
LOCATING THE BOUNDARY PEAKS OF LEAST-ENERGY SOLUTIONS TO ASINGULARLY PERTURBED DIRICHLET PROBLEMTERESA D'APRILE AND JUNCHENG WEIAbstract. We consider the problem"2�v � v � 1V v + f(v) = 0 �V + 2jvj2 = 0; v = V = 0 on @
;where 
 � R3 is a smooth and bounded domain, "; 1; 2 > 0; v; V : 
! R, f : R! R. We provethat this system has a least-energy solution v" which develops, as "! 0+, a single spike layer locatednear the boundary, in striking contrast with the result in [35] for the single Schr�odinger equation.Moreover the unique peak approaches the most curved part of @
, i.e. where the boundary meancurvature assumes its maximum. Thus this elliptic system, even though it is a Dirichlet problem,acts more like Neumann problem for the single equation case. The technique employed is based onthe so called energy method, which consists in the derivation of an asymptotic expansion for theenergy of the solutions in power of " up to the sixth order; from the analysis of the main terms ofthe energy expansion we derive the location of the peak in 
.1. IntroductionIn this paper we study the following problem:(1.1) 8>>><>>>: "2�v � v � 1V v + f(v) = 0 in 
;�V + 2v2 = 0 in 
;v; V > 0 in 
; v = V = 0 on @
:where 
 � R3 is a smooth and bounded domain, "; 1; 2 > 0; v; V : 
 ! R, f : R ! R. Solutionsof (1.1) correspond to the stationary waves for the following Schr�odinger-Poisson system:i"@ @t = �"2� +  + 1V  � f( ); �V + 2j j2 = 0:This system, �rst proposed by Benci-Fortunato ([2]) and later studied in [4], [10], can be used asa model in Quantum Mechanics to describe a charged particle interacting with its own electrostatic�eld. The purpose of this paper is to construct a single spike for the system (1.1) located near theboundary, where by single spike we intend a solution whose shape has the form of a unique peak whichbecomes highly concentrated when " is su�ciently small.When 2 = 0 (1.1) reduces to the single Schr�odinger equation:(1.2) "2�v � v + f(v) = 0;1991 Mathematics Subject Classi�cation. Primary 35B40, 35B45; Secondary 35J55, 92C15, 92C40.Key words and phrases. Least energy solutions, Maxwell-Schr�odinger Equation, mean curvature, energy expansion.1



2 TERESA D'APRILE AND JUNCHENG WEIfor which the existence of single and multiple spike solutions has been extensively studied. Concerningequation (1.2) in a bounded domain with Neumann boundary condition, Ni and Takagi in [32]-[33]�rst proved that for " su�ciently small there is a least energy solution v" with the property that v" hasexactly one maximum point P" in 
, and P" must be located on @
 and near the most curved part ofthe @
, i.e., H(P")! maxP2@
H(P ), where H(P ) denotes the mean curvature of the boundary @
.On the other hand, for equation (1.2) in a bounded domain with Dirichlet boundary conditions, Niand Wei in [35] showed that the least energy solution develops a spike layer at the most centered partof the domain, i.e., dist(P"; @
) ! maxP2
 dist(P; @
). Since then, there have been many paperslooking for higher energy solutions. More speci�cally, solutions with multiple boundary peaks as wellas multiple interior peaks have been established. It turns out that a general guideline is that whilemultiple boundary spikes tend to cluster around the critical points of the boundary mean curvatureH(P ), the location of the interior spikes is governed by the distance between the peaks as well as fromthe boundary @
 (see [1], [6], [7], [8], [16], [17], [23], [24], [25], [26], [27], [30], [31], [32], [33], [34], [35],[37], [38] and the references therein). In particular, it was established by Gui and Wei ([26]), thatgiven two arbitrary integers l1 and l2 there exist solutions for the Neumann problem associated to(1.2) with l1 peaks on the boundary and l2 peaks in the interior.The asymptotic analysis of (1.1) has been started very recently in the papers [12]-[15] and [36].The radially symmetric case has been investigated in [11], [13], [14] and [36]. In [14] and [36] it isproved that for 1 < p < 117 there exists a family of positive radial solutions in R3 which concentratesat a sphere. In [11] and [13] the concentration on an internal sphere and on all the boundary @
respectively is produced for the problem (1.1) when 
 is the unit ball of R3 . In the other recentpapers [12] and [15] multiple interior spikes have been shown to exist for (1.1) in the case of generalbounded domain 
 � R3 (near the harmonic centers of 
) or of all RN respectively. However boundarypeaked solutions have not yet been observed for (1.1) even in the case 2 6= 0. This paper seems tobe the �rst attempt in this line.Before stating our main result we �rst enumerate the assumptions on the function f that will besteadily assumed:(f1) f 2 C2(R); f(t) = 0 for t � 0;(f2) f(t)t3 is nondecresing in t > 0;(f3) f(t) = O(tp) as t! +1, where 3 < p < 5;(f4) there exists a constants � > 4 such that 0 < �F (t) � f(t)t for all t > 0, where F (t) = R t0 f(s)ds;



BOUNDARY PEAKS 3(f5) the problem in the whole space8<:�w � w + f(w) = 0; w > 0 in R3 ;w(0) = maxx2R3w(x); limjxj!+1w(x) = 0;has a unique solution w, which is nondegenerate, i.e., denoting by L the linearized operatorL : H2(R3 )! L2(R3 ); L[u] := �u� u+ f 0(w)u;then Kernel(L) = span� @w@x1 ; @w@x1 ; @w@x3� :By the well-known result of Gidas, Ni and Nirenberg ([21]) w is radially symmetric and strictly de-creasing in r = jxj. Moreover, by classical regularity results, w 2 C2(R3 ) and the following asymptoticbehavior holds:(1.3) w(r); w00(r) = Ar e�r�1 +O�1r��; w0(r) = �Ar e�r�1 +O�1r��;where A > 0 is a suitable positive constant. Note that assumptions (f1){(f3) imply(1.4) f(t) � c1jtj3 + c2jtjp; F (t) � C1jtj4 + C2jtjp+1 8t � 0:Typical examples of f satisfying (f1)-(f5) include f(t) = tp+ where 3 < p < 5. Other nonlinearitiescan be found in [5]. The uniqueness of w is proved in [29] for the case of power-like f ; for a generalnonlinearity, see [3]. The nondegeneracy condition can be derived from the uniqueness argument (see[32]).In order to provide the exact formulation of the main result of this paper we recall the variationalstructure of the system (1.1): indeed for every v 2 H10 (
) let (��)�1[v2] 2 H10 (
) be the uniquesolution of the following problem�V + v2 = 0 in 
; V = 0 on @
:Then (1.1) is equivalent to(1.5) 8<: "2�v � v � (��)�1[v2]v + f(v) = 0 in 
;v > 0 in 
; v = 0 on @
;where  = 12, and associated to (1.5) is the following energy functional:(1.6) J"[v] := 12 Z
 �"2jrvj2 + jvj2�dx + 4 Z
(��)�1[v2]v2dx� Z
 F (v)dx:Our aim is to establish the existence of least energy solutions v" for (1.5) and to show that v" exhibitsa point-condensation phenomenon as " ! 0+. More precisely, when " is su�ciently small, v" hasa single spike centered at a point P" which approaches the boundary as " ! 0+, while v" vanisheseverywhere else. Hence a natural question arises immediately to ask which part of the boundary the



4 TERESA D'APRILE AND JUNCHENG WEIpoints P" are situated near, and it is the purpose of this paper to answer this question and to give anaccurate description of the pro�les of the solutions v". Indeed we shall prove that this unique peakmust be situated near the most curved part of @
, i.e. where the boundary mean curvature assumesits maximum; more precisely any limiting point P0 of the family P" is such that H(P0), the meancurvature of @
 at P0, is a maximum value of H(P ) over @
.Now we proceed to state our main theorem.Theorem 1.1. Assume that 
 � R3 is a smooth and bounded domain and that hypotheses (f1)-(f5)hold. Then for every " > 0 there exists a least energy solution v" 2 H10 (
) of (1.5). Furthermore,as " ! 0+, v" develops a spike near the maxima of the mean curvature; more precisely there existsP" 2 
 such that(1) v"(x) = w�x�P"" �+ o(1) uniformly in 
;(2) dist(P"; @
) = (1 + o(1))" log 1" .Finally, for every sequence "n ! 0+, up to a subsequence,(3) P"n ! P0 2 @
 where H(P0) = H0 := maxP2@
H(P ).Remark 1.1. Notice that if, in addition, we assume the existence of a unique global maximum P0 ofH(P ), Part (3) of Theorem 1.1 holds for all the families P", without need to pass to sequences, andall the waves v" concentrate at that point P0 as "! 0+.It is interesting to see how the geometry of the domain determines exactly the location of the spike-layers as well as how this result is in striking contrast with the result in [35] for the single Schr�odingerequation (1.2) with Dirichlet boundary condition, in which the least energy solutions are located atthe most centered part of the domain. Furthermore, it is also known that there are no spike-layersolutions concentrating near the boundary for the Dirichlet problem associated to (1.2) (see [8], [39]).On the contrary least energy solutions with a single boundary peak closed to the maxima of the meancurvature are known for (1.2) with Neumann conditions. So we are in presence of a Dirichlet problemwhich acts more like a Neumann problem for the single equation case. To our knowledge, the onlyother result concerning boundary concentration occurring for a Dirichlet problem is known for theFitzHugh-Nagumo system by Dancer and Yan in [8] and [9]; however in [8] and [9] only the existenceof such solutions is proved and the exact boundary limiting points are not determined. This paperseems to be the �rst one that succeeds in locating exactly the boundary spikes for a Dirichlet problem.The proof of Theorem 1.1 is based on the energy method, i.e. on the derivation of an asymptoticformula for the smallest critical value J�" := J"[v"] as "! 0+, in the spirit of [32], [33], [35]. However,



