
Training Feedforward Neural Networks Using Genetic Algorithms 

David J. Montana and Lawrence Davis 
BBN Systems and Technologies Corp. 

10 Mouiton St. 
Cambridge, MA 02138 

Abstract 

Multilayered feedforward neural networks possess 
a number of properties which make them particu­
larly suited to complex pattern classification prob­
lems. However, their application to some real-
world problems has been hampered by the lack of 
a training algonthm which reliably finds a nearly 
globally optimal set of weights in a relatively short 
time. Genetic algorithms are a class of optimiza­
tion procedures which are good at exploring a large 
and complex space in an intelligent way to find 
values close to the global optimum. Hence, they 
are well suited to the problem of training feedfor­
ward networks. In this paper, we describe a set of 
experiments performed on data from a sonar image 
classification problem. These experiments both 1) 
illustrate the improvements gained by using a ge­
netic algorithm rather than backpropagation and 
2) chronicle the evolution of the performance of 
the genetic algorithm as we added more and more 
domain-specific knowledge into it. 

1 Introduction 

Neural networks and genetic algorithms are two techniques 
for optimization and learning, each with its own strengths 
and weaknesses. The two have generally evolved along 
seperate paths. However, recently there have been attempts 
to combine the two technologies. Davis (1988) showed how 
any neural network can be rewritten as a type of genetic al­
gorithm called a classifier system and vice versa. Whitley 
(1988) attempted unsuccessfully to train feedforward neural 
networks using genetic algorithms. In this paper we de­
scribe a different genetic algonthm for training teedforward 
networks. It not only succeeds in its task but it outperforms 
backpropagation, the standard training algonthm. on a diff i­
cult example. This success comes from tailoring the genetic 
algonthm to the domain of training neural networks. We 
document the evolution and ultimate success of this algo­
nthm with a series of experiments. 

The paper is structured as follows. Sections 2 and 3 give 
an overview of neural networks and genetic algonthms re­
spectively with a special emphasis on their strengths and 
weaknesses. Section 4 describes the data on which the ex-
penments were run. Section 5 details the genetic algorithm 
we used to perform neural network weight optimization. 

Section 6 describes the experiments we ran and analyzes 
their results. Section 7 provides conclusions about our work 
and suggestions for future work. 

2 Neural Networks 
Neural networks are algorithms for optimization and learn­
ing based loosely on concepts inspired by research into the 
nature of the brain. They generally consist of five compo­
nents: 

1. A directed graph known as the network topology whose 
arcs we refer to as links. 

2. A state variable associated with each node. 

3. A real-valued weight associated with each link. 

4. A real-valued bias associated with each node. 

5. A transfer function for each node which determines the 
state of a node as a function of a) its bias b, b) the 
weights, wt of its incoming links, and c) the states, 
x,, of the nodes connected to it by these links. This 
transfer function usually lakes the form 
where / is either a sigmoid or a step function. 

A feedforward network is one whoso topology has no closed 
paths. Its input nodes are the ones with no arcs to them, and 
its output nodes have no arcs away from them. All other 
nodes are hidden nodes. When the states of all the input 
nodes are set, all the other nodes in the network can also set 
their states as values propagate through the network. The 
operation of a feedforward network consists of calculating 
outputs given a set of inputs in this manner. A layered 
feedforward network is one such that any path from an input 
node to an output node traverses the same number of arcs. 
The nth layer of such a network consists of all nodes which 
are n arc traversals from an input node. A hidden layer is 
one which contains hidden nodes. Such a network is fully 
connected if each node in layer I is connected to all nodes 
in layer i+ l lor all I. 

Layered feedforward networks have become very popular 
for a few reasons. For one, they have been found in practice 
to generalize well, i.e. when trained on a relatively sparse 
set of data points, they wi l l often provide the right output 
for an input not in the training set. Secondly, a training al­
gorithm called backpropagation exists which can often find 
a good set of weights (and biases) in a reasonable amount of 
tune [Rumelhart 1986al. Backpropagation is a variation on 
gradient search. It generally uses a least-squares optimaiity 

762 Machine Learning 



criterion. The key to backpropagation is a method for cal­
culating the gradient of the error with respect to the weights 
for a given input by propagating error backwards through 
the network. 

