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grammar of the language. In order for a grammar-based parser to be applied to unrestricted natural lan-guage text, it must account for most of the complexitiesof the natural language. Thus, one must �rst conciselydescribe the bulk of the grammar of that language, anextremely di�cult task.This characterization suggests that a solution to theproblem of parsing unrestricted natural language textmust rely on an alternative to the grammar-basedapproach. The approach presented in this paper isbased on viewing part-of-speech sequences as stochas-tic events and applying probabilistic models to theseevents. Our hypothesis is that constituent boundaries,or \distituents," can be extracted from a sequence of ncategories, or an n-gram, by analyzing the mutual in-formation values of the part-of-speech sequences withinthat n-gram. In particular, we will demonstrate thatthe generalized mutual information statistic, an exten-sion of the bigram (pairwise) mutual information oftwo events into n-space, acts as a viable measure ofcontinuity in a sentence.One notable attribute of our algorithm is that it ac-tually includes a grammar | a distituent grammar, tobe precise. A distituent grammar is a list of tag pairswhich cannot be adjacent within a constituent. Forinstance, noun prep is a known distituent in English,since the grammar of English does not allow a con-stituent consisting of a noun followed by a preposition.Notice that the nominal head of a noun phrase maybe followed by a prepositional phrase; in the contextof distituent parsing, once a sequence of tags, such as(prep noun), is grouped as a constituent, it is consid-ered as a unit.Based on our claim, mutual information should de-tect distituents without aid, and a distituent grammarshould not be necessary. However, the application ofmutual information to natural language parsing de-pends on a crucial assumption about constituents ina natural language. Given any constituent n-gram,a1a2 : : : an; the probability of that constituent occur-



ring is usually signi�cantly higher than the probabilityof a1a2 : : : anan+1 occurring. This is true, in general,because most constituents appear in a variety of con-texts. Once a constituent is detected, it is usually verydi�cult to predict what part-of-speech will come next.While this assumption is not valid in every case, itturns out that a handful of cases in which it is invalidare responsible for a majority of the errors made bythe parser. It is in these few cases that we appeal tothe distituent grammar to prevent these errors.The distituent parsing algorithm is an example of astochastic, corpus-based approach to parsing. In thepast, a signi�cant disadvantage of probabilistic parsingtechniques has been that these methods were prone tohigher than acceptable error rates. By contrast, themutual information parsing method presented in thispaper is based on a statistic which is both highly ac-curate and, in the cases where it is inaccurate, highlyconsistent. Taking advantage of these two attributes,the generalized mutual information statistic and thedistituent grammar combine to parse sentences with,on average, two errors per sentence for sentences of15 words or less, and �ve errors per sentence for sen-tences of 30 words or less (based on sentences from areserved test subset of the Tagged Brown Corpus, seefootnote 1). Many of the errors on longer sentences re-sult from conjunctions, which are traditionally trouble-some for grammar-based algorithms as well. Further,this parsing technique is extremely e�cient, parsinga 35,000 word corpus in under 10 minutes on a Sun4/280.It should be noted at this point that, while manystochastic approaches to natural language processingthat utilize frequencies to estimate probabilities su�erfrom sparse data, sparse data is not a concern in thedomain of our algorithm. Sparse data usually resultsfrom the infrequency of word sequences in a corpus.The statistics extracted from our training corpus arebased on tag n-grams for a set of 64 tags, not wordn-grams.1 The corpus size is su�ciently large thatenough tag n-grams occur with su�cient frequency topermit accurate estimates of their probabilities. There-fore, the kinds of estimation methods of (n+ 1)-gramprobabilities using n-gram probabilities discussed inKatz (1987) and Church & Gale (1989) are not needed.This line of research was motivated by a series ofsuccessful applications of mutual information statis-tics to other problems in natural language processing.1The corpus we use to train our parser is the TaggedBrown Corpus (Francis and Kucera, 1982). Ninety percentof the corpus is used for training the parser, and the otherten percent is used for testing. The tag set used is a subsetof the Brown Corpus tag set.