BOUNDARY PEAKS 5here the technique is more complicated since we have to expand the energy up to the sixth order. The�rst object is to apply the Mountain-Pass Lemma to obtain a critical point v" of J"; furthermore weprove that v" is actually a least-energy solution of (1.5), by which it is meant that v" has the smallestenergy J�" among all the solutions to (1.5), and J�" can be characterized as(1.7) J�" = infv2H10 (
)maxt�0 J"[tv]:Then we show that for " su�ciently small v" is a single spike solution which is localized in a "-neighborhood of a maximum point P" with dist(P";@
)" ! +1. Next, the critical step is to know thedetailed structure of v" around P". To do this we �rst use the solution w of the limiting problem (1.3)to construct a family of suitable functions ~w";P and then prove that the solution v" can be obtainedas a suitable perturbation of ~w";P" . To perform such approximation we make extensive use of thenondegeneracy condition (f5). Once we have obtained the shape of v", we have to expand J"[v"] = J�"up to the order O("6). The �rst term in the expansion formula of J�" is given by I [w]"3, where I [w]is the energy of w:I [w] = 12 ZR3(jrwj2 + jwj2)dx� ZR3 F (w)dx = 12 ZR3 f(w)wdx � ZR3 F (w)dx:The �rst correction term in J�" involves the distance function P" from the boundary, while the boundarymean curvature appears in the fourth term. The location of P" is determined by using ~w";P ascomparison functions (for suitable P 2 
), i.e., according to the characterization (1.7), we compareJ�" with maxt�0 J"[t ~w";P ]; such comparison gives information on the terms in the asymptotic expansionof J�" , in particular on dist(P"; @
) as well as on which portion of the boundary P" approaches to.The paper is organized as follows. Section 2 is devoted to introduce some notation and preliminaries.In Section 3 we construct the approximated solution ~w";P and we determine its shape. Section 4contains the expansion of the functional J" on ~w";P as a function of " and P . In Section 5 weconstruct the least energy solutions v" and prove that their shape can be approximated by ~w";P" , forsuitable P" 2 
, up to a certain order "�" ; furthermore an upper bound for the critical values J�" isderived by using ~w";P as comparison functions and computing maxt�0 J"[t ~w";P ]. Finally the proof ofTheorem 1.1 is completed in Section 6.Acknowledgments. The research of the second author is supported by an Earmarked Grant fromRGC of Hong Kong. This paper was begun while the �rst author was visiting The Chinese Universityof Hong Kong in April 2005. She gratefully acknowledges the Department of Mathematics at CUHKfor their hospitality.



6 TERESA D'APRILE AND JUNCHENG WEINOTATION- Given A � R3 an open subset, Lp(A) is the usual Lebesgue space endowed with the normkukpLp := ZA jujp dx for 1 � p < +1; kuk1 = supx2A ju(x)j:Furthermore H10 (A) is the usual Sobolev space endowed with the normkuk2H1 = ZA �jruj2 + juj2� dx:- If u : RN ! R is a radially symmetric function, we will continue to denote by u the real functionr > 0 7! u(x) with jxj = r.- We will often use the symbol c or C for denoting di�erent positive constants independent on ".The value of c, C is allowed to vary from line to line (and also in the same formula).- o(1) denotes a vanishing quantity as "! 0+.- Given fa"g">0 and fb"g">0 two family of numbers, we write a" = o(b") (resp. a" = O(b")) tomean that a"b" ! 0 (resp. ja"j � Cjb"j) as "! 0+.2. PreliminariesIn this section we collect some preliminary results concerning the variational structure of the system(1.5). In particular we recall some well-known facts on the representation formula for the Poissonequation: for a smooth domain there exists a unique Green's function G(x; z) of the Laplace operatorwith Dirichlet boundary condition (see [28]). Furthermore G is symmetric in x and z and(2.8) 0 < G(x; z) < 14�jx� zj 8x; z 2 
�
; x 6= z:Proposition 2.1. Let 
 be a smooth and bounded domain of R3 . For every g 2 L2(
) denote by(��)�1[g] the unique solution in H10 (
) of(2.9) �� = g:Then the following representation formula holds:(2.10) (��)�1[g](x) = Z
G(x; z)g(z)dz:Furthermorea) R
(��)�1[g]hdx = R
(��)�1[h]gdx for every g; h 2 L2(
);b) k(��)�1[g]k1 � CkgkL2 for every g 2 L2(
);c) k(��)�1[g]k1 � "2kgk1 + 1"kgkL1 for every g 2 L1(
);



BOUNDARY PEAKS 7d) the functional J : u 2 H10 (
) 7! R
 u2(��)�1[u2]dx is C1 andhJ 0[u]; vi = 4 Z
 uv(��)�1[u2]dx 8u; v 2 H10 (
):Proof. By Lax-Milgram's Lemma we get the existence of a unique solution in H10 (
) of (2.9). Therepresentation formula (2.10) holds for u 2 C10 (
) (see, for example, [20, pg. 23, Theorem 1]); bydensity (2.10) can be extended to any g 2 L2(
). a) follows immediately from (2.10) and Fubini-Tonelli's theorem. By (2.8) for every g 2 L2(
), by using H�older's inequality, we havej(��)�1[g](x)j � 14� Z
 jg(z)jjz � xjdz � 14�kgkL2�Zjzj�2diam(
) 1jzj2 dz�1=2 � CkgkL2 ;while, for g 2 L1(
),j(��)�1[g](x)j � 14� Zjz�xj�" jg(z)jjz � xjdz + 14�" Z
 jg(z)jdz� kgk14� Zjyj�" 1jzjdz + 14�"kgkL1 = "2kgk12 + 14�"kgkL1and we obtain b)-c).Part d) is a direct computation. �In view of d) of Proposition 2.1 the energy functional J" de�ned in (1.6) is of class C1(H10 (
);R)and its critical points correspond to the solutions of (1.5). Furthermore J" can be rewritten asJ"[v] ="22 Z
 �jruj2 + u2�dx� Z
 F (u)dx+ 4 Z
 Z
G(x; z)u2(x)u2(z)dxdz:3. Computation of ~w";PIn this section we introduce some suitable approximated solutions and derive some crucial estimates:�rst set w";P (x) = w�x� P" �; x; P 2 R3 :Next for every P 2 R3 de�ne ~w";P to be the unique solution of the problem(3.11) "2� ~w";P � ~w";P + f(w";P ) = 0 in 
; ~w";P = 0 on @
:From the comparison principle it is immediate that(3.12) 0 < ~w";P (x) < w";P (x) 8x 2 
; 8P 2 R3 :The goal is to obtain an asymptotic expansion of the approximations ~w";P . To this aim some prepa-rations are needed. First de�ne the distance function dP from the boundary @
 bydP = dist(P; @
); P 2 R3 :



8 TERESA D'APRILE AND JUNCHENG WEIThe regularity of 
 implies that @
 satis�es the uniform interior and exterior sphere condition; thatis, at each point Q 2 @
 there exist two balls B1; B2 such that B1 \ �
 = fQg, B2 \ (R3 n
) = fQg,and the radii of the balls B1 and B2 are bounded from below by a positive constant; taking suchconstant as �, we obtain that, set �� := fP 2 
 j dP � �g;for every P 2 �� there exists a unique �P 2 @
 such that j�P � P j = j�P � P �j = dP = dP� , (see,for example, [22], pg. 355), where P � = 2�P � P (i.e. P � is the symmetric of P with respect to thetangent plane at @
 in �P ). Notice that by construction, using (1.3),(3.13) w";P�(x) � C "dP e� jx�P�j" � C "dP e� dP" 8x 2 
; 8P 2 ��:(3.14) w";P (x) � C "dP e� jx�P j" � C "dP e� dP" 8x 2 R3 n
; 8P 2 R3 :For every P 2 �� let H1(�P ), H2(�P ) be the principal curvatures of @
 at �P , so that the meancurvature H(�P ) of @
 at �P is given by the average:H(�P ) = H1(�P ) +H2(�P )2 :We introduce a di�eomor�sm which straightens a boundary portion near �P : consider TP (x) therotation and translation of coordinates which map �P in 0, the inner normal to @
 at �P in thepositive `3 coordinate axis and the principal directions corresponding to H1(�P );H2(�P ) in the `1; `2axes. Then TP (P ) = (0; 0; dP ); TP (P �) = (0; 0;�dP ) and in some neighborhood of 0 the boundary@(TP
) can be represented by(3.15) y3 = 12 Xi=1;2Hj(�P )y2i + !P (y0); limy0!0 !P (y0)jy0j2 = 0; where y0 = (y1; y2):Before providing in Proposition 3.1 the asymptotic expansion of the approximated solutions ~w";Pwe state �rst the following useful result.Lemma 3.1. Fix a > 0; b � 0. For P 2 �� such that dP" is su�ciently large the following holdswa";P� jy0jb"b L1(
) + "�3 Z
 wa";P� jy0jb"b dx � Ce� 2adP3" (y = TP (x)):Proof. According to (3.13), for dP" su�ciently large we getwa";P� jy0jbL1(
) + "�3 Z
 wa";P� jy0jbdx � Ce� 2adP3" �wa=3";P� jy0jbL1(
) + "�3 Z
 wa=3";P� jy0jbdx�� C"be� 2adP3" �wa=3�y + dP `3" � jy0jb"b L1(R3) + "�3 ZR3 wa=3�y + dP `3" � jy0jb"b dy�� C"be� 2dP3" �kwa=3(y)jy0jbkL1(R3) + ZR3wa=3(y)jy0jbdy� � C"be� 2adP3" :



