LOCATING THE BOUNDARY PEAKS OF LEAST-ENERGY SOLUTIONS TO A
SINGULARLY PERTURBED DIRICHLET PROBLEM

TERESA D’APRILE AND JUNCHENG WEI

ABSTRACT. We consider the problem
E2Av—v—mVo+ fo) =0 AV +y2v]2 =0, v=V =0onaQ,

where Q C R? is a smooth and bounded domain, €, y1, 2 > 0, v, V : Q - R, f : R — R. We prove
that this system has a least-energy solution v. which develops, as e — 07, a single spike layer located
near the boundary, in striking contrast with the result in [35] for the single Schrédinger equation.
Moreover the unique peak approaches the most curved part of 92, i.e. where the boundary mean
curvature assumes its maximum. Thus this elliptic system, even though it is a Dirichlet problem,
acts more like Neumann problem for the single equation case. The technique employed is based on
the so called energy method, which consists in the derivation of an asymptotic expansion for the
energy of the solutions in power of € up to the sixth order; from the analysis of the main terms of
the energy expansion we derive the location of the peak in €.

1. INTRODUCTION

In this paper we study the following problem:
e?Av—v—yVo+ flv) =0 in Q,
(1.1) AV 4+ yv? =0 in Q,
v, V>0inQ, v=V =0 on 0N.
where Q C R? is a smooth and bounded domain, €, v, 72 > 0, v,V : Q@ = R, f : R —+ R. Solutions

of (1.1) correspond to the stationary waves for the following Schrédinger-Poisson system:

i8%2—52A¢+¢+’Y]V¢—f(¢)7 AV+,)/2|¢|2:0-

This system, first proposed by Benci-Fortunato ([2]) and later studied in [4], [10], can be used as
a model in Quantum Mechanics to describe a charged particle interacting with its own electrostatic
field. The purpose of this paper is to construct a single spike for the system (1.1) located near the
boundary, where by single spike we intend a solution whose shape has the form of a unique peak which
becomes highly concentrated when ¢ is sufficiently small.

When 72 = 0 (1.1) reduces to the single Schrédinger equation:
(1.2) e?Av — v+ f(v) =0,
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for which the existence of single and multiple spike solutions has been extensively studied. Concerning
equation (1.2) in a bounded domain with Neumann boundary condition, Ni and Takagi in [32]-[33]
first proved that for ¢ sufficiently small there is a least energy solution v. with the property that v. has
exactly one maximum point P. in Q, and P. must be located on 8 and near the most curved part of
the 09, i.e., H(P:) — maxpeoq H(P), where H(P) denotes the mean curvature of the boundary 9€.
On the other hand, for equation (1.2) in a bounded domain with Dirichlet boundary conditions, Ni
and Wei in [35] showed that the least energy solution develops a spike layer at the most centered part
of the domain, i.e., dist(P-,0Q) — maxpeq dist(P,0Q). Since then, there have been many papers
looking for higher energy solutions. More specifically, solutions with multiple boundary peaks as well
as multiple interior peaks have been established. It turns out that a general guideline is that while
multiple boundary spikes tend to cluster around the critical points of the boundary mean curvature
H(P), the location of the interior spikes is governed by the distance between the peaks as well as from
the boundary 02 (see [1], [6], [7], [8], [16], [17], [23], [24], [25], [26], [27], [30], [31], [32], [33], [34], [35],
[37], [38] and the references therein). In particular, it was established by Gui and Wei ([26]), that
given two arbitrary integers l; and [ there exist solutions for the Neumann problem associated to
(1.2) with I; peaks on the boundary and Iy peaks in the interior.

The asymptotic analysis of (1.1) has been started very recently in the papers [12]-[15] and [36].
The radially symmetric case has been investigated in [11], [13], [14] and [36]. In [14] and [36] it is
proved that for 1 < p < % there exists a family of positive radial solutions in R? which concentrates
at a sphere. In [11] and [13] the concentration on an internal sphere and on all the boundary 92
respectively is produced for the problem (1.1) when Q is the unit ball of R*. In the other recent
papers [12] and [15] multiple interior spikes have been shown to exist for (1.1) in the case of general
bounded domain 2 C R? (near the harmonic centers of ) or of all RV respectively. However boundary
peaked solutions have not yet been observed for (1.1) even in the case v2 # 0. This paper seems to

be the first attempt in this line.

Before stating our main result we first enumerate the assumptions on the function f that will be

steadily assumed:

f1

f e C*(R); f(t) =0 fort <0;
f2) L1

is nondecresing in ¢t > 0;

t

(1)
(2)
(f3) f(t) = O(t?) as t = +oo, where 3 < p < 5;
(f4) there exists a constants § > 4 such that 0 < 0F(t) < f(t)t for all £ > 0, where F(t) = [, f(s)ds;
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(f5) the problem in the whole space
Aw —w+ f(w) =0, w>0in R?,

w(0) = maxw(z), lim w(z)=0,
z€ER3 |z| =400

has a unique solution w, which is nondegenerate, i.e., denoting by L the linearized operator
L:H*(R*) - L*(R*), Llu]:=Au —u+ f'(w)u,

then

Kernel(L) = Span{ ow Ow  Ow } .

Oz, Oxy’ Oxs
By the well-known result of Gidas, Ni and Nirenberg ([21]) w is radially symmetric and strictly de-

creasing in r = |z|. Moreover, by classical regularity results, w € C?(R?) and the following asymptotic

behavior holds:

(1.3) w(r), w'(r) = ée*’"(l +()(1))7 w'(r) = —ée*’“(l —|—()(1))=

r r r

where A > 0 is a suitable positive constant. Note that assumptions (f1)—(f3) imply
(1.4) f@) < et +ealt?, F(t) < Cilt|* + Colt|PT" vt > 0.

Typical examples of f satisfying (f1)-(f5) include f(t) =t} where 3 < p < 5. Other nonlinearities
can be found in [5]. The uniqueness of w is proved in [29] for the case of power-like f; for a general
nonlinearity, see [3]. The nondegeneracy condition can be derived from the uniqueness argument (see
32).

In order to provide the exact formulation of the main result of this paper we recall the variational
structure of the system (1.1): indeed for every v € Hj(Q) let (—=A)~'[v?] € H}(Q) be the unique

solution of the following problem
AV +92=0inQ, V =0 on 99.

Then (1.1) is equivalent to

E2Av —v—y(=A) ' u+ f(v) =0 in Q,
(1.5)
v>0in Q, v=0 on 99,

where v = 7172, and associated to (1.5) is the following energy functional:

_ 1 21Vl + 012 de + L A Y o2lolde — v)dz
(1.6 L= 5 [ (VP 4 P)do+ ] [ () e - [ Flo)de

Our aim is to establish the existence of least energy solutions v. for (1.5) and to show that v. exhibits
a point-condensation phenomenon as ¢ — 0. More precisely, when ¢ is sufficiently small, v, has
a single spike centered at a point P. which approaches the boundary as ¢ — 0%, while v, vanishes

everywhere else. Hence a natural question arises immediately to ask which part of the boundary the



4 TERESA D’APRILE AND JUNCHENG WEI

points P. are situated near, and it is the purpose of this paper to answer this question and to give an
accurate description of the profiles of the solutions v.. Indeed we shall prove that this unique peak
must be situated near the most curved part of 9€, i.e. where the boundary mean curvature assumes
its maximum; more precisely any limiting point Py of the family P. is such that H(F,), the mean

curvature of 9 at Py, is a maximum value of H(P) over Of).

Now we proceed to state our main theorem.

Theorem 1.1. Assume that Q C R® is a smooth and bounded domain and that hypotheses (f1)-(f5)
hold. Then for every e > 0 there exists a least energy solution v- € H}(Q) of (1.5). Furthermore,

as € — 07, v. develops a spike near the mazima of the mean curvature; more precisely there exists

P. € Q such that
(1) ve(z) = w(%) + o(1) uniformly in Q;
(2) dist(P-,0Q) = (14 o(1))elog L.

Finally, for every sequence €, — 0%, up to a subsequence,

(3) P., = Py € 002 where H(Py) = Ho := maxpepq H(P).

Remark 1.1. Notice that if, in addition, we assume the existence of a unique global mazimum Py of
H(P), Part (8) of Theorem 1.1 holds for all the families P-, without need to pass to sequences, and

all the waves v. concentrate at that point Py as e — 0F.

It is interesting to see how the geometry of the domain determines exactly the location of the spike-
layers as well as how this result is in striking contrast with the result in [35] for the single Schrédinger
equation (1.2) with Dirichlet boundary condition, in which the least energy solutions are located at
the most centered part of the domain. Furthermore, it is also known that there are mo spike-layer
solutions concentrating near the boundary for the Dirichlet problem associated to (1.2) (see [8], [39]).
On the contrary least energy solutions with a single boundary peak closed to the maxima of the mean
curvature are known for (1.2) with Neumann conditions. So we are in presence of a Dirichlet problem
which acts more like a Neumann problem for the single equation case. To our knowledge, the only
other result concerning boundary concentration occurring for a Dirichlet problem is known for the
FitzHugh-Nagumo system by Dancer and Yan in [8] and [9]; however in [8] and [9] only the existence
of such solutions is proved and the exact boundary limiting points are not determined. This paper
seems to be the first one that succeeds in locating exactly the boundary spikes for a Dirichlet problem.

