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Abstract 
This paper introduces a partition of the possi-
ble forms of knowledge according to their rela­
tionship to the basic objective of an intelligent 
agent, namely to act successfully in response to 
its environment. The resulting classes of knowl­
edge range from fully declarative to fully com­
piled. From these classes, it is possible to gen­
erate 1) a set of execution architectures, each of 
which combines some of the classes to produce 
decisions; and 2) a set of compilation methods, 
that transform knowledge into more efficient 
but (approximately) behaviourally equivalent, 
compiled forms. Existing compilation methods 
can be understood within this framework, and 
new compilation methods and execution archi­
tectures are indicated. It is proposed that sys­
tems with the ability to learn, use and trans­
form between all the types of knowledge may 
be able to achieve simultaneously higher levels 
of competence, efficiency and flexibility. 

1 Introduct ion 
Artificial intelligence in general, and machine learning 
in particular, must find a route from raw perceptions of 
the world to successful actions within that world. In this 
paper, I try to identify a few more way-stations on this 
daunting route. In doing so in so small a space I will 
need to ride roughshod over some important questions, 
but the basic thesis is that there are several distinct kinds 
of knowledge that can be acquired from perceptions and 
used for acting, and therefore a multiplicity of execution 
architectures that effect the input/output mapping for 
an agent. The approach also helps one to understand the 
variety of existing execution architectures by pointing 
out the possibilities for compilation transformations that 
preserve behavioural equivalence. 

The paper begins by motivating compilation as a use­
ful notion in A I . In order to find out what kinds of com­
pilation there are, I start from an uncompiled architec­
ture and work down. To do this, I first describe what I 
mean by autonomy and hence what might be an uncom­
piled architecture for an autonomous intelligent agent. I 
then discuss the possible forms of knowledge, from fully 
declarative to fully compiled, and map out the compile 
tion paths linking them. Finally, I discuss the resulting 
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research agenda and speculate on why declarative knowl­
edge is worth having. 

2 Why compilation? 
It is a commonplace of artificial intelligence that perfect 
rationality, in the sense prescribed by decision theory, 
is unlikely to be computationally attainable by systems 
that explicitly solve the decision problem at each junc­
ture. Simon [1982b] made clear the distinction between 
systems that compute the rational thing to do (procedu­
ral rationality), and systems that simply do the rational 
thing (substantive rationality). Systems whose execu­
tion architectures are based on explicit use of declarative 
knowledge to reach decisions to act seem to suffer from 
a good deal of overhead, both in terms of time and extra 
cognitive machinery. A currently popular notion is that 
all this deliberation is a waste of time — why don't we 
just build agents that "do the right thing" [Brooks, 1986, 
Agre and Chapman, 1987]? Substantive rationality, 
however, does not come for free. Although it means 
that an agent can be perfectly rational despite limited 
computational resources, it can only arise in one of three 
ways: 

1. By design, where the designer possesses the com­
putational and informational resources required to 
find optimal solutions. 

2. By simple adaptation, that is, direct adjustment of 
behaviour in response to feedback from the environ­
ment. 

3. By deliberative self-design, where the agent itself 
carries out the required computations, (perhaps in­
crementally) compiling them to ensure substantive 
rationality in future situations. 

Many people in AI are interested in ultimately creating 
autonomous intelligent systems. Below, we develop a 
simple notion of autonomy that makes the first of these 
three options less than desirable. At the conclusion of 
this paper, we offer speculation as to why the second 
option may also be inappropriate. The majority of re­
searchers, including many advocates of substantive ratio­
nality, believe that the most promising route to achieving 
intelligence lies in systems capable of acquiring and using 
knowledge in a declarative form, and gradually compil­
ing it for use in more efficient execution architectures. 