BOUNDARY PEAKS 9Proposition 3.1. For P 2 
 such that dP" is su�ciently large the following estimates hold:i) ~w";P (x) = w";P (x) +O("4) uniformly for x 2 
 and P 2 
 n ��;ii) ~w";P (x) = w";P (x) � w";P�(x) + O(")h";P (x) + k";P (x) uniformly for x 2 
 and P 2 �� whereh";P and k";P solve(3.16) "2�h";P � h";P = 0 in 
; h";P = w";P� jy0j2"2 + "4 on @
; y = TP (x);(3.17) "2�k";P � k";P = �f(w";P�); k";P = 0 on @
:Furthermore(3.18) kh";P k21 + "�3 Z
 h2";P dx = O("8 + e� 4dP3" ); kk";P k21 + "�3 Z
 k2";P dx = O(e� 4dP" )uniformly for P 2 ��.iii) "r ~w";P (P ) = O("4 + "e� 2dP3" + e� 2dP" ):Proof. The proof of Part i) is immediate: indeed w";P � ~w";P satis�es"2�(w";P � ~w";P )� (w";P � ~w";P ) = 0 in 
; w";P � ~w";P = w";P on @
:On the other hand by the de�nition of �� w";P � Ce��" = O("4) uniformly for x 2 @
 and P 2 
n��.The maximum principle implies w";P � ~w";P = O("4) uniformly for x 2 
 and P 2 
 n ��.We go on with the proof of Part ii), which is more technical. During its proof it is understood,even though not stated plainly, that all the estimates hold uniformly for P 2 ��. First decompose~w";P = w";P � w";P� � "ĥ" + k"where ĥ" solves the following problem"2�ĥ" � ĥ" = 0 in 
; ĥ" = w";P � w";P�" on @
;and k" = k";P solves (3.17).The �rst object is to prove the following estimate for the boundary points:(3.19) jw";P (x) � w";P�(x)j" � Cw";P�(x) jy0j2"2 + "4uniformly for x 2 @
. Indeed(3.20) dP � jx� P j = jy � dP `3j =qd2P + jyj2 � 2dP y3 � jy0j;dP � jx� P �j = jy + dP `3j =qd2P + jyj2 + 2dP y3 � jy0juniformly for x 2 @
. Using (3.15) we have y3 = O(jy0j2) on @
; consequently(3.21) jjx� P j � jx� P �jj = jjx� P j2 � jx� P �j2jjx� P j+ jx� P �j = 4dP jy3jjx� P j+ jx� P �j � 2jy3j � Cjy0j2:



10 TERESA D'APRILE AND JUNCHENG WEIuniformly for x 2 @
. Take x 2 @
 and distinguish two cases: �rst assume jy0j � p"; then, by (3.20),jx� P j; jx� P �j � p", and, by (1.3),jw";P (x)j; jw";P�(x)j � Cp"e� 1p" � "5:Next assume jy0j � p"; then for every r 2 [minfjx� P j; jx � P �jg;maxfjx� P j; jx� P �jg] by (3.21)we have jr�jx�P�jj" � C, by which, using again (1.3),���w0�r"���� � C "r e� jrj" � C "jx� P �je� jx�P�j" � Cw";P�(x);hence, by applying the mean value theorem, we get��w";P (x) � w";P�(x)�� � Cw";P�(x) jjx � P j � jx� P �jj" � Cw";P�(x) jy0j2"uniformly for x 2 @
 with jy0j � p". Hence (3.19) holds. The maximum principle applies and givesjĥ"j � Ch" where h" := h";P .By multiplying both members of (3.16) by h"(x) � w";P�(x) jy0j2"2 � "4 and since, using (1.3),���r�w";P�(x) jy0j2"2 ���� � C" w";P�(x)�1 + jy0j2"2 �integrating by parts we getZ
("2jrh"j2 + h2")dx � C Z
 w";P��1 + jy0j2"2 �("jrh"j+ h")dx+ "4 Z
 h"dx� C�Z
 w2";P��1 + jy0j2"2 �2dx�1=2�Z
("2jrh"j2 + h2")�1=2 + C"4�Z
 h2"�1=2� C"3=2e� 2dP3" �Z
("2jrh"j2 + h2")dx�1=2 + C"4�Z
 h2"�1=2where, in the last inequality, we have used Lemma 3.1. In the same way, by multiplying both membersof (3.17) by k", since by (1.4) f(w) � Cw3, we haveZ
("2jrk"j2 + k2")dx � C Z
 w3";P�k"dx � C"3=2e� 2dP" �Z
 k2"dx�1=2and a �rst part of (3.18) follows. In order to complete the proof, �rst notice that by the maximumprinciple we derive h"; k" � 0 in 
. Furthermore according to Lemma 3.1 w";P� jy0j2"2 � Ce� 2dP3" on@
, hence from the maximum principle, kh";Pk1 = O(e� 2dP3" + "4). In the same way f(w";P�) �Cw3";P� � Ce� 2dP" on 
, then the comparison principle gives kk";P k1 = O(e� 2dP" ).Finally to prove Part iii), observe that z";P = ("4 + "e� 2dP3" + e� 2dP" )�1�w � ~w";P ("x+ P )� solves�z";P = z";P in B(0; 1)(note that for dP" is su�ciently large we have B(0; 1) � 
�P" ). Furthermore by Parts i)-ii) it followsthat z";P is uniformly bounded on B(0; 1) (note that w";P�("x + P ) � Ce� jP�P�j" � Ce�2 dP" on



BOUNDARY PEAKS 11B(0; 1)). Then from the well-known Schauder interior estimate z";P and its �rst and second derivativesare uniformly bounded on the compact sets of B(0; 1). Then iii) follows.An easy consequence of Proposition 3.1 is the following corollary.Corollary 3.1. Setting ~w";P = 0 for x 62 
, we have ~w";P ("x + P ) ! w in H1(R3 ) and L1(R3 ) asdP" ! +1 uniformly for P 2 
.Proof. First observe that kw";P ("x)kH1(R3n
" ); kw";P ("x)kL1(R3n
" ) ! 0+ as dP" ! +1 uniformlyfor P 2 
. On the other hand for P 2 ��, since dP�" = dP" , then we deduce kw";P�("x)kH1(
" ),kw";P�("x)kL1(
" ) ! 0+ as dP" ! +1. Then by i) and ii) of Proposition 3.1 this implies that~w";P ("x) � w";P ("x) ! 0 in L2(R3 ) and L1(R3 ) as dP" ! +1 uniformly for P 2 
. By multiplyingequation (3.11) by ~w";P and integrating by parts we getk ~w";P ("x)k2H1(R3) = ZR3 f(w) ~w";P ("x+ P )dx! ZR3 f(w)wdx = kwk2H1(R3);by which ~w";P ("x+ P )! w in H1(R3 ) as dP" ! +1 uniformly for P 2 
.Our next lemma provides an estimate of the error up to ~w";P satis�es the system (1.5). To thisaim set S"[v] = "2�v � v � (��)�1[v2]v + f(v); v 2 H2(
):Lemma 3.2. For P 2 
 such that dP" is su�ciently large the following holds:��S"[ ~w";P ]�� � C�e� 7dP4" + "e� 2dP3" + "2�w1=4";P :Proof. According to c) of Proposition 2.1 and (3.12)j(��)�1[ ~w2";P ] ~w";P j � "2�kw2";P kL1(
) + "�3kw2";P kL1(
)�w";P � C"2w";P :We just need to estimate the local term: by (3.11) and assumption (f1) we deduce��"2� ~w";P � ~w";P + f( ~w";P )�� = ��f( ~w";P )� f(w";P )�� � Cw";P �w";P � ~w";P �:If P 2 
 n �� the thesis follows from Part i) of Proposition 3.1. Now assume P 2 ��; By using Partii) of Proposition 3.1 we get��"2� ~w";P � ~w";P + f( ~w";P )���Cw";P �w";P� + "h";P + k";P ��Cw";P �w";P� + "e� 2dP3" + "4 + e� 2dP" �:In order to conclude by (1.3) and (3.13) we computew";Pw";P� � Cw1=4";P e�3 jx�P j4" �3 jx�P�j4" e� dP4" � Cw1=4";P e�3 jP�P�j4" e�dP4" = Cw1=4";P e� 7dP4"uniformly for x 2 
 and P 2 ��. �



12 TERESA D'APRILE AND JUNCHENG WEI4. Expansion of J"[ ~w";p]This section is devoted to compute the energy of the approximated solutions ~w";P . Since thecomputations are quite long and technical, for the sake of simplicity we provide the expansion for theinternal energy and the nonlocal term R
(��)�1[ ~w2";P ] ~w2";P separately in the next Propositions 4.1and 4.2 respectively. First we need the auxiliary results provided by the following two lemmas.Lemma 4.1. For P 2 �� such that dP" is su�ciently large the following holdsZ
 wa";Pwb";P� jy0jc"c dx8>>>>>><>>>>>>: � C"3�dP" � c�a2 �b+1e�2b dP" if a > b > 0; c � 0;� C"3�dP" � c�3a+32 e�2a dP" if a = b > 0; c � 0;� C"3�dP" � c�a+32 �be�(a+b) dP" if 0 < a < b; c � 0;where y = TP (x).Proof. By using (1.3) and (3.13) we getZ
 wa";Pwb";P� jy0jc"c dx � C "bdbP ZR3 wa�y � dP `3" �e�b jy+dP `3j" jy0jc"c dy� C "3+bdbP ZR3 wa(y)e�bjy+ 2dP `3" jjy0jcdy � C "3+bdbP ZR3 e�ajyje�bjy+2dP" `3jjy0j(c�a)+dywhere (c� a)+ = maxf0; c� ag. Now observe that���y + 2dP" `3��� =rjyj2 + 4d2P"2 + 4y3 dP" � 2dP" + jyj24dP "+ y3 � 2dP" + jyj24dP "� jy3j;by which ZR3 e�ajyje�bjy+2dP" `3jjy0j(c�a)+dy � e�2b dP" ZR3 e�ajyj+bjy3je�b jyj24dP "jy0j(c�a)+dy:Now we distinguish the three cases: �rst assume a > b; thenZR3 e�ajyj+bjy3je�b jyj24dP "jy0j(c�a)+dy � ZR e�(a�b)jy3jdy3 ZR2 e�b jy0 j24dP "jy0j(c�a)+dy0� �dP" � (c�a)+2 +1 ZR3 e�(a�b)jy3jdy3 ZR2 e�b jy0j24 jy0j(c�a)+dy0:Now assume a = b:ZR3 e�ajyj+ajy3je�a jyj24dP "jy0j(c�a)+dy �ZR3 e�a jyj24dP "jy0j(c�a)+dy = �dP" � (c�a)++32 ZR3 e�a jyj24 jy0j(c�a)+dy:Finally, if b > a, then by (3.13)Z
 wa";Pwb";P� jy0jc"c dx � � "dP �b�ae�(b�a)dP" Z
 wa";Pwa";P� jy0jc"c dxand the thesis follows from the previous cases.