The proof of Theorem 1.1 is based on the energy method, i.e. on the derivation of an asymptotic

formula for the smallest critical value J* := J.[v:] as € — 0%, in the spirit of [32], [33], [35]. However,
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here the technique is more complicated since we have to expand the energy up to the sixth order. The
first object is to apply the Mountain-Pass Lemma to obtain a critical point v, of J.; furthermore we
prove that v, is actually a least-energy solution of (1.5), by which it is meant that v. has the smallest

energy J* among all the solutions to (1.5), and J7 can be characterized as

(1.7) JX = inf max J.[tv].
vEH}(Q) t>0

Then we show that for € sufficiently small v, is a single spike solution which is localized in a e-

h w — +o00. Next, the critical step is to know the

neighborhood of a maximum point P. wit
detailed structure of v, around P.. To do this we first use the solution w of the limiting problem (1.3)
to construct a family of suitable functions w. p and then prove that the solution v. can be obtained
as a suitable perturbation of w. p.. To perform such approximation we make extensive use of the
nondegeneracy condition (f5). Once we have obtained the shape of v., we have to expand J.[v.] = J*
up to the order O(g%). The first term in the expansion formula of J* is given by I[w]e®, where I[w]

is the energy of w:

1 ) ) 1

Iw]) == | ([Vw|* + |w|]")dz — F(w)dz = = f(w)wdx — F(w)dz.

2 Jps R3 2 Jps R3
The first correction term in J* involves the distance function P: from the boundary, while the boundary
mean curvature appears in the fourth term. The location of P, is determined by using . p as
comparison functions (for suitable P € Q), i.e., according to the characterization (1.7), we compare
J¥ with max;>o J.[t. p]; such comparison gives information on the terms in the asymptotic expansion

of JZ, in particular on dist(P-,0) as well as on which portion of the boundary P. approaches to.

The paper is organized as follows. Section 2 is devoted to introduce some notation and preliminaries.
In Section 3 we construct the approximated solution w. p and we determine its shape. Section 4
contains the expansion of the functional J. on W, p as a function of € and P. In Section 5 we
construct the least energy solutions v. and prove that their shape can be approximated by . p., for
suitable P € 0, up to a certain order £7; furthermore an upper bound for the critical values J is

derived by using . p as comparison functions and computing max;>q J:[tw. p|. Finally the proof of

Theorem 1.1 is completed in Section 6.
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of Hong Kong in April 2005. She gratefully acknowledges the Department of Mathematics at CUHK
for their hospitality.
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NOTATION

- Given A C R? an open subset, LP(A) is the usual Lebesgue space endowed with the norm
lullf, = / |ulP dz for 1 <p < +00, ||ul|eo = sup |u(z)].
JaA z€A
Furthermore H}(A) is the usual Sobolev space endowed with the norm

l|ul|3: = /A (IVul® + [ul?) dz.

- If u:RY — Ris a radially symmetric function, we will continue to denote by u the real function
r >0~ u(x) with |z| = r.

- We will often use the symbol ¢ or C' for denoting different positive constants independent on &.
The value of ¢, C is allowed to vary from line to line (and also in the same formula).

- 0o(1) denotes a vanishing quantity as ¢ — 0F.

- Given {ac}es0 and {b:}c>0 two family of numbers, we write a. = o(b:) (resp. a. = O(b.)) to

mean that §= — 0 (resp. |a.| < C|b.|) as e — 0F.

2. PRELIMINARIES

In this section we collect some preliminary results concerning the variational structure of the system
(1.5). In particular we recall some well-known facts on the representation formula for the Poisson
equation: for a smooth domain there exists a unique Green’s function G(z, z) of the Laplace operator
with Dirichlet boundary condition (see [28]). Furthermore G is symmetric in z and z and

1

dm|x — 2|

(2.8) 0<G(z,2) < Vr,z € QA x Q, x # 2.

Proposition 2.1. Let Q be a smooth and bounded domain of R*. For every g € L?(Q) denote by
(—A)~'[g] the unique solution in H}(Q) of

(2.9) —AyY =g.
Then the following representation formula holds:

(2.10) (-8) lolta) = [ Glog(2)a.
Furthermore
a) [o(—=A) 'glhdx = [,(—A)""[h]gdx for every g, h € L*(Q);
b) [[(=A) " glllec < Cligllr2 for every g € L*();
c) [[(-4)

“olllee < €%Mlglloc + Zllgller for every g € L®(Q);
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d) the functional J :u € Hy(Q) — [, u?*(—=A) " [u?]dz is C' and

(J'[u],v) = 4./9 uv(—A) u?ldr VYu,v € Hy(Q).

Proof. By Lax-Milgram’s Lemma we get the existence of a unique solution in HJ(Q) of (2.9). The
representation formula (2.10) holds for u € C§°(Q) (see, for example, [20, pg. 23, Theorem 1]); by
density (2.10) can be extended to any g € L?(2). a) follows immediately from (2.10) and Fubini-

Tonelli’s theorem. By (2.8) for every g € L2(f2), by using Holder’s inequality, we have

oy < g [ T < il (i) < gl

while, for g € L>(Q),

(D) gl(a)] < = 9(2) +—/mmZ

4m J|z—z|<e |Z—ZE|

”gHoo / 1 E2”9”00 1
— Ar yl<e ‘Z‘ z 47T6||g||L1 5 47.‘-6||g||L1

and we obtain b)-c).

Part d) is a direct computation. O

In view of d) of Proposition 2.1 the energy functional J. defined in (1.6) is of class C(H{ (Q2), R)

and its critical points correspond to the solutions of (1.5). Furthermore .J. can be rewritten as
2
J.[v] :%/ (IVul> + v?)dz —/ u)de + — / / G(z,z) u?(2)dzdz.
Q

3. COMPUTATION OF 1, p

In this section we introduce some suitable approximated solutions and derive some crucial estimates:

first set
rz— P
€

wgyp(m):w( ), z, PR3,

Next for every P € R? define . p to be the unique solution of the problem
(3.11) E2A'll~)g’P — e p+ f(wep)=0in Q, w. p =0 on AN
From the comparison principle it is immediate that

(3.12) 0 < 1. p(7) <w.p(r) VreQ, VPeR.

The goal is to obtain an asymptotic expansion of the approximations w. p. To this aim some prepa-

rations are needed. First define the distance function dp from the boundary 02 by

dp = dist(P,09), P €R>.
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The regularity of 2 implies that 92 satisfies the uniform interior and exterior sphere condition; that
is, at each point @ € 99 there exist two balls By, By such that B; N Q = {Q}, Bo N (R* \ Q) = {Q},
and the radii of the balls By and By are bounded from below by a positive constant; taking such
constant as u, we obtain that, set
Ly ={PeQldp <p},

for every P € T', there exists a unique Xp € 01 such that |Ep — P| = |Xp — P*| = dp = dp-, (see,
for example, [22], pg. 355), where P* = 2Xp — P (i.e. P* is the symmetric of P with respect to the
tangent plane at 9 in ¥ p). Notice that by construction, using (1.3),

(3.13) wep(7) <O <0 e VeeQ vPeT,.
’ dp dp
(3.14) we, p () SCie b <C—e E Vz e R®\Q, VP e R,
' dp dp

For every P € T, let H1(Xp), Ha(Xp) be the principal curvatures of 9Q at ¥p, so that the mean

curvature H(Xp) of 00 at X p is given by the average:

Hi(Xp) + H2(Zp)
5 .

H(Xp) =

We introduce a diffeomorfism which straightens a boundary portion near Xp: consider Tp(z) the
rotation and translation of coordinates which map ¥ p in 0, the inner normal to 9Q at X p in the
positive £3 coordinate axis and the principal directions corresponding to Hi (X p), Ha2(Xp) in the £, £y
axes. Then Tp(P) = (0,0,dp), Tp(P*) = (0,0, —dp) and in some neighborhood of 0 the boundary
O(Tp?) can be represented by

wp(y')
y'|?

1
(3.15) v =35 Z H;(Ep)y; +wp(y'), =0, where ' = (y1,92)-

i=1,2

Before providing in Proposition 3.1 the asymptotic expansion of the approximated solutions @, p

we state first the following useful result.

Lemma 3.1. Fiza>0,b>0. For P € I'y, such that d?” is sufficiently large the following holds

b b ad
w? \1/ | H + g3 / we pe |Zb| dr < CP;%J’ (y =Tp(z)).
Ja

Proof. According to (3.13), for ’i?P sufficiently large we get

e )m | e T PR R A

< Cete _20dp (H a/g(u +dp/q) ly'|® HLOO o 4o '/Rg a/?('l/ +jp/q) bedy)

adp

2d 2
< e (Ju W)y Pl o) + / Wt By dy) < Cebe
JR

ad
y'|Pdx < Ce= 7" (ng/s*

a
||“’e,P*
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Proposition 3.1. For P € Q such that ’i?P is sufficiently large the following estimates hold:
i) w. p(z) = w. p(z) + O(*) uniformly for v € Q and P € Q\ T;

ii) . p(r) = we p(x) — we p= (x) + O(€)he p(z) + k- p(x) uniformly for x € Q and P € T, where

he p and k- p solve

12
(3.16) 62Ah5’P —hep=0inQ, h.p= wE’p*% + &t on 09, y=Tp(x),
(3.17) 52Ak57p —kep=—f(wep+), kep=0 ond.
Furthermore
(318)  herl’ + 573/ B2 pdz = OE +e 5, hepl’ + 673/ K pdz = O ")
Q Q

uniformly for P € T',,.