There seems little doubt that such efficient execution 
architectures do exist. A clock does the right thing as 
a direct result of its fixed structure, with no significant 
perceptive ability. A pianola or 'player-piano' executes 
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a behaviour by directly interpreting a stored sequence 
of action descriptions. State-free, feed-forward networks 
can implement more complex mappings from inputs to 
actions; Agre and Chapman [1987] have advocated such 
systems as a reasonable architecture for intelligent sys­
tems. Connectionist systems follow a similar design 
philosophy. Al l of these approaches to producing be-
haviour have significant advantages in terms of simplic­
ity and computation time. In a sense, they all implement 
'condition-action' rules, or productions, with the limita­
tion that conditions must be computable directly from 
current sensory inputs. If we design systems using more 
declarative constructs, the performance demands of real 
environments will necessitate some mechanism for con­
verting inefficient but general decision-making methods 
into a form that displays greater alacrity.1 

Essentially, compilation is a method for omitting in­
termediate computations in the input-output mapping. 
Computations can be omitted when their answers are 
already known, so that subsequent computations can be 
modified to use those answers directly rather than hav­
ing them recomputed first. Compilation is only useful 
when an entire class of computations can be omitted, 
so that a whole class of decision-making episodes can be 
speeded up. Therefore another view of compilation is 
as a means for taking advantage of regularities in the 
environment. For example, I have learnt, when driving 
to work, to turn left at the bright orange Oscar's Burg­
ers sign. This is because the sign is always at the same 
street, and that street always leads to the parking lot; 
but this information is now only implicit in my perfor­
mance. 

Researchers have found ways to add some form of 
compilation into whatever system they use as a perfor­
mance element. The most usual forms of compilation 
involve collapsing operator sequences and collapsing im­
plications in a logical system. Anderson [1986] developed 
knowledge compilation to speed up a production system. 
Rosenbloom [1987] developed chunking to compile the 
impasse resolution procedures in SOAR , also a pro­
duction system. Fikes and Nilsson [1972] developed the 
triangle-table method to form macro-operators to speed 
up problem-solving in STRIPS. Explanation-based learn­
ing [Mitchell et a/., 1986] compiles simple forms of rule-
based inference. To date, the technique has only been ap­
plied to concept membership problems and what might 
be called 'existential' problem-solving, in which any ac­
tion that eventually leads to a solution is acceptable. 

It is possible to unify all these techniques as points 
in a well-defined space of possible compilation methods. 
The route we wil l take is to analyze the possible general 
classes of compiled knowledge, and then generate a space 
of compilation methods as routes for converting between 
and within these various knowledge classes. In order to 
do this, some notion of an uncompiled formulation for 
autonomous decision-making is needed. To motivate the 
choice of a decision-theoretic framework to fill this role, 
a brief digression on autonomous agents is in order. 

1Subramanian and Woodfill [1989] have given an exam­
ple of how a situation-calculus-based planner might generate 
propositional condition-action rules of the form used by Agre 
and Chapman. 

3 Autonomy 
A system is autonomous to the extent that its behaviour 
is determined by its immediate inputs and past experi­
ence, rather than by its designer's. A system that oper­
ates on the basis of built-in assumptions will only oper­
ate successfully when those assumptions hold, and thus 
lacks flexibility. A truly autonomous system should be 
able to operate successfully in any universe, given suf­
ficient time to adapt. The system's internal knowledge 
structures should therefore be constructive, in principle, 
from its experience of the world.2 

For a notion of learning in such systems, the following 
definition seems acceptable: learning takes place when 
the system makes changes to its internal structure so 
as to improve some metric on its long-term future per­
formance, as measured by a fixed performance standard 
(cf. Simon's [1983] definition). It also seems clear that 
the performance standard must ultimately be externally 
imposed [Buchanan et a/., 1979], particularly since, for 
the purposes of building useful artifacts, modification of 
the performance standard to flatter one's behaviour does 
not exactly fit the bil l. 