There are some drawbacks to backpropagation. For one, 
there is the "scaling problem". Backpropagation works well 
on simple training problems. However, as the problem com­
plexity increases (due to increased dimensionality and/or 
greater complexity of the data), the performance of back-
propagation falls off rapidly. This makes it in feasible for 
many real-world problems including the one described in 
Section 4. The performance degradation appears to stem 
from the fact that complex spaces have nearly global min­
ima which are sparse among the local minima. Gradient 
search techniques tend to get trapped at local minima. With 
a high enough gain (or momentum), backpropagation can 
escape these local minima. However, it leaves them with­
out knowing whether the next one it finds will be better 
or worse. When the nearly global minima are well hid­
den among the local minima, backpropagation can end up 
bouncing between local minima without much overall im­
provement, thus making for very slow training. 

A second shortcoming of backpropagation is the follow­
ing. To compute a gradient requires differentiability. There­
fore, backpropagation cannot handle discontinuous optimal-
lty criteria or discontinuous node transfer functions. This 
precludes its use on some common node types and simple 
optimality criteria. 

For a more complete description of neural networks, the 
reader is referred to (Rumelhart 1986b]. 

3 Genetic Algorithms 
Genetic algorithms are algorithms for optimization and 
learning based loosely on several features of biological evo­
lution. They require five components: 

1 A way of encoding solutions to the problem on chro­
mosomes. 

2. An evaluation function that returns a rating tor each 
chromosome given to it. 

3. A way of initializing the population of chromosomes. 

4. Operators that may be applied to parents when they 
reproduce to alter their genetic composition. Included 
might be mutation, crossover (i.e. recombination of 
genetic material), and domain-specific operators. 

5. Parameter settings for the algorithm, the operators, and 
so forth. 

Given these five components, a genetic algorithm operates 
according to the following steps: 

I The population is initialized, using the procedure in C3. 
The result of the initialization is a set of chromosomes 
as determined in C2. 

2. Each member of the population is evaluated, using the 
function in C I . Evaluations may be normalized; the 
important thing is to preserve relative ranking of eval­
uations. 

3. The population undergoes reproduction until a stopping 
criterion is met. Reproduction consists of a number of 
iterations of the following three steps: 

(a) One or more parents are chosen to reproduce. Se­
lection is stochastic, but the parents with the high­
est evaluations are favored in the selection The 
parameters of C5 can influence the selection pro­
cess. 

(b) The operators of C4 are applied to the parents to 
produce children. The parameters of C5 help de­
termine which operators to use. 

(c) The children are evaluated and inserted into the 
population. In some versions of the genetic al­
gorithm, the entire population is replaced in each 
cycle of reproduction. In others, only subsets of 
the population are replaced. 

When a genetic algorithm is run using a representation that 
usefully encodes solutions to a problem and operators that 
can generate better children from good parents, the algo­
rithm can produce populations of better and better individu­
als, converging finally on results close to a global optimum. 
In many cases (such as the example discussed in this paper), 
the standard operators, mutation and crossover, are sufficient 
for performing the optimization. In such cases, genetic al­
gorithms can serve as a black-box function optimizer not 
requiring their creator to input any knowledge about the do­
main. However, as illustrated in this paper, knowledge of 
the domain can often be exploited to improve the genetic 
algorithm s performance through the incorporation of new 
operators. 

Genebc algonthms should not have the same problem with 
scaling as backpropagation. One reason for this is that they 
generally improve the current best candidate monotonically. 
They do this by keeping the current best individual as part 
of their population while they search for better candidates. 
Secondly, genetic algonthms are generally not bothered by 
local minima. The mutation and crossover operators can 
step from a valley across a hill to an even lower valley with 
no more difficulty than descending directly into a valley. 

The field of genetic algonthms was created by John Hol­
land. His first book [Holland 19751 was an early landmark 
The best introduction for the interested reader is [Goldberg 
1988]. 

