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Abstract. It has been a challenge for mathematicians to confirm theoretically the extremely good 
performance of simplex-type algorithms for linear programming. In this paper the average number of 
steps performed by a simplex algorithm, the so-called self-dual method, is analyzed. The algorithm is 
not started at the traditional point (1, . . . , but points of the form (1, e, e2, . . .)T, with t sufficiently 
small, are used. The result is better, in two respects, than those of the previous analyses. First, it is 
shown that the expected number of steps is bounded between two quadratic functions cl(min(m, n))' 
and cz(min(m, n))' of the smaller dimension of the problem. This should be compared with the previous 
two major results in the field. Borgwardt proves an upper bound of 0(n4m1'(n-1') under a model that 
implies that the zero vector satisfies all the constraints, and also the algorithm under his consideration 
solves only problems from that particular subclass. Smale analyzes the self-dual algorithm starting at 
(1, . . . , He shows that for any fixed m there is a constant c(m) such the expected number of steps 
is less than ~(m)(lnn)"'("+~); Megiddo has shown that, under Smale's model, an upper bound C(m) 
exists. Thus, for the first time, a polynomial upper bound with no restrictions (except for nondegeneracy) 
on the problem is proved, and, for the first time, a nontrivial lower bound of precisely the same order 
of magnitude is established. Both Borgwardt and Smale require the input vectors to be drawn from 
spherically symmetric distributions. In the model in this paper, invariance is required only under certain 
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reflections or permutations and not under every possible rotation. The fact that c has to be sufficiently 
small raises no difficulties whatsoever. The algorithm can either determine the correct value while 
solving the problem, or simply operate on e symbolically, using "lexicographic" rules. 

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical 
Algorithms and Problems-computations on matrices; G. 1.6 [Numerical Analysis]: Optimization- 
linear progrumming 

General Terms: Algorithms, Theory 

Additional Key Words and Phrases: Lexicographic pivoting, probabilistic analysis of algorithms, simplex 
algorithms 

1. Introduction 

The "simplex" algorithm for linear programming, which was developed by Dantzig 
[9], is not just a single algorithm but, as matter of fact, a class of algorithms whose 
common feature is that they iteratively change the basis of a linear system of 
equations, until they reach an "optimal" basis or a basis that exhibits that no 
optimal solution exists. For a linear programming problem with n (nonnegative) 
variables and m constraints, the number of bases is (",+"); hence this quantity is an 
obvious upper bound on the number of steps that any simplex-type algorithm can 
perform. However, the vast computational experience accumulated to date has 
shown that the number of steps is usually much smaller. This has been observed 
while solving practical problems, as well as those generated in a laboratory. It has 
been a challenge to confirm these findings theoretically. Tremendous effort has 
been made in the direction of studying properties of convex polyhedra that are 
related to linear programming. However, it is known that many simplex-type 
algorithms may require exponential number of steps in the worst case. The first 
example to this effect was given by Klee and Minty [I I], and Murty [I61 provided 
an example in the context of the self-dual method. Similar examples are known 
for several other variants of the simplex method. 

Borgwardt [6, 71 and Smale [ 17, 181 have recently provided probabilistic analyses 
of simplex-type algorithms. We note that an analysis of this type requires a 
specification of algorithms to which it applies, as well as probabilistic distributions 
of inputs. Both Borgwardt's and Smale's models assume that the vectors generating 
the problem are sampled from spherically symmetric distributions; however, Smale 
actually obtains his results under a weaker model of symmetry with respect to 
permutations of coefficients within rows. Borgwardt analyzes different variations 
on the radial part of his distributions, while under Smale's model the radial part is 
immaterial. Both of these analyses deal with "parametric" simplex algorithms, and 
this is, apparently, a key property for carrying out a probabilistic analysis. 

In order to understand the contribution of the present paper, we first state the 
results of Borgwardt and Smale. Borgwardt considers the problem in the form 

maximize c ' x  
subject to Ax I e 

(where x, c, E Rn, A E Rmxn and e = ( I ,  . . . , E Rm). The rows ofA, as well as 
the vector c, are distributed spherically symmetrically over their respective spaces. 
Under this model the zero vector satisfies the inequalities. Note that under this 
model every subproblem, determined by a subset of the columns, has to be feasible. 
Indeed, every problem, which is given together with a feasible solution, can easily 
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be transformed into Borgwardt's form, but the probabilistic assumptions can hardly 
be justified afterward. The algorithm is a certain parametric simplex method, with 
a special initialization procedure that is necessary only for the mathematical 
reasoning, and capitalizes on the fact that the zero vector is feasible. Therefore, the 
algorithm as a whole solves only problems from this particular subclass. It cannot 
explain the so-called Phase 1 of linear programs. Under this model, Borgwardt 
shows that the expected number of steps, pB(m, n), satisfies 

pB(m, n) 1 cn4m1'("-'), 

where c is a certain constant. We note that this upper bound tends to infinity when 
either m or n tends to infinity. 

Smale considers the problem in the form 

minimize cTx 
subject to Ax 2 b 

x r O  

(where x, c E Rn, A E Rmxn, and b E Rm). Under his model, the matrix A is 
distributed spherically symmetrically over Rmxn and the vector (b, c) is distributed 
(independently) spherically symmetrically over Rm+". However, a weaker model is 
actually used for obtaining the result. The algorithm is the so-called self-dual 
simplex algorithm [9] (which can be viewed as a special case of "Lemke's algorithm" 
for the linear complementarity problem [12]). Lemke's algorithm requires a spec- 
ification of a starting point in the positive orthant of Rmfn. Traditionally, as well 
as in Smale's model, the starting point is taken as (1, . . . , I ) ~ ,  reproducing the 
"self-dual" version. Under this model, Smale shows that the expected number of 
steps, p(m, n), satisfies the following condition: For every fixed m there exists a 
constant c(m) such that for every n, 

p(m, n) a c(m)(ln n)"("+'). 

Obviously, this upper bound tends to infinity with n. Blair [5] proves that 
the expected number of undominated columns under an even more general 
model is less than ~(m)( lnn) (~+l ' l~ ("+~)+~ , which implies an upper bound of 
C(m)(ln n)m(m+~)~n(m+~)+m on the number of pivot steps for a wider class of algorithms. 
We remark that bounds like those of Smale and Blair can be derived by estimating 
expected numbers of extreme points of the primal or the dual polytope. Obviously, 
the efficiency of the simplex method does not stem from a small number of extreme 
points, but rather from the fact that usually only few of these points occur on the 
path followed by the algorithm. Megiddo [14] has shown that, under Smale's 
model, for every m there is a constant c(m) such that for all n 

d m ,  n) 5 c(m). 