There are three3 essential aspects of experience: 
1. Perceptions that reflect the current state of the en­

vironment. 
2. Perception of the agent's own actions. 
3. Information as to the quality of the agent's perfor­

mance. 
The agent's perceptions may be partial, intermittent and 
unreliable. The truth of the agent's perceptions is irrel­
evant (or, to put it another way, each perception carries 
a guarantee of its own truth). What is important is that 
the perceptions be faithful in the following sense: there 
is a consistent relationship between the agent's percep­
tions and the performance feedback. The relationship 
can be arbitrarily complex and uncertain — the more 
so, the more difficult the learning problem. 

Given these basic categories of inputs, some obvious 
candidates for the constituents of the uncompiled ar­
chitecture would include beliefs about the state of the 
world, beliefs about the effects of actions and beliefs 
about the relationship between the state of the world 
and the level of performance quality feedback. Each of 
these can be 'explained' only by appealing to the agent's 
direct experience of the world or to prior knowledge of 
the same type, rather than being derivable from other 
knowledge structures (this point can be argued in a good 
deal more detail). An appropriate uncompiled architec­
ture for an intelligent system would therefore seem to be 
decision-theoretic in nature. 

The strongest alternative to this proposal is the 
goal-based architecture (as proposed by, for example, 

21 don't wish to equate autonomous systems with tabula 
rasa systems, however, since this seems a somewhat imprac­
tical way to proceed. A reasonable halfway-point is to design 
systems whose behaviour is determined in large part, at least 
initially, by the designer's knowledge of the world, but where 
all such assumptions are as far as possible made explicit and 
amenable to change by the agent. This sense of autonomy 
seems also to fit in reasonably well with our intuitive notions 
of intelligence. 

3One might argue that perception of the agent's internal 
computations is also necessary for certain kinds of learning; 
these can be included in the 'environment' and 'actions'. 
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Newell [1981] and the SOAR group [Laird et a/., 1987]). 
In such systems, the idea of a u t i l i t y measure is replaced 
by the idea of a goal — an intensional descript ion of a 
class of desirable states. It might be argued that goals 
and u t i l i t y funct ions are equally val id al ternat ive fo rmu­
lations; for example, one could construct a u t i l i t y func­
t ion f rom a goal by assigning high u t i l i t y to goal states 
and lower u t i l i t y to other states; and one could iden­
t i fy goals w i t h classes of h igh-ut i l i ty states f rom a given 
u t i l i t y funct ion. However, there are two significant ob­
jections to such a proposal. F i rs t , goal-based formalisms 
have a hard t ime dealing appropriately w i t h confl ict ing 
goals, and thus cannot adequately model the desires of 
complex agents (who, for example, may want a Jaguar 
and a new roof, but cannot afford both) . U t i l i t y func­
tions can easily deal w i t h such cases. The second, and 
perhaps more impor tan t , object ion involves the nature 
of the performance feedback tha t an agent receives. It 
seems to me tha t this feedback must be essentially non-
representational The agent is not given goal descrip-
tions or u t i l i t y functions by the environment, only a se­
ries of point values f rom the external performance met­
ric. In this way, the environment does not need to know 
the agent's representation scheme in order to ' t r a i n ' i t . 
There merely has to be agreement on what counts as 
'wa rm ' and what counts as 'co ld ' . In the case of evolu­
t ion, the metr ic 'more offspring is better ' is self-defining. 
In the RALPH Rat ional Agents w i th L im i ted Perfor­
mance Hardware project at Berkeley, the agents operate 
in a real-t ime, simulated environment where the perfor­
mance feedback reflects the amount of food the agents 
find and consume, and their successful avoidance of ene­
mies who might wound them. Each ralph is designed to 
induce a u t i l i t y funct ion f rom the performance feedback 
data. However, this u t i l i t y funct ion w i l l not, in general, 
reproduce the funct ion that generates the performance 
signal. Instead, it should converge to a funct ion that 
predicts the long- term expectat ion of the performance 
signal, given the current state. In this way, the agent can 
use a simple, 'greedy' decision procedure that avoids ex­
tensive lookahead. One would expect the u t i l i t y funct ion 
to be much more complex than the performance signal 
generator. 