4 The Data 
The data used in the experiments were from one stage in the 
processing of passive sonar data from arrays of underwater 
acoustic receivers. BBN has been building an expert system 
to detect and reason about interesting signals in the midst 
of the wide variety of acoustic noise and interference which 
exist in the ocean. The mam inputs to the expen system (as 
well as to sonar operators) are lofargrams, which (like spec-
tograms) are intensity-based images depicting the distribu­
tion of acoustic energy as a function of frequency and time. 
Narrowband energy appears on the lofargrams as •lines'' 
which tend to be predominantly vertical. A line has certain 
characteristics which provide clues to sonar operators as to 
what is producing it. Deriving algonthms which capture all 
that the operators can see in real lines has never succeeded 
despite a large amount of work in the area. Therefore, we 
are attempting to use neural networks in the problem of fine 
characterization. 

To start, we formed a database of approximately 1200 

Montana and Davis 763 



fixed-size rectangular pieces of lofargrams, each centered 
on a Line of type determined by an expert. Around 30% of 
these were from lines of a type in which we were particularly 
interested, and around 70% were from lines of a variety of 
other types. One experiment we ran investigated whether a 
feedforward network could classify the line pieces as either 
interesting or not based on four of the parameters which 
our system presently uses to characterize such pieces. The 
network had four inputs, one output, and first and second 
hidden layers of seven and ten nodes respectively for a total 
of 126 weights. We used a subset of the examples of size 236 
as a training set. It is on this network that the comparative 
runs described in Section 6 were made. 

5 Our Genetic Algorithm 
We now discuss the genetic algorithm we set up to do neural 
network weight optimization. We start by describing the five 
components of the algorithm listed in Section 3. 

1) Chromosome Encoding: The weights (and biases) in 
the neural network are encoded as a list of real numbers (see 
Figure 1). 

2) Evaluation Function: Assign the weights on the chro­
mosome to the links in a network of a given architecture, 
run the network over the training set of examples, and return 
the sum of the squares of the errors. 

3) Initialization Procedure: The weights of the initial 
members of the population are chosen at random with a prob­
ability distribution given by t l r l . This is different from the 
initial probability distribution of the weights usually used in 
backpropagation, which is a uniform distribution between 
-1.0 and 1.0. Our probability distribution reflects the empir­
ical observation by researchers that optimal solutions tend 
to contain weights with small absolute values but can have 
weights with arbitrarily large absolute values. We therefore 
seed the initial population with genetic material which allows 
the genetic algorithm to explore the range of all possible so­
lutions but which tends to favor those solutions which are a 
priori the most likely. 

4) Operators: We created a large number of different types 
of genetic operators. The goal of most of the experiments we 
performed was to find out how different operators perform 
in different situations and thus to be able to select a good set 
of operators for the final algorithm. The operators can be 

grouped into three basic categories: mutations, crossovers, 
and gradients (see Figure 2). A mutation operator takes 
one parent and randomly changes some of the entries in its 
chromosome to create a child. A crossover operator takes 
two parents and creates one or two children containing some 
of the genetic material of each parent. A gradient operator 
takes one parent and produces a child by adding to its en­
tries a multiple of the gradient with respect to the evaluation 
function. We now discuss each of the operators individually, 
one category at a time. 

UNBIASED-MUTATE-WEIGHTS: For each entry in the 
chromosome, this operator wi l l with fixed probability p = 
0.1 replace it with a random value chosen from the initial­
ization probability distribution. 

BIAS ED-MUTATE-WEIGHTS: For each entry in the 
chromosome, this operator wi l l with fixed probability p = 
0.1 add to it a random value chosen from the initializa­
tion probability distribution. We expect biased mutation to 
be better than unbiased mutation tor the following reason. 
Right from the start of a run, parents are chosen which tend 
to be better than average. Therefore, the weight settings in 
these parents tend to be better than random settings. Hence, 
biasing the probability distribution by the present value of 
the weight should give better results than a probability dis­
tribution centered on zero. 