In the last decade, research in speech recognition (Je-linek 1985), noun classi�cation (Hindle 1988), predi-cate argument relations (Church & Hanks 1989), andother areas have shown that mutual information statis-tics provide a wealth of information for solving theseproblems.Mutual Information StatisticsBefore discussing the mutual information parsing al-gorithm, we will demonstrate the mathematical basisfor using mutual information statistics to locate con-stituent boundaries. Terminology becomes very impor-tant at this point, since there are actually two statisticswhich are associated with the term \mutual informa-tion," the second being an extension of the �rst.In his treatise on information theory, Transmissionof Information (Fano 1961), Fano discusses the mutualinformation statistic as a measure of the interdepen-dence of two signals in a message. This bigram mutualinformation is a function of the probabilities of the twoevents: MI(x; y) = log PX;Y (x; y)PX (x)PY (y) : (1)Consider these events not as signals but as parts-of-speech in sequence in a sentence. Then an estimate ofthe mutual information of two categories, xy; is:MI(x; y) � log # xy in corpustotal # of bigrams in corpus� # xcorpus size�� # ycorpus size� : (2)In order to take advantage of context in determin-ing distituents in a sentence, however, one cannot re-strict oneself to looking at pairs of tokens, or bigrams;one must be able to consider n-grams as well, where nspans more than one constituent. To satisfy this con-dition, we can simply extend mutual information frombigrams to n-grams by allowing the events x and y tobe part-of-speech n-grams instead of single parts-of-speech. We will show that this extension is not su�-cient for the task at hand.The second statistic associated with mutual informa-tion is what we will call \generalized mutual informa-tion," because it is a generalization of the mutual in-formation of part-of-speech bigrams into n-space. Gen-eralized mutual information uses the context on bothsides of adjacent parts-of-speech to determine a mea-sure of its distituency in a given sentence. We willdiscuss this measure below.While our distituent parsing technique relies on gen-eralized mutual information of n-grams, the founda-tions of the technique will be illustrated with the basecase of simple mutual information over the space ofbigrams for expository convenience.



NotationBefore continuing with a mathematical derivation ofthe generalized mutual information statistic, somemathematical and statistical notation should be ex-plained.Many di�erent probability functions will be referredto in this paper. P
 represents a probability functionwhich maps the set 
 onto the interval [0; 1]: In equa-tion 1, reference is made to three di�erent probabilityfunctions: PX ; PY ; and PX;Y : The subscripts of thesefunctions indicate their domains, X; Y; and X �Y; re-spectively. However, these subscripts will be omittedfrom the remaining equations, since the domain of eachprobability function will be indicated by its arguments.The subscripts and superscripts of the mutual infor-mation functions can also be somewhat confusing. Thebigram mutual information function, denoted asMI;maps the cross-product of two event spaces onto thereal numbers. MIn is a vector-valued function indi-cating the mutual information of any two parts of ann-gram, x1 : : : xn. The kth component of this vector,1 � k < n; is MIkn; representing the bigram mutualinformation of x1 : : : xk and xk+1 : : : xn: The meaningof this vector function will be further explained in thenext section. Finally, the generalized mutual informa-tion function of two adjacent elements xy in an n-gramis denoted by GMIn(x; y):Mutual InformationThe bigram mutual information of two events is a mea-sure of the interdependence of these events in sequence.In applying the concept of mutual information to theanalysis of sentences, we are concerned with more thanjust the interdependence of a bigram. In order to takeinto account the context of the bigram, the interdepen-dence of part-of-speech n-grams (sequences of n parts-of-speech) must be considered. Thus, we consider ann-gram as a bigram of an n1-gram and an n2-gram,where n1 + n2 = n: The mutual information of thisbigram isMI(n1-gram; n2-gram) = log P[n-gram]P [n1-gram]P [n2-gram] :(3)Notice that there are (n � 1) ways of partitioningan n-gram. Thus, for each n-gram, there is an (n� 1)vector of mutual information values. For a given n-gram x1 : : : xn; we can de�ne the mutual informationvalues of x by:MIkn(x1 : : : xn) = MI(x1 : : : xk; xk+1 : : : xn) (4)= log P(x1 : : : xn)P(x1 : : : xk)P(xk+1 : : : xn) ;(5)