4 Categories of knowledge 
To recap: the basic categories of knowledge in an uncom-
piled system, that is, a system operat ing w i t h a decision-
theoretic formulat ion, are 

• knowledge about the state of the wor ld ( th is in­
cludes direct perceptions, and rules relat ing parts of 
the wor ld state, such as ' i f i t is ra in ing, the ground 
is usually wet ' ) ; 

• knowledge about the results of actions, i.e., con­
straints on the wor ld state after an action has been 
performed; 

• knowledge about the (relat ive) u t i l i t y of a wor ld 
state. 

Decisions are made by selecting the act ion that results 
in the next state of highest expected ut i l i ty . 

We w i l l use an in fo rma l 4 notat ion as follows: 

4 Readers interested in a more thorough and formal devel­
opment of declarative formulations of agents are referred to 
Doyle's recent work [Doyle, 1988]. 

• condition(state) represents an arb i t rary predication 
on a wor ld state; 

• uti l i ty(state, value) represents an arb i t rary predica­
t ion about the absolute or relative u t i l i t y of a wor ld 
state; 

• result (action,state) represents an arb i t rary predica­
t ion about the result ing state after tak ing an action 
in a given state; 

• best (action,state) means that action is the best 
available in the given state. 

• CurrentState refer to the state of the wor ld in which 
the agent finds itself. 

A basic decision procedure derives conclusions of the 
fo rm utility(result(action,CurrentState),value) for each 
available act ion, and uses the decision-theoretic principle 
to conclude best (action, CurrentState) for one of them. 
In order to obtain these ut i l i t ies, then, i t w i l l normally 
need to know some condition(CurrentState), al lowing it 
to conclude condition(result(action, CurrentState)), f rom 
which i t can infer the u t i l i t y of tak ing the action. The 
four stages of 's tat ic ' knowledge are shown in Figure 1, 
w i t h the obvious abbreviations. 

In the same notat ion, the forms of 'dynamic ' knowl­
edge needed to l ink these stages together are as follows: 

A: condition(state) => condition(state) 

B: condition(state) => 
condition ( resu l t (act ion, state)) 

C: condition(state) => utility (state, value) 

In addi t ion, the decision-theoretic pr inciple (labelled DT 
in the diagram) takes knowledge of the u t i l i t y of actions 
and concludes tha t one is best. 

The principle of compi lat ion is to convert a formula­
t ion in which each of these kinds of knowledge is used 
expl ic i t ly in to a formulat ion that results in the same de­
cisions but is computat ional ly more efficient. By exam­
in ing the figure we can see the addi t ional kinds of knowl­
edge that can offer shortcuts for the decision procedure. 
They are as follows: 

• D: condition(state) => best(action, state) 

• E: condition(state) => 
utility(result(action, state), value) 

• F: condition(result(action, state)) => 
best(action, state) 
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Type D rules are the standard condition-action rules 
used in production systems; for example, ''IF a car is 
coming straight for you THEN jump out of the way". 
Such rules compile away any knowledge of the results of 
the action or of the reasons for those results' desirability. 

Type E rules could be called action-utility rules; for 
example, the value of a forking move in chess is typically 
the difference between the value of the lesser of the forked 
pieces and the value of the forking piece. Such rules avoid 
explicit computation of the action's results. 

Type F rules are extremely interesting. Consider the 
case of a type F rule with universal quantification over 
the action and state arguments: 

Va, s[condition(result(a, s)) => best(a, s)]. 

Essentially, such a rule says that an action should be 
executed whenever the situation is such that the action 
will achieve a certain condition. An agent using such a 
rule thus believes the condition to be desirable indepen-
dent of the side effects of its achievement on the rest of 
the agent's uti l i ty function. This is exactly the definition 
of a goal that is used in Newell's knowledge-level agent 
architecture [Newell, 1981]. Goals are therefore com­
piled from a decision-theoretic formulation, when the 
agent believes that a condition is 'separately optimiz-
able'. Since goals allow backward-chaining rather than 
forward-chaining for selecting actions, they can provide 
huge efficiency gains, and their creation by compilation 
is an important, unstudied process. 