MUTATE-NODES: This operator selects n non-input 
nodes of the network which the parent chromosome rep­
resents. For each of the ingoing links to these n nodes, the 
operator adds to the l inks weight a random value from the 
initialization probability distribution. It then encodes this 
new network on the child chromosome. The intuition here 
is that the ingoing links to a node form a logical subgroup 
of all the links in terms of the operation of the network. By 
confining its changes to a small number of these subgroups, 
it wi l l make its improvements more likely to result in a good 
evaluation. In our experiments, n = 2. 

MUTATE-WEAKEST-NODES: The concept of node 
strength is different from the concept of error used in back-
propagation. For example, a node can have zero error if ail 
its output links are set to zero, but such a node is not con­
tributing anything positive to the network and is thus not a 
strong node. The concept of strength comes from classifier 
systems and was introduced into neural networks in [Davis 

764 Machine Learning 



1988]. We define the strength of a hidden node in a feed-
forward network as the difference between the evaluation of 
the network intact and the evaluation of the network with 
that node lobotomized (i.e. with its output links set to zero). 
We have devised an efficient way to calculate node strength 
not discussed here. 

Tlie operator MUTATE-WEAKEST-NODES takes the 
network which the parent chromosome represents and cal­
culates the strength of each hidden node. It then selects the 
m weakest nodes and performs a mutation on each of their 
ingoing and outgoing links. This mutation is unbiased if the 
node strength is negative and biased if the node strength is 
positive. It then encodes this new network on a chromosome 
as the child. The intuition behind this operator is that there 
are some nodes which are not only not very useful to the net­
work but may actually be hurting it. Performing mutation on 
these nodes is more likely to yield bigger gains than muta­
tion on a node which is already doing a good job. Note that 
since this operator wil l not be able to improve nodes which 
are already doing well it should not be the only source of 
diversity in the population. In our experiments, m= l . 

CROSSOVER-WEIGHTS: This operator puts a value into 
each position of the child's chromosome by randomly select­
ing one of the two parents and using the value in the same 
position on that parent's chromosome. 

CROSSOVER-NODES: For each node in the network en­
coded by the child chromosome, this operator selects one of 
the two parent's networks and finds the corresponding node 
in this network. It then puts the weight of each ingoing 
link to the parent's node into the corresponding link of the 
child's network. The intuition here is that networks succeed 
because of the synergism between their various weights, and 
this synergism is greatest among weights from ingoing links 
to the same node. Therefore, as genetic matenal gets passed 
around, these logical subgroups should stay together. 

CROSSOVER-FEATURES: Different nodes in a neural 
network perform different roles. For a fully connected, lay­
ered network, the role which a given node can play depends 
only on which layer it is in and not on its position in that 
layer. In fact, we can exchange the role of two nodes A and 
B in the same layer of a network as follows. Loop over all 
nodes C connected (by either an ingoing or outgoing link) 
to A (and thus also to B). Exchange the weight on the link 
between C and A with that on the link between C and B. 
Ignoring the internal structure, the new network is identi­
cal to the old network, i.e. given the same inputs they wi l l 
produce the same outputs. 

The child produced by the previously discussed crossovers 
is greatly affected by the internal structures of the parents. 
The CROSSOVER-FEATURES operator reduces this depen­
dence on internal structure by doing the following. For each 
node in the first parents' network, it tries to find a node in 
the second parent's network which is playing the same role 
by showing a number of inputs to both networks and com­
paring the responses of different nodes. It then rearranges 
the second parent's network so that nodes playing the same 
role are in the same position. At this point, it forms a child 
in the same way as CROSSOVER-NODES. The greatest im­
provement gained from this operator over the other crossover 
operators should come at the beginning of a run before all 
the members of a population start looking alike. 

HILLCL1MB: This operator calculates the gradient for 
each member of the training set and sums them together to 
get a total gradient. It then normalizes this gradient by di­
viding by the magnitude. The child is obtained from the 
parent by taking a step in the direction determined by the 
normalized gradient of size step-size, where step-size is a 
parameter which adapts throughout the run in the following 
way. If the evaluation of the child is worse than the parent's, 
step-size is multipled by the parameter step-size-decay=0.4; 
if the child is better than the parent, step-size is multiplied 
by step-size-expand=1.4. This operator differs from back-
propagation in the following ways: 1) Weights are adjusted 
only after calculating the gradient for all members of the 
training set and 2) The gradient is normalized so that the 
step size is not proportional to the size of the gradient. 