BOUNDARY PEAKS 13Lemma 4.2. The following limit holdsZR3 f(w)w(y + �`3)dy = B� (1 + o(1))e�� as �! +1; B = A ZR3 f(w)e�y3dy:Proof. The proof is an easy consequence of Lebesgue's Dominated Convergence Theorem. Accordingto (1.3) for every y 2 R3 we have(4.22) lim�!+1 w(y + �`3)A� e�� � e�y3 = lim�!+1 e�jy+�`3j+� � e�y3 = 0:Observe that, if jyj � �2 , then jy + �`3j � �2 ; hence, by using (1.3) we getf(w)w(y + �`3)w(�) � 2f(w) �jy + �`3jejyj � 4f(w)ejyj:On the other hand, for jyj � �2 , by (1.3) and (1.4) we obtainf(w)w(y + �`3)w(�) � Ckwk1 �jyj3 e�3jyj+� � Ckwk1e�jyj:Since f(w)ejyj 2 L1(R3 ), the convergence (4.22) is dominated. �Now we are ready to provide in the next two propositions the asymptotic formula for the energyJ"[v"].Proposition 4.1. The following asymptotic expansion holds:(4.23) 12 Z
 �"2jr ~w";P j2 + ~w2";P �dx� Z
 F ( ~w";P )dx =I [w]"3 + "3��dP" �+O�"4rdP" e�2dP" �+ o("6 + "5e� dP" + "3e�3 dP" );as dP" ! +1 uniformly for P 2 
, where � : R+ ! R is de�ned by(4.24) �(�) = 12 ZR3 f(w)w�y + 2�`3�dy = (1 + o(1)) B4�e�2�as �! +1:Proof. We begin by observing that by assumption (f1) and (3.12) we getF ( ~w";P ) = F (w";P ) + f(w";P )( ~w";P � w";P ) +O(w";P ( ~w";P � w";P )2)uniformly for x; P 2 
, by which, using equation (3.11), it is easy to check thatI"[ ~w";P ] := 12 Z
 �"2jr ~w";P j2 + ~w2";P �dx� Z
 F ( ~w";P )dx = 12 Z
 f(w";P ) ~w";P dx � Z
 F ( ~w";P )dx= � Z
 F (w";P )dx� 12 Z
 f(w";P ) ~w";P dx+ Z
 f(w";P )w";P dx +O�Z
 w";P ( ~w";P � w";P )2dx�uniformly for P 2 
. Notice that by (1.4) we have f(w) � Cw3, F (w) � Cw4; then (3.14) implies12 Z
" f(w";P ("x))w";P ("x)dx � Z
" F (w";P ("x))dx= ZR3 �12f(w)w � F (w)�dx+ o("�3 dP" ) ZR3 wdx = I [w] + o("�3 dP" )



14 TERESA D'APRILE AND JUNCHENG WEIas dP" ! +1 uniformly for P 2 
. Hence we arrive at(4.25) I"[ ~w";P ] =I [w]"3 + 12 Z
 f(w";P )(w";P � ~w";P )dx+O�Z
 w";P ( ~w";P � w";P )2dx�+ o("3e�3 dP" )as dP" ! +1 uniformly for P 2 
.Next we insert the expansion provided by Proposition 3.1 in (4.25) and distinguish the two cases.First assume P 2 
 n ��. Then by Part i)I"[ ~w";P ] = I [w]"3 + o("6 + "3e�3 dP" )and (4.23) holds uniformly for P 2 
 n ��. Next assume P 2 ��. Then insert the estimate providedby Part ii) of Proposition 3.1 to obtain
(4.26) I"[ ~w";P ] = I [w]"3 + 12 Z
 f(w";P )w";P�dx� 12 Z
 f(w";P )k";P dx +O(") Z
 f(w";P )h";P dx+O�Z
 w";Pw2";P�dx�+O("2) Z
 h2";P dx+O�Z
 k2";P dx�+ o("3e�3 dP" )= I [w]"3 + "32 Z
" f(w";P ("x))w";P�("x)dx � 12 Z
 f(w";P )k";P dx+O(") Z
 f(w";P )h";P dx+ o�"3e�3 dP" + "5e�dP" + "6�as dP" ! +1 uniformly for P 2 ��, where we have used (3.18) and Lemma 4.1. Furthermore(4.27) Z
" f(w";P ("x))w";P� ("x)dx = ZR3 f(w";P ("x))w";P� ("x)dx+ o("�3 dP" )= ZR3 f(w)w�y + 2dP" `3�dy + o("�3 dP" ) = 2��dP" �+ o("�3 dP" )as dP" ! +1 uniformly for P 2 ��. The asymptotic formula (4.24) follows from Lemma 4.2.After integration by parts, using (3.17),(4.28) Z
 f(w";P )k";P dx = Z
 �� "2� ~w";P + ~w";P �k";P dx = Z
 ~w";P f(w";P�)dx = o("3e�3 dP" ):as dP" ! +1 uniformly for P 2 ��, where the last estimate follows from (3.13).By (1.3) a direct computation shows that���"2��w";P�(x) jy0j2"2 �� w";P�(x) jy0j2"2 ��� � Cw3";P�(x) jy0j2"2 + Cw";P�(x)�1 + jy0j" �;



BOUNDARY PEAKS 15by which, using equation (3.16) and integrating by parts,
(4.29) ��� Z
 f(w";P )�h";P � w";P� jy0j2"2 � "4�dx���= ��� Z
 �� "2� ~w";P + ~w";P ��h";P � w";P� jy0j2"2 � "4�dx���� C Z
 ~w";Pw3";P� jy0j2"2 dx+ C Z
 ~w";Pw";P��1 + jy0j" �dx + "4 Z
 ~w";P dx� C"3rdP" e�2 dP" + C"7by Lemma 4.1. Finally Lemma 4.1 also gives(4.30) Z
 f(w";P )w";P� jy0j2"2 dx+ "4 Z
 f(w";P )dx � C"3e�2 dP" + C"7:The conclusion follows by inserting (4.27), (4.28), (4.29), (4.30) into (4.26).Proposition 4.2. The following asymptotic expansion holds:4 Z
 ~w2";P (��)�1[ ~w2";P ]dx =I2"5 � I3 "6dP + o("11=2e�dP2" + "5e� dP" + "4e�2dP" ) +O("6);(4.31)as dP" ! +1 uniformly for P 2 
, where I2; I3 are positive constants; furthermore(4.32) 4 Z
 ~w2";P (��)�1[ ~w2";P ]dx =I2"5 � I3 "6dP � I4H(�P )"6+ o("11=2e� dP2" + "5e�dP" + "4e�2dP" + "6)as dP" ! +1 and dP ! 0 uniformly for P 2 ��, where I4 is a positive constant.Proof. By (3.12) and a) of Proposition 2.1 we can writeZ
 ~w2";P (��)�1[ ~w2";P ]dx =Z
 w2";P (��)�1[w2";P ]dx+O�Z
 w2";P (��)�1�w";P (w";P � ~w";P )�dx�:First assume P 2 
 n ��: b) of Proposition 2.1 and Part i) of Proposition 3.1 imply(4.33) Z
 ~w2";P (��)�1[ ~w2";P ]dx = Z
 w2";P (��)�1[w2";P ]dx+O�"4 Z
 w2";P dx�= Z
 w2";P (��)�1[w2";P ]dx+O("7)uniformly for P 2 
 n ��. Now assume P 2 ��; according to Part ii) of Proposition 3.1,(4.34) Z
 ~w2";P (��)�1[ ~w2";P ]dx = Z
 w2";P (��)�1[w2";P ]dx+O�Z
 w2";P (��)�1�w";Pw";P��dx�+O�" Z
 w2";P (��)�1[h";P ]dx�+O�Z
 w2";P (��)�1[k";P ]dx�uniformly for P 2 ��. Let us analyze the error terms: by using b) of Proposition 2.1 and Lemma 4.1we obtain(4.35) Z
 w2";P (��)�1�w";Pw";P��dx � C"3=2e�2 dP" Z
 w2";P dx � C"9=2e�2 dP" :