where 1 � k < n:Notice that, in the above equation, for eachMIkn(x);the numerator, P(x1 : : : xn); remains the same whilethe denominator, P(x1 : : : xk)P(xk+1 : : : xn); dependson k: Thus, the mutual information value achieves itsminimum at the point where the denominator is max-imized. The empirical claim to be tested in this paperis that the minimum is achieved when the two compo-nents of this n-gram are in two di�erent constituents,i.e. when xkxk+1 is a distituent. Our experiments showthat this claim is largely true with a few interesting ex-ceptions.The motivation for this claim comes from examin-ing the characteristics of n-grams which contain pairsof constituents. Consider a tag sequence, x1 : : : xn;which is composed of two constituents x1 : : : xk andxk+1 : : : xn: Since x1 : : : xk is a constituent, x1 : : : xk�1is very likely to be followed by xk: Thus,P(x1 : : : xk) � P(x1 : : : xk�1): (6)By the same logic,P(xk+1 : : : xn) � P(xk+2 : : : xn): (7)On the other hand, assuming xk and xk+1 are uncor-related (in the general case),P(xk : : : xn)� P(xk+1 : : : xn) (8)and P(x1 : : : xk+1)� P(x1 : : : xk): (9)Therefore,MI(x1 : : : xk; xk+1 : : : xn)= log P(x1 : : : xn)P(x1 : : : xk)P(xk+1 : : : xn) (10)� log P(x1 : : : xn)P(x1 : : : xk�1)P(xk+1 : : : xn) (11)> log P(x1 : : : xn)P(x1 : : : xk�1)P(xk : : : xn) (12)= MI(x1 : : : xk�1; xk : : : xn): (13)By applying a symmetry argument and using induc-tion, the above logic suggests the hypothesis that, inthe general case, if a distituent exists in an n-gram,it should be found where the minimum value of themutual information vector occurs.There is no signi�cance to the individual mutual in-formation values of an n-gram other than the mini-mum; however, the distribution of the values is signif-icant. If all the values are very close together, then,while the most likely location of the distituent is stillwhere the minimum occurs, the con�dence associated



with this selection is low. Conversely, if these valuesare distributed over a large range, and the minimum ismuch lower than the maximum, then the con�dence ismuch higher that there is a distituent where the mini-mum occurs. Thus, the standard deviation of the mu-tual information values of an n-gram is an estimate ofthe con�dence of the selected distituent.Generalized Mutual InformationAlthough bigram mutual information can be extendedsimply to n-space by the technique described in theprevious section, this extension does not satisfy theneeds of a distituent parser. A distituent parsing tech-nique attempts to select the most likely distituentsbased on its statistic. Thus, a straightforward ap-proach would assign each potential distituent a singlereal number corresponding to the extent to which itscontext suggests it is a distituent. But the simple ex-tension of bigram mutual information assigns each po-tential distituent a number for each n-gram of whichit is a part. The question remains how to combinethese numbers in order to achieve a valid measure ofdistituency.Our investigations revealed that a useful way to com-bine mutual information values is, for each possibledistituent xy; to take a weighted sum of the mutualinformation values of all possible pairings of n-gramsending with x and n-grams beginning with y; withina �xed size window. So, for a window of size w = 4;given the context x1x2x3x4; the generalized mutual in-formation of x2x3 :GMI4(x1x2; x3x4);= k1MI(x2; x3) + k2MI(x2; x3x4) + (14)k3MI(x1x2; x3) + k4MI(x1x2; x3x4) (15)which is equivalent tolog�kP [x2x3]P [x2x3x4]P [x1x2x3]P[x1x2x3x4][P[x2]P [x3]P [x1x2]P [x3x4]]2 �(16)In general, the generalized mutual information of anygiven bigram xy in the context x1 : : : xi�1xyy1 : : : yj�1is equivalent tolog0BB@ YXcrosses xy kXP [X ]YXdoes not cross xyP[X ](i+j)=21CCA : (17)This formula behaves in a manner consistent withone's expectation of a generalized mutual informationstatistic. It incorporates all of the mutual informationdata within the given window in a symmetric man-ner. Since it is the sum of bigram mutual information