2d

iii) eVide p(P) = O(e* + e~ 72 + e ).

Proof. The proof of Part i) is immediate: indeed w. p — W, p satisfies
EQA(U)Ey — e p) — (wep —Wep)=0inQ, w.p— W, p=w.p on .

On the other hand by the definition of T, w. p < Ce~¢ = O(e*) uniformly for z € 9Q and P € Q\T,,.

The maximum principle implies w. p — w. p = O(e*) uniformly for z € Q and P € Q\T,.

We go on with the proof of Part ii), which is more technical. During its proof it is understood,

even though not stated plainly, that all the estimates hold uniformly for P € I';,. First decompose
UN)E,P = We,p — We, Px — 5h6 + ks

where h. solves the following problem

EQAiLE —ﬁs =01in Q, ﬁs = Ye.p 7 We,Pr on A1,
€

and k. = k. p solves (3.17).
The first object is to prove the following estimate for the boundary points:

|we p(x) — we px ()]

ly'[?
€ 2

< Cwe. p«(x) 4
€

(3.19)

+e€
uniformly for z € 9Q. Indeed

dp < |v — P| = |y — dpls| = \/d% + |y|2 — 2dpy; > |y,

(3.20)
dp < |z~ P*| = |y +dpls| = /@ + [y[> + 2dpys > 1y
uniformly for z € 9Q. Using (3.15) we have y3 = O(|]y’|?) on 99; consequently
|l = PP — o — P*?| _ Adplys|
e P+l P a P+ P

(3.21) |l = P| = |z = P*[| = < 2lys| < Cly'[.
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uniformly for x € 9. Take z € Q) and distinguish two cases: first assume |y'| > 1/¢; then, by (3.20),
"T - P|/ |T o P*‘ > \/ga and: bY (13)/

lwe p(z)], |we p(z)| < C\/Eeiﬁ < €.

Next assume |y'| < \/e; then for every r € [min{|z — P|, |z — P*|}, max{|z — P|, |z — P*|}] by (3.21)

we have W;P*H < C, by which, using again (1.3)

r £ _Irl € la—P*|
w'(—)‘ <(C-e = <C———e " = < Cw.p-(2);
‘ e/l = " r ~ |z — P*| - e, P ();

hence, by applying the mean value theorem, we get

—P|— |z — P*
= Plole =Pl _ o
€ €

/|2

w2 p(2) — we,p ()] < Cuwe, e (2)

uniformly for x € 90 with |y'| < \/e. Hence (3.19) holds. The maximum principle applies and gives
|h.| < Ch. where h. := h. p.

lv'|?

By multiplying both members of (3.16) by h.(z) — w. p-(z) 5 — &* and since, using (1.3)

/|2

) o1+ 5

‘V(wE’P*(w) |y2
€

integrating by parts we get
/|2

/(52|Vh5\2 + h2)dx < 0/ W, pe (1+ |y2 )(5|Vh5| +h6)daz+54/ h.dx
Q Q € Q

2 y'[*\? 1/2 2 2 oy /2 4 2\ /2
< c(/wg . (1+ . ) dm) (/(5 IVh.| +h,5)) +Ce (/ h,g)
Jao € JQ Jo
‘ ‘ 1/2 1/2
< Ce¥2e 5 (/ (2| Vhe|? + hg)dx) + 054(/ h2)
Q Q
where, in the last inequality, we have used Lemma 3.1. In the same way, by multiplying both members

of (3.17) by k., since by (1.4) f(w) < Cw?, we have

2dp 1/2
/(52|Vk5\2 +E)dz < C / w? pkeds < Ce¥2e= " ( / Kda)
Jo Jo Jo

and a first part of (3.18) follows. In order to complete the proof, first notice that by the maximum

dp

2
< Ce 73 on

ly'|?
62

principle we derive h., k. > 0 in . Furthermore according to Lemma 3.1 w. p~

0Q), hence from the maximum principle, [|he plloc = O(e’Q:TP +¢*). In the same way f(w. p+) <

2d 2d
Cw? p. < Ce~~+ on 9, then the comparison principle gives ||k, p|loc = O(e™ = ).

2d 2d
Finally to prove Part iii), observe that z. p = (¢' +ee~ 5 +e~ = )~ '(w — . p(ex + P)) solves

Az. p =z p in B(0,1)

(note that for 22 is sufficiently large we have B(0,1) C £=£). Furthermore by Parts i)-ii) it follows

|P—P*| Sdp

that z. p is uniformly bounded on B(0,1) (note that w. p«(ex + P) < Ce™ = < Ce ?= on
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B(0,1)). Then from the well-known Schauder interior estimate z. p and its first and second derivatives

are uniformly bounded on the compact sets of B(0,1). Then iii) follows. 0
An easy consequence of Proposition 3.1 is the following corollary.

Corollary 3.1. Setting w. p = 0 for & ¢ Q, we have . p(ex + P) — w in H'(R*) and L>(R?) as

dT" — 400 uniformly for P € ().

Proof. First observe that |lwe p(ez)l g1 o\ 2, [|we,p(e2)]| poc moy 2) — 0+ as 22 — +oo uniformly

for P € Q. On the other hand for P € T, since d% = %2 then we deduce l|lwe, P (e2)|| 1 2y,
lwe, P+ (ex) | oo (2) — 0T as d?’” — 4o00. Then by i) and ii) of Proposition 3.1 this implies that
we p(ex) — we p(ex) — 0 in L2(R?) and L>®(R?) as ’i?P — +o00 uniformly for P € Q. By multiplying

equation (3.11) by . p and integrating by parts we get

50 p(e) s oy = [ Fw)iep(en + P [ flwpwds = [0l e,
JR3 JR3

by which @, p(ez + P) = w in H'(R*) as 22 — +o0 uniformly for P € Q. O

Our next lemma provides an estimate of the error up to W, p satisfies the system (1.5). To this

aim set

S.[v] = ?Av —v — y(~A) v+ f(v), ve H*(Q).

Lemma 3.2. For P € Q such that ’i?P is sufficiently large the following holds:

Sz [ie,p]| < C’(e*% +ee i +62)wi’/;l.

Proof. According to c) of Proposition 2.1 and (3.12)
[(=A) w2 plie p| < *([[w? pllp(o) +e 1wl pllLi))wep < Ce*we p.
We just need to estimate the local term: by (3.11) and assumption (f1) we deduce

|82A1D5,p — W p+ f(?T)Evp)‘ = |f(’17)57p) — f(wg,p)‘ < Cwe p (wg,p — 17)5713).

If P e Q\T, the thesis follows from Part i) of Proposition 3.1. Now assume P € T',,; By using Part

ii) of Proposition 3.1 we get

9 A~ y N _2p - _2dp
‘5 A’LU57P—'LUE’P+f('LUg’P)|SC’LUE’P(’LUE’P* +5h€,P+ke,P)Scwe,P(we,P* +ee 3 +e +e = )
In order to conclude by (1.3) and (3.13) we compute

1/4 _gl=—P|_gl=—P*| _dp 1/4 _gle=pP*l _dp 1/4 _Tdp
wgypwgyp*ngEfPe 3 3T e SCwE’/Pe R P :C’w&/Pe EE

uniformly for x € Q and P € [',. O
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4. EXPANSION OF J,[the p]

This section is devoted to compute the energy of the approximated solutions . p. Since the
computations are quite long and technical, for the sake of simplicity we provide the expansion for the
internal energy and the nonlocal term [, (~A)~'[w? p]w? p separately in the next Propositions 4.1

and 4.2 respectively. First we need the auxiliary results provided by the following two lemmas.

Lemma 4.1. For P € I, such that ’i?P is sufficiently large the following holds

dp\ == —b+1 da
SCEB(—P) ? ¢ 2 ifa>b>0,c>0,
€
e c—3a+3
b 1Yl dp\ =52, 4 :
/ we pw; p- e drzq < 053(—P) P2 ifa=0b>0, c>0,
Ja €
d c—at+3 _p B
< 053(—P) ’ e (@tt) 72 if0<a<b, c>0,
€

where y = Tp(z).

