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Abstract 

A biaxial version of the Gay-Beme potential used to model uniaxial anisotropic molecules is developed. This novel biaxial 
potential can be used to deal with molecules with different attractive and repulsive contributions along their three axes. 

The Gay-Berne (GB) [l] potential can be re- 
garded as an anisotropic and shifted version of the 
Lennard-Jones 6-12 (LJ) interaction suitable for uni- 
axial molecules, where the strength E and the range 
parameter (T depend on the orientations of the two 
particles and their intermolecular vector. An explicit 
expression for E and g has been obtained by Berne 
and Pechukas [ 21 by representing each molecule with 
a uniaxial ellipsoidal Gaussian and their interaction 
as related to their overlap integral. This integral can 
in turn be written down as a Gaussian whose pre- 
exponential and width are taken to be proportional 
to E and g. Gay and Berne [ l] then modified the 
Gaussian-overlap potential in order to introduce a 
parametric angular dependence on the well depth and 
width. In the case of uniaxial particles the analytic 
form of the potential can be written down explicitly 
[ I]. Other slightly different potentials based on the 
same E and cr have been put forward [ 31. The GB 
potential presents several useful features, in particu- 
lar: (i) it uses less (albeit anisotropic) centres than 
atomic site models, e.g., one GB site with suitable 
parameters can model benzene with results similar 
to those of six united atom centres [ 31; (ii) its pa- 

rameters can be interpreted and altered as the shape 
of the molecule changes; (iii) it can be easily dif- 
ferentiated analytically with respect to the positional 
variables avoiding the discontinuities of purely hard 
core models. 

More importantly, the Gay-Berne potential [ 1 ] has 
proved to be successful in modelling the various con- 
densed phases resulting from a collection of prolate or 
oblate uniaxial particles. Various simulations [ 4-101 
have now shown that a GB system exhibits the most 
important liquid crystalline phases, namely nematic, 
smectic A and B for prolate and, respectively, nematic 
and columnar for oblate particles. 

On the other hand the current version of the poten- 
tial is only appropriate for uniaxial molecules, while 
the need to generalize the GB potential to biaxial parti- 
cles is rather pressing because, for instance: (a) prac- 
tically all mesogenic molecules are not uniaxial; (b) 
the effects of molecular biaxiality are essential for un- 
derstanding the detailed temperature dependence of 
ordering in liquid crystals; (c) biaxial contributions 
to the potential will be essential for obtaining biaxial 
phases; (d) there is widespread interest in studying 
the behaviour of biaxial solutes. 
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The aim of this Letter is thus to propose a gen- 
eralization of the Gay-Berne potential suitable for 
the description of the interaction of biaxial ellipsoids. 
We start with an overlap model for fully asymmet- 
ric ellipsoidal Gaussians and show how this can be 
used to obtain a generalized biaxial potential. We then 
parametrize this potential using the interaction of two 
rigid oligophenyls as a reference. 

A particle i at position ri and orientation w with re- 
spect to the laboratory frame is represented by a Gaus- 
sian function G, (wi, r) that, apart from a normaliza- 
tion factor, can be written as [ 11,121 

Gi(wj,r) =exp[-i(r-ri)TMTS,‘Ml(r-ri)], 

(1) 

where S is a diagonal ‘shape’ matrix with elements 
u’,, u?. 3 CT~, the axes of the ellipsoid representing the 
molecule measured with respect to a unit length ~0, 
and M; is the rotation matrix transforming from lab- 
oratory to molecular frame. A molecular shape biaxi- 
ality can be defined from the matrix S as [ 131 

As = J3/2 6 -u! 
2cTz - u,x - CT?. . (2) 

To make the definition of the orientation of a biax- 
ial object unambiguous, we conventionally assign the 
axes X, y and z so as to obtain the lowest biaxiality. 
In practice for a prolate object we choose (TV > g, 3 
(TV while for an oblate particle we adopt uY 3 (T, > 
CT... Using this prescription As can vary from 0, cor- 
responding to a uniaxial object to l/v’% for an object 
of spherical symmetry, i.e. when all three ~i tend to 
(T with the ordering above. 

