
there some sort of convolution of information that
occurs? Is the semantics of the linked pair dominated
by the head word (e.g., bright → density) or do the
linked words result in a semantics that is different
than either of the constituent words (e.g., adjacent
→ to is a semantically coherent word sequence that
conveys a single primitive relation [44])? To address
these issues, semantic interpretation is integral to the
parser algorithm. We compile a “reaction cookbook”

as described later (see Section V-C). This allows
us to address in part phenomena such as idiomatic
phrases, multiple word senses, and nonsensical link
propositions through world knowledge.

b) What effect does a link have on the local field condi-
tions? How do links affect communication paths be-
tween words within the sentence? Instantiated links
can provide communication pathways between non-
adjacent words. Alternatively, we can view some
classes of links as having the property of being able
to shield words that fall within its interval from those
words that are outside its interval. We developed
such communication rules based on the reference
word’s part-of-speech tag, the target-word’s part-of-
speech tag, and the link types that could be traversed
between the reference and target word types.

6) Mining of (Virtually) Adjacent Four-Grams. Using the
rules compiled for Type I communication pathways, we
identify other four-grams as shown in Table II(b).

7) Iterate: Steps 3 through 6 are repeated until no new four-
grams are found in a sentence.

8) Loop: The entire process is performed for each sentence
within the training corpus.

The manual tagging step 3 was performed by two individu-
als; inter-tagger variability was not estimated in this exploratory
work although it is an important evaluation, given our hope
that the classification is relatively intuitive after initial training
and can be performed by individuals with diverse backgrounds.
The end result of this iterative mining process is a knowledge
source that documents the Type I word–word interaction be-
havior as seen in a training corpus within our target medical
domain.

Type I frequency statistics were compiled for each of the
modes of interaction (2). Because there are several thousands
of different words in medical text reports, it is likely that some
words will not have appeared together in sentences in the train-
ing corpora. Unforeseen combinations of words will leave gaps
in the system’s ability to assess field conditions for a given refer-
ence word. Smoothed distributions were obtained by the follow-
ing. 1) Relaxing word representations from strings to semantic
class plus part-of-speech labels. Given the hierarchical organi-
zation of the semantic classes, a few levels of concept relaxation
can be performed. For example, the Level 3 semantic class speci-
fication for the word “mass” is “physobj.abnormal.finding.” The
L2 specification, “physobj.abnormal” includes a larger number
of entities (e.g., masses, artifacts, etc.). 2) Eliminating the left
or right context word opposite to the link direction. Table III
summarizes the number of unique patterns for different context
definitions. A smoothed statistical model using interpolation
over these various grain models is in development following the
approaches described in [45] and [46].

B. Construction of Type II Interaction Tables

In Type II interactions involving the linking of three words,
the major methodological differences compared to Type I inter-
actions are as follows.
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1) Five-grams are Proposed: This addresses the need to si-
multaneously satisfy semantic compatibility constraints
involving relational words such as verbs and prepositions,
which are two place predicates (e.g., tumor ← invading
← bone).

2) Five-grams are Determined Based on the Notion of a Re-
duced Sentence: A reduced sentence is defined as the sub-
sequence of words in the sentence that is formed by reduc-
ing all the base noun phrases to their head-word alone. A
simple set of rules can be found in [47] and [48] that identi-
fies which of the children is the head-child of a phrase. An
example sentence with its corresponding reduced sentence
is presented next. Note that the use of a reduced sentence
is only needed to facilitate the collection of training exam-
ples. The actual parser algorithm does not use the concept
of a reduced sentence (see Section VI).

� Full sentence (17 tokens):

There are|two|low|density|lesions|in|the|left|kidney|, |the|
largest|measuring|1.3 cm|which|is|unchanged.

� Reduced sentence (9 tokens):

| | | |lesions|in| | |kidney|, | |largest|measuring

|1.3 cm|which − is|unchanged.

We hypothesize that the identification of the constituents re-
lated to predicates with two arguments can be facilitated by
the identification of a five-gram of the form {L A B C R}. Thus,
similar to Type I interactions, given five words wL, wA, wB, wR,
our goal is to compute the probability of the interaction type,
given that these words are situated within the context of now
four context words:

p(αi|wL, wA, wB, wC, wR). (3)

1) The automatic mining of Type II profiles is facilitated by
proposing a reduced sentence representation that “deacti-
vates” the reference words linked via Type I bonds.