Proof. By using (1.3) and (3.13) we get

e b
a b ‘U ‘ €
/11)57,311)57,3* e dr < Cd_b
Ja

—dpt ly+dpesl |y'|®
wa(y P3)efb+3|y| dy
15

p JR3 ec
3+b 3+b
€ byt 24P ts . € _ blutade .
<O [t Ry < 05 [ et vy
P ’ P :

where (¢ — a)+ = max{0, ¢ — a}. Now observe that

d & dp _ 2d 2 2 2
PRELINE \/|y2+4—';+4y3—P >2p Wy s 2 W,
€ 15 15 15 4dp 15 4dp

by which

d o d lv|?
/ e alvle by 25 bl g1 (e—a) s gy < 6*26%’/ e*a\yHb\ya\e*b&—pE‘y"(C*ﬂ)+dy.
R3 R3

Now we distinguish the three cases: first assume a > b; then

2 12
/ efa\ywbwya\efb%f|yf|<c—a>+dyS/ef(a—wyg\dyg/ o Ve |y (em )+ gy
R3 R R2

(c—a)y ,
< (d_P) z “/ ef(afwyg\dy&,/ e~V |y (=) gy
g R3 R2

2 2 (c—a)y +3
/ el el () gy < / 67“%E|y'|<ﬂ>+dy:(d—'3) 2 / ey () vdy.
R3 R3 g R3

Finally, if b > a, then by (3.13)

e b—a e
Y 3 (b—a)lP Y
/71}?7P71}§7P*‘ P‘ dx < . e (b-0)= 11);}311)?’1;,*%@7
JQ e” P JQ ev

and the thesis follows from the previous cases. 0

Now assume a = b:




BOUNDARY PEAKS 13
Lemma 4.2. The following limit holds
B
fw)w(y + pls)dy = ;(1 +o(l))e” asp— +oo, B=A[ f(w)e "dy.
R3 R3

Proof. The proof is an easy consequence of Lebesgue’s Dominated Convergence Theorem. According

to (1.3) for every y € R® we have

(4.22) lim 77”('1/ + rls) —e ¥ = lim e Wtrlsltr _ vz —
p——+o00 %e*l] p—+oo

Observe that, if [y| < &, then |y 4 pl3| > §; hence, by using (1.3) we get
w(y + pls)
flw)————= < 2f(w)————
T A TR
On the other hand, for |y| > £, by (1.3) and (1.4) we obtain
w(y + pl
f(w)g
w(p)
Since f(w)el¥l € L' (IR?), the convergence (4.22) is dominated. O

P elvl < 4f(w)elv!,

P

< C'Ilwlloow3

e 3t < Ollw||oce V.

Now we are ready to provide in the next two propositions the asymptotic formula for the energy

Je[ve).

Proposition 4.1. The following asymptotic expansion holds:

1 ‘ ‘ ‘ d /d
(4.23) 3 /Q (°|Viise,p|” + @2 p)dx — /Q F (i p)dz =I[w]e® + ESQ(?P) + 0(84 ?Pe*Qd?P)

d d
+o(e® + % T 43T,

as ’i?P — +oc uniformly for P € Q, where o : RY — R is defined by

(4.24) ap) = =

B _.
5 flw)w(y + 2pls)dy = (1 + 0(1))4—672‘)03 p — +o00.
R3

p

Proof. We begin by observing that by assumption (f1) and (3.12) we get

F(we p) = F(we p) + f(we p)(We p — we p) + O(we p(e p — wE,p)Z)

uniformly for xz, P € Q, by which, using equation (3.11), it is easy to check that

1

. . 1
I [we p] = = / (62|v11~)5’[—>|2 +u~)§7p)dm — / F(we p)de = - / flwe p)we pdr — / F(w. p)dz
2 Jq Ja 2 Jq Ja

1
= —/ F(w. p)dz — —/ f(’lU57P)’Ll~)E7PdCU+/ f(wgyp)wgypda:—l—()(/ w57p(1bs7p—w57p)2da:)
Q 2 /g Q Q

uniformly for P € Q. Notice that by (1.4) we have f(w) < Cw?, F(w) < Cw?; then (3.14) implies

%/Qf(wgyp(ea:))wgyp(sm)dm—/ F(we,p(ex))dz

Q

€

N /RS (%f(w)w Bl F(w))dg; + 0(573%’) /R3 wdz = Tw] + 0(6’3%’)
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as ’i?P — +oo uniformly for P € Q). Hence we arrive at
- 3 1 ~ ~ 2
I[w. p] =Iwle’ + = | f(wep)(wep — e p)de + O( we p(We p — we p) dm)
(4.25) 2 Jo Ja
d
+o(e%e 7))
as dT" — 400 uniformly for P € (.

Next we insert the expansion provided by Proposition 3.1 in (4.25) and distinguish the two cases.

First assume P € Q\ I',. Then by Part i)

I [, p] = Iw]e® + o(e® + 63673(1?1))
and (4.23) holds uniformly for P € Q\ I',. Next assume P € I';,. Then insert the estimate provided

by Part ii) of Proposition 3.1 to obtain

L[ p] = Tw]e® + % /Q fwe, p)we prdx — % /Q fwe,p)ke pdz + O(e) /Q fwe, p)he pdx

dp

+0(/ wgypwf’P*da:) + 0(52)/ hZ pdx + O(/ kipda:) +o(e¥e %)

Q Q Q

(4.26) 3 .

= Tw]e® + 5 / f(we p(ex))ws p« (ex)dz — B / flwe p)ke pdx
J JQ

dp dp
+ O(e) / f(we p)he pdz + o(e’e = + &% = +¢%)
Ja
as 22 — oo uniformly for P € T, where we have used (3.18) and Lemma 4.1. Furthermore

/Q f(we p(ew)we pr (ea)de = | f(we,p(ex)we pr (ca)da + o(e=*F)

(4.27) 7°

— 2dP _3dp _ dP _3dp
= /. flw)w (1/ + ng)dy +o(e ) = 2(1(?) +o(e )

as ’i?P — +oc uniformly for P € I',. The asymptotic formula (4.24) follows from Lemma 4.2.

After integration by parts, using (3.17),

(4.28) / f(we, p)ke pdr = / ( — 52Aﬁ)glp + 1I)E7P)k57pdx = / We,p f(we, p=)dz = 0(63673%).
Q Q Q

as d?" — +oc uniformly for P € T, where the last estimate follows from (3.13).
By (1.3) a direct computation shows that
° ly'? ly'[?

ly’ :
‘EQA(U}E’P*(ZE) = ) - uJE,;m(az)E—2 < C’w;P* (z) = —|—Cw5,p*(a:)(1 +—
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by which, using equation (3.16) and integrating by parts,

y'? 4
‘/Qf(’wap)(hgyp—’wgyp* 52 — €& )dﬂ?‘

_ 2 A, ~ ‘1/‘2
= ( — e A, p + wE,p) he.p — we p-
J

g2

— 64)(1.7:‘
(4.29)

12 !
SC’/ uNJE,pwg P ‘UJ d:U—l—C/ W, pWe, p (1+M)d$+z—:4/ We, pdx
Q e Q € Q

d d
< 063\/ P2 4 o7
€

by Lemma 4.1. Finally Lemma 4.1 also gives

ly')? 4 3,—2%p 7
(4.30) / f(we, p)we p- —-dz + € / flwe p)dz < Ce’e = + Ce".
Ja € JQ
The conclusion follows by inserting (4.27), (4.28), (4.29), (4.30) into (4.26). 0

Proposition 4.2. The following asymptotic expansion holds:

6
(4.31) % / @2 p(—A) Vi pldz =I,e® — 132— o2 L e E yte 2 E) 1 O,
JQ P

as dT" — +oo uniformly for P € Q, where I>, I3 are positive constants; furthermore

6
J / @02 p(~A)i? plde =he® — I — LH(Ep)e’
4 JQ ’ ’ dP

+ 0(6”/267%’ + 6567% + z—:4672d?P +€9)

(4.32)

as ’i?P — +oo and dp — 0 uniformly for P € I',,, where I, is a positive constant.

Proof. By (3.12) and a) of Proposition 2.1 we can write

/1D§7P(7A)7][1T)§7P]dm :/11)§7P(7A)7][11)§’P]dm+O(/
Ja Ja

w? p(—A) " we, p(wep — 77)5713)](1{13).
Ja

First assume P € Q\ ', b) of Proposition 2.1 and Part i) of Proposition 3.1 imply

[ (-2 2 e = [ w2 p(-8) w2 pldo + O(<" [ w pis)
(4.33) @ @ @

- / W () [w? pldz + O(eT)

uniformly for P € Q\T',. Now assume P € I',; according to Part ii) of Proposition 3.1,
[ 2 p-a) 2 o = [ p(-8) (w2 pldo + O [ w2 p(-8) " e ] o)
Q Q Q

+O(z—:/9wf’P(—A)”[h€,p]da:) +O(/§2w§’P(—A)’1[k57p]dx)

uniformly for P € T',,. Let us analyze the error terms: by using b) of Proposition 2.1 and Lemma 4.1

(4.34)

we obtain

d

(4.35) / w? p(—A) " [we, pwe, ps |da < Ce3l2e 27 / w? pdx < Ce/2e2F
0 0
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uniformly for P € T';,. Again by b) of Proposition 2.1 and (3.18) we get

(4.36) / 11)?’P(7A)71[h5,p]d.7: < Ce¥?(e? + 672:_;3) / wapdm < Ce¥/? + 92~ 5E ).
JQ JR3
and
(4.37) / 11)§7P(7A)71[k:5,p]d.7: < Oe3/2e2E / wapdm < Oe/2e2E
JQ JR3

uniformly for P € T',. Combining (4.33), (4.34), (4.35), (4.36) and (4.37) we arrive at
/ 1D§’P(7A)71[1D?’P]dm = / 11)§’P(7A)71[11)§7P]d.7: + 0(611/26‘7(12_5 pete 2Py e%)
Ja Ja
as dT" — +oc¢ uniformly for P € Q. Thus it is sufficient to estimate
/Quﬁ’P(fA)*][wf’P]dm.
To this aim denote by Vg the unique s'olution of

AVo+w? =0in R*, Vj =0 as |z| = +oo

ie. Vo(z) = = [ps =—w?(2)dz. Then V; is radial and its equation in radial coordinates becomes

=]

(r*Vy)" + r?w? = 0 by which, after integration,

/ L[5, 1 T, —2r Co —2r
(4.38) Vir) = —= [ sw ds:——2( s*wds + Ofe )):——2(1+O(e )
2 Jo r 0 r

for some ¢y > 0 and, by integrating again,

“+oo
(4.39) Vo(r) = —/ Vy(s)ds = U O(e ).