An upper bound on c(m) depended exponentially on m. 
In this paper we improve upon the previous results considerably. We confirm 

the observed phenomenon that the average number of steps is polynomial in the 
smaller dimension of the problem. We analyze the average number of pivot steps 
performed by the self-dual simplex algorithm with a different starting point. Instead 
of the point (1, . . . , we start the algorithm at (I, t, t2, . . .)T with 6 > 0 
sufficiently small. The powers of t can be assigned arbitrarily. This algorithm is 
closely related to an algorithm proposed by van der Heyden [19]. It can operate 
on t symbolically, or can, alternately, be stated with "lexicographic" rules. The 
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actual determination of t does not raise any difficulties whatsoever. Incidentally, 
the algorithm itself can determine what is a sufficiently small t by maintaining 
upper bounds under which the "lexicographic" arithmetics holds. The choice of 
the different starting point yields a better bound on the average number of steps, 
pf(m, n). We show that this number is bounded between two quadratic functions 
of the minimum of the two dimensions: 

Thus, we obtain a nontrivial lower bound that seems to be in conflict with the 
common belief that the simplex algorithm performs, on the average, only linearly 
many steps. There has not been much experience with the particular variants 
discussed in this paper and that may account for the difference in the results. 
However, the reason why these variants behave quadratically is transparent in view 
of the present paper. 

Our analysis for the upper bound is camed out under a model that is weaker 
than those of Borgwardt and Smale in the sense explained below. Instead of 
complete spherical symmetry, we require only symmetry with respect to certain 
reflections, together with a certain regularity condition on the matrix; this condition 
holds with probability one if the problem is sampled from any continuous distri- 
bution. For the lower bound we need a stronger model in which the entries are 
independent, identically distributed (symmetrically with respect to zero) random 
variables. 

We also note that the conditional expectation of the number of steps, given that 
the problem has an optimal solution, can now be bounded from above by a low- 
order polynomial in the case usually considered most difficult, that is, m = n. The 
probability that the problem has an optimal solution is 

(see [I]). In case m = n this is of order m-'/2. Thus, the conditional expectation of 
the number of steps in this case is 0(m2.5).  Also, an obvious consequence of our 
result is that the probability that the algorithm will require an exponential number 
of steps is exponentially decreasing to zero. However, we expect a stronger result 
to be obtained by a more careful look into the distribution of the number of steps. 

We discuss the model in Section 2. The algorithm is described in Section 3. In 
Section 4 we describe the four cases to be distinguished in the analysis of the 
probability of a basis to occur in the solution process. The upper bounds for these 
cases are then analyzed in two pairs in Sections 5 and 6. In Section 7 we prove the 
lower bound result. The specific upper and lower bounds are summarized in 
Section 8. 

2. The Probabilistic Model 

For an "average-case" analysis, with results different from the "worst case," one 
has to make some assumptions on the distribution of problems. A probabilistic 
analysis does not have to assume a unique distribution of problems. It is more 
desirable to be able to prove good bounds that are valid for any distribution in a 
wide class. Notice that, under the model proposed by Smale, any spherically 
symmetric distribution has the same average-case complexity. However, one should 
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seek wider classes such that the average case is not necessarily the same for all the 
members of the class, but yet each satisfies some good bound. 

It is natural to consider models with some symmetry assumptions. Very roughly, 
the hope is that, in a symmetric set of instances, if one is bad, then others should 
be good, so that the average over the set should not be bad. More specifically, 
suppose we have a group of symmetries and consider the equivalence classes of 
instances that are invariant under the group. Suppose the average over each 
equivalence class is bounded nicely. Then, regardless of how a class is picked, 
provided an instance is adequately selected from the class, the overall average will 
be nicely bounded. Subject to this terminology, it is desirable to have the "classes" 
as small as possible, that is, the group of symmetries as small as possible. Under 
the spherically symmetric model, two instances (A,, bl, cl) and (A2, b2, c2) are in 
the same equivalence-class if (i) the matrix A2 can be obtained from A1 by an 
orthogonal transformation (of Rmxn) followed by a multiplication by a positive 
constant, and (ii) the vectors (b,, cl) and (b2, c2) are related in a similar fashion. 
Obviously, each class contains a continuum of instances. 

Under our model the classes are finite. Given an instance (A, b, c), it is convenient 
in the present section to consider an (m + 1) x (n + 1) matrix A* such that A ;  = 

* * All (i = 1, . . . , m, j = 1, . . . , n), = cl (J = 1, . . . , n), Al,n+l = b, (i = 1, 
. . . , m), and A:+~,,+, = 0. Obviously, if A* is sampled from any continuous 
distribution (over the subspace of R(m+l)x(n+l) characterized by A ~ + ~ , , + ~  = 0), then 
every submatrix ofA* (except for the entry A:+l,n+l) is nonsingular with probability 
one. It is thus convenient for us to make this assumption explicitly, even though 
for our proofs not all the submatrices have to be nonsingular. Indeed, matrices that 
do not satisfy our regularity assumption do arise in practice, and the simplex 
algorithms handle them efficiently. However, it seems that generalizing our proofs, 
using arguments of infinitesimal perturbations, would not shed much more light 
on the problem. 

The more important feature of the probabilistic model is the statement of the 
group of symmetries. In fact, for the lower-bound result, we need a model stronger 
than the one required for the upper bound result. We first describe the weaker 
model. Under the weaker model the group is generated by the m + n transforma- 
tions of multiplying either one of the first n columns or one of the first m rows of 
the matrix A* by - 1. This group has 2"'" members, giving rise to the same number 
of instances in each equivalence class. We assume that all the members of a class 
are equally probable, that is, given that the class was picked, each member has the 
same probability to be selected from the class. We note than an equivalent 
description of the model can be given as follows. Instead of fixing the direction of 
the inequalities Ax I b and x r 0 and letting columns and rows be multiplied by 
-1, we can fix the matrix A* and then choose the direction of each of the m + n 
inequalities independently at random. Closely related models have been considered 
by Adler and Berenguer [l-41, Buck [8], Haimovich [lo], and May and Smith 
[13]. We note that none of these papers analyzes a complete algorithm for the 
general linear programming problem, even though some interesting expected values 
of certain parameters of random polytopes are derived. It turns out that for many 
parameters, like numbers of faces of any dimension, the probability of a polytope 
being nonempty, the probability of a polytope being unbounded, and more, the 
weak model we have described suffke for determining the exact average value of 
the parameter. However, this is not the case with respect to the average number of 
steps performed by the self-dual algorithm, as we argue later. 
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It is interesting to mention that the number of symmetries cannot be subexpo- 
nential if we are to prove a polynomial upper bound on the average number of 
steps, since in the worst case the number is exponential. 