16 TERESA D'APRILE AND JUNCHENG WEIuniformly for P 2 ��. Again by b) of Proposition 2.1 and (3.18) we get(4.36) Z
 w2";P (��)�1[h";P ]dx � C"3=2("2 + e� 2dP3" ) ZR3w2";P dx � C("13=2 + "9=2e� 2dP3" ):and(4.37) Z
 w2";P (��)�1[k";P ]dx � C"3=2e�2 dP" ZR3 w2";P dx � C"9=2e�2 dP"uniformly for P 2 ��. Combining (4.33), (4.34), (4.35), (4.36) and (4.37) we arrive atZ
 ~w2";P (��)�1[ ~w2";P ]dx = Z
 w2";P (��)�1[w2";P ]dx+ o("11=2e�dP2" + "4e�2 dP" + "6)as dP" ! +1 uniformly for P 2 
. Thus it is su�cient to estimateZ
 w2";P (��)�1[w2";P ]dx:To this aim denote by V0 the unique solution of�V0 + w2 = 0 in R3 ; V0 ! 0 as jxj ! +1i.e. V0(x) = 14� RR3 1jx�zjw2(z)dz. Then V0 is radial and its equation in radial coordinates becomes(r2V 00)0 + r2w2 = 0 by which, after integration,(4.38) V 00(r) = � 1r2 Z r0 s2w2ds = � 1r2�Z +10 s2w2ds+O(e�2r)� = � c0r2 (1 +O(e�2r))for some c0 > 0 and, by integrating again,(4.39) V0(r) = � Z +1r V 00(s)ds = c0r +O(e�2r):Now set V";P (x) = V0�x� P" �; x 2 
; P 2 R3 :First assume P 2 
 n ��. Note that (��)�1[w2";P ]� "2V";P solve��(��)�1[w2";P ]� "2V";P � = 0 in 
; (��)�1[w2";P ]� "2V";P = �"2V";P on @
and by (4.39) V";P = O(") uniformly for x 2 @
 and P 2 
 n ��. From the maximum principle itfollows that (��)�1[w2";P ]� "2V";P = O("3) uniformly for x 2 @
 and P 2 
n��. Hence using (3.14)we obtainZ
 w2";P (��)�1[w2";P ] = "2 Z
 w2";PV";P dx+O("3) Z
 w2";P = "5 ZR3 w2V0dx+ o("5e�dP" ) +O("6)and (4.31) holds uniformly for P 2 
 n ��. Now we assume P 2 �� and decompose(4.40) (��)�1[w2";P ] = "2�V";P � V";P� + Z";P �W";P �where Z";P and W";P solve the following problems:(4.41) �Z";P + 1"2w2";P� = 0 in 
; Z";P = 0 on @
;



BOUNDARY PEAKS 17(4.42) �W";P = 0 in 
; W";P = V";P � V";P� on @
:For the sake of clarity we divide the remaining part of the proof into 4 steps. In order to simplifythe notation, during the steps we will write d and Hj in the place of dP and Hj(�P ), since this canbe done without causing confusion. We let it be understood that all the asymptotic estimates holduniformly with respect to the choice of P 2 ��.Step 1. The following holds:V";P (x)� V";P�(x) = c0"Pj=1;2Hj ŷ02j(1 + jŷj2)3=2 + o(") as d" ! +1; d! 0+;uniformly for x 2 @
, where ŷ = yd = TP xd .By (3.15), we computejx� P j =pd2 + jyj2 � 2dy3 =pd2 + jyj2 +O(djy0j2) = dp1 + jŷj2 + o(jŷ0j2)as d! 0+ uniformly for x 2 @
. In the same wayjx� P �j =pd2 + jyj2 + 2dy3 = dp1 + jŷj2 + o(jŷ0j2); rx;P = d(p1 + jŷj2 + o(jŷ0j2)as d! 0+ uniformly for x 2 @
 and rx;P 2 Ix;P := (minfjx� P j; jx� P �jg;maxfjx� P j; jx� P �jg).Hence by using again (3.15) we get(4.43) jx� P �j � jx� P jr2x;P = jx� P �j2 � jx� P j2r2x;P (jx � P j+ jx� P �j) = 2dy3d3(1 + jŷj2 + o(jŷ0j2))3=2= d3Pj Hj ŷ02j + 2d!P (dŷ0)d3(1 + jŷj2 + o(jŷ0j2))3=2 = Pj Hj ŷ02j(1 + jŷj2 + o(jŷ0j2))3=2 + O(!P (dŷ0))d2(1 + jŷj2)3=2= Pj Hj ŷ02j(1 + jŷj2)3=2 + o(1) + O(!P (dŷ0))d2(1 + jŷj2)3=2as d! 0 uniformly for x 2 @
 and rx;P 2 Ix;P . Observe that(4.44) !P (dŷ0)d2(1 + jŷj2)3=2 = o(1) as d! 0 unif. for x 2 @
:Indeed by (3.15) !P (dŷ0)d2(1 + jŷj2)3=2 = o(d2jŷ0j2)d2(1 + jŷj2)3=2 = o(1) unif. for jŷ0j � 1pd :While, if jŷ0j � 1pd , then !P (dŷ0)d2(1+jŷj2)3=2 � Cjy0j2(1+jŷj2)3=2 = o(1). By inserting (4.44) in (4.43) we deducejx� P �j � jx� P jr2x;P =Xj Hj ŷ02j(1 + jŷj2)3=2 + o(1) as d! 0+uniformly for x 2 @
 and rx;P 2 Ix;P .



18 TERESA D'APRILE AND JUNCHENG WEIThen by the mean value theorem, using (4.38), we deriveV";P (x)� V";P�(x) = �c0"(1 +O(e�2 d" )) jx� P j � jx� P �jr2x;P= c0"(1 +O(e�2 d" )) Pj Hj ŷ02j(1 + jŷj2)3=2 + o(") = c0"Pj Hj ŷ02j(1 + jŷj2)3=2 + o(")as d! 0+; d" ! +1 uniformly for x 2 @
. Hence Step 1 holds.Step 2. For P 2 �� such that d" is su�ciently large we haveV";P (x) � V";P�(x) = O(") unif. for x 2 @
:By (4.39), �xed � > 0, for P 2 �� with d � � we haveV";P (x); V";P�(x) � c0"� +O(e� 2�" ) = O(") unif. for x 2 @
:Then Step 2 follows by Step 1.Step 3. Set Ŵ";P (ŷ) =W";P (x) where ŷ = TP xd . Then for P 2 �� such that d" is su�ciently large(4.45) Ŵ";P (ŷ) = O(") unif. for ŷ 2 TP
d :Furthermore 1" Ŵ";P ! Ŵ1 + Ŵ2 as d" ! +1 and d ! 0+ uniformly on compact sets of R3+ , whereŴj satis�es(4.46) �Ŵj = 0 in R3+ ; Ŵj = c0Hj ŷ02j(1 + jŷ0j2)3=2 on @R3+ :By Step 2, from the comparison principle it follows immediately that if d" is large enough Ŵ";P (ŷ) =O(") uniformly for ŷ 2 TP
d .By (4.42) and Step 1, from the comparison principle it follows that as d! 0+ and d" ! +1Ŵ";P (ŷ) = " Xj=1;2 Ŵ j";P (ŷ) + o(")uniformly for ŷ 2 TP
d , where Ŵ j";P , solve(4.47) �Ŵ j";P = 0 in TP
d ; Ŵ j";P = gj := c0Hj ŷ02j(1 + jŷj2)3=2 on @�TP
d �; j = 1; 2:Denote by D1;2 the closure of C10 (R3 ) with respect to the norm kuk2D1;2 = RR3 jruj2dx. An easy com-putation shows that gj 2 D1;2. By multiplying both members of (4.47) by Ŵ j";P � gj and integratingon TP
d we obtainZTP
d jr(Ŵ j";P � gj)j2dŷ = � ZTP
d r(Ŵ j";P � gj)rgjdŷ � kŴ j";P � gjkD1;2kgjkD1;2where we have set Ŵ j";P = gj in R3 n TP
d . Hence we deduce that fŴ j";P � gjg" and, consequently,fŴ j";P g" are bounded in D1;2. Then, if we consider a generic sequence "n ! 0+ and Pn 2 
 such that



BOUNDARY PEAKS 19dPn ! 0 and dPn"n ! +1, up to a subsequence we may assume Ŵ j"n;Pn * Ŵj as n ! +1 weakly inD1;2 and a.e. in R3 . Note that, since by construction � 1dPn TPn
 ! �R3+ (denoting � the characteristicfunction), then Ŵ j"n;Pn ! gj a.e. in R3� and Ŵj ��R3+ solves (4.46). The uniqueness of the solutionof (4.46) implies that all the family Ŵ j";P converges to Ŵj in D1;2 and a.e. in R3+ as d ! 0+ andd" ! +1.For every �xed compact set K � R3+ , for small d we have K � TP
d . Since fŴ j";P g" are harmonicfunctions uniformly bounded on TP
d , then the classical Schauder's internal estimates imply thatŴ j";P ! Ŵj uniformly in K.Step 4. End of the proof:4 Z
 w2";P (���1)[w2";P ]dx = "5�I2 � I3 "d +O(") + o(e� d" )� as d" ! +1;4 Z
 w2";P (���1)[w2";P ]dx = "5�I2 � I3 "d � "I4H(�P ) + o(") + o(e� d" )� as d" ! +1; d! 0+:From (4.40) we obtain(4.48) Z
 w2";P (���1)[w2";P ]dx ="5 Z
" w2";P ("x)�V";P ("x)� V";P�("x)�dx+ "5 Z
" w2";P ("x)Z";P ("x)dx � "5 Z
" w2";P ("x)W";P ("x)dx:(3.14) and (4.39) imply4 Z
" w2";P ("x)�V";P ("x)� V";P�("x)�dx = 4 ZR3 w2V0dx� 4 ZR3w2V0�x� P � � P" �dx+ o("� d" )= I2 � 4 ZR3 w2 c0jx� P�P�" jdx+O�ZR3w2e�2jx�P�P�" jdx�+ o("� d" )= I2 � �c0V0�P � P �" �+O�e� 2d" ZR3 w2ejxjdx�+O(e� d" ) = I2 � I3 "d + o(e� d" );where we have set I2 = 4 RR3 w2V0 and I3 = �c202 .Using c) of Proposition 2.1, Lemma 3.1 and (4.41), for d" large enough we getZ
" w2";P ("x)Z";P ("x)dx � CkZ";P kL1(
) � Ckw2";P�kL1(
) + C"�3kw2";P�kL1(
) � Ce� 4d3" ;and, using (4.45), Z
" w2";P ("x)W";P ("x)dx = O(");