2) Punctuation cannot fill the role of particle A or particle C.
3) The left word L cannot be of the syntactic class punctua-

tion or conjunction. If this is the case, the L context is filled
by concatenating the words from the punctuation to the
left, halting when neither a punctuation nor a conjunction
is encountered.

4) The right and left context words cannot be of the syntactic
class punctuation or conjunction. If this is the case, then
the R (L) context is filled by concatenating the punctua-
tion/conjunction with the word(s) to the right (left) until a
conjunction and/or a punctuation is no longer encountered.

The mining of Type II five-grams follows a similar procedure
as described for Type I patterns. Similar smoothing operations
involving relaxation of word-class representations and left/right
context words in the direction opposite to the link were per-
formed. Table III summarizes the number of unique five-gram
entries for various grain representations.

TABLE III
NUMBER OF MINED UNIQUE N-GRAMS FOR VARIOUS WORD CLASS

DEFINITIONS

C. Construction of Semantic Interpretation Cookbook

Labeling of link semantics is equivalent to defining a logi-
cal relation between the parser-linked words. For example, in
the phrase “bright density,” we wish to describe the link as a
description of the signal intensity of a radiological finding. A
semantic interpretation cookbook was constructed that served
as a knowledge source for guiding the labeling of parser links
and in defining what concept modeling actions are to be taken
as a link is instantiated (see later). The procedure for creating
the cookbook was as follows:

1) Identification of Unique Link Instances: We scanned Type
I and Type II interaction tables in search of all unique com-
binations of word linkages. We discovered 42397 Type I
two-word link instances and 8368 Type II three-word link
instances.

2) Definition of Logical Relation Templates: Mined linked
instances were grouped according to the hand-crafted
logical relation template definitions. Each template rep-
resented a primitive logical relation definition (e.g., has-
Size.assessment). Template constraints were implemented
using logic-base rules involving the membership of the
specified logical relation argument slots (e.g., head, rela-
tion, value) to word-class memberships (e.g., a specific
string, semantic class, or part-of-speech class). A total
of 3214 templates were defined. Template definitions al-
lowed fine grain control; for instance, the hasSize relation
could be generalized as a property of any solid physi-
cal object, whereas the relation hasCalcificationPattern is
applicable to a smaller class of objects, such as a lesion.

3) Modeling a Response Function: A modeling response
function is attached to each template definition, provid-
ing individualized instructions as to how the presence of
a given logical relation should be modeled. The response
function syntax is declarative, and can contain a number
of commands, including

a) Find: Locate a data structure in the working memory
such as the frame corresponding to a certain head
word topic (e.g., mass) or the subframe data structure
associated with a particular property (e.g., size).
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b) Assign: This command is used to assign a value
to a slot position identified by the corresponding
Find command. More than one Assign command can
follow a Find statement in situations where a logical
relation implies multiple pieces of information, or
where a number of default values can be specified.

c) Reject: In mining logical relation instances, erro-
neous links may be proposed by the parser (e.g.,
impossible interpretations such as “the mass is nor-
mal”). This command allows parser to reject a par-
ticular interpretation for a given sentence.

d) Convolve: This command changes the lexical fea-
tures of the head, the relation, or the value words of
the input logical relation. Words can be dynamically
recharacterized, with the updated information sent
back to the parser/semantic interpreter. For example,
words with multiple senses can be resolved in this
manner.

One result of mining the link instances within the training
document domain is the automatic construction of a global
syntactic–semantic dependency network that can serve as an
initial definition of the ontology of the information space. We
are currently exploring the possibility of creating such an ontol-
ogy using this approach.

VI. PARSING DYNAMICS

The aim of the parser is to take a sentence that contains the
basic part-of-speech and semantic class word labels as input and
produce a parse tree indicating word dependency structure. We
speculate that the probability of a parse tree, given a sentence,
is related to our notion of the total sum of the potential energies
of each word within the sentence for a given configuration. We,
therefore, solve the problem

Configurationbest

= argmax
configuration

N∑
i=1

Ui(configuration, sentence). (4)

A. Initial Ranking of Configurations

As noted previously, the configuration maps directly to a
dependency tree. The key to the approach is the postulate that
a parse tree can be viewed as a configuration of words within
a sentence matrix, with each word i experiencing a potential
energy Ui (configuration) at a word position defined by the
configuration. The potential energy of the word in the proposed
configuration, then, determines its positional stability.