The stronger model, under which we are able to prove the lower bound result, 
requires that all the entries of A* (except for be independent, identically 
distributed random variates, whose common distribution is symmetric with respect 
to zero. We believe that a weaker model would suffice for the same result, but may 
on the other hand be cumbersome to state. Of course, it follows from the stronger 
model result that there exist distributions that satisfy the weaker assumptions, 
relative to which the lower bound holds. 

3. The Algorithm 

We now explain the self-dual method. Consider the following linear programming 
problem: 

maximize cTx 
subject to Ax I b 

x r O  

(where x, c E Rn, A E Rmxn, and b E Rm). The dual problem is the following 

minimize yT b 
subject to yTA I cT 

y r 0. 

The complementary slackness conditions state that two vectors, x (such that Ax 
5 b and x r 0 )  and y (such that yTA r cT and y r 0 )  are optimal (for their 
respective problems) if and only if 

and 

Letting 

and q = (-c, b)T, the problem amounts to finding two vectors z and w in Rm+" 
such that 

-Mz+ w =  q, z T w  = 0 ,  z m  0,  and w m  0. 
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A useful observation can be made in terms of a piecewise linear mapping 

where 

(We denote x t  = max(,x,, 0) and x i  = min(xl, O).) Here, x +  plays the role of z, 
whereas -x- plays the role of w. Solving the primal and the dual problems amounts 
to finding an inverse image FP1(q). 

The self-dual algorithm starts from any positive vector go and attempts to find 
solutions for every point on the line segment determined by q, and q. Thus, it 
looks at points of the form (1 - t)qo + tq. For t = 0 there is an obvious solution, 
namely, 

z = O  and w = q o .  

The algorithm increases the value o f t  continuously and follows the inverse image 
of the point ( 1  - t)qo + tq under the mapping F. Although the inverse image stays 
within an orthant of Rm+", it varies linearly therein. Every orthant is represented 
by a prebasis, namely, a set of vectors (bl ,  . . . , bm+") C Rm+", where b' is equal 
either to the ith column of -M or to the ith unit vector e'. A prebasis whose 
vectors are linearly independent is called a basis. We identify a basis with an 
(m + n) x (m + n) matrix B whose columns are the vectors of the basis. A necessary 
condition for a prebasis B to be a basis is that equal numbers of unit vectors from 
the sets {el, . . . , e n ]  and (el+", . . . , em+"] are not in B. Under the regularity 
assumption stated in Section 2 (which holds with probability one whenever the 
matrix A is sampled from a continuous distribution), this condition is also sufficient. 

It is well known that the self-dual method solves the linear programming problem 
under the nondegeneracy assumptions; the algorithm reaches a point q if and only 
if the linear programming problem has an optimal solution. Otherwise, it discovers 
an infinite ray that implies that the problem is either infeasible or feasible but 
unbounded. 

The number of pivot steps performed by the algorithm is equal to the number 
of bases occurring in the path following process, minus one. A basis B occurs in 
the process if and only if for some t (0 I t 5 l ) ,  

We note that the algorithm itself is deterministic, so all the probabilistic statements 
regard the distribution from which the instance ( A ,  b, c) is taken. Denoting by 
Pr(B) the probability that the basis B occurs in the process, we note that the 
expected number p(m, n; go) of pivot steps corresponding to the starting point go 
is 

An alternative way to represent p(m, n; go) (which is called the facet form 
in Smale's papers) is as follows. First, define an art$cial basis to be a matrix 
Bl, obtained from a basis B by replacing its ith column by the column -40. Let 
Pr(BIi) denote the probability that q is in the cone spanned by the columns of B,,. 
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Under these conditions, 

~ ( m ,  n; 40) = C Pr(B,i). 
B.1 

We shall estimate the probabilities Pr(BIl). 
It turns out that the exact value of p(m, n; qo) depends on the particular 

distribution and may not be the same for different distributions that satisfy our 
conditions. The precise value also seems difficult to evaluate. However, for vectors 
of the form qo = (1,  t, t2, . . .), the limits of p(m, n; qo) (as t tends to zero) are close 
for many distributions, and moreover, they are much easier to estimate. We note 
that for a fixed distribution the limit of p(m, n; qo) does not necessarily equal the 
expected number relative to the limit of the starting points, that is, p(m, n; el). 

It is very important at this point to clarify the issue of the value of t. For any 
fixed value of t,  the algorithm is well defined (subject to nondegeneracy). The 
progress of the algorithm, that is, the sequence of bases that it produces, depends 
of course on t. Obviously, there are only a finite number of intervals of t values 
such that over each interval, the algorithm produces the same sequence of bases. 
The latter follows from the fact that the progress depends on comparisons between 
polynomials of bounded degree in t. It follows that there is to > 0 such that for all 
t, 0 < c < to, the progress of the algorithm is the same. The actual choice of c does 
not have to be made in advance. In fact, the value of to can be determined by the 
algorithm itself. 

The question of what is the best starting point for solving linear programming 
problems on the average is still open. However, we know that linear complemen- 
tarity problems, usually the point (1, . . . , is the worst, while (1, t, t2, . . .)T is 
best in the positive orthant [15]. The effect of the starting point is much easier to 
study in the context of the linear complementarity problem (see [15]). 

4. Four Types of Art$cial Bases 

There are four types of artificial bases, BI,, depending on the type of basis column 
that is replaced by -90: (i) a unit column representing a dual slack, (ii) a unit 
column representing a primal slack, (iii) a column of M representing a dual variable, 
(iv) a column of M representing a primal variable. We note that these four cases 
may be viewed as two pairs of symmetric ones via the primal-dual symmetry. 
However, the vector go is not symmetric in this respect. We henceforth assume 
that q0 = ( 1 ,  t, t2, . . . , tl"+"-' ) . It is interesting to mention at this point that a 
different assignment of powers, depending on whether m 5 n, or vice versa, yields 
a slightly better upper bound when the larger dimension tends to infinity while the 
other is fixed. This issue will be discussed later. Notice that the first n columns of 
a basis correspond either to primal variables or to dual slacks, whereas the last m 
columns correspond to either dual variables or primal slacks. It is also convenient 
to assume, without loss of generality, that m 5 n. However, when we represent an 
artificial basis by an (m + n) x (m + n) matrix B,,, we usually change the order of 
columns and rows so as to exhibit how a solution to the linear system Bllx = q is 
obtained. Specifically, we find it convenient to rearrange the matrix so that it has 
an identity submatrix in the upper-left-hand corner. In the following matrices we 
use different letters to denote submatrices of the rearranged matrix. These nota- 
tions do not necessarily reflect the relationships with submatrices of the original 
matrix. For example, an artificial basis of type (i) can be represented by a matrix 



A Simplex Algorithm with Quadratically Many Steps 

of the form 

MI = 

where X E Rkxk, Z E R(n-k-l)xk, W E R(m-k)xh, and y E R"0 r k I min(m, 
n - I)). It is very essential to understand at this point what powers o f t  can arise 
in the different rows of this matrix. To that end, observe that the rows of Z and 
the rows of X ,  together with yT, constitute segments of the first n rows of the matrix 
M. Hence, the components of qo corresponding to these rows are powers tJ where 
0 I j I n - 1. On the other hand, in rows corresponding to Wand -XT we find 
in q0 powers c1 with n I j I m + n - 1.  