20 TERESA D'APRILE AND JUNCHENG WEIthen the �rst part of the thesis of Step 4 follows. Finally as d" ! +1Z
" w2";P ("x)W";P ("x)dx = Zjx�P" j�p d" w2";P ("x)W";P ("x)dz + o(")= Zjy�d" `3j�p d" w2�y � d" `3�Ŵ";P� "dy�dy + o(") = Zjzj�p d" w2(z)Ŵ";P�`3 + "dz�dz + o("):By Step 3 we immediately deduce 1"Ŵ";P �`3 + "dz� ! Ŵ1(`3) + Ŵ2(`3) uniformly on jzj � qd" asd" ! +1 and d ! 0+. On the other hand it is well known (see, for example [20], pg. 37) that thefollowing representation formula holds for (4.46):Ŵj(ŷ) = c0Hj ŷ32� ZR2 jẑ0j j2(1 + jẑ0j2)3=2 dẑ0[(ẑ1 � ŷ1)2 + (ẑ2 � ŷ2)2 + ŷ23 ]3=2 ;by which Ŵj(`3) = c0Hj 12� ZR2 jẑ0j j2(1 + jẑ0j2)3 dẑ0; j = 1; 2:Hence we obtain4 Z
" w2";P ("x)W";P ("x)dx = "I42 Xj=1;2Hj + o(") = "I4H(�P ) + o(")as d" ! +1 and d! 0+, where I4 = c02 RR3w2dx 12� RR2 jẑ01j2(1+jẑ0j2)3 dẑ0.5. Least Energy SolutionsThe object of this section is to prove the �rst part of Theorem 1.1; in particular we are goingto show the existence of a least energy solution v" for the problem (1.5), i.e. a solution with theimportant property of minimizing the energy J" among all solutions of (1.5). Furthermore we willprovide a detailed description of its shape which has the form of a single spike near the boundary.The more delicate matter of the location of the spike at the boundary will be the subject of the nextSection which concludes the proof.We begin with the following existence theorem.Theorem 5.1. For every " > 0 the value J�" de�ned by (1.7) is a positive critical value of J" withcritical point v". Furthermore J�" is the least energy critical value of J". Finally for every familyd" ! 0+ with d"" ! +1(5.49) J�" �I [w]"3 + I2"5 � I3 "6d" + "3��d"" �� I4"6H0 +O�"4rd"" e�2 d"" �+ o("6 + "11=2e� d"2" + "5e� d"" + "4e�2 d"" + "3e�3 d"" ) as "! 0+:where � : R+ ! R has been introduced in Proposition 4.1.



BOUNDARY PEAKS 21Proof. Fix " > 0. The object is to apply the Mountain-Pass Lemma to the functional J". To this aimwe �rst prove that J" satis�es the Palais-Smale condition. Let fvngn � H10 (
) be such thatjJ"[vn]j �M; J 0"[vn]! 0for some constant M > 0. Then, using assumption (f4),4M + o(1)kvnkH1� 4J"[vn]�hJ 0"[vn];vni= 3"2 Z
 jrvnj2dx+ 3 Z
 jvnj2dx+ Z
(f(vn)vn � 4F (vn)) dx� 3"2 Z
 jrvnj2dx+ 3 Z
 jvnj2dx:Hence fvngn turns out to be bounded in H10 (
); then, up to a subsequence, using Rellich's theorem,for some v 2 H10 (
) vn * v in H10 (
); vn ! v in Ls(
) for 1 � s < 6:Using the continuity of (��)�1 : H�1(
)! H10 (
) we deduce(��)�1[v2n]! (��)�1[v2] in H10 (
)and, consequently, using assumption (f3),�vn + f(vn)� (��)�1[v2n]vn ! �v + f(v)� (��)�1[v2]v in H�1(
):Hence we arrive at�"2�vn = J 0"[vn]� vn + f(vn)� (��)�1[v2n]vn ! �v + f(v)� (��)�1[v2]v in H�1(
):Again the continuity of (��)�1 allows us to conclude "2vn ! (��)�1[�v + f(v)� (��)�1[v2]v] inH10 (
). Hence the P.-S. condition is satis�ed for J".Next observe that J"[0] = 0; moreover combining (1.4) and the Sobolev's embeddings(5.50) J"[v] � "22 Z
 jrvj2dx+ 12 Z
 jvj2dx � C Z
 jvj4dx� C Z
 jvjp+1dx� �"22 � Ckvk2H1 � Ckvkp�1H1 �kvk2H1 � �" > 0provided that kvkH1 is su�ciently small. Condition (f4) can be restated as a di�erential equation forthe function F of the form ddt logF � �t for t > 0, which implies(5.51) F (t) � C(jtj� � 1) 8t � 0:Hence, �xed v 2 H10 (
) n f0g such that v+ = maxfv; 0g 6= 0, we get(5.52) J"[�v] ��22 Z
 �"2jrvj2 + jvj2�dx +  �44 Z
 v2(��)�1[v2]dx� C��4 Z
 jv+j�dx +C ! �1



22 TERESA D'APRILE AND JUNCHENG WEIas � ! +1. The well-known Mountain-Pass Lemma applies and gives that the following is actuallya critical value for J": ~J�" = infq2Q maxt2[0;1]J"[q(t)]where Q = fq 2 C([0; 1]; H10 (
)) j q(0) = 0; J"[q(1)] < 0g. Denoted by v" the associated critical point,hence v" solves the equation(5.53) "2�v" � v" + f(v")� v"(��)�1[v2" ] = 0 in 
:It remains to show that v" > 0. Indeed, multiplying (5.53) by v�" = maxf0;�v"g, and using (f1) wesee that Z
 jrv�" j2 dx+ Z
 jv�" j2 dx+  Z
(v�" )2(��)�1[v2" ] dx = 0which implies v�" = 0. By the strong maximum principle v" > 0 in 
. Then v" is a solution to (1.5).We are going to prove that, as a consequence of condition (f2), we can characterize the values ~J�"in a simpler way, i.e. ~J�" = J�" . First notice that, since J"[tv]! +1 for v 2 H10 (
) n f0g with v+ = 0,then J�" can also be de�ned as J�" = infv2H10 (
); v+ 6=0 supt�0 J"[tv]:For v 2 H10 (
), v+ 6= 0, we have J"[�v] < 0 for large �, by which we immediately obtain ~J�" � J�" . Inorder to prove the opposite inequality, we �rst note that �xed v 2 H10 (
) with v+ 6= 0, the function� > 0 7! J"[�v] has a unique nontrivial critical point which is a maximum point. Indeeddd�J"[�v] = hJ 0"[�v]; vi = �3� 1�2 Z
("2jrvj2 + jvj2)dx+  Z
 v2(��)�1[v2]dx � Z
 f(�v)�3v3 v4dx�;hypothesis (f2) implies that the bracket on the right hand side is a decreasing function of �. Notingthat, by (5.50), J"[�v] > 0 for � > 0 small and J"[�v] ! �1 as � ! +1, we obtain the assertion.De�ne �v > 0 as the unique nontrivial critical point of J"[�v]. Since J 0"[v"] = 0, it is clear thatdd�J"[�v"]�=1 = 0, which implies �v" = 1 and, consequentlyJ�" � J"[v"] = ~J�" :Observe that J�" = infv2M" J"[v]whereM" : = f�vv j v 2 H10 (
); v+ 6= 0g= nv 2 H10 (
) ��� hJ 0"[v]; vi := Z
("2jrvj2 + jvj2)dx +  Z
 v2(��)�1[v2]dx� Z
 f(v)vdx = 0o:Since any nontrivial critical point of J" lies on M", then J�" is the smallest critical value of J" and,consequently, v" is a least energy solution for (1.5).



BOUNDARY PEAKS 23To prove (5.49) choose Q" 2 
 such that d" = dQ" and Q" ! P0 where H(P0) = H0. Then set�" = � ~w";Q" > 0, i.e.�" Z
("2jr ~w";Q" j2 + j ~w";Q" j2)dx+ �3" Z
 ~w2";Q"(��)�1[ ~w2";Q" ]dx� Z
 f(�" ~w";Q") ~w";Q"dx = 0;which can be written, using Proposition 4.2, as(5.54) �" Z
("2jr ~w";Q" j2 + j ~w";Q" j2)dx+O(�3""5)� Z
 f(�" ~w";Q") ~w";Q"dx = 0:According to assumption (f2) we have f(t) � ct3 for all t � 0; hence using (1.4) and Corollary 3.1 weget "3 RR3(jrwj2 + jwj2)dx +O(�2""5)C"3(�2" RR3 jwj4dx+ �p�1" RR3 jwjp+1dx) � �" � "3 RR3(jrwj2 + jwj2)dx+O(�2""5)c"3�2" RR3 jwj4dx ;by which f�"g turns out to be bounded from above and below away from 0. We state that �" ! 1 as" ! 0+. Indeed, assume by absurd that �"n ! �� > 0 and �� 6= 1 for some sequence "n ! 0+. UsingCorollary 3.1 in (5.54) we get�� ZR3(jrwj2 + jwj2)dx � ZR3 f(��w)wdx = 0;i.e. �� is a critical point of � > 0 7! I [�w]. On the other hand � = 1 is obviously a critical pointtoo, then the uniqueness of the nontrivial critical point (which can be proved as for J"[�w]) gives thecontradiction. Hence �" ! 1 as "! 0+. Using equation (3.11), (5.54) leads toZ
 �"f(w";Q") ~w";Q"dx� Z
 f(�" ~w";Q") ~w";Q"dx = O("5):Observe that by assumption (f1) and (3.12) we get�"f(w";Q")� f(�" ~w";Q") =(�" � 1)(f( ~w";Q")� f 0( ~w";Q" ) ~w";Q" + o(1)) +O(w";Q" ( ~w";Q" � w";Q" ))uniformly in 
. Hence Proposition 3.1 leads toO("5) = (�" � 1)�Z
(f( ~w";Q")� f 0( ~w";Q") ~w";Q" ) ~w";Q"dx+ o(1) Z
 ~w";Q"dx�+O�Z
 w";Q"w";Q�"dx�+O�Z
 w";Q"("h";Q" + k";Q")dx�and then, combining (3.18), Corollary 3.1 and Lemma 4.1 we deduceO("2) = (�" � 1)�ZR3(f(w)� f 0(w)w)wdx + o(1)�+O(e�2 d"" ) + "�3O�kw";Q"kL2k"h";Q" + k";Q"k2�= (�" � 1)�ZR3(f(w) � f 0(w)w)wdx + o(1)�+O("5 + "e� 2d"3" + e�2 d"" ):In view of (f2) f(t)t is strictly increasing for t > 0, hence f(w)� f 0(w)w < 0. Thus we arrive at1� �" = O("2 + "e� 2d"3" + e�2 d"" ):