, r
Now set

z— P
VE,P(m):VO(T ) e, PeR.

First assume P € Q\ T,. Note that (=A)~'[w? p] — €*VL p solve
A((=A) w2 p] = e*Vep) =0in Q,  (=A) 'w? p] — Ve p = —€°V; p on 00
and by (4.39) V. p = O(e) uniformly for z € 92 and P € Q\ T',. From the maximum principle it

follows that (—~A)~'[w? p] —€*V. p = O(£?) uniformly for 2 € 902 and P € Q\T,,. Hence using (3.14)

we obtain

/ w? p(—A)w? p] =€ / w? pVepdx + O(e°) / w?p=¢ / w?Vodz + 0(6567%) + 0(e%)
Ja Ja Ja Jrs

and (4.31) holds uniformly for P € Q\ I',,. Now we assume P € I';, and decompose

(4.40) (7A)7] [w?vp] =2 (VE,P — VE,P* + Zg,p — WE,P)

where Z. p and W, p solve the following problems:

1
(4.41) AZ.p+ Swlp. =0inQ, Z.p=0on0Q,
Vs,
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(442) AWE,P =0in Q, Wgﬁp = Vgﬁp — Vgﬁp* on 0.

For the sake of clarity we divide the remaining part of the proof into 4 steps. In order to simplify
the notation, during the steps we will write d and 7, in the place of dp and H;(Xp), since this can
be done without causing confusion. We let it be understood that all the asymptotic estimates hold

uniformly with respect to the choice of P € T',.

Step 1. The following holds:
Zj:m Hﬂjf

Vep(x) = V. ps () = e — + o(e — 400, d— 0"
7P( ) 7P ( ) 0 (1+‘y| )3/2 ( )
uniformly for x € 00, where §j = 4 = %

By (3.15), we compute

@ — P| = /& +[y]? — 2dys = /& + [y + O(dly'?) = d/1+[g]? + o|5'[?)

as d — 07 uniformly for z € 9. In the same way

@ = P*| = /@ + [y + 2dys = dV/1+ g + 0(|§']*),  ro.p = d(v/1+ 11> + oI5 [*)

as d — 0T uniformly for z € 90 and r, p € Z, p := (min{|z — P|,|z — P*|},max{|z — P|,|z — P*|}).
Hence by using again (3.15) we get
g P —Js—P| |- PPz PP 2y

2 p T2 p(e - Ptz P B(FIGE + o(§']?)??
(4.43) _ &’ Zj Hyg;z + 2dwp(dy’) _ Zj Hy?)f . O(wp(dy"))
B+ (g2 +o(l9'2)32 A+ g2 +o((g'2)32  d2(1+[g]?)3/?
> M7 O(wp(dy'))
=P Tt B g

as d = 0 uniformly for z € 0 and r, p € Z, p. Observe that

d"l
wp(dy )?/2 =o0(1) as d = 0 unif. for z € 99.

(4.44) B0+ Y

Indeed by (3.15)

Wp(dg/) B 0(d2|ﬂ'|2) B ‘ . 1
E(1+ g2~ &1+ 9?32 o(1) unif. for |j'| < 7
While, if |g'| > ﬁ, then dz(u;iﬁz‘zjz’))g/z < (135;‘;/2 = 0(1). By inserting (4.44) in (4.43) we deduce
r— P* - |z — A12
| 7~| | ZH 1+\U 2/2 +o(1) asd — 0t

‘1:!

uniformly for z € 0Q and r, p € Z, p.
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Then by the mean value theorem, using (4.38), we derive

d r— P| - |z — P*
V57P(w) — V57P* (;U) = _C()E(l + 0(6722))‘ |T2 ‘ |
z,P
d s H 07 coe > Hiv'?
= coe(1 + O(e %)) >; My +ole) = M +o(e)

A+
asd— 0T, g — +oc uniformly for z € 9€). Hence Step 1 holds.

T+ 1gP)?

Step 2. For P € I', such that g is sufficiently large we have
Ve, p(x) — Ve px(z) = O(e) unif. for x € 0.
By (4.39), fixed > 0, for P € T', with d > 7 we have
Co€ _ 27

Vep(x), Ve pe () < r +O(e” =) = O(e) unif. for z € 99.

Then Step 2 follows by Step 1.

Step 3. Set W57p(;&) =W, p(x) where y = T‘;z. Then for P € T';, such that g is sufficiently large
R TpQ
(4.45) W p(9) = O(e) unif. for g e ’; .
Furthermore %Wg,p — Wi + Wy as g — +oc and d — 0% uniformly on compact sets of Ri, where

W, satisfies

i
T+

By Step 2, from the comparison principle it follows immediately that if g is large enough VAVEVP(Q) =

(4.46) AW; =0 in R, W; = coH, on IR%.

TpQ
P

O(e) uniformly for g €

By (4.42) and Step 1, from the comparison principle it follows that as d — 0% and g — 400

Wep(@) =€ > W.p(§) +o(e)

=12
uniformly for ¢ € %, where ng’P, solve
A TPQ ~ g g"Q TPQ .
I —0; J o — . J - =
(4.47) AWZ = 0in ==, Wi, = g;:= ot PR a( . ) j=1,2.

Denote by D"? the closure of C§°(R?) with respect to the norm [[u|7,, . = [55 [Vu[>dz. An easy com-
putation shows that g; € D2, By multiplying both members of (4.47) by W7, — g; and integrating
on % we obtain

[ 190 = g5) P =

d

V(W!p = 9;)Vygjdy < [[W! p — gillprallgsllpr 2

Tpa
d
where we have set ng =g; in R*\ % Hence we deduce that {ng — g;}- and, consequently,

{Wgyp}g are bounded in D'2. Then, if we consider a generic sequence ,, — 0% and P,, € Q such that
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dp, — 0 and % — 400, up to a subsequence we may assume Weijn — Wj as n — +oo weakly in
D'? and a.e. in R®. Note that, since by construction XL Tp, 0 = XRY (denoting x the characteristic
function), then ngpn — gj ae. in R® and W; RS solnves (4.46). The uniqueness of the solution
of (4.46) implies that all the family W;P converges to W; in D'? and a.e. in R% as d — 0T and
g — +00.

For every fixed compact set K C R3, for small d we have K C % Since {VAVEj’P}E are harmonic
functions uniformly bounded on % then the classical Schauder’s internal estimates imply that

Wg p— W; uniformly in K.

Step 4. End of the proof:

d
1/ w?)P(—Afl)[wiP]daz =¢° (12 - IgE +O0(e) + 0(67%)) as — = +00,
4 Jq d €

d
%/Qwap(—Afl)[wap]dx =¢° (12 — 132 —elb/H(Ep) +o(e) + 0(67%)) as — = +00,d— 0.

From (4.40) we obtain

/ w?)P(—Afl)[wiP]dm :55/ w§7p(sm)(V57p(sx) — V. p+(ex))da
Q

Q

&

(4.48)
+E5/ w§7p(sx)Z57p(ea:)da:—s5/ wap(sx)W&p(z—:az)daz.
Q

Q

e e

(3.14) and (4.39) imply

P*— P
7 / w? p(ex) (Ve plex) — Ve p-(ex))da = 7 / wVdz — x / w2V (T B )dm+o(5’§)
4 Ja & ’ ’ 4 Jgs 4 Jps -
b / w? ——fpeda + O / wie 2P E dr) 4 o(e %)
4 JR3 ‘:E — ; Jrs
P — P*
=1 —WﬂcoVo( ) + O(e*i_d/ wze‘“‘daz) + ()(e*%) =1, - ]32 +0(67%)7
R3
where we have set I, = %ow?Vg and I3 = ”’;—(‘3

Using c) of Proposition 2.1, Lemma 3.1 and (4.41), for ¢ large enough we get

ad

L) < Ce 5=,

L) + Cff*g”“’ip*

/ﬂ W? p(ex) Ze.p(ex)dz < O\ Ze pll =gy < Cllw? p.

and, using (4.45),

/ w?vp(sm)WE,p(z—:a:)da: = 0(e);

]

€
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then the first part of the thesis of Step 4 follows. Finally as g — 400

2

) ‘
w; p(ex)W. p(ex)dr = / w;
/“ Ja—21<V/T

€

- /y§(3<\/gw2 (= 26a) 0.0 (G )y + o) = /Z<\@w2(z)mf(z3 +Z2)ds+ ofe).