We now describe briefly the other three types of artificial bases. The second type 
of matrix is of the form 
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where x E ~ h ~ h ,  z E ~(n-k)"k w E ~ ( ~ l - k - l ) * k  a n d y E R k , ( O ~ k s m -  1s 
n - I ) .  Here the components of qo corresponding to the rows of Z and X are the 
powers t J ,  with 0 s j I n - 1, whereas those corresponding to the rows of W, -XT, 
andjlarethosewith n s j s  m +  n -  1. 

The third type of matrix is of the form 

where X E R ~ " ( ~ - " ,  Z E 
The fourth type of matrix is of the form 

where X E ~(k-1)"" Z E ~ ( n - k ) ~ k  w ~ ( m - k ) x ( k -  1 )  
, a n d  y E  Rh  ( 1  4 k~ m s n). 

For each of the four types we estimate the probability that, when the vector q is 
represented as a linear combination of the columns of M I ,  all the coefficients are 
nonnegative. It turns out that types (i) and (iii) are very similar in this respect, 
whereas types (ii) and (iv) are very similar to each other, but different from (i) and 
\':i). The reason will become transparent later. 
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5. Upper Bounds for Types (i) and (iii) 

In the present section we estimate the limit of the probability Pr(BIi) as t tends to 
zero, where B,, is an artificial basis of type (i) (see the matrix MI  in Section 4). We 
then estimate the expected number of bases of type (i) that occur in the solution 
process. The analysis of type (iii) is essentially the same with a change of the value 
of one index as we show later. 

The effect of the powers o f t  in go is illustrated by the following observation. For 
any k x k matrix A, let Pr(A) denote the probability that a random unit k vector u, 
sampled from a certain continuous distribution over the unit sphere in Rk, is in 
the cone spanned by the columns of A. Obviously, if A is singular, then Pr(A) = 0. 
It is interesting to observe the following. Suppose that A', A2, . . . is a sequence of 
k x k matrices, converging to a matrix A'. If A' is nonsingular, then lim Pr(An) = 
Pr(Ao). On the other hand, if A0 is singular, then Pr(Ao) = 0, but lim Pr(An) may 
be positive. For example, consider the case where the columns of An are (1, O)= 
and (- 1, Many of our matrices converge to singular matrices when t tends 
to zero, but we can still estimate the (positive) limit of their probabilities Pr(An). 

Our assumptions about the distribution imply that the components of the vector 
q are nonzeros, and all the 2"+" possible sign patterns have the same probability. 
In other words, q belongs to any orthant of Rm+" with the same probability of 
2-'"+"'. Consider the linear system M I X  = q. It is easy to see that the coefficients 
of the last 2k + 1 columns of MI  (in a representation of q as a linear combination 
of the columns of M I  ) are determined by a smaller system of equations. Let 

(M: E R'2k+1'x'2k+1'), where q6 is the restriction of go to the components correspond- 
ing to the rows of X ,  -XT and y. Now consider the system 

where q '  is the restriction of q to the rows described above, X is a real number, and 
a and p are k-vectors. Obviously, the vector (A, a, consists of the coefficients 
of the last 2k +1 columns of MI  in a representation of q as a linear combination 
of the columns of MI. We estimate the probability that (A, a, P)T 2 0. First, we 
prove a fundamental lemma. 

LEMMA 1. Let Y E R("l'x'k+" and let u E R ~ .  Denote by Y* a (k + 2) x 

( k  + 1)  matrix such that Y: = Y ,  (i = 1, . . . , k + 1, j = 1, . . . , k + I), Y?+2.j = 

u, ( j  = 1, . . . , k) and Y?+2,k+I = 0. Assume that Y* satisfies the assumptions of our 
model, that is, every submatrix of Y* (except for the entry ~k*,*.k+,) is nonsingular, 
and the distribution from which Y* is picked is invariant under multiplication of 
columns and rows by - I .  Let X E Rkx"e the submatrix obtained from Y by 
deleting the last row and the last column. Also, let i, 1 I i s k + 1, be3xed. Under 
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1he.w conditions, the probability that the unit vector e' is in the cone spanned by the 
columns of Y, while 11' is in the cone spanned by the rows of X. is equal to 2-(2h+'). 

PROOF. For any S C { 1, . . . , k + 1) and any matrix D, denote by SD a matrix 
obtained from D by multiplying each row of D, whose index is in S, by -1. 
Similarly, let DS denote a matrix obtained from D by multiplying each column of 
D, whose index is in S, by - 1. Thus, the objects SY, YS, SX, XS, Se', and uTS are 
well defined. Let T G ( I ,  . . . , ki be any subset such that i 4 T. Now, consider 
events as follows. Let Es denote the event in which e' is in the cone spanned by 
the columns of YS, and let FT denote the event in which uT is in the cone spanned 
by the rows of TX. Obviously, ES occurs if and only if Te' is in the cone spanned 
by TYS, and F, occurs if and only if uTS is in the cone spanned by the rows of 
TXS. It is easy to see that SI # S2 implies Pr(Es, n Es,) = 0 and T I  f T2 implies 
Pr(F7, n F,) = 0. By our symmetry assumptions, it follows that the quadruple 
(TYS, TXS, Tc', u'S) has the same joint distribution as the quadruple (Y, X, el, 
uT).  (Recall that 4 T.) Let G.57 = & n FT and consider the union of the events 
G ' c ,  ( S  C 11, . . . , k + 11, T !Z (1, . . . , k ) ,  i 4 T). We have already argued that 
these events have the same probability. Moreover, the intersection of any two of 
them is empty by the nonsingularity assumption or, alternately, measures zero 
under any continuous distribution. If i = k + 1, then the union is the entire sample 
space. In this case, we have 22k+' events and the probability ofeach is hence 2-(2k+1).  
Otherwise ( i  5 k), we have only 22h events. On the other hand, the union of these 
events is not the entire space. In fact, the union is the event in which the coefficient 
of the ith row of X, in a representation of uT as a linear combination of the rows 
of X ,  is nonnegative. The probability of this event is obviously 4. Thus, the 
probability in this case is, again, 2-(2h+'). 