In this paper, we will estimate the potential energy of each
reference word within a sentence and a proposed parse configu-
ration based solely on the empirical statistics compiled manually
for our Type I and Type II interaction tables (see Section V).
Development of an improved statistical model is left for future
work. The parser algorithm is as follows.

1) Conservatively identifying possible attachment sites for
each word. This step identifies all possible Type I or Type II
link instances within a given sentence in a conserva-

Fig. 6. Possibility space for Type I and Type II linkages.

tive fashion emphasizing very high recall (ideally strictly
100%) over precision. The global syntactic–semantic de-
pendency network is used to guide this process. Fig. 6
shows an example of such a possibility map.

2) Apply some conservative grammar rules to eliminate ob-
vious false positive link proposals; for example, an article
(e.g., the) cannot link past another article.

3) Initialize global minimum energy value to zero.
4) Based on the possibility map, propose a configuration for

the words within the matrix. Note that, in general, there is
an exponentially large number of such configurations. An
estimate of the number of such configurations for depen-
dency parsing can be found in [49].

5) Given now a configuration and the lexical analysis infor-
mation (see Table I), compute the global energy (i.e., sum
of the individual word energies) associated with the con-
figuration. For Type 1 link propositions, the left context
word, the reference word, the target head word, and the
right context words are identified as described previously
using the rules of virtual adjacency. (This amounts to a
Markov blanket assumption for both the reference word
and the target head word.) Given the four-gram(s), the
reference word energy is estimated using the Type I in-
teraction probability tables compiled previously. Energies
of reference words associated with Type II links are simi-
larly computed from five-gram context. (This amounts to
a Markov blanket assumption for the reference word, the
central relational word, and the target head word.)

6) If the global energy for this configuration is less than
the current global minimum energy value, a note is made
of this configuration and the global minimum value is
updated. If the global energy is the same as the current
global minimum energy, this configuration is stored within
a list of top candidate parses.

7) Check for stopping conditions. If not met, go to step 4.
8) For sentences that include a relatively sparse possibil-

ity space, an exhaustive search of all possible configura-
tions is performed. For sentences with prohibitively large
number of configurations (e.g., long sentences with many
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conjunctions and prepositions), a genetic algorithm is
applied. For speed considerations, we limit the search to
500 generations, which, in our preliminary investigations,
have lead to good convergence as compared to the ex-
haustive search. If the stopping conditions are satisfied,
the algorithm lists the top scoring (i.e., minimum energy)
parse configurations.

B. Ambiguity Resolution

In some sentences, the four- and five-grams are not sufficient
to unambiguously identify the minimum energy well position
for a given reference word. For example, in the sentence, “The
bright density adjacent to the mass is increasing,” the phrase
“is increasing” could possibly attach to the word mass or to
the subject density. Logically, this particular ambiguity arises
because of the fact that the mass is used as a reference location. In
order to assess the alternative link propositions, we essentially
need to determine which of the following sequences is most
likely:

Density ← adjacent − to ← mass ← is ← increasing
Density ← is ← increasing

Alternative pathways between two terminal words, thus, need
to be ranked in these instances (i.e., one needs to find a common
terminal head ancestor and assess which sequence of the link
paths is most likely). Within our training corpus, we mine for
these ambiguities (i.e., degenerate configurations) and again ask
taggers to assign interaction modes for higher order n-grams.
For example, in the ambiguity defined earlier, we present the
following four-gram using higher order constituents:

In this four-gram, we again want to gather the information
whether the interaction type of the reference token (now the
constituent (is, increasing)) with the target attachment site (now
the constituent (adjacent-to, mass)) is of the mode: 1) no inter-
action (i.e., a transmission of signal); 2) repulsion; or 3) attrac-
tion. In this case, the correct marking for this four-gram would
be transmission. This information can then be used to disam-
biguate between the two alternative parses seen earlier. Thus far,
we have mined 9441 such patterns.