In this context, an execution architecture is an inter­
preter that uses some combination of facts of various 
types to reach a decision. Three basic architectures that 
can be implemented using knowledge of types A through 
F are as follows: 

1. Decision-theoretic systems: Knowledge of types A, 
B and C is combined to find the best action using 
the DT principle. 

2. Production systems: Knowledge of type D provides 
action choices directly. 

3. Goal-based systems: Knowledge of types A, B and 
F suggests actions that achieve the desired goal con­
dition. 

Systems based on combining knowledge of type E with 
the DT principle seem not to have been studied system­
atically. Such systems organize their uti l i ty knowledge 
around actions rather than states. They are discussed 
further below. 

5 The space of compilation methods 
The space of compilation methods can now be generated 
by looking at various ways in which all these forms of 
knowledge can be combined to produce more operational 
versions of the same underlying theory. There are two 
basic classes of compilation methods: homogeneous and 
heterogeneous. 

5.1 Homogeneous comp i la t ion 
The first two forms of uncompiled knowledge (A and B) 
have left and right-hand sides of the same form, and 
therefore allow indefinite chaining of inferences. The 
chained inferences can be compiled to make the calcula­
tion of the requisite basic forms of declarative knowledge 
more efficient: 

• A + A —► A 
• B + B —► B 

These two compilation modes are already well-known in 
the literature. Explanation-based learning is usually used 
to compress chains of inferences about the state of the 
world. For example, the first time a particular type of 
bridge is designed, very long computations are needed to 
predict its safe load from its structural description; the 
results are then saved as a rule about this class of bridges. 
Macro-operator formation compresses inferences about 
the results of sequences of actions. After map-tracing 
and trial and error, I discover a good route to work; 
then I compile it into an automatic routine, or action 
sequence, to get me there. 

The reason for the popularity of these forms of compi­
lation is obvious: a uniform architecture (one based on 
just type A or just type B knowledge) is closed under 
these compilation methods. In other words, the same 
execution architecture applies to the compiled as to the 
uncompiled knowledge. Although this simplifies mat­
ters, it probably places limits on the performance gains 
that can be obtained from compilation. Getting any im­
provement at all has been a hard job [Minton, 1988], 

Because all of the forms B through F have left-hand 
sides consisting of conditions on states, type A knowl­
edge can be used to conclude those conditions and these 
inferences can also be compiled: 

• A + X —► X for X = B, C, D, E, F. 
For example, if I have to build a bridge to cross a ravine 
to get to the office, calculations about its safety go to­
wards a belief that the route using it gets me to work, 
rather than into the ravine. 

5.2 Heterogeneous compi la t ion 
Compilation methods resulting in knowledge of types D, 
E, and F (which I have called condition-action rules, 
action-utility rules and goals) have received little atten­
tion in A I . The following remarks certainly do not consti­
tute compilation algorithms, but serve to indicate some 
current and future directions for research. 

Genera t ing cond i t ion-ac t ion rules Many of the 
'reactive' architectures mentioned above, and production 
systems in general, use condition-action rules, that iden­
tify the conditions under which a given action is expected 
to be more valuable than all others.5 These rules can be 
generated by the following compilation routes: 

• B + F — > D 
For example, if (B) meditating on a full stomach 
achieves Nirvana, and (F) Nirvana is always desir­
able, then (D) always meditate after meals. This 
method is straightforward, and can be simply imple­
mented in an EBL, knowledge compilation [Ander­
son, 1986] or chunking system [Laird et a/., 1986] (it 
actually constitutes a reasonable characterization of 
the latter, since every impasse represents a ready-
made goal). 