As a result we get the following 

LEMMA 2. The probability that the last 2k + 1 coeficients, A, a ,  and P,  are 
nonnegative tends to 2-(*/'+'), as t tends to zero. 

PROOF. We first remark that for any fixed data, the coeficients A, a, and P 
tend to (possibly infinite) limits as t tends to zero; however, the a's tend to finite 
limits. Also, recall that all square submatrices arising are nonsingular with proba- 
bility one by our assumptions. As a matter of fact, the values of X and a are 
determined by a smaller system, corresponding to the square submatrix of order 
(k + 1) x (k + 1) in the upper-left-hand corner of MT, consisting of X, y and a 
portion of -40. It follows by arguments similar to those of Lemma 1, that the 
probability that X and a are nonnegative is 2-("I). Furthermore, the asymptotic 
behavior of X (as c tends to zero) depends only on the smallest power o f t  in the 
portion of go corresponding to rows of X and y. The latter follows from Cramer's 
formula for the solution of linear equations, under the assumption that the minor 
corresponding to this power of t does not vanish. Let j denote this smallest power 
(0 s j s n - 1 )  and assume X, y, and q have been fixed. Then, X is asymptotically 
proportional to c-I. This enables us to estimate the probability that also 6 is 
nonnegative. 

Let q" and qg denote, respectively, the portions of q and q, corresponding to the 
rows of -XT. It is easy to see that 

Recall that all the t"s participating in qg are with i 2 n. It follows that for any fixed 
.'?ta, Xqg  tends to zero with t.  Thus, the probability that ,!I is nonnegative tends to 
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the probability that (-XT)-'qqs nonnegative. The latter is obviously equal to 2-k. 
However, we have to evaluate the intersection of the events "A and a are non- 
negative" and " p  is nonnegative." A priori, these are not known to be independent 
since both depend on the matrix X. However, it follows by arguments similar to 
those of Lemma 1 that these events are asymptotically independent, and the 
probability of their intersection tends to 2-(2k'1). 

LEMMA 3. Let MI  be an artzficial basis of type (i) and let j be the largest index 
such that el, . . . , eJ belong to M I .  (If el is not in M I ,  then J = 0.) Under these 
conditions, Pr(MI ) tends to 2-("+"-". 

PROOF. For the proof, we need to consider the rest of the coefficients, that is, 
those of the m + n - 2k - 1 unit vectors. These unit vectors can be classified as 
primal slacks and dual slacks. A dual slack has a unity in a row in which qo has an 
t' with 0 5 i I n - 1, whereas a primal slack has a unity in a row in which q, has 
an t' with n 5 i s m + n - 1. Note that, by the definition of the index J, the 
smallest power o f t ,  in the portion of qo corresponding to X and y, is precisely tJ 

(since ei corresponds to ti-'). Consider a primal slack e' (n + 1 I i I m + n). Let 
Wi denote the row of W corresponding to the unity of the primal slack, and let ql 
denote the component of q in that row. Obviously, the coefficient of e' is q, - Wia 
+ At'-'. Since i - 1 > J, it follows that iti- '  tends to zero with t. However, by our 
assumptions, q, - Wia is nonzero with probability one. Thus, the probability that 
the coefficient of e' is nonnegative tends to the probability that qi - W;a is 
nonnegative. Consider the 2m-k different ways of multiplying rows of W, each 
augmented with the corresponding coordinate from q, by -1. It follows that the 
probability that the coefficients of the primal slacks are all nonnegative is equal to 
2-("4) 

Now, consider the dual slacks, that is, unit vectors e' with I I i s n. The 
arguments here are similar to those of the previous case, except that i - 1 may 
now be smaller than j. In such a case, the probability that the coefficient of e' is 
nonnegative (given that X is positive) tends to 1, since At1-' tends to infinity. If, on 
the other hand, i - 1 > j, then the probability that the coefficient of ei is nonnegative 
tends to i. We can now summarize our findings about the probability that all the 
coefficients are nonnegative. Each t i  with i > J contributes a factor of 4, while every 
other t '  contributes a factor of 1. The limit of the probability thus depends only on 
the value of j, and is equal to 2-("+"-". 

COROLLARY 4. The expected number of bases of type (i) occurring in the 
solution process is less than m/2 + 1. 

PROOF. The number of artificial bases of type (i), containing the unit vectors 
el, . . . , el and not containing ej+', is calculated as follows. For every k (k = 0, . . . , 
min(m, n - J - I)), we can choose the k dual variables in ( T )  ways. We can choose 
the k + 1 dual slacks to be dropped from the basis (and replaced by k primal 
variables together with the column -go) in ("-ipl) different ways, since eJ+' must 
be dropped. Then, the particular choice of which of these will actually be replaced 
by -qO can be made in k + 1 different ways. To summarize, the number of such 
bases is 
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It follows that the expected number of these bases occurring in 
process is 

N. MEGIDDO 

the solution 

Now, observe that for I x I < 1, 

and 

so that, for x = :, we obtain the well-known identity for all k, 

It follows that, for any n, the expected number of artificial bases of type (i) occurring 
in the process is less than .. 

COROLLARY 5 .  The expected number of bases of type (iii) occurring in the 
solution process is less than 4 2 .  

PROOF. The number of artificial bases of type (iii), containing the unit vectors 
r ' ,  . . . , eJ and not containing el+', is 

In order to deal with type (iii), we need a lemma analogous to Lemma I .  More 
specifically, consider a matrix Y of order k x (k + 1) augmented into a matrix Y* 
by an additional row such that Y* satisfies our usual assumptions. Here X is of 
order k x (k - 1) and obtained from Y by deleting the first and the last columns. 
We are interested in the probability of the event in which a unit vector e' is in the 
cone spanned by the first k columns of Y, while, in the matrix consisting of the 
last k columns of Y*, the bottom row is in the cone spanned by the other rows. By 
arguments of equally probable events with intersection of measure zero (like those 
we have used in the proof of Lemma I), it follows that the probability of this event 
tends to 2-2k. It then follows that Pr(M3) tends to 2-("+"-') . Now the expected 
number of these bases occurring in the solution process is 
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from which it follows that the expected number of bases of type (iii) is less than 
m/2. 

6. Upper Bounds for Types ( i i )  and ( iv)  

The analysis of types (ii) and (iv) is slightly more complicated than that of types (i) 
and (iii). This is due to the fact that, in the case of (ii) and (iv), the coefficient X of 
the column -qo is essentially determined by a row in which the power o f t  is greater 
than n - 1, while smaller powers are present in the submatrix in the lower-right- 
hand corner of the matrix (see Section 4). However, this situation can still be 
handled. We consider type (ii) in detail. Type (iv) can then be treated analogously. 