VII. EVALUATION

A preliminary evaluation was conducted in order to estimate
the recall and precision statistics for the task of dependency pars-
ing. The evaluation procedure was guided by recommendations
within [51] and [52], and is summarized as follows.

1) Identification of Test Sentences: First, all sentences origi-
nating from the “Findings” section of the reports from our
test partition of 1000 reports were identified and pooled.
We then randomly selected 300 sentences for evaluation.
Any sentence that was less than ten word tokens was not
selected.

Fig. 7. Interface for visualizing and tagging parser links. The left panel shows
the dependency tree, including Type I and Type II linkages. The bottom right
panel lists the part of speech and semantic classes of individual words. The
upper right panel shows the local field conditions for each reference word.

2) Truth Determination: A graphical tagging interface was
created (Fig. 7) that allowed a human expert to assign de-
pendency links between words. In this preliminary evalu-
ation, a single tagger not involved with the development
assigned all the link tags. Two other individuals reviewed
the final dependency trees for each sentence. A commit-
tee involving the original tagger and two reviewers, then,
either resolved their differences as to the correct parse or
threw out the sentence entirely. Approximately 14% of the
tagged examples were eliminated by the committee. New
sentences were randomly selected to replace those thrown
out. The final number of the tagged sentences was 306.

3) Perform NLP: The test sentences were then processed by
the NLP system. For each sentence, the system recorded
the Type I and Type II links associated with the final parse.

4) Evaluate Results: The NLP output was compared to the
gold standard truth results. Performance was summarized
in terms of: 1) recall defined by the ratio of the number of
correct links and the number of all links as defined by the
truth and 2) precision defined by the ratio of the number
of the correct links and the number of defined links.

The average sentence length for the test sentences was
17.12 tokens; the average number of the unknown tokens per
sentence was 0.086; the average number of conjunctions per
sentence was 0.601; the average number of commas per sen-
tence was 0.697; and the average number of prepositions per
sentence was 1.858.

For Type I links, there were a total of 1825 links in the truth-
determined parse trees. The recall performance was 95.01%
while that of the precision it was 92.52%. For Type II links,
there were a total of 1926 links in the truth-determined parse
trees. The Type II recall performance was 75.49%; the preci-
sion was 87.06%. The combined Type I and Type II link per-
formance statistics were as follows: recall, 84.99%; precision,
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89.95%. The truth set had a total of 3751 links. A total of 141
out of the possible 306 sentences were parsed as completely
correct (46.1%). The average processing time per sentence on a
2.0-GHz PC with 1 GB of memory was 15.1 s; there was no
attempt to optimize the processing efficiency of the code.

False negative errors could be categorized according to the
following knowledge deficits:

1) unknown words—currently, there is no mechanism for
guessing the part-of-speech or semantic tag labels of un-
known words;

2) idiomatic expressions;
3) terse reporting styles—for example, when punctuation,

verbs, or conjunctions were left out (e.g., “a small
catheter,” a thoracotomy tube, left pleural space);

4) sentences or major clauses that begin with a prepositional
phrase, as the system assumed that the heads of preposi-
tional phrases were to the left of the preposition;

5) long sentences that included various connectives (e.g., but,
so, nevertheless, however, etc.) were often left disjoint;

6) sentences that were dictated using poor grammar:
“The visualized osseous structures demonstrated full rib
destructive as described above as well as osteopenia.”

False positive errors were seen in sentences that contained
a number of prepositions where attachments were perceived
as ambiguous. For example, Small tubular areas of enhance-
ment, isodense to vessels in lateral segment left lobe of liver,
unchanged from prior studies and most likely a vascular
anomaly/aberrhent vessel. These types of ambiguities will re-
quire higher order semantic and discourse models in order to
be resolved appropriately. Work on a global syntactic–semantic
dependency network is a part of our future plans. Other types
of errors were due to inadequacies in the shielding rules used to
determine which words were allowed to communicate in Type
I and Type II linkages.