• E + DT —► D This method is more problematic: 
conditional knowledge about the absolute and rela­
tive utilities of actions must be combined to find the 

5Production systems with a conflict resolution mechanism 
do not need to have exactly this strict semantics for their 
productions, but the same arguments apply. 
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conditions under which one of them is optimal. In 
some cases, the uti l i ty information for the available 
actions is provided in parameterized form, allow­
ing the system to compute the ranges of parameter 
values for which each action is optimal. This ap-
proach is common in decision-analytic (particularly 
multivariate) studies [Fehling and Breese, 1988, 
Horvitz, 1987, Howard, 1966]. More work is needed 
to establish efficient and general methods for this 
kind of reasoning. 

• B + C + DT —► D For example, if (B) smoking 
causes cancer, and (C) cancer is worse than any­
thing, then conclude (D) one should not smoke. In 
other cases, the uti l i ty information will be less ab­
solute, and compilation will be more complex. This 
compilation method is also problematic because it 
has to make the kinds of approximations, for the 
sake of efficiency, that are already hidden in goals 
and action-utility rules. Consider applying an EBL 
system to the problem of finding a best action: it 
needs a proof to the effect that all other actions 
are guaranteed not to have better outcomes. In 
non-trivial situations, this proof can be arbitrarily 
complex — the Intractable Domain Theory prob-
lem [Mitchell et a/., 1986]. The rule created will 
have a correspondingly huge number of qualificar 
tions, and will be essentially useless. A case in point: 
the concept of a forking move is often cited as the 
kind of concept that can be learned using EBL tech­
niques, yet the preconditions for guaranteeing that 
the fork will actually win material, let alone be the 
best move, are endless. 
The only reasonable solution seems to be to produce 
condition-action rules that provide an approximate 
guarantee that their recommended action is more 
or less optimal. The rules can then be used as de­
faults in a hierarchy of execution architectures, so 
that further deliberation of a more explicit nature 
can over-rule the original recommendation, if time 
permits. Learning such rules requires sophisticated 
(or adaptive} accuracy/resource tradeoffs in order 
to ensure rules that are not too rash yet can exe­
cute quickly. Tadepalli [1989] has built a program 
that learns approximate strategies for king-rook ver­
sus king endgames, and exhibits significant speedup 
as a result. Research is needed to extend such sys­
tems to more complex environments. It may turn 
out that indirect routes, via action-utility rules and 
goals, are the only feasible approach. 

Generat ing ac t ion -u t i l i t y rules It will often be the 
case that the value of an action can be estimated, 
without having a corresponding belief in its optimality. 
Action-utility rules are compiled from knowledge of the 
util ity of states, and knowledge of the results of actions: 

• B + C — > E 
This form of compilation seems relatively simple, be­
cause it does not need to refer to the uti l i ty of all avail­
able actions, yet there seems to have been little research 
on automating it. It would be interesting to write a pro­
gram capable of learning a general rule for estimating 
the value of a forking move in chess. A chess program 
constructed using such rules would use them to quickly 
identify any material-gain or attacking possibilities and 
to order them for investigation, falling back on full-width 

search only as a last resort. Similarly, a trading pro­
gram could learn such rules as " i f the current US market 
price of crude oil is M then buying a cargo of T tons in 
Venezuela at price P will yield net profit f (M,T,P)" for 
some known f. 

Crea t ing goals The compilation method 
• C + DT —► F 

essentially finds separable aspects of the uti l i ty function 
that guarantee that achieving a given condition is always 
a good thing. Even when this guarantee is conditional, 
the resulting goals may still have enormous computa­
tional benefits. For example, the RALPH agents men­
tioned above can generate a conditional goal to be in the 
vicinity of food provided no enemies are too near, and 
can therefore select movement actions with little compu­
tational effort. Similarly, a chess player can generate a 
temporary goal to actively seek a checkmate, thereby al­
lowing a backward-chaining process to find a good strat­
egy-

6 Conclusions 
A clear lesson from this brief investigation of compila­
tion is that there is a rich variety of forms of compiled 
knowledge and of compilation routes. Current methods, 
with some exceptions as mentioned above, cover only ho­
mogeneous methods in uniform architectures. Research 
on building a mixed architecture, with a full variety of 
execution modes using different kinds of knowledge, is 
a high priority for the RALPH project. One possible 
application might be in real-time robotics: a robot can 
learn declarative knowledge about the behaviour of its 
effectors and the behaviour of objects in its environment, 
but will need to compile these into effective routines for 
achieving basic manipulation goals. 