LEMMA 6. Let Y E R(k+l)x(k+') be a random matrix fiom a distribution like in 
Lemma I ,  that is, the distribution is invariant under multiplication of rows and 
columns by - 1 ,  and every submatrix of Y is nonsingular. Let X E Rkxk be the 
submatrix obtainedfvom Y by deleting the last row and the last column. Let u E 
Rk+' be a unit vector with the unity in the first position and let u E Rk be a unit 
vector with the unity in the first position. Under these conditions, the probability 
that u is in the cone spanned by the columns of Y and -uT is in the cone spanned 
by the rows of X is not greater than 2-2k. 

PROOF. We use the notation of Lemma 1, so that the objects SY, YS, SX, XS, 
Sv, and uTS are well defined. For S C (2,  . . . , k + 1 ) and T C (2, - - . , k}, consider 
events as follows. Let ES denote the event in which v is in the cone spanned by the 
columns of YS, and let FT denote the event in which -uT is in the cone spanned 
by the rows of TX. Obviously, Es occurs if and only if Tu is in the cone spanned 
by TYS, and FT occurs if and only if -uTS is in the cone spanned by the rows of 
TXS. It is easy to see that SI # S2 implies Pr(Esl n Es,) = 0 and TI  # T2 implies 
Pr(FTl n FT,) = 0. By our symmetry assumptions, it follows that the quadruple 
(TYS, TXS, Tu, - uTS) has the same joint distribution as the quadruple (Y, X,  u, 
- uT). (Recall that 1 @ S U T.) Let GsT = Es fl FT and consider the union of the 
events GsT (S C (2 ,  . . . , k + 11, T C (2, . . . , kJ). We have already argued that 
these events have the same probability and, moreover, the intersection of any two 
of them measures zero. The union of these events is the intersection of the following 
two events. First is the event in which the coefficient c,, of the first row of X ,  in a 
representation of -uT as a linear combination of the rows of X, is nonnegative. 
Second is the event in which the coefficient c,, of the first column of Y, in a 
representation of u as a linear combination of the columns of Y, is nonnegative. 
The probability of this intersection is of course not greater than the probability of 
each of the events, which is equal to 4. Since this is a union of 22k-1 equally probable 
events, GsT, it follows that each GST has a probability not greater than 2-2k. 

It is interesting to point out that our weak model does not allow us to prove a 
stronger result. Consider the case of k = 1 with the matrix Y sampled uniformly 
from the equivalence class of the following matrix: 

that is, Y can be obtained from this matrix by arbitrary multiplications of rows 
and columns by - 1. It follows that the coefficients c, and c, have the same sign for 
any Y in the class, and the probability that both are positive is :. Under stronger 
models (see Section 7), the events are negatively correlated, so the probability of 
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the intersection is less than a. For example, if Y is a 2 x 2 matrix whose four entries 
are sampled independently from the same symmetric (with respect to zero) distri- 
bution, then it follows that the probability of both c, and c, being positive is 
precisely A. We elaborate on these issues in Section 7. 

By symmetry it follows that Lemma 6 applies to any positions (not necessarily 
identical) of the unities in the vectors u and u, except for the last position in u. It 
turns out that in this latter case the two events are in fact independent and a 
stronger estimate, 2-(2k+", can be proved by similar arguments. 

LEMMA 7. Let M2 be an artijcial basis of type (ii). Let i be an index such that 
the unit vectors el, . . . , e' are in the basis, while ei+' is not. Similarly, let j be the 
index such that the unit vectors en+', . . . , en+J are in the basis, while en+'+' is not. 
Under these conditions, the probability that M2 occurs in the solution process tends 
to a limit not greater than 2-("+"-'-'-'). ..3 

PROOF. Let a E Rk, X and (3 E Rk denote the coefficients of the last 2k + 1 
columns of MZ in a representation of a random vector as a linear combination of 
the columns of M2. As in the case of M I ,  they are determined by a smaller system, 
corresponding to the square submatrix M?, of order (2k + 1) x (2k + 1) in the 
lower-right-hand corner of M2.  Actually, X and (3 are determined by an even smaller 
submatrix in the lower-right-hand corner of M?, consisting of -XT, y and a portion 
of -qo. By arguments similar to those of Lemma 1, the probability that h and (3 
are nonnegative tends to 2-(k+'). Furthermore, the asymptotic behavior of X (as t 
tends to zero) depends only on the smallest power of c, in the portion of qo 
corresponding to rows of -XT and y. The latter follows from Cramer's formula for 
the solution of linear equations, under the assumption that the minor, correspond- 
ing to this power of e, does not vanish. Our choice of indices implies that this 
power is precisely en+'. It follows that X is asymptotically proportional to t-("+'). 
This enables us to estimate the probability that a is also nonnegative. 

Let qa and qg denote, respectively, the portions of q and qo corresponding to the 
rows of X. It is easy to see that 

a = X-'(9" + Xqg). 

Recall that all the ti's participating in q; are with i r n - I .  It follows that for any 
fixed data, each component of hqg tends to infinity when c tends to zero. However, 
the direction of q" + Xq; simply tends to the direction of ei+', since the smallest 
power o f t  in that portion of qo is the one that corresponds to this vector. Thus, 
given that A and (3 are nonnegative, the probability that a is also nonnegative tends 
to the probability that el+' is in the cone spanned by the columns of X. We are 
under the conditions of Lemma 6, with some changes of indices. Actually, the case 
where the smallest power of c, in the portion corresponding to -XT and y, occurs 
in the row of y is not covered. However, as indicated earlier, this case can be 
handled analogously, resulting in an even better bound, 2-(2k+'). The conclusion in 
our case is that the probability of A, (3, and a being nonnegative tends to a limit 
not greater than 2-2k. 

We now need to consider the rest of the coefficients, that is, those of the m + n 
- 2k - 1 unit vectors, as in the proof of Lemma 3. Consider a primal slack 
e" (n + 1 5 Y I m + n). Let W, denote the row of W corresponding to the unity of 
the primal slack and let q, denote the component of q in that row. Obviously, the 
coefficient of e" is q, - W,p + XcY-'. The probability that q, - W,(3 is nonzero is 
one. If u - 1 > n + j, then Xc"-' tends to zero with t. The probability of positivity 
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of the coeficient in this case tends to 4. If v - 1 < n + j, then Xc"-' tends to infinity 
and the corresponding probability tends to 1. 