24 TERESA D'APRILE AND JUNCHENG WEISetting �"(�) = J"[� ~w";Q" ], it is immediate that �" 2 C2 and �0"(�") = 0; then, for some t" ! 1J�" � J"[�" ~w";Q" ] = �"(�") = �"(1)� (�" � 1)2�00" (t") = J"[ ~w";Q" ] +O("4 + "2e� 4d"3" + e�4 d"" )�00" (t")and the thesis follows from Propositions 4.1-4.2 once we have observed that"�3�00" (t")! ZR3(jrwj2 + jwj2)dx � ZR3 f 0(w)w2dxCorollary 5.1. As a corollary of Theorem 5.1, choosing d" = " log 1" + " log log 1" and using (4.24),it is easy to verify that the main term in the envelope on the right hand side of (5.49) is representedby the �rst four; hence we obtainJ�" � I [w]"3 + I2"5 � I3 "5j log "j+ log j log "j + "5 B(1 + o(1))4j log "j2(j log "j+ log j log "j)= I [w]"3 + I2"5 � I3 "5j log "j + o� "5j log "j5=3� as "! 0+;since 1j log "j+log j log "j � 1j log "j = O� log j log "jj log "j2 � = o� 1j log "j5=3 �.The goal of the next two propositions is to obtain more precise information on the shape of theleast-energy solution v"; in particular we will prove that v" develops a spike near the boundary whosepro�le resembles the approximation ~w";P" (for suitable P" 2 
) constructed in Section 3 up to theorder O(�") (for suitable �" ! 0+).Proposition 5.1. For " > 0 su�ciently small v" is a single spike solution; more precisely there existsP" 2 
 such that P" is a the maximum point of v" on 
 and(5.55) dP"" ! +1 as "! 0+;furthermore v" satis�es v" = ~w";P" +  "where k "k1 + "�3 Z
("2jr "j2 + j "j2)dx! 0 as "! 0+:Proof. First we observe that, setting u"(x) = v"("x) for x 2 
" and u" = 0 in R3 n 
" , by assumption(f4) we have�12 � 1��ZR3(jru"j2 + ju"j2)dx = "�3�12 � 1��Z
("2jrv"j2 + jv"j2)dx � "�3J"[v"]� "�3� hJ 0"[v"]; v"i= "�3J"[v"] = "�3J�" = I [w] +O("2) as "! 0+;



BOUNDARY PEAKS 25where in the last inequality we have used Corollary 5.1. Then fu"g is bounded in H1(R3 ) for small ".For the sake of simplicity we divide the remaining part of the proof into four Claims.Claim 1. For every R > 0 and 1 � q < 6 :lim"!0+ supdP�"R ZB(P" ;R) uq"dx = 0:For otherwise, there exist q 2 [1; 6), R > 0, a sequence un := u"n and Pn 2 R3 with dPn � "nRsuch that limn!+1 ZB(Pn"n ;R) uqndx > 0:Then set ~un(y) = un(x + Pn"n ) where y = TPnx and, without loss of generality, we may assumedist(Pn"n ; @
"n ) = dPn"n ! � 2 [0; R] and ~un * ~u weakly in H1(R3 ). Since by construction � 1"n TPn
 !�R3+ (denoting � the characteristic function), then, setting R3�;+ = fy 2 R3 j yn > ��g, we deduce~u 2 H10 (R3�;+ ) and (since by b) of Proposition 2.1 (��)�1[v2" ] � Ckv"k2L4 = O("3=2)) ~u solves(5.56) �~u� ~u+ f(~u) = 0 in R3�;+ ; ~u � 0 in R3�;+ ; ~u = 0 on @R3�;+ :Theorem 1.1 in [18] implies ~u = 0, which is a contradiction sinceZB(0;R) ~uqdx = limn!+1 ZB(0;R) ~uqndx = limn!+1 ZB(Pn"n ;R) u2ndx > 0:Hence Claim 1 holds.Claim 2. There exists � > 0 such that if " 2 (0; 1) and Q" is a local maximum point for v", thenv"(Q") � �:Indeedv"(Q")� f(v"(Q")) � v"(Q") + v"(Q")(��)�1[v2" ](Q")� f(v"(Q")) = "2�v"(Q") � 0:Using (1.4) we obtain the thesis.Claim 3. For every R > 0 lim sup"!0+ supdP�"R v"(P ) = 0:Fix R > 0 su�ciently large such that 12�R ZR3 f(un)dx � �2and let P" 2 
 be the maximum point for v" in fx 2 
 j dP � "Rg. Assume by absurd that thereis a sequence "n ! 0 such that vn(Pn) := v"n(P"n) 6! 0. First observe that dPn"n ! 0. Otherwise,up to a subsequence, dPn"n ! � > 0; and, proceeding as in Claim 1, setting ~un(y) = un(x + Pn"n ) with



26 TERESA D'APRILE AND JUNCHENG WEIy = TPn(x), we deduce ~un * 0 weakly in H1(R3 ). On the other hand by standard elliptic regularity wehave ~un ! 0 uniformly on compact sets of R3�;+ , then vn(Pn) = ~un(0) ! 0 which is a contradiction.Hence dPn"n ! 0, which implies that, at least for large n, Pn is a local maximum point for vn inB(Pn; "n R2 ). Consequently, by Claim 2, vn(Pn) � � and, by (1.4), f(un)vn(Pn) � C(junj2 + junjp�1) forjz � Pn"n j � R2 :By using the comparison principle it is immediate that 0 � u" � w" where w" solves�w" + f(u") = 0 in 
" ; w" = 0 on @
" :Fix 32 < a < 6p�1 and let a0 < 3 be such that 1a + 1a0 = 1; by (2.8), using H�older's inequality, we get� � vn(Pn) � w"n�Pn"n � � 14� Z 
"n f(un)jPn"n � zjdz � 14� Zjz�Pn"n j�R2 f(un)jPn"n � zjdz + 12�R ZR3 f(un)dz� Cvn(Pn) Zjz�Pn"n j�R2 junj2 + junjp�1jPn"n � zj dz + �2� Cvn(Pn)�Zjzj�R2 1jzja0 dz�1=a0�Zjz�Pn"n j�R2 (junj2a + junja(p�1))dz�1=a + �2 ;then Claim 1 implies Zjz�Pn"n j�R2 junj2adz; Zjz�Pn"n j�R2 junja(p�1)dz ! 0:Hence we deduce � � vn(Pn) � o�vn(Pn)�+ �2 :by which � � vn(Pn) � o(1) + �2 and the contradiction follows.Claim 4. End of the proof.Let P" be the maximum point for v" in 
. According to Claims 2 and 3 v"(P") � � and dP"" ! +1as "! 0+. Let "n ! 0+ be an arbitrary sequence and set Pn = P"n and �un(x) = u"n(x+ Pn"n ). Sincedist(Pn"n ; @
"n ) = dPn"n ! +1, we may assume �un * �u weakly in H1(R3 ) where �u solves(5.57) ��u� �u+ f(�u) = 0 in R3 :The elliptic regularity theory implies limjxj!+1 �u = 0 (see [19], Theorem 5, and [40]) and �un ! �u inC1loc(R3 ); in particular �u(0) = maxx2R3 �u(x) � � and �u � 0, consequently, from the strong maximumprinciple �u > 0 in R3 . Assumption (f5) implies �u = w. Then by Fatou's Lemma we get"�3n Z
 �1�f(v"n)v"n � F (v"n)�dx = ZR3 �1�f(�un)�un � F (�un)� � ZR3 �1� f(w)w � F (w)�dx+ o(1);



BOUNDARY PEAKS 27by which, since J 0"[v"] = I 0[w] = 0, using Corollary 5.1,�12 � 1��ZR3(jr�unj2 + j�unj2)dx = "�3n �12 � 1��Z
("2jrv"n j2 + jv"n j2)dx� "�3n J"n [v"n ]� "�3n� hJ 0"n [v"n ]; v"ni � "�3n Z
 �1�f(v"n)v"n � F (v"n)�dx� I [w]� ZR3 �1� f(w)w � F (w)�dx+ o(1)= I [w]� 1� hI 0[w]; wi � ZR3 �1� f(w)w � F (w)�dx + o(1) = �12 � 1��ZR3(jrwj2 + jwj2)dx+ o(1):The weakly lower semicontinuity of the norm implies the opposite inequality, hence RR3(jr�unj2 +j�unj2)dx! RR3(jrwj2 + jwj2)dx, which implies �un ! w in H1(R3 ). The arbitrariness of "n leads to(5.58) u"� �+P"" �! w in H1(R3 ) and C1loc(R3 ):It remains to prove that limjxj!+1u"� �+P"" � = 0 uniformly with respect to ":For otherwise there would be a sequence "n ! 0, Qn 2 
 with jQn�Pnj"n ! +1 and u"n(Qn"n ) � c > 0.According to Claim 3 dQn"n ! +1 as n ! +1, hence u"n(x + Qn"n ) * u in H1(R3 ) and in C1loc(R3 )(with u solving (5.57)), by which u(0) = limu"n(Qn"n ) � c; in particular u 6= 0, which is in contradictionwith (5.58). Hence we have proved that u"(�+ P"" )! w in H1(R3 ) and L1(R3 ), which implies, usingCorollary 3.1, that  "("x) := u"(x)� ~w";P" ("x)! 0 in H1(R3 ) and L1(R3 ).In the last proposition of this section we go further in the analysis began in the previous one andprovide an estimate on the error order up to the approximation ~w";P" works in the expansion of v".Proposition 5.2. For " > 0 su�ciently small v" satis�esv" = ~w";P" + �"�";where �" = maxfe� 5d"3" ; "e� 3d"5" ; "5=3g and, for " su�ciently small, �" veri�es(5.59) k�"k1 + "�3 Z
("2jr�"j2 + j�"j2)dx � C:Proof. Substituting v" = ~w";P" + �"�" into the equation S"[v"] = 0 we obtain(5.60) "2��" � �" + f 0( ~w";P" )�" = ���1" S"[ ~w";P" ] +N"[�"] +M"[�"];whereN"[�] = ���1" �f( ~w";P" + �"�)� f( ~w";P")� �"f 0( ~w";P" )��;M"[�] = �"( ~w";P" + �"�)(��)�1[�2] + 2( ~w";P" + �"�)(��)�1[ ~w";P"�] + (��)�1[ ~w2";P" ]�:



28 TERESA D'APRILE AND JUNCHENG WEIBy Lemma 3.2 for " su�ciently small we have(5.61) j��1" S"[ ~w";P" ]j � Cmaxfe� d"12" ; e� d"15" ; "1=3gw1=4";P" unif. in 
while, since by Proposition 5.1 k�"�"k1 = k "k1 = o(1), k�"�"k2L2 = k "k2L2 = o("3), by the meanvalue theorem we get(5.62) jN"[�"]j � C�"�2" = o(1)j�"j unif. in 
and, using c) of Proposition 2.1, we have �"(��)�1[�2" ]; �"j(��)�1[ ~w";P"�"]j = o("2��1" ) = o(1) andj(��)�1[ ~w2";P" ]j = O("2) by which(5.63) jM"[�"]j = o(1)w";P" + o(1)j�"j;uniformly in 
. Suppose that there exists a sequence "n ! 0+ such that, setting �n := �"n , k�nk1 !+1 and let xn 2 
 be such that j�n(xn)j = k�nk1: We may assume, without loss of generality, thatxn is a maximum. Then we claim that(5.64) jxn � P"n j"n � C:Otherwise, up to a subsequence, jxn�P"n j"n ! +1: Then by (3.12) we have ~w"n;P"n (xn) ! 0, and,consequently, f 0( ~w"n;P"n (xn))! 0, while ��n(xn) � 0. Combining (5.60)-(5.63) we arrive at0 = "2n��n(xn)� (1 + o(1))k�nk1 + o(1) � �(1 + o(1))k�nk1 + o(1)and hence k�nk1 = o(1), in contrast to the hypothesis. Then (5.64) holds, and we may assumexn�P"n"n ! �x. Now set �̂n(x) = �nk�nk1 ("nx+P"n) for x 2 
�P"n"n . By dividing both members of (5.60)by k�nk1 and using (5.61)-(5.63), we deduce that �̂n solves(5.65) ��̂n � �̂n + f 0( ~w";P"n ("nx+ P"n))�̂n = o(1)j�̂nj+ o(1)w1=4; j�̂nj � 1 in 
� P"n"n :By multiplying both members of (5.65) by �̂n we getZR3(jr�̂nj2 + j�̂nj2)dx � ZR3(jf 0( ~w"n;P"n )("nx)j + w1=4)dx+ o(1) ZR3 j�̂nj2dx � C + o(1) ZR3 j�̂nj2dx;i.e. �̂n is bounded in H1(R3 ). Hence we may assume �̂n * �̂ weakly in H1(R3 ). Since by Proposition5.1 dP"" ! +1 we get �
�P"n"n ! �R3 = 1; then, by Corollary 3.1, �̂ solves��̂� �̂+ f 0(w)�̂ = 0; j�̂j � 1 in R3 :Furthermore elliptic estimates lead to �̂ 2 H2(R3 ) and �̂n * �̂ in C1loc(R3 ), which implies �̂(�x) =limn �̂n�xn�P"n"n � = limn �n(xn)k�nk1 = 1: In particular �̂ 6= 0. Assumption (f5) leads to�̂ = 3Xj=1 aj @w@xj



BOUNDARY PEAKS 29for some constants a1; a2; a3. On the other hand by Part iii) of Proposition 3.1 and the choice of �"we have "r ~w";P"(P") = o(�"), by which0 = rv"n(P"n) = r( ~w"n;P"n + �"n�n)(P"n) = o("�1n �"n) + �"n"�1n k�nk1r�̂n(0):This implies r�̂(0) = 0, i.e. (since @2w@xk@xj (0) = 0 if j 6= k and @2w@x2j (0) = w00(0)) ajw00(0) = 0. Thecontradiction will follow if we prove that w00(0) 6= 0. Otherwise, from assumption (f5) w(0) = f(w(0)).By (f2) f(t)t is strictly increasing for t > 0, while w(0) = maxR3 w; hence w � f(w) � 0 in R3 . This isa contradiction since RR3 jrwj2+RR3(w�f(w))w = 0. Thus j�"j � C for small ". Finally, multiplyingthe equation (5.60) by �", integrating over 
 and using (5.61)-(5.63), we obtain"2 Z
 jr�"j2dx + Z
 j�"j2dx � Z
 f 0( ~w";P" )�2"dx+ o(1) Z
 �"w1=4";P"dx + o(1) Z
 j�"j2dx� C Z
 f 0( ~w";P" )dx+ o(1) Z
 w1=4";P"dx+ o(1) Z
 j�"j2dx � C"�3 + o(1) Z
 j�"j2dx:6. Proof of Theorem 1.1Now we have all the ingredients to prove Theorem 1.1. We have just to combine the results ofProposition 5.1 and 5.2. In what follows we write d̂" in place of dP" .Step 1. The following holds:(6.66) J�" = J"[v"] = J"[ ~w";P" ] +O("3�2" ) = J"[ ~w";P" ] + o("5e� d̂"" + "3e�3 d̂"" + "6)as "! 0+.Using a)-b) of Proposition 2.1 and (5.59) for " > 0 su�ciently small we getZ
 ��v2"(��)�1[v2" ]dx� ~w2";P"(��)�1[ ~w2";P" ]� 4�" ~w";P"�"(��)�1[ ~w2";P" ]��dx = O("3�2" );by whichJ"[v"] =J"[ ~w";P" ]� �" Z
 S"[ ~w";P" ]�"dx� Z
 �F ( ~w";P" + �"�")� F ( ~w";P")� �"f( ~w";P")�"�dx+ �2" "22 Z
 jr�"j2dx+ �2"2 Z
 j�"j2dx+O("3�2" ):Observe that jF ( ~w";P"+�"�")�F ( ~w";P")��"f( ~w";P")�"j � C�2" j�"j2; while, by Lemma 3.2, S"[ ~w";P" ] =o(�"w1=4";P"); (5.59) leads to J"[v"] = J"[ ~w";P" ] + o("3�2" ). The choice of �" allows us to conclude.Step 2. d̂""j log "j ! 1 as "! 0+ and d̂"" � log 1" + 13 log log 1" for " su�ciently small.



30 TERESA D'APRILE AND JUNCHENG WEIBy inserting in (6.66) the estimates (4.23), (4.24) and (4.31) of Propositions 4.1-4.2 (taking intoaccount that "3e�3 d̂"" = o( "4̂d" e�2 d̂"" )), we obtain(6.67) J�" =I [w]"3 + I2"5 � I3 "6̂d" + "4(1 + o(1))Be�2 d̂""4d̂" +O�"4s d̂"" e�2 d̂"" �+ o("11=2 + "5e� d̂"" )as " ! 0+. First we will prove that lim sup"!0+ d̂""j log "j � 1. Assume by contradiction the existenceof a sequence "n ! 0+ such that d̂"n"n > (1 + �) log 1"n for some � > 0. In this case it is easy to showthat the main part in the expansion on the right hand side of (6.67) is given by the �rst three terms,and the others are negligible, i.e.J�"n �I [w]"3n + I2"5n � I3(1 + o(1)) "5n(1 + �)j log "nj ;in contradiction with Corollary 5.1. Hence lim sup"!0+ d̂""j log "j � 1. Next we will prove that d̂"" �log 1"+ 13 log log 1" for small ". Otherwise let "n ! 0+ be a sequence such that d̂"n"n < log 1"n+ 13 log log 1"n .Hence we easily get "4nq d̂"n"n e�2 d̂"n"n ; "5ne� d̂"n"n = o( "4nd̂"n e�2 d̂"n"n ) and (6.67) becomes(6.68) J�"n �I [w]"3n + I2"5n � I3 "6nd̂"n + "4nBe�2 d̂"n"n8d̂"n +O("11=2n ) as "! 0+:Set �n(x) = �I3 "2nx +Be�2x8x ; x � d̂"n"nand compute �0n(x) = I3 "2nx2 �Be�2x8x2 �Be�2x4x :By taking the logarithm, �0n(x) � 0 in ( d̂"n"n ;+1) impliesx � log 1"n + 12 logx+ 12 log� 12x + 1�+ 12 log B4I3 � log 1"n + 12 log log 1"n :In particular, for n su�ciently large, �n is decreasing in ( d̂"n"n ; log 1"n + 13 log log 1"n ), by which, pro-ceeding as in Corollary 5.1,�n� d̂"n"n � � �n� log 1"n + 13 log log 1"n� = �I3 "2nj log "nj +B(1 + o(1)) "2n8j log "nj5=3 :Inserting this inequality in (6.68) we obtainJ�"n �I [w]"3n + I2"5n � I3 "5nj log "nj +B(1 + o(1)) "5n8j log "nj5=3again in contradiction with Corollary 5.1.Step 3. H(�P")! H0 = maxP2@
H(P ):
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