When computations are viewed as actions, to be se­
lected according to expected uti l i ty just as with ordinary 
actions in the world, then one can apply decision theory 
to provide a principled basis for metareasoning [Russell 
and Wefald, 1988]. One could also apply all of the above 
analysis to the compilation of metareasoning, especially 
since it is usually very expensive. An interesting appli­
cation of such an analysis would be to provide a formal 
framework for metareasoning in a universal subgoaling 
architecture [Laird, 1984]. Currently, SOAR converts a 
fully declarative metalevel model into condition-action 
rules. Another possibility, that does not seem to be en­
visaged in SOAR , is to create action-utility rules (type 
E) for computational actions. This method seems to be 
effective in controlling computations in a selective search 
procedure [Russell and Wefald, 1989]. 

Finally, one can speculate as to why we humans seem 
to bother with declarative knowledge. Why not learn 
one of the more compiled forms of knowledge, even learn 
direct condition-action rules, rather than taking the indi­
rect route? It may be due to a combination of storage re-
quirements and learnability. Essentially, any body of un-
compiled knowledge capable of generating a given reper­
toire of behaviours in a particular environment could be 
compiled into a network of gated connections between 
sensors and effectors, with minimal state. The regulari­
ties in the network are much more compactly expressible 
using the declarative knowledge that explains them. But 
even assuming that space for the complete network is 
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available, learning such a network may be infeasible. Put 
simply, provided there is some regularity in the world, 
the smaller formulation in terms of uncompiled knowl­
edge will be easier to learn, as shown by standard results 
in computational learning theory. Moreover, it seems 
difficult to use prior knowledge in the form of condition-
action links to assist in the learning of new condition-
action links; how would we construct a radio telescope 
without any knowledge of the behaviour of the parts 
or the physics of electromagnetic waves, other than by 
lengthy trial and error? However, in sufficiently simple 
task environments (where simplicity depends on the uti l­
ity function and sensorimotor apparatus, as well as the 
environment per se) the direct approach may succeed. 
Termites build architecturally sound edifices thirty feet 
high with no explicit knowledge of anything much. It 
is an article of faith of declarativists that as the task 
environment complexity becomes asymptotically high, 
knowledge will eventually win out over instinct. Finding 
the cross-over point is currently an empirical task, one 
we are undertaking in the RALPH project. 

References 
[Agre and Chapman, 1987] Agre, P. and Chapman, 

D. (1987) Pengo: An implementation of a theory of 
activity. In Proceedings of the Sixth National Con­
ference on Artificial Intelligence, Seattle, WA: Mor­
gan Kaufmann. 

[Anderson, 1986] Anderson, J. R. (1986) Knowledge 
Compilation: The General Learning Mechanism. 
In Michalski, R., Carbonell, J., and Mitchell, T. 
(Eds.), Machine Learning: An Artificial Intelligence 
Approach, Vol. I I . Los Altos, CA: Morgan Kauf­
mann. 

[Brooks, 1986] Brooks, R. A. (1986) A robust, layered 
control system for a mobile robot. IEEE Journal of 
Robotics and Automation, 2(1), 14-23. 

[Buchanan et ai, 1979] Buchanan, B. G., Mitchell, 
T. M., Smith, R. G., and Johnson, C. R., Jr. (1979) 
Models of learning systems. Technical report 
STAN-CS-79-692, Computer Science Department, 
Stanford University, Stanford, CA. 

[Doyle, 1988] Doyle, J. (1988) Artificial Intelligence and 
Rational Self-Government Technical report no. 
CMU-CS-88-124, Computer Science Department, 
Carnegie-Mellon University, Pittsburgh, PA. 