The overlap integral corresponding to the interac- 
tion between two identical particles, with shape S, can 
be written as a convolution integral. When the first 
molecule is centred at the origin, t-1 = 0, and the sec- 
ond at r-2 = r-12 + t-1 = r12 we have 

00 

QI~(wI, ~2, rt2) = J drG(wl,r)G(W2,r) 
0 (34 03 = J dr exp{-i[rTMTS-2Mlr - (r12 - r)T 

0 

x M~SP2M~(q2 - r)]}. (3b) 

This convolution integral can be calculated as the in- 
verse Fourier transform of the product of Fourier trans- 
forms of Gt and G:! (see, e.g., Ref. [ 141). We find in 
this way 

Qn(w, w, rd = Ws21 ( 8 d~Al)l’z 

x exp( -irT,A-‘rlz), (4) 

where det [ S2 ] = ( ~,cT~(T; )’ and the symmetric over- 
lap matrix A is defined as 

A = M;S2Ml + M;S2MV12. (5) 

For uniaxial molecules (with (T, = (TV # gZ) both 
det[A] and A-’ can be calculated analytically [ 1,2]. 
When (T, # cY # (T, the matrix A can be inverted us- 
ing an algebraic manipulation language such as Math- 
ematica [ 151 and an explicit expression for the ele- 
ments of A-’ is given in the Appendix. Although the 
resulting elements are a bit unwieldy and we shall con- 
tinue to employ the matrix notation, the availability of 
an explicit form for the inverse matrix elements makes 
the actual evaluation of the potential not unduly slow. 
In any case we can still write the overlap integral in a 
form similar to that of Refs. [ 1,2] and employ the re- 
sulting coefficients to write a generalized anisotropic 
LJ potential as 

uBX(W, @()2? f-12) =4EOE(WI, W2, iI21 

K 

12 
UT, 

X 
f-12 - u(w, ~2, fl2) + cc 1 - 

( 

6 
UC 

r12 -u(wI,w~,~I~) +uc >I ’ 
(6) 

where uC is a distance, EO defines the energy scale and 
w = {(Y, p, y} are Euler angles [ 161. The anisotropic 
contact distance is 

u(wl, w2, i,2) = (2i;2A-‘i12)-“2 (7) 

and, similarly to the uniaxial case [ 11, the anisotropic 
interaction term is written as 

E(Wl. w2,h2) = EY(Wl, ~2k’I*bh ~2>Fl2), 

(8) 

where p and Y are empirical exponents and the pro- 
posed form of the dimensionless strength coefficient 
is now 
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E(W), w2) = (u,uy + u:, (9) 

We can also proceed to define a dimensionless inter- 
action parameter E’ similar to that in Ref. [ l] as 

E’( w,, w2, i,2) = 2 i;2B-1i,2, 

where the matrix B is defined as 

(10) 

B = MYEM, + M;EM2 (11) 

in terms of the auxiliary diagonal interaction matrix 
E with elements Eij = 6i.j (EO/Ei) ‘I*. The coefficients 
E,, E), and eZ are related to the well depths for the side- 
by-side, width-to-width and end-to-end interactions. 

The potential reduces to the standard Gay-Berne 
one when the molecules become uniaxial except for 
the fact that a tunable gc is used instead of (~1, fol- 
lowing a suggestion of Kabadi [ 171. The need for in- 
troducing cc also stems from an examination of the 
form of l/ax. For a given interparticle configuration 
{WI, w2,;12}, the potential has two minima located 
at r& = ~(w,, w2,?12) - v~( I f 2’J6) and is zero 
at 112 = a(wl, w2,i12) and r12 = a(@,, w2,;12) - 
2gc, thus (T, is related to the width of the potential 
well. The minimum at rT2 is not physically meaning- 
ful, but if (T(WI, w2,i12) > 2~7~ part of its branch 
of the curve could be found at positive (and thus 
potentially occurring) values of t-12. This spurious 
branch should be avoided in MC simulations, where 
the molecules are moved with discrete jumps, since 
they would lead to unphysical and possibly unlock- 
able configurations. It is also worth realizing that when 
gc >> a(wl, ~2, i12), as could be the case if cc is 
taken close to the in plane dimensions for two oblate 
molecules approaching face to face, &3x (0) can be 
finite and even small rather than tending to 00 as de- 
sired. The introduction of the parameter a,, with 0 < 
u, < min( (T,, u?, cZ ), allows the generalization of 
the potential to the interaction of arbitrary shaped ob- 
jects. 