values, its behavior parallels that of bigram mutual in-formation.The weighting function which should be used foreach term in the equation was alluded to earlier. Thestandard deviation of the values of the bigram mutualinformation vector of an n-gram is a valid measure ofthe con�dence of these values. Since distituency is in-dicated by mutual information minima, the weightingfunction should be the reciprocal of the standard devi-ation.In summary, the generalized mutual informationstatistic is de�ned to be:GMI(i+j)(x1 : : : xi; y1 : : : yj)= XX ends with xiY begins with y1 1�XY MI(X;Y ); (18)where �XY is the standard deviation of the MIkjXY jvalues within XY:The Parsing AlgorithmThe generalized mutual information statistic is themost theoretically signi�cant aspect of the mutual in-formation parser. However, if it were used in a com-pletely straightforward way, it would perform ratherpoorly on sentences which exceed the size of the max-imum word window. Generalized mutual informationis a local measure which can only be compared in ameaningful way with other values which are less thana word window away. In fact, the further apart two po-tential distituents are, the less meaningful the compar-ison between their corresponding GMI values. Thus,it is necessary to compensate for the local nature ofthis measure algorithmically.He directed the cortege of autos to the dunesnear Santa Monica.Figure 1: Sample sentence from the Brown CorpusWe will describe the parsing algorithm as it parsesa sample sentence (Figure 1) selected from the sectionof the Tagged Brown Corpus which was not used fortraining the parser. The sample sentence is viewed bythe parser as a tag sequence, since the words in thesentence are not accounted for in the parser's statisti-cal model. The sentence is padded on both sides withw� 1 blank tags (where w is the maximum word win-dow size) so there will be adequate context to calculategeneralized mutual information values for all possibledistituents in the sentence.A bigram mutual information value vector and itsstandard deviation are calculated for each n-gram in



the sentence, where 2 � n � 10.2 If the frequency of ann-gram is below a certain threshold (< 10; determinedexperimentally), then the mutual information valuesare all assumed to be 1, indicating that no informationis given by that n-gram. These values are calculatedonce for each sentence and referenced frequently in theparse process.Distituent Pass 1 DG Pass 2 Pass 3pro verb 3.28 3.28 3.28 3.28verb det 3.13 3.13 3.13 3.13det noun 11.18 11.18noun prep 11.14 �1 8.18prep noun 1.20 1.20noun prep 7.41 �1 3.91 2.45prep det 16.89 16.89 10.83det noun 16.43 16.43noun prep 12.73 �1 7.64 4.13prep noun 7.36 7.36Figure 2: Parse node table for sample sentenceNext, a parse node is allocated for each tag in thesentence. A generalized mutual information value iscomputed for each possible distituent, i.e. each pairof parse nodes, using the previously calculated bigrammutual information values. The resulting parse nodetable for the sample sentence is indicated by Pass 1 inthe parse node table (Figure 2).At this point, the algorithm deviates from what onemight expect. As a preprocessing step, the distituentgrammar is invoked to ag any known distituents byreplacing their GMI value with �1: The results ofthis phase are indicated in the DG column in the parsenode table.The �rst w tags in the sentence are processed usingan n-ary-branching recursive function which branchesat the minimum GMI value of the given window. Thelocal minima at which branching occurs in each passof the parse are indicated by italics in the parse nodetable. One should note that marginal di�erences be-tween GMI values are not considered signi�cant. So,for instance, the distituency of pro verb (3.28) is con-sidered equivalent to the distituency of verb det (3.13)in the sample sentence. This behavior results in n-arytrees instead of binary trees.2The optimal maximum word window size, w = 10; wasdetermined experimentally. However, since there were only46 11-grams and 15 12-grams which occurred more than 10times in the training corpus, it is obvious why virtually noinformation is gained by expanding this window beyond 10.By training the parser on a larger corpus, or a corpus witha higher average sentence length, the optimal maximumword window size might be larger.