VIII. DISCUSSION

This paper presents initial exploratory work on the devel-
opment of a natural language parser for medical reports that
attempts to assign a stability metric of a reference word within
a given sentence and proposed parse configuration. The parser
is inspired by a physics-based model of word–word interaction
and relies heavily on compiling the interaction statistics related
to the notion of how much work is required to bring a reference
word from infinity into a link position within a system of three
(Type I) or four (Type II) other words. Our motivation for this
approach is to develop a mechanistic paradigm toward medi-
cal NLP in which a community of developers can contribute to
compiling these interaction tables. This, of course, relies heav-
ily upon whether we can objectively agree on how to label such
four-gram, five-gram, and higher order systems of words, and
the degree to which we can minimize the tagging variability.

A. Relation to Other Work

It should be noted that there have been many hints to abstract-
ing the NLP parsing problem to a physics-based paradigm: Bef-
ferman conceptualizes a lexical attraction and repulsion model

in [53]; Yuret identifies word–word relations using a lexical at-
traction model [49]. The notion of the barrier words is used for
phrase chunking by [54]. These analogies to physics systems,
however, have been remotely and/or superficially explored.

Interestingly, the bioinformatics community working on the
problem of protein folding have adopted many of the language-
processing techniques developed in computational linguistics
[55]; however, the mechanistic views of chemistry and physics
that dictate protein-folding configurations have not been con-
ceptualized and/or abstracted to the problem of NLP. This is an
exploratory attempt to move in this direction and adapt some
of the computational machinery already well developed in this
area. The proposed field theory approach is our initial concep-
tualization of a causal approach to the problem of the sentence
parsing that attempts to perform global optimization based on
the features that span word level, word sequence level, link level,
and logical relation level evidence.

B. Desiderata Revised

1) Adaptability to New Domains: Our long-term goal is to de-
velop a global optimization model for medical language.
This model must necessarily have many levels of evidence
including syntactic–semantic, discourse, and pragmatic.
Learning such a model will require a substantial amount
of effort in terms of training examples and knowledge
engineering for a comprehensive domain model to be de-
veloped. The limitation of this paper includes the need to
hand tag and curate and large number of four- and five-
grams that represent the minimal context for estimating
the field conditions. Also recall that for link ambiguity,
larger constituents were used in the definition of a word
particle. Additionally, we define response functions for
every class of unique semantic link types. Thus, the sys-
tem can, likely, work within a limited domain such as
radiology reports, but would require cooperative efforts to
expand to larger information space domains.

2) Robustness to Unseen Patterns: Our system includes a
relaxation method within the semantic description di-
mension for dealing with new four- and five-grams (see
Table III). Statistical smoothing and clustering models are
planned as part of the future work [46]. Current symbolic
medical NLP approaches lack this ability to reason in this
respect.

3) Guidance from Higher Order Knowledge: General NLP
systems have traditionally followed a bottom-up approach
mainly relying on part-of-speech preterminal tags. Med-
ical NLP system typically includes improved word-level
semantic tags [56]. Our current system uses a knowledge
base of the primitive logical relations to both transform
parser links to a conceptual representation and perform
disambiguation.

4) Intuitive Features: The approach currently is based on a
“communicative model” in which features are related to
ability to communicate with other words, potential hills,
and potential wells.
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5) Mechanistic Model: We have tried to formulate the parser
problem as an energy minimization problem with the en-
ergy potential of a reference word conceptualized by the
traditional physics definition shown in Fig. 3. This is, in
contrast, to purely data-driven approaches that do not pro-
pose any causal mechanisms for word–word attachments.

C. Future Work

Our future work includes the following.
1) Developing improved smoothed interpolative models for

Type I and Type II interaction statistics.
2) Performing a more careful analysis of the types of links

that allow communication between words.
3) Further developing and formalizing a global semantic

model to guide parsing. For example, the development of
a more comprehensive knowledge source to define sanc-
tioned versus forbidden types of links.

4) Optimizing the efficiency of the search for the global min-
imum configuration; currently, some sentences take time
of the order of minutes for processing.

5) Development of algorithms for handling coordinate con-
junctions. Some initial experiments that propose initial
grouping of coordinate conjunctive phrases and assess-
ment of the field conditions associated with the phrase as
a constituent has been promising.

6) Continuing our exploration of how we can differentiate the
energy states of degenerative configurations. Exploration
of elementary tree structures within the n-gram model is
being explored.
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