We now wish to consider special cases of the in- 
teraction for well defined configurations and for the 
purpose of representation we consider the biaxial el- 
lipsoids introduced in the previous sections as paral- 
lelepipeds with the faces orthogonal to X, y and z la- 
belled as a, b and c. In other words face a is parallel 
to the yz plane, b to the xz plane and c to the xy one. 

Given two identical molecules with a fixed mutual ori- 
entation we then consider their interaction energy as 
a function of separation r. In particular we choose the 
twelve configurations (Fig. 1) where every axis of the 
second frame is parallel (antiparallel) or perpendic- 
ular to those of the first one. Each of these is iden- 
tified with a two-letter code formed by the names of 
the faces coming in contact so that axes perpendicu- 
lar to both faces define the intermolecular vector. All 
the mutual ‘orthogonal’ orientations can be generated 
starting with the two molecules aligned, i.e. XI/IX*, 
y, Ily2, ZI 11~2 and performing a rotation of the second 
molecule of Euler angles w = {cu, p, r}. Every rota- 
tion generates three approaching configurations, each 
of them along one axis of the first molecule. In Table 
1 we list in boldface the independent configurations 
(twelve out of fifteen) obtained rotating the frame of 
the second molecule with the given angles cy, p and 
y equal to 0 or 7r/2. In Fig. 1 we sketch these twelve 
configurations with their codes and the respective ana- 
lytic expressions for CT, E and E’. For a uniaxial object 
there are only four unique configurations of this type: 
aa = ab’ E bb = (side-by-side), cc - cc’ = (end- 
to-end), ac E ac’ E cb’ G bc’ E cb E (tee), aa’ e 

ba = bb’ = (cross), underlined in Table 1. 
In Fig. 2 we see a representation of the potential 

surface for two molecules approaching side by side 
for uniaxial and biaxial particles (hs = 0 and As = 
0.111). Switching on the biaxiality allows different 
approach distances and interaction strengths for the 
two shorter axes of the molecules. The potential con- 
tains various parameters ,u, V, E,, Ed, l Z and (T, that, 
together with the shape parameters gX, gY, gz should 
allow a certain flexibility in modelling intermolecular 

Table 1 
The orthogonal configurations defined in the text for orientation 
w s {a, fi, y} of the second molecule with respect to the first 
one and r12 11x,, or y, or z. 1, For biaxial molecules the independent 
configurations are printed in boldface while they are underlined 
for the uniaxial case 

a P Y r12ll*1 r12 IIYI ~121121 

0 0 0 aa bb cc 
0 0 9712 ab’ ba’ cc’ 
0 9712 0 ac’ bb’ ca’ 
0 7712 7712 ac ba cb 

VI2 r/2 3712 aa' bc’ cb’ 



466 R. Berardi et al. /Chemical Physics Letters 236 (1995) 462-468 

(2) (2) (2) (2) 

[bbl 
(1) 

[aal [bbl (1) [aal 

Fig. 2. Uniaxial (left) and biaxial (right) interaction energy U* for two GB particles (p = 2, v = 1) with fixed orientation (o; = (0, 0, 0)) 
and located on the XV plane ( rT2 I 2). The approach along the X, y axes corresponds to the aa, bb configurations described in Fig. I. 
On the left we consider uniaxial molecules with crx = crY = crC = I, (T; = 3 (As = 0). and cX = cy = 1, E: = 0.2. On the right we show a 
biaxial case with cry = rr, = 0.6 (hs = 0.1 1 1 ), and cy = I .25. All distances are expressed in va units and energies in l 0 units. 