Consider a dual slack, e" with 1 I v -c n. The arguments here are similar to those 
of the previous case. It can be verified that, if v - 1 < i, then the probability that 
this coeficient of e' is nonnegative (given that X is positive) tends to one, although, 
if v - 1 > i, then this probability tends to :. We can now summarize our findings 
about the probability that all the coefficients are nonnegative. Each c" with either i 
c u I n - 1 or u > n + j contributes a factor of i, while each of the other 6"'s 
contributes a factor of 1. The limit of the probability is thus bounded from above 
by 2-(m+n-;-j-1) . O  

COROLLARY 8. The expected number of bases of type ( i i)  occurring in the 
solution process is not greater than m2 + m. 

PROOF. Our calculations here are similar to those of Corollary 4. The num- 
ber of bases, with indices i and j as defined in Lemma 7, is (using the conven- 
tion (LI) = 1 for i r - I ) ,  

It follows that the expected number of these bases occurring in the solution process 
is not greater than 

It follows that for any n, the expected number of artificial bases of type (ii) occurring 
in the process is not greater than 

COROLLARY 9. The expected number of bases of type (iv) occurring in the 
solution process is not greater than m2 + m. 

PROOF. The arguments are very similar to those of the previous case. The 
. e probability can be shown to tend to a limit not greater than 2-(m+n-'-'-1' Th 

number of bases is 

It follows that the upper bound in the present case is 

In view of the calculations made in this section and the preceding one, it turns 
out that there is room for some improvement. First, notice the following symmetries 
between types. Suppose we assign the powers t' with 0 5 j I m - 1 to the dual 
variables, and those with m I j 5 m + n - 1 to the primal variables, and suppose 



888 I .  ADLER AND N. MEGIDDO 

we interchange the roles of primal and dual. Types (i) and (ii) are symmetric under 
this transformation, and so are types (iii) and (iv). Subject to the original assignment 
of powers oft ,  types (i) and (iii) contribute linear terms, whereas types (ii) and (iv) 
contribute quadratic terms. A quadratic term arises when there are two critical 
indices i and j, whereas a linear term arises when there is only one. More specifically, 
the first critical index is the smallest power of E that is present in the section 
according to which the coefficient of go is determined. This power is associated 
with a dual variable or a primal variable (depending on the type) that is present in 
the basis. If it is associated with a primal variable, then the second critical power is 
the smallest that corresponds to a dual variable, which is present in the basis, and 
vice versa. However, the second critical power plays its role as critical only if it is 
smaller than the first one. As we show later, any assignment of powers of c yields 
an algorithm with a quadratic upper bound. On the other hand, there is room for 
improvement in the linear term of the upper bound, in case one of the dimensions 
is substantially larger than the other one, which can be seen as follows. 

Assume m I n and let us assign the powers tJ with 0 I j I m - 1 to the dual 
variables, and those with m I j I m + n - 1 to the primal variables. Essentially, 
assign the smaller powers to the smaller dimension and the larger ones to the larger 
dimension. It follows from our symmetry arguments that, in this case, type (i) 
contributes the number of steps contributed by type (ii) subject to the original 
assignment, that is, no more than m2 + m steps. Similarly, type (iii) behaves as 
type (iv) did in the original assignment. Of course, type (ii) also behaves like type 
(i) and type (iv) behaves like type (iii). However, we are able to prove a better upper 
bound for the latter two in case n tends to infinity. Consider type (ii). Let i denote 
the critical index; that is, the first i primal slacks are present in the basis, while the 
(i + 1)st one is not. Now the second critical index is not critical at all. The number 
of bases of type (ii) with critical index i is 

The probability of each occurring is 2-("+"-" . Thus, the expected number of bases 
of type (ii) in this case is no more than 

= k=O { ( k  + 1)(;)2-"1'"i1 2 j=k (;)2-J], 

which is less than 

The latter tends to zero when n tends to infinity while m is fixed. A similar bound 
can be obtained for the expected number of bases of type (iv). However, types (i) 
and (iii) contribute a quadratic expected number of bases, so this improvement is 
not a major one. 

In general, any assignment of powers of t yields a quadratic upper bound. The 
following is a sketch of proof of this statement. Consider the orders that are induced 
on the set of primal slacks and on the set of dual slacks by the assignment of powers 
of t .  Consider any artificial basis B and define two critical indices as follows. Let i 
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be the index such that the first i primal slacks (i.e., the ones with the i smallest 
powers o f t  that are assigned to dual variables) are present in B, while the ( i  + ])st 
is not. Analogously, let j be the index such that the first j dual slacks (i.e., the ones 
with the j smallest powers o f t  that are assigned to primal variables) are present in 
B while the ( j  + 1)st is not. By arguments that have been repeated in this paper, 
regardless of the type of B, the probability that B occurs in the solution process 
can be shown not greater than 2-'m+n-'-J-1) . Th e technique of counting the bases is 
essentially the same for all the four types. It turns out that for each type the 
expected number of bases occurring in the process is O((min(m, n))2). 

7 .  The Quadratic Lower Bound 
In this section we establish that the expected number of steps is indeed quadratic 
in the minimum of the two dimensions of the problem. To this end, it is of course 
sufficient to show that the expected number of bases of type (ii) is Q((min(m, n))2). 
As in the previous sections, we continue to assume without loss of generality that 
m 5 n. 

For the lower bound result we need a stronger probabilistic model. A convenient 
model is as follows. We simply assume the entires ofA, b, and c to be independent, 
identically distributed random variates, with a common distribution that is sym- 
metric with respect to zero. This assumption strengthens the symmetry under 
reflection conditions assumed earlier in this paper. On the other hand, the result 
implies that there is no asymptotically better upper bound under the weaker model. 
We also assume nonsingularities as before. 

The following lemma complements Lemma 6, under the stronger model. 

LEMMA 10. Let Y E ~ ( ~ + l ) " ( ~ + l )  be a matrix whose entries are independent, 
identically distributed random variates whose common distribution is symmetric 
with respect to zero. Also, assume all the minors of Y to be nonzero. Let X E Rhxk 
be the submatrix obtainedfrom Y by deleting the last row and the last column. Let 
u E Rh+' be a unit vector with the unity in the first position and let u E Rk be a 
unit vector with the unity in the first position. Under these conditions, the probability 
that u is in the cone spanned by the columns of Y,  and -uT is the cone spanned by 
the rows o f X ,  is between 2-2k-2 and 2-2k-1. 

It follows by symmetry that the same result holds for any positions (not 
necessarily identical) of the unities in the vectors u and u, except for the last 
position in u. As indicated earlier, in the latter case, the two events (namely, the 
inclusion of u and - uT in the respective cones) are independent, so that under an 
even weaker model the probability of the intersection is precisely 2-2k-'. 

For the proof of Lemma 10 we need several preparatory lemmas. The first is a 
fact of linear algebra. 