Instead of using this tree in its entirety, only thenodes in the leftmost constituent leaf are pruned. Therest of the nodes in the window are thrown back intothe pool of nodes. The same process is applied to thelast w remaining tags in the sentence, but this time therightmost constituent leaf is pruned from the resultingparse tree. The algorithm is applied again to the left-most w remaining tags, and then the rightmost w tags,until no more tags remain. The �rst pass of the parseris complete, and the sentence has been partitioned intoconstituents (Figure 3).(He) (directed) (the cortege) (of autos)(to) (the dunes) (near Santa Monica)Figure 3: Constituent structure after Pass 1In pass 2, a parse node is assigned to each con-stituent unit determined from the �rst pass, GMI val-ues are calculated for these parse nodes, and the left-right pruning algorithm is applied to them.The algorithm terminates when no new structurehas been ascertained on a pass, or when the lengthsof two adjacent constituents sum to greater than w: Inboth cases, the parser can extract no more informationabout the distituency of the nodes from the statisticsavailable. In the �rst case, the resulting distituencycon�dence values are too close together to determinedistituency; and in the second case, since the wordwindow can no longer span a potential distituent, thealgorithm must give up. After the third pass of thealgorithm, the sample sentence is partitioned into twoadjacent constituents, and thus the algorithm termi-nates, with the result in �gure 4.(He (directed ((the cortege) (of autos)))((to (the dunes))(near Santa Monica)))Figure 4: Resulting constituent structure after Pass 3Processing only a word-window of information at atime and pruning the leftmost and rightmost leavesof the resulting subtrees are the keys to minimizingthe error introduced by the use of a non-global, esti-mated statistic. Since we know that the parser tendsto make errors, our goal is to minimize these errors.Finding constituents in the middle of a sentence re-quires locating two distituents, whereas �nding themat the beginning or end of a sentence requires locatingonly one distituent. Thus, pruning constituents fromthe beginning and end of a tag sequence produces a farmore accurate partitioning of the sentence than trying



to guess them all at once.It is important to note that, on a given pass of theparser, many of the `constituents' which are pruned areactually only single nodes. For instance, in the samplesentence, the �rst pass partitions the phrase \to thedunes" as \(to) (the dunes)." A subsequent pass ofthe parsing algorithm attaches the preposition to thenoun phrase (although the parser has no knowledgeof these constituent names). However, once the entirephrase is found to be a constituent, it is not scannedfor any further structural information. Thus, if the�rst pass had grouped the phrase as \(to the dunes),"then the noun phrase within the prepositional phrasewould never be marked as a constituent.As a result of this behavior, the prepositional phrase\near Santa Monica" will not attach to the noun phrase\the dunes" (or to the noun \dunes" as many lin-guists believe it should) once the prepositional phraseis formed. Therefore, the parser output for the samplesentence has one error.ResultsEvaluating the accuracy of a natural language parseris as di�cult as writing a full grammar for that naturallanguage, since one must make decisions about gram-mar rules in order to decide what is an error and whatis not. Serious thought must be put into questions like:where does a conjunction bind in a conjunct, and doesit matter? or where do prepositional phrases attach,and can we even decide? These very problems are thereason we sought an alternative to a grammar-basedparser. Thus, while the error rate for short sentences(15 words or less) with simple constructs can be de-termined very accurately, the error rate for longer sen-tences is more of an approximation than a rigorousvalue.Our parser is very good at parsing short sentencesof unrestricted text without conjunctions. On thesesentences, the parser averages close to one error persentence. However, if free text with conjunctions isincluded, the performance falls to close to two errorsper sentence. An error is de�ned as a misparse whichcan be corrected by moving one subtree.As one would expect, our parser's performance isnot as accurate for longer sentences, but it is certainlyrespectable. On sentences between 16 and 30 tokensin length, the parser averages between 5 and 6 errorsper sentence. However, in nearly all of these longersentences and many of shorter ones, at least one of theerrors is caused by confusion about conjuncts, espe-cially sentences joined by conjunctions. Consideringthe parser is trained on n-grams with a word windowno larger than 10 tokens, it is not surprising that it fails