5) Parameter Settings: There are a number of parameters 
whose values can greatly influence the performance of the 
algorithm. Except where stated otherwise, we kept these 
constant across runs. We now discuss some of the important 
parameters individually. 

PARENT-SCALAR: This parameter determines with what 
probability each individual is chosen as a parent. The 
second-best individual is PARENT-SCALAR times as likely 
as the best to be chosen, the third-best is PARENT-SCALAR 
times as likely as the second-best, etc. The value was usu­
ally linearly interpolated between 0.92 and 0.89 over the 
course of a run. 

OPERATOR-PROBABILITIES: This list of parameters 
determines with what probability each operator in the oper­
ator pool is selected. Usually, these values were initialized 
so that the operators all had equal probabilities of selection. 
An adaptation mechanism changes these probabilities over 
the course of a run to reflect the performance of the oper­
ators, increasing the probability of selection for operators 
that are doing well and decreasing it for operators perform­
ing poorly. This saves the user from having to hand-tune 
these probabilities. 

POPULATION-SIZE: This self-explanatory parameter 
was usually set to 50. 

An example of an iteration of the genetic algorithm is 
shown in Figure 3. 

Montana and Davis 765 



6 Experiments 

In this section we discuss a series of experiments which led 
us to our final version of the genetic algorithm and one more 
experiment comparing the genetic algorithm to backpropaga-
tion. To evaluate the algonthm with a given set of operators 
and parameter settings, we performed a series of ten inde­
pendent runs recording the evaluation of the best individual 
as a function of the number of iterations. Afterwards, we 
averaged the results so as to reduce the variations introduced 
by the stochastic nature of the algonthm. Even after aver­
aging some variations remain, and so it is a judgment call 
to separate random variations from significant differences 
between averaged runs. 

Experiment 1: This experiment was designed to com­
pare the performances of three different versions of 
mutation. UNBIASED-MUTATE-WEIGHTS, BIASED-
MUTATE- WEIGHTS and MUTATE-NODES. To do this we 
performed three series of runs, each with the same param­
eter settings and with CROSSOVER-WEIGHTS as one of 
the operators. The only difference between runs was the 
version of mutation used. The results are pictured in Fig­
ure 4. As predicted, there is a clear ordering in terms of 
performance: 1) MUTATE-NODES, 2) B I A S E D - M U T A T E -
WEIGHTS and 3) UNBIASED-MUTATE-WEIGHTS. 

Experiment 2: This experiment was designed to 
compare the performances of three different versions 
of crossover: CROSSOVER-WEIGHTS. CROSSOVER-
NODES and CROSSOVER-FEATURES. To do this we per­
formed three series of runs, each with the same parameter 
settings and with MUTATE-NODES as one of the opera­
tors. The only difference between runs was the version of 
crossover used. The results are pictured in Figure 5. They 
indicate that there is little performance difference between 
the different types of crossover. 

Experiment 3: This experiment attempted to determine 
the effectiveness of the special-purpose operator MUTATE-
WEAKEST-NODES. To do this, it compared an aver­
aged run with just the two operators MUTATE-NODES 
and CROSSOVER-FEATURES to an averaged run with 
these two operators plus MUTATE-WEAKEST-NODES. 
The results are pictured in Figure 6. Having MUTATE-
WEAKEST-NODES improved the performance at the be-

ginning of the runs but diminished the performance in the 
middle and at the end. This could indicate that we need to 
change our definition of node strength. 

Experiment 4: This experiment investigated the effec­
tiveness of a hill-climbing mode for use at the end of a 
genetic algorithm run. The hill-climbing mode has HILL-
CLIMB as its only operator and has the parameter PARENT-
SCALAR=0.0 (so that the best individual is always chosen 
as the parent). The experiment compared an averaged run of 
800 iterations with MUTATE-NODES and CROSSOVER-
NODES to an averaged run of 500 iterations with these two 
operators and 300 iterations in hill-climbing mode. The re­
sults are shown in Figure 7. Note the rapid progress im­
mediately after entering hill-climbing followed quickly by 
a period of little or no progress. This reflects the speed of 
hill-climbing mode at climbing local hills and its inability 
to go anywhere once it hits the peak. It is clear that hi l l-
climbing mode carries with it a big risk of local minima and 
therefore should only be used when it is relatively certain 
that a global minimum is near. 