By Step 3 we immediately deduce %WE7P(€3 +52) = Wi (€s) + Wy (£3) uniformly on |z| < \/g as
2 — 400 and d — 0%. On the other hand it is well known (see, for example [20], pg. 37) that the

pex)We p(ex)dz + o(e)

following representation formula holds for (4.46):

VAV.(A)—C &/ ‘ZA;Q dz
IO 0 Ja A PP (Gr— g0 + (B2 o) + g3

by which
V) = e, / 5 e 1
|/|/ a = s — —az = .
T A ST T P E R ek

Hence we obtain

Y I,
1 /Q w? pex)We p(ex)de = e '21:2 Hj +o(e) = elsH(Xp) + of€)
. j=1,
2112 .
as g — +00 and d — 0%, where I, = 3 ngu;?dm;—ﬂ Jo> Wdz’. O

5. LEAST ENERGY SOLUTIONS

The object of this section is to prove the first part of Theorem 1.1; in particular we are going
to show the existence of a least energy solution v, for the problem (1.5), i.e. a solution with the
important property of minimizing the energy J. among all solutions of (1.5). Furthermore we will
provide a detailed description of its shape which has the form of a single spike near the boundary.
The more delicate matter of the location of the spike at the boundary will be the subject of the next
Section which concludes the proof.

We begin with the following existence theorem.

Theorem 5.1. For every € > 0 the value J* defined by (1.7) is a positive critical value of J. with
critical point v.. Furthermore JY is the least energy critical value of J.. Finally for every family

d. = 0T with % — 400

6 d d d
J* < 3 5 _ 1 & 3 <\ _ 7 6 4 —28e
(5.49) J¥ <Iwle” + e Ig—dE +e oz(—(S ) Iie"Ho +0(z—: 1/ e )

9 _de _de _pde _3de
+o0(e® +e'"/2e73F 4% 4ete T 4% ) ase - 0T,

where o : Rt — R has been introduced in Proposition 4.1.
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Proof. Fix € > 0. The object is to apply the Mountain-Pass Lemma to the functional J.. To this aim

we first prove that J. satisfies the Palais-Smale condition. Let {v,}, C H{(2) be such that
Lfon]| < M, Tfua] =0
for some constant M > 0. Then, using assumption (f4),
AM + o(D)||vp |l > 4Jc[vn] — (JL[vn]vn) = 3{-:2/Q Vo, |dz + 3/Q |v,|? dz + /Q(f(vn)vn —4F (vy,)) dx

2352/ \an|2dm—|—3/ v, |2 d.
Q Q

Hence {v,}, turns out to be bounded in Hg(£2); then, up to a subsequence, using Rellich’s theorem,
for some v € Hi ()
v, — v in Hy(Q), vy, = v in L¥(Q) for 1 < s < 6.
Using the continuity of (—A)~' : H='(Q) — H}(Q) we deduce
(=A) " vp] = (=A)7'[v*] in Hy(9)

and, consequently, using assumption (f3),
—0p + f(vn) = Y(=A) v ]on = —v + f(v) = y(=A) " [v’]v in HH(Q).
Hence we arrive at

—e?Avy, = Jl[vn] —vn + fvn) — y(—A) oilo, = v+ f(v) = y(—A) oo in HH(Q).

Again the continuity of (—A)~! allows us to conclude v, — (—A) " [—v + f(v) — y(=A) "L [v?]o] in
H}(Q). Hence the P.-S. condition is satisfied for J..

Next observe that J.[0] = 0; moreover combining (1.4) and the Sobolev’s embeddings

2 1
Je[v] > % / |Vo|?dx + B / w|2dx — C’/ lo|*dz — C/ [Pt de

2
€ -1
(5 = Cllolles = Cllollza" Yol > pe >0

\Y

\Y

provided that ||v|| g1 is sufficiently small. Condition (f4) can be restated as a differential equation for

the function F' of the form % log F' > % for ¢ > 0, which implies
(5.51) F@t)>C(t]P =1) vt>o0.

Hence, fixed v € H} (Q) \ {0} such that vy = max{v,0} # 0, we get

0

2 4
(5.52) J.[\v] S%/ (%|Vo]* + |v]?)dz + 7% / v? (—A) ' [v*]dz — C/\Z/ lvl?de +C — —o0
Q Q Q
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as A = 4oc. The well-known Mountain-Pass Lemma applies and gives that the following is actually
a critical value for J.:

J* = inf Jlq(t
e = inf max [q(#)]

where Q = {q € C([0,1], H}(R)) | ¢(0) = 0, J.[g(1)] < 0}. Denoted by v. the associated critical point,

hence v. solves the equation
(5.53) e2Av. —v. + f(v:) — yv-(—A) 2] = 0 in Q.

It remains to show that v. > 0. Indeed, multiplying (5.53) by vZ = max{0, —v.}, and using (f1) we
see that
/ (Vo [2dx + / | |? do + / ()2 (—A) v de =0
which implies v; = 0.' %y the strong 'H?aximum prin(;ii)lle ve > 0in Q. Then v, is a solution to (1.5).
We are going to prove that, as a consequence of condition (f2), we can characterize the values js*
in a simpler way, i.e. J* = J*. First notice that, since J.[tv] = 400 for v € H}(Q)\ {0} with vy =0,
then J can also be defined as

J = inf sup J.[tv].
€ vEHL(Q), v4#0 tZE E[ ]

For v € H}(Q), v; # 0, we have J.[Av] < 0 for large A, by which we immediately obtain jg* <Jf In
order to prove the opposite inequality, we first note that fixed v € H} () with v, # 0, the function

A > 0+~ J.[M] has a unique nontrivial critical point which is a maximum point. Indeed

d 1 A
T[] = (TN, v) = AB(p /Q(g2|w2 + [v]?)dz +7/Qv2(—A)’1[v2]dx -/ J;(qu;)v‘ld:v);

hypothesis (f2) implies that the bracket on the right hand side is a decreasing function of A. Noting

3

that, by (5.50), Je[Av] > 0 for A > 0 small and J.[Av] - —o0 as A — 400, we obtain the assertion.
Define A, > 0 as the unique nontrivial critical point of J.[Av]. Since Jl[v.] = 0, it is clear that

%JE [M:]x=1 = 0, which implies A\,, = 1 and, consequently

JX < JJue] = JI.

g

Observe that,
J¥ = inf J.|v
€ vEM. E[]

where
M. :={\v|v € Hj(Q), vy #0}
- {v € H(Q) \ (T[], v) == /Q(g2|w2 + |v]?)dz +7/Qv2(—A)’1[v2]dx - /Q F(v)vdz = o}.

Since any nontrivial critical point of J. lies on M., then J is the smallest critical value of J, and,

consequently, v, is a least energy solution for (1.5).
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To prove (5.49) choose Q. € Q such that d. = dg, and Q. — Py where H(FPy) = Ho. Then set
Ao =i, >0, e

A [ (V0. + e, e A [ 020, (<8) g, Jo = [ f(vit 0. .d0 = 0.

which can be written, using Proposition 4.2, as

>+ e Q.

(5.54) Ae / (2| V. g, Hdr + O(N3e®) — / FAee g, )e . dr = 0.
Ja Ja

According to assumption (f2) we have f(t) > ct® for all t > 0; hence using (1.4) and Corollary 3.1 we
get

e [os(IVw|? + [w|?)dz + O(A2e?) <)< e [Ls([Vw|? + Jw]?)dz + O(A2e”)
Ce¥ (A2 [os |w|*dx + P Jos lw|PHtdz) — T ce3 X2 [q lw|*dz
by which {\.} turns out to be bounded from above and below away from 0. We state that A\. — 1 as
e — 0. Indeed, assume by absurd that A.. — A > 0 and A # 1 for some sequence &,, — 0F. Using

Corollary 3.1 in (5.54) we get

S\/RS(\VIUP + |w|?)dx — /Rsf(;\w)wdm =0,

i.e. \is a critical point of A > 0 + I[Aw]. On the other hand A = 1 is obviously a critical point
too, then the uniqueness of the nontrivial critical point (which can be proved as for J.[Aw]) gives the

contradiction. Hence A. — 1 as e — 07, Using equation (3.11), (5.54) leads to

3

/ Ae fwe . )e . dx — / F(Aee . )e . dr = 0(85).
Jo Ja

Observe that by assumption (f1) and (3.12) we get

)‘Ef(wE,QE) - fo‘E“N’s,QE) =(Ae — 1)(f(“~’E,QE) - f’(mE,Qs )“N’E,QE +o(1)) + O(“’E,QE (“NJE,QE — We Q. )

uniformly in ). Hence Proposition 3.1 leads to
0 = O = 1)( [ (0-0.) = (0,002, )0 @, + (1) [ 1.,ds)

+ O(/Qws@awe,@; dﬂf) + O(/Qwe,Qs (eheq. + kaQE)dﬂf)

and then, combining (3.18), Corollary 3.1 and Lemma 4.1 we deduce

o) =0 - [

JR3

2)