on sentences more than twice that size. Given a largertraining corpus with a signi�cant number of these longsentences, the maximum word window could be in-creased and the parser would undoubtedly improve onthese longer sentences.The output from the mutual information parser isunique in that it gives both more and less informationthan most other statistical parsers. Most statisticalparsers depend on internal grammar rules which al-low them both to estimate and to label sentence struc-ture. Once again, because of the complexity of natu-ral language grammars, these approaches can only ex-tract limited levels of structure. Hindle's FIDDITCHparser (1988) attempts to extract not only sentencestructure but also noun classi�cations using cooccur-rence of word pairs, another variation of bigram mu-tual information. While his technique performs thenoun classi�cation task extremely well, it does not se-riously attempt to parse sentences completely, since itsgrammar cannot handle complex sentence structures.Our parser is capable of determining all levels of sen-tence structure, although it is incapable of labeling theresulting constituents.ConclusionThe performance of this parsing algorithm demon-strates that a purely syntactic, stochastic techniquecan e�ectively determine all levels of sentence structurewith a relatively high degree of accuracy. The most im-portant question to ask at this juncture is: where dowe go from here?An immediate extension of this research would beto apply a simple grammar-based �lter to each pass ofour statistical parser to verify the validity of the con-stituents it determines. Applying a very simple gram-mar which de�nes only constituency of terminal sym-bols would eliminate many of the errors made by ourparser.The implementation of an e�ective deterministicparsing algorithm, however, should not overshadowthe real discovery of this research. The generalizedmutual information statistic is a powerful statisticalmeasure which has many other applications in natu-ral language processing. Bigram mutual informationhas been applied to many di�erent problems requiringn-gram analysis. It would be interesting to reinvesti-gate these problems using generalized mutual informa-tion. In particular, Hindle's noun classi�cation work(Hindle 1988) and Church's part-of-speech assignment(Church 1988) might bene�t from this statistic.Another way in which this research might be usedis as a supplement to a grammar-based parser. Thedistituent parsing method could be used in whole as



a pre-processor to supply hints for a grammar-basedparser; or it could be used incrementally in a bottom-up parsing technique to provide guidelines for search sothat non-deterministic algorithms do not realize theirworst-case ine�ciency.Another interesting possibility is to use the general-ized mutual information statistic to extract a grammarfrom a corpus. Since the statistic is consistent, and itswindow can span more than two constituents, it couldbe used to �nd constituent units which occur with thesame distribution in similar contexts.There are many problems in natural language pro-cessing which cannot be solved e�ciently by grammar-based algorithms and other problems which cannot besolved accurately by stochastic algorithms. This re-search suggests that the solution to some of these prob-lems is a combination of both.References[1] Church, K. 1988. A Stochastic Parts Programand Noun Phrase Parser for Unrestricted Text. InProceedings of the Second Conference on AppliedNatural Language Processing. Austin, Texas.[2] Church, K.; and Gale, W. 1990. Enhanced Good-Turing and Cat-Cal: Two New Methods for Es-timating Probabilities of English Bigrams. Com-puters, Speech and Language.[3] Church, K.; and Hanks, P. 1989. Word Associ-ation Norms, Mutual Information, and Lexicog-raphy. In Proceedings of the 27th Annual Confer-ence of the Association of Computational Linguis-tics.[4] Fano, R. 1961. Transmission of Information. NewYork, New York: MIT Press.[5] Francis, W.; and Kucera, H. 1982. FrequencyAnalysis of English Usage: Lexicon and Gram-mar. Boston, Mass.: Houghton Mi�in Company.[6] Hindle, D. 1988. Acquiring a Noun Classi�cationfrom Predicate-Argument Structures. Bell Labo-ratories.[7] Jelinek, F. 1985. Self-organizing Language Mod-eling for Speech Recognition. IBM Report.[8] Katz, S. M. 1987. Estimation of Probabilities fromSparse Data for the Language Model Compo-nent of a Speech Recognizer. IEEE Transactionson Acoustics, Speech, and Signal Processing, Vol.ASSP-35, No. 3.