[Fehling and Breese, 1988] Fehling, M. R., and Breese, 
J. S. (1988) A computational model for decision-
theoretic control of probem-solving under uncer­
tainty. In Proceedings of the Fourth Workshop on 
Uncertainty in Artificial Intelligence, Minneapolis, 
MN: AAAI . 

[Fikes et ai, 1972] Fikes, R. E., Hart, P. E., and Nils-
son, N. J. (1972) Learning and Executing General­
ized Robot Plans. Artificial Intelligence, 4, 251-288. 

[Horvitz, 1987] Horvitz, E. J. (1987) Problem-solving 
design: Reasoning about computational value, 
trade-offs, and resources. In Proc. Second Annual 
NASA Research Forum, Moffett Field, CA: NASA 
Ames, 26-43. 

[Howard, 1966] Howard, R. A. (1966) Information value 
theory. IEEE Transactions on Systems Science and 
Cybernetics, SSC-2(1), 22-26. 

[Laird, 1984] Laird, J. E. (1984) Universal Subgoaling. 
Doctoral dissertation, Computer Science Depart­
ment, Carnegie-Mellon University, Pittsburgh, PA. 

[Laird et ai, 1986] Laird, J., Rosenbloom, P., and 
Newell, A. (1986) Chunking in SOAR: The 
anatomy of a general learning mechanism. Machine 
Learning 1 (1), 11-46. 

[Laird et ai, 1987] Laird, J. E., Newell, A., and Rosen­
bloom, P. S. (1987) SOAR: An architecture for gen­
eral intelligence. Artificial Intelligence 33, 1-64. 

[Minton, 1988] Minton, S. (1988) Quantitative Results 
Concerning the Uti l i ty of Explanation-Based Learn­
ing. In Proceedings of the Seventh National Con­
ference on Artificial Intelligence, Minneapolis, MN: 
Morgan Kaufmann, 49-54. 

[Mitchell et al, 1986] Mitchell, T. M., Keller, R. M., 
and Kedar-Cabelli, S. T. (1986). Explanation-based 
generalization: A unifying view. Machine Learning, 
1, 47-80. 

[Newell, 1981] Newell, A. (1981). The knowledge level. 
AI Magazine, 2, 1-20. 

[Russell and Wefald, 1988] Russell, S. J., and Wefald, 
E. H. (1988) Decision-theoretic control of search: 
General theory and an application to game-playing. 
Technical report UCB/CSD 88/435, Computer Sci­
ence Division, University of California, Berkeley, 
CA. 

[Russell and Wefald, 1989] Russell, S. J., and Wefald, 
E. H. (1989) Principles of Metareasoning. In Pro­
ceedings of the First International Conference on 
Principles of Knowledge Representation and Rea­
soning, Toronto, Ontario: Morgan Kaufmann. 

[Simon, 1982a] Simon, H. A. (1982a) The Sciences of 
the Artificial. Cambridge, MA: M I T Press. 

[Simon, 1982b] Simon, H. A. (1982b) Models of 
Bounded Rationality, Volume 2: Behavioral Eco­
nomics and Business Organization. Cambridge: 
M I T Press. 

[Simon, 1983] Simon, H. A. (1983) Why should ma­
chines learn? In Carbonell, J. G., Michalski, R., 
and Mitchell T., (Eds.) Machine Learning: an Ar­
tificial Intelligence Approach. Palo Alto, CA: Tioga 
Press. 

[Subramanian and Woodfill, 1989] 
Subramanian, D., and Woodfill, J. (1989). Mak­
ing situation calculus indexical. In Proceedings of 
the First International Conference on Principles of 
Knowledge Representation and Reasoning, Toronto, 
Ontario: Morgan Kaufmann. 

[Tadepalli, 1989] 
Tadepalli, P. (1989). Lazy explanation-based learn­
ing: A solution to the intractable theory problem. 
In Proceedings of the Eleventh International Joint 
Conference on Artificial Intelligence, Detroit, MI : 
Morgan Kaufmann. 

20 Foundations 