(f(w) ~ f'(wyw)wds +o(1)) + O(e >%) + 720 (|lw. . ll2]|ehe . + ke,

d

= (A — 1)( / (f(w) — f'(w)w)wdz + 0(1)) + 0 + ce” I 4 e 2.
JR3
In view of (f2) @ is strictly increasing for ¢ > 0, hence f(w) — f'(w)w < 0. Thus we arrive at

de

1) =O0(? +ee 5 +e 7).
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Setting A-(\) = J-[ A g, ], it is immediate that A. € C? and AL(\.) = 0; then, for some t. — 1
T2 < Tt 0] = Ae(Ae) = Ac(1) = (e = 12AY(E) = L[t g.] + O(e" + % 5 +e V)AL (t.)
and the thesis follows from Propositions 4.1-4.2 once we have observed that
e A (t.) — / (|Vw|?* + |w|*)dx f/ f'(w)w?dx
Jrs Jrs
O

Corollary 5.1. As a corollary of Theorem 5.1, choosing d. = alogé + aloglog% and using (4.24),
it is easy to verify that the main term in the envelope on the right hand side of (5.49) is represented

by the first four; hence we obtain

I, e’ 4 B(1+0(1))
“|loge| + log |loge| 4|loge|?(]loge| + log|logel)
5 5
= Tw]e® + Le® — Iy — (fosys) ase—0*
[wle® + Ie *Tlog ] +o0 Tog P72 as ,

Jr < 1[11)]53 + Ie® —

log |log ]

. 1 1 _ _ 1
since [log e]+log [ log &] [loge] — ( [log ]? ) 70(\10g6\5/3)'

The goal of the next two propositions is to obtain more precise information on the shape of the
least-energy solution v.; in particular we will prove that v. develops a spike near the boundary whose
profile resembles the approximation w. p, (for suitable P. € Q) constructed in Section 3 up to the

order O(r:) (for suitable 7. — 07).

Proposition 5.1. Fore > 0 sufficiently small v. is a single spike solution; more precisely there exists

P. € Q such that P. is a the mazimum point of v. on Q and
dp,

€

(5.55) — 400 ase — 0T

furthermore v. satisfies
Ve = 'IT)E,PE + ws
where

||’l,/15||00+673/9(62‘v1,/}5‘2-l-"(/)E‘Q)d:E—)O ase — 0T,

Proof. First we observe that, setting u.(z) = v.(ex) for z € % and u. = 0 in R3 \ %, by assumption

(f4) we have
-3

1_1 2 2 _ -3 1_1 2 2 2 -3 € " n
(5 9)/][{3(\%4 o+ u e = 723 9)/9(6 Vo2 4 o) o < 670 o] = (L] v

=e 3 u] =T = I[w] + O(e?) as e — 0,
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where in the last inequality we have used Corollary 5.1. Then {u.} is bounded in H!(R?) for small e.

For the sake of simplicity we divide the remaining part of the proof into four Claims.

Claim 1. For every R>0and 1<¢g<6:

lim sup / uldx = 0.
e—=0+ dp<eR B(?yR)

For otherwise, there exist ¢ € [1,6), R > 0, a sequence u,, := u., and P, € R® with dp, < &, R

such that
lim uldz > 0.
notee Jp(aR)
Then set n(y) = un(z + f—") where y = Tp, = and, without loss of generality, we may assume

dist(£, 02) = I, § ¢ [0, R] and 7, — @ weakly in H'(R*). Since by construction x 1z, o —

XR3, (denoting x the characteristic function), then, setting IR§7+ = {y € R® |y, > —&}, we deduce
i € HJ(R] | ) and (since by b) of Proposition 2.1 (—=A)~*[v2] < C||v|2. = O(¢%/?)) i solves

(5.56) Ai—i+ f(a)=0in R}, @>0inR,, @=0ondRj,.
Theorem 1.1 in [18] implies 4 = 0, which is a contradiction since

/ w'dr = lim alde = lim uidm > 0.
JB(0.R) n=+e JB(0.R) n—+ee Jp(Le R)

Hence Claim 1 holds.

Claim 2. There exists n > 0 such that if € € (0,1) and Q- is a local mazimum point for v., then

v:(Q:) > 1.
Indeed

v:(Qe) — f(0:(Q:)) < 0(Qe) +v:(Qe) (—A) ' vZ](Q:) — £(v:(Q:)) = *Av=(Q:) < 0.
Using (1.4) we obtain the thesis.

Claim 8. For every R > 0
limsup sup v.(P)=0.
e—0t dp<eR

Fix R > 0 sufficiently large such that
1
— n)dx <
7R Jos flun)dz <

and let P. € Q be the maximum point for v, in {z € Q|dp < eR}. Assume by absurd that there

N3

is a sequence &, — 0 such that v,(P,) := v., (P.,) /4 0. First observe that 2= — 0. Otherwise,

L
d:" — & > 0, and, proceeding as in Claim 1, setting @, (y) = un(z + f—"") with

n

up to a subsequence,
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y =Tp, (x), we deduce i, — 0 weakly in H(R*). On the other hand by standard elliptic regularity we

have i, — 0 uniformly on compact sets of R} . , then v, (P,) = @,(0) — 0 which is a contradiction.

Hence 2= — 0, which implies that, at least for large n, P, is a local maximum point for v, in
B(Py,e,%). Consequently, by Claim 2, v,(P,) > n and, by (1.4), v{l((q‘};n?) < C(|unl?® + un[P~1) for
2 - = < &

n

By using the comparison principle it is immediate that 0 < u. < w. where w, solves

Q 9]
Aw: + f(us) =0in —, w. =0on 6—
€ €

Fix % <a< p% and let @' < 3 be such that % + % = 1; by (2.8), using Holder’s inequality, we get

nsvn(Pn)Swgﬂ(f—”)siLMdm ! /P_ﬂ fn) o b ya

n |5—:—Z‘ — 47 §§|%_Z| 2R R3

€n

‘“‘n|2P+ N dz + 1

Jo-nicn 22— 2 2

/a’
<onra(f ) ([,

then Claim 1 implies

1/a
(a2 + 27 )a2) " +

NI

/ 1| ?"dz, / |t | P~V dz — 0.
Jle—fm 1<% Sl 22)< 3

Hence we deduce

n < on(Py) <o(va(Pn)) +

NI

by which n <w,,(P,) < o(1) + # and the contradiction follows.

Claim 4. End of the proof.
Let P. be the maximum point for v, in 2. According to Claims 2 and 3 v.(P.) > n and d% — 400
as e — 0*. Let &, — 0% be an arbitrary sequence and set P, = P._ and i, (z) = u., (v + £2). Since

. d _ _ . _
dist(£x, 22) = “P» 5 400, we may assume @, — @ weakly in H'(R®) where @ solves

(5.57) At —u+ f(u) =0in R?.

The elliptic regularity theory implies lim ;| 4o @ = 0 (see [19], Theorem 5, and [40]) and u,, — u in
C]

! .(R®); in particular 4(0) = max,eps a(x) > n and @ > 0, consequently, from the strong maximum

principle % > 0 in R*. Assumption (f5) implies @ = w. Then by Fatou’s Lemma we get

5,73/9 (%f(vg")vsn - F(vg"))dx = /R (%f(an)an - F(an)) > /R (%f(w)w - F(w))dm+o(1),
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by which, since J![v.] = I'[w] = 0, using Corollary 5.1,

11 i+ oo = (5= ) [ €90
(5 9)/Rg(wun| #lunl)de =5 (5 - 5) [ 1T0, P+ s, o
-3
_3 7&'” ’ 3 1 B
< et o] = B o) — 0 [ (G000 Fo))do

< Iw] — ./1123 (%f(w)w - F(w))dm +0(1)

= I[w] — %(I'[w],w) - ./R3 (%f(w)w — F(w))dm +o(l) = (% - %) ./Ra(|vw‘2 + |w|*)dz 4 o(1).

The weakly lower semicontinuity of the norm implies the opposite inequality, hence ng(\Vﬂn\Q +

un|?)dz = [os(|Vw|? + |w|?)dz, which implies @, — w in H'(R?). The arbitrariness of ,, leads to

P. .
(5.58) us( : +—) ~ win H'(R®) and CL_(R®).
€
It remains to prove that
. P. . .
lim u,E( . +—) = 0 uniformly with respect to €.
|z|—+o00 5

For otherwise there would be a sequence €,, — 0, @, € 2 with ‘Q"E;P"‘ — 400 and u,, (%) >c> 0.

According to Claim 3 dEQ—" — +00 as n — +00, hence u., (z + %) — yin H'(R3) and in C} (R3)

loc

(with u solving (5.57)), by which «(0) = limu,_ (%2) > ¢; in particular u # 0, which is in contradiction

En

with (5.58). Hence we have proved that u.(-+ £2) — w in H'(R*) and L>(R?), which implies, using
Corollary 3.1, that 1. (ex) := u.(z) — . p (ex) — 0 in H'(R®) and L>(R?). O

In the last proposition of this section we go further in the analysis began in the previous one and

provide an estimate on the error order up to the approximation @, p, works in the expansion of v..

Proposition 5.2. For e > 0 sufficiently small v. satisfies

Ve = We,p, + Te e,

5de 3de

where 7. = max{e” 3 , ce s, °/3} and, for e sufficiently small, ¢. verifies
(5.59) [6:ll 4272 [ (90: + [o.)do < .