Experiment 5: This experiment compared the perfor­
mance of standard backpropagation with our genetic algo­
rithm for training our feedforward network. We used the 
backpropagation algorithm described in [Rumelhart 1986a] 
with a learning rate (i.e. gain) of 0.5. The genetic algorithm 

766 Machine Learning 



had two operators. MUTATE-NODES and CROSSOVER-
NODES, and wis thus a variation on a standard genetic 
algorithm. 

When comparing them, we considered two iterations of 
the genetic algorithm to be equivalent to one iteration (i.e. 
one cycle through all the training data) of backpropagation. 
To see why, observe that backpropagation consists of loop­
ing through all training data doing I) forward propagation 
and calculation of errors at the outputs and 2) error backward 
propagation and adjusting of weights. The second step re­
quires more computation in our network and almost all other 
networks of interest. The evaluation function of the genetic 
algorithm performs the same calculations as step 1). The 
operators MUTATE-NODES and CROSSOVER-NODES do 
very little computation. Hence, one iteration of backprop­
agation requires more than twice as much computation as 
one iteration of the genetic algorithm. 

The runs consisted of 10000 iterations of the genetic al­
gorithm and 5000 iterations of backpropagation. The results 
are shown in Figure 8. Clearly, the genetic algorithm out­
performed backpropagation. 

7 Conclusions and Future Work 

We have accomplished a number of things with our work 
on using genetic algorithms to train feedforward networks. 
In the held of genetic algorithms, we have demonstrated a 
real-world application of a genetic algorithm to a large and 
complex problem. We have also shown how adding domain-
specific knowledge into the genetic algorithm can enhance 
its performance. In the held of neural networks, we have in­
troduced a new type of training algorithm which on our data 
outperforms the backpropagation algorithm. Our algorithm 
has the added advantage of being able to work on nodes 
with discontinuous transfer functions and discontinuous er­
ror criteria. 

The work described here only touches the surface of the 
potential for using genetic algorithms to train neural net­
works. In the realm of feedforward networks, there are a 
host of other operators with which one might experiment. 
Perhaps most promising are ones which include backprop­
agation as all or part of their operation. Another problem 
is how to modify the genetic algorithm so that it deals with 
a stream of continually changing training data instead of 
fixed training data. This requires modifying the genetic al­
gorithm to handle a stochastic evaluation function. Finally, 
as a general-purpose optimization tool, genetic algorithms 
should be applicable to any type of neural network (and not 
just feedforward networks whose nodes have smooth transfer 
functions) for which an evaluation function can be derived. 
The existence of genetic algorithms for training could aid in 
the development of other types of neural networks. 

References 
[Davis 19881 L. Davis, "Mapping Classifier Systems into 

Neural Networks,'' to appear in Proceedings of the 1988 
Conference on Neural Information Processing Systems, 
Morgan Kaufimann. 

(Goldberg 1988] D. Goldberg, Genetic Algorithms in Ma­
chine Learning. Optimization, and Search, Addison-
Wesley (I988). 

[Holland 1975] J. Holland, Adaptation in Natural and Arti­
ficial Systems, University of Michigan Press (1975). 

[Rumelhart 1986a] D.E. Rumelhart, G.E. Hinton and 
R.J. Williams, "Learning Representations by Back-
Propagating Errors,''' Nature 323, pp. 533-536 (1986). 

I Rumelhart 1986b] D.E. Rumelhart and J.L. McClelland 
(Eds.), Parallel Distributed Processing: Explorations in 
the Microstructure of Cognition. MIT Press (1986). 

[Whitley 1988] D. Whitley, "Applying Genetic Algorithms 
to Neural Network Problems," International Neural Net­
work Society p. 230 (1988). 

Montana and Davis 767 