potentials. Here we have taken as an example the se- 
ries of p-polyphenyls from biphenyl to quinquephenyl. 
A parametrization based on terphenyl has previously 
been used (Luckhurst and Simmonds [ 51) . Since the 
aim here is mainly that of seeing how the parame- 
ters in our potential vary upon regular changes in a 
molecular structure, we have arbitrarily assumed these 
oligophenyls to be planar, setting to zero the dihe- 
dral angles of the optimized geometry obtained using 
the molecular mechanics package MacroModel [ 181 
and the MM2 force field [ 191. For each configuration 
listed in Fig. 1 we have used MacroModel to com- 
pute the potential energy curves as a function of inter- 
molecular distance. Then we have fitted the biaxial po- 
tential for these twelve approach directions, optimiz- 
ing contact distance, position of the minimum, depth 

and width of the well. The minimization of a sum of 
mean square normalized residuals was performed with 
Simplex [ 201 in a first stage, followed by a conjugate 
gradient method [ 2 1 ] near the minimum. 

For this series of molecules (although not in gen- 
eral) the parameters ,u, v proved to be relatively in- 
sensitive when changing molecule and after a prelim- 
inary investigation of their effect we then set them to 
2 and 1 as in the standard uniaxial GB [ 11, leaving 7 
parameters to be fitted. In Table 2 we show the fit re- 
sults together with the biaxiality calculated from the 
fitted shape matrix. The sum of normalized squared 
residuals is typically 0.02 for all molecules even if the 
quality of the fit as such should be considered with 
care in view of the limited number of parameters em- 
ployed. In any case it is interesting to see that the 
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Table 2 
The biaxial GB parameters for the planar p-polyphenyls, from 
biphenyl to quinquephenyl, obtained as described in the text. Here 
y = 2 and v = 1 has been used 

n=2 n=3 It=4 n=5 

fix /m 5.99 5.72 5.45 5.21 
cry / m 3.24 3.21 3.32 3.34 
g; /ml 10.67 14.67 18.56 22.11 
rrC/U(l 2.98 2.88 2.94 3.11 
As 0.278 0.147 0.092 0.064 
~X/EO 2.05 2.22 2.38 2.49 
l ylel 6.14 6.95 7.51 8.02 
c: /EO 0.70 0.60 0.5 1 0.47 

molecular dimensions are relatively well reproduced 
by the (Tir with crZ increasing regularly and (T,, (T? 
fairly constant. The parameter cc automatically comes 
out to be smaller than each gi. The shape biaxiality 
As decreases as the molecules become longer as ex- 
pected. The other parameters are quite similar for the 
various members of the series, with different values in 
the x, y, z directions. The biaxial potential, although 
simple, thus allows discrimination between interac- 
tions that would be degenerate with the usual uniaxial 
Gay-Berne. In conclusion, we have obtained a Gaus- 
sian overlap potential suitable for biaxial molecules 
that generalizes that developed by Gay and Berne for 
uniaxial molecules. The potential is designed to intro- 
duce an essential element, molecular biaxiality, in an 
already useful attractive-repulsive pair potential. Al- 
though this constitutes an important element of real- 
ism, the potential is not meant to reproduce molecu- 
lar structures with atomic detail; rather the potential 
should be useful in a number of theoretical calcula- 
tions and simulations, where the simplicity of a closed 
form for the interaction must be coupled with a rep- 
resentation of asymmetric molecular shape. 

This work was supported by grants from CNR and 
MURST. RB thanks the University of Bologna for a 
postdoctoral fellowship. We thank A. Emerson and F. 
Semeria for useful discussions. 

Appendix 

Here we write down explicitly the elements of the 
A-’ and BP1 matrices. The overlap matrix A was 
defined in the text (Eq. (5) ) in terms of the Cartesian 

rotation matrices for two molecules i and j, 

where a, b, e can be x, y or z. The determinant of A 
can be written explicitely as 

det[A] = c %wAn,oA+%,c~ 
ah 

where l ,,b,c is the Levi-Civita symbol (permutation 
symbol). It has value tl if the subscripts {a, 6, c} 
correspond to any even permutation of {x, y, z}, -1 
for any odd permutation and 0 if any of the indices are 
repeated. Using these definitions the three columns of 
the matrix A-’ can be written explicitely as 

A;,' = det[A]-’ 

x M"'M$ + Mg;M;j,' . e,p J 

Since the matrices A and B were defined in a similar 
way (Eqs. (5) and ( 11) ) the elements of B-’ can be 
found from the previous formulae replacing any term 
a; with the corresponding E,. 
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