Q
Proof. Substituting v. = W, p, + 7 ¢. into the equation S.[v.] = 0 we obtain

(5.60) 2N, — ¢ + f'(- p.)pe = —7. 'Sc[ie p.] + Ne[ope] + M. [p.],

where

N.[¢] = _T;] (f(uN}aPe +7:¢) — f(UNJE,PE) - TEf’(uN}aPe)d)):
M.[¢] = 7 (te,p. + 720) (—A) ' [¢7] + 2y (te,p. + 720) (—A) 7 i, p. ] + 4 (—A) T [wZ p. ] 6.
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By Lemma 3.2 for € sufficiently small we have

(5.61) |7

~ _ de _ de 1/4 ap s
'S, [te,p, ]| £ Cmax{e 12, e Toe 5]/3}“’5,/135 unif. in Q

while, since by Proposition 5.1 ||7:@:||loco = [|¥c|lo = 0(1), ||TE¢)E||2L = ||1[)E||,2 = 0(e?), by the mean

value theorem we get
(5.62) IN-[¢:]] < O1-¢% = 0(1)|¢-| unif. in Q

and, using c¢) of Proposition 2.1, we have 7.(—A)"'[¢?], 7.|(=A) '[we, p. ¢c]| = o(e?7-") = o(1) and

[(=A) " [w? pll= O(e?) by which

(5.63) | M:[¢:]| = o(D)we,p. + o(1)]¢x],

uniformly in Q. Suppose that there exists a sequence €,, — 07 such that, setting ¢,, := ¢.., ||dn|lcc =
+00 and let x,, € Q be such that |¢,(2,)| = ||¢n]|co. We may assume, without loss of generality, that

T, 18 a maximum. Then we claim that

|z, —

P.
(5.64) e | <C.

En

|z, — P.

Otherwise, up to a subsequence, 67"‘ — +o0c. Then by (3.12) we have w., p. (7,) — 0, and,

consequently, f'(w., p, (z,)) — 0, while Ag, (z,) < 0. Combining (5.60)-(5.63) we arrive at

0=} Adn(zn) — (14 0(1))[[¢nllo +0(1) < —(1+ 0(1))l|¢nllc + o(1)

and hence ||¢n||lcc = o(1), in contrast to the hypothesis Then (5.64) holds, and we may assume

Tn—
En

2o Peu 4 7. Now set bn(z) = (enx+ P.,) for € 2L By dividing both members of (5.60)

H¢ =
by ||(1)n||OO and using (5.61)-(5.63), we deduce that ¢, solves

(5:65)  Adu— dut [, Enr + Po)ds = oDl + oD/, (gl < 1in T T

n

By multiplying both members of (5.65) by b we get
/<w@P+MﬁMws/ufm%%ﬂ%mHmNﬂM+dn/\@&ms0+dn/|@&m
RS R3 RS R3

i.e. ¢n is bounded in H(R?). Hence we may assume ¢, — ¢ weakly in H'(R?®). Since by Proposition

5.1 d% — +00 we get xo-r., — xr2 = 1; then, by Corollary 3.1, é solves
Ad— ¢+ f'(w)(f) =0, MA)| < 1in R?.

Furthermore elliptic estimates lead to ¢ € H*(R?) and ¢, — ¢ in C. (R?), which implies ¢(z) =

P

lim,, én(”;—"") = lim,, mmzj = 1. In particular ¢ # 0. Assumption (f5) leads to
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for some constants aj, as, ag. On the other hand by Part iii) of Proposition 3.1 and the choice of 7.

we have eV, p_(P:) = o(r.), by which

0=V, (P,) = V(wsn,7Pe,,, + 7o, bn)(P-,) = 0(5;17—57,,) + T€n5;1||¢n||oov$n(0)-

This implies V(0) = 0, i.e. (since ma—g;(()) =0if j # k and %‘;(0) =w"(0)) a;w"(0) = 0. The
contradiction will follow if we prove that w" (0) # 0. Otherwise, frorr; assumption (f5) w(0) = f(w(0)).
By (f2) @ is strictly increasing for ¢ > 0, while w(0) = maxgs w; hence w — f(w) > 0 in R*. This is
a contradiction since [o4 |Vw|? + [5(w — f(w))w = 0. Thus |¢.| < C for small e. Finally, multiplying
the equation (5.60) by ¢., integrating over 2 and using (5.61)-(5.63), we obtain

52/ V. |>dx + / g |da < /f'(mg,PE)¢§dm+o(1) / dew!/} dx + o(1) / o< | dx
Ja Ja Ja JQ vE JQ
< C’/ f'(we p.)dz + o(1) / 11);{;Edm+o(1) / |p-|?dx < Ce™? + o(1) / |- |2da.

O

6. PROOF OF THEOREM 1.1

Now we have all the ingredients to prove Theorem 1.1. We have just to combine the results of

Proposition 5.1 and 5.2. In what follows we write d. in place of dp..

Step 1. The following holds:
(6.66) JE = Llv) = Ll p] + O(%72) = L., p,] + o(e%e~ ¥ + % 3% 4 &)
ase — 0F.
Using a)-b) of Proposition 2.1 and (5.59) for € > 0 sufficiently small we get
[ 12 8) e 2, (<)M 02, — A 6 (-8) 2 e = O 72),
by which
J.[v:) =J.[i..p] / S.[ie p.]6ed — /Q (F(ep, +762) — F(e p.) — 72 (i p.)62)da
+ TEQ— /Q |Vo. 2dr + ?6/ |p:|?dx + O(e*72).
Observe that |F(w. p, +7-¢:)— F (- p.)— - f (e p, )| < C12|$-|?, while, by Lemma 3.2, S. [ p.] =

0(T€w1/4 ); (5.59) leads to J.[ve] = J:[w. p,] + o(e®72). The choice of 7. allows us to conclude.

Step 2. —1ase— 0" and dE > log + 3 loglog for € sufficiently small.

E\logs\
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3

By inserting in (6.66) the estimates (4.23), (4.24) and (4.31) of Propositions 4.1-4.2 (taking into
3% = o(e~F)), we obtain

account that e%e~ y
&

6 —ode ld . .
(6.67) J* =Iwle® + Le® — 1327 +ef(1+ 0(1))3648 + 0(64 ?672%) +o(e"/? + 55e*df)

£ £

as € — 07. First we will prove that limsup,_, ¢+ m < 1. Assume by contradiction the existence

of a sequence ¢, — 07 such that dE—" > (1+n)log EL for some 1 > 0. In this case it is easy to show
that the main part in the expansion on the right hand side of (6.67) is given by the first three terms,

and the others are negligible, i.e.

5
n

™

J5 >Twled + Led — L(1+o(1) ——n
» 21l 77| logen

in contradiction with Corollary 5.1. Hence lim sup,_,+ E“"ifgg‘ < 1. Next we will prove that ’i? >

log %—l—% loglog ]g for small €. Otherwise let £, — 07 be a sequence such that d;—n" < log %%—% loglog %

4

3 d d d
. d —9Etn ——E£n —9-_Etn
Hence we easily get e\/ ==e "= ,ele =n =o(s>e "= ) and (6.67) becomes

n ds"
g8 672%7:
(6.68) Jr >Iwlel + Le) — 3= + ) B———— + O@E!M?) as e — 0F.
En En
Set
2 —2z 7
€ e d.
x)=-I3—2 +B > —=
pn(@) r + 8z’ U7 En
and compute
2 —2x —2x
€ e e
'(z) =132 - B — .
Pn(®) P2 8x? dx

By taking the logarithm, p! () > 0 in (dg—", +00) implies

> log - + Slogz 4 +1 (1+1)+11 B og L 4+ Lioglog
xr og — — logx — 10 -_— — 108 — og — — 10 og —.
=108 T 5 0BT T 506 5, 9 OBy, = 0B T 0Bl06

In particular, for n sufficiently large, p, is decreasing in (%,log EL + %log log EL)7 by which, pro-

ceeding as in Corollary 5.1,

pn(c(i;:' ) > pn(logi + %loglog %) =—1I | lojlan + B(1+ 0(1))78| 10;25/3 .
Inserting this inequality in (6.68) we obtain
&5 5
J >Twled + Le), — Igm + B(1+ O“”W

again in contradiction with Corollary 5.1.

Step 3. H(Ep.) = Ho = maxpeaq H(P).
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In view of Step 2 all the error terms in the expansion (4.23), (4.32) and in (5.49) (with d. = d.)

5 de 6 .
are o(c%); for example et/ Le™?% = O oers) = o(e%). Hence we can write

d. 6
Twle® + 5304(?) + Le® — 13% — LH(Zp,)e® + o(e°) < J[ve]
3 3 ‘is 5 e’ 6 6
< Iwle® + ¢ a(z) + Ire® — Ing — I,Hoe® + o(e”)

and Step 3 follows immediately.

Step 4. End of the proof.

By Corollary 3.1 and Proposition 5.2 we deduce Part (1) of Theorem 1.1. Parts (2) and (3) have

been proved in the Steps 2-3.

(1]
(2]
(3]

20]
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