LEMMA 1 I. Let X E ~ l ' " ~  be any matrix and denote a = XI I ,  a =   XI^, . . . , 
XIk)T and b = (Xzl, . . . , Xkl)T. Also, let U E ~ ( ~ - l ) " ( ~ - ' )  denote the lower-right- 
hand corner o f X  and suppose U is nonsingular. Under these conditions, 

PROOF. Since 
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it follows by row operations that 

det X = det 
U '  I 

which implies the lemma. 

The following lemma is again of linear algebra. 

LEMMA 12. Let Y E ~ ( ~ + l ) " ( ~ + "  be any matrix and denote submatrices of Y as 
follows: 

( i )  Let X E Rhk be the submatrix of Y in the upper-left-hand corner. 
( i i )  Let Z E Rkk be the submatrix of Y in the lower-left-hand corner. 

(iii) Let W E  RkXk be the submatrix of Y in the upper-right-hand corner. 
( iv)  Let V E Rhk be the submatrix of Y in the lower-right-hand corner. 
(,,) L~~ ,y E ~ ( k - l ) ~ ( k - l )  be the center submatrix of Y (obtained by deleting both 

the first and the last row and both thefirst and the last column). 

Under these conditions, 

det( Y)det( U )  = det(X)det( V) - det(Z)det( W ) .  

PROOF. Represent the matrix Y in the following form: 

Now, if U is nonsingular, then row operations give 

I a - aTU-lb 0 p - aTU-'c 
det Y = det b U c 

Y cT 6 

Expanding along the first row gives 

det Y = ( a  - aTU-lb)det V + (- l ) k ( / 3  - aTu-'c)det Z. 

It follows from Lemma 1 1  that 

det X = ( a  - aTU-lb)det U and det W = (- l )k- ' ( /3 - a'U-lc)det U 

from which the result follows. If U is singular then there are nonsingular U"s 
arbitrarily close to U and the result follows by continuity of the determinant 
function. 

The following is a simple probabilistic lemma. 

LEMMA 13. Suppose u and u are independent, identically distributed random n 
vectors, and let C C R n  be a random set (independent of u and u )  from any 
probability space whose elementary events are measurable subsets of Rn. Under 
these conditions, 

Pr({u, uJ G C )  r Pr(u E C)Pr(u E C). 

PROOF. Obviously, 

Pr(u E C )  = Pr(u E C).  
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Denote by Pr* the probability of an event where C isjxed. It follows that 

Let p denote the probability measure corresponding to the sampling of C. It follows 
that 

= (Pr(u E C))2 = Pr(u E C)Pr(u E C), 

where the inequality follows from Jensen's inequality. 

We now apply Lemmas 11  and 13 in a situation that involves random matrices. 

LEMMA 14. Let Y E R(k+')x(k+l) be a matrix whose entries are independent, 
identically distributed random variates, such that their common distribution is 
continuous and symmetric with respect to zero. Let X, V, 2, and W be the four 
corner submatrices of Y of order k x k as dejined in Lemma 12. Under these 
conditions, 

Pr(det(X)det (V)det(Z)det( W) r 0) r i .  
PROOF. By the continuity assumption, all minors of Y are nonzero with 

probability one. Let a,  a, b, and U be as in the previous lemmas, and also denote 

It follows from Lemma 11  that the product of the four determinants is equal to 

(det(U))4(a - aTU-lb) (p - aTU-Id) (y - cTU-Ib) (6 - cTU-Id). 

Obviously, it is sufficient to consider the sign of 

We now apply Lemma 1 1. Let u = (Y1 ,, . . . , Yl,kcl )T, that is, u = (a, aT, /?)T, and 
T u = (Yk+l,l, . . . , Yk+,,k+ I )  , that is, v = (y, cT, Given the values of Y, for i = 2, 

. . . , k and j = I ,  . . . , k + I ,  let C denote the set of all vectors (a, aT, @)T such that 

We note that also 

if and only if (7, cT, 6)T E C. Let C' denote the complement of C and note that 
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under our model all the determinants are nonzero with probability one. Thus, 

We now return to questions that are more closely related to those we were 
dealing with in the previous sections. The following lemma constitutes the essence 
of Lemma 10. 

LEMMA 15. Let Y, X, u, and u be as in Lemma 10. Let c, denote the coefficient 
of the first row o fX  in a representation of -uT as a linear combination of the rows 
of X, and let c, denote the coefficient of the first column of Y in a representation of 
u as a linear combination of the columns of Y. Under these conditions, the probability 
that both c, and c, are positive is between and :. 

PROOF. Let U, V, W, and Z be as in the previous lemmas. Obviously, 

det( U )  c u =  -- det( v) 
det(X) 

and c, = - 
det( Y) 

We are interested in the event E in which 

First, note that, when the first row of Y is multiplied by -1, then the signs of c, 
and c, are reversed. Since the distribution of Y is invariant under this operation, it 
follows that 

However, by Lemma 12, 

Consider the random variates 4 = det(X)det(v) and 11 = det(Z)det( W). Obviously, 
[ and 7 are identically distributed. Moreover, the common distribution is symmetric 
with respect to zero since they change sign when the first column of Y is multiplied 
by - 1. It follows that 

This establishes the upper bounding part of our lemma. 
On the other hand, 

so, in view of Lemma 14, we also have 
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We are now able to prove Lemma 10. 

PROOF OF LEMMA 10. The proof follows directly from Lemmas 6 and 15. By 
Lemma 15, the union of the events GST has probability between : and $. Since 
these are 22k-' equally probable events (and the intersection of every two of them 
measures zero), it follows that each has probability between 2-2k-1 and 2-2k-2. This 
completes the proof of Lemma 10. 

We now have a result stronger than that of Lemma 7. 

COROLLARY 16. Under the conditions of Lemma 7 ,  subject to a model in which 
the inputs are independent, identically distributed random variates (symmetric with 
respect to zero), the probability that M2 occurs in the solution process tends to a 
limit bet ween 2-("+n-i-/+ 1 ) and 2-(m+"-l-~) 

PROOF. The proof is essentially the same as that of Lemma 7 ,  taking advantage 
of the result of Lemma 10. 

Before stating the lower bound result, we need a combinatorial lemma. 

LEMMA 17. Foreveryk, k =  1 ,2 ,  . . . ,  

PROOF. The proof goes by induction on k. The lemma is obviously true for 
k = 1 .  The inductive step is as follows 

Notice that 

The rest of the proof follows easily. 

Finally, we can prove a quadratic lower bound on the expected number of bases 
of type (ii) occurring in the solution process. 

THEOREM 18. The expected number of bases of type ( i i )  occurring in the solution 
process grows quadratically with m. 

PROOF. We rely on figures obtained in Corollary 8 and the lemmas of the 
present section. The number of bases, with indices i and j as defined in Lemma 7, 
is 








