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Abstract

In the Type II superstring the 4-point function for massless NS-NS bosons at one-loop is well known
[1][14]. The overall constant factor in this amplitude is very important because it needs to satisfy the
unitarity and S-duality conditions [14]. This coefficient has not been computed in the pure spinor formalism
due to the difficulty to solve the integrals on the pure spinors space. In this paper we compute it by using
the non-minimal pure spinor formalism and we will show that the answer is in perfect agreement with the

one given in [14].
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1 Introduction

The pure spinor formalism has many advantages for computing scattering amplitudes compared to the RNS
and the GS formalism. For example, it does not have to deal with worldsheet spin structures [2][25], it has
manifest Super-Poincaré invariance and incorporate in a natural way the Ramond sectors. Nevertheless the
formalism presents some difficulties, for example, the normalization of the integration measure in the pure
spinors space, the computational difficulty to solve the integrals in this space and the S matrix unitarity has

not been demostrated yet.

In this paper we will compute the one-loop scattering amplitude in the non-minimal pure spinor formalism
for Type II superstrings and we will show that the overall constant factor is the same as the one given in
[14]. Let’s remember that this factor was also computed from the unitarity condition [1]. So, showing that
the non-minimal pure spinor formalism predicts the same result as the RNS formalism is a direct test of
unitarity.

To compute the scattering amplitude we normalize the integration measure of the pure spinors space in the
same way as the phase space in quantum mechanics is normalized in the path integral, this is because the
pure spinor formalism is a first order formalism.

To compute the integral on pure spinors space we use some tools of algebraic geometry. We also show that
this normalization in the amplitude does not require computing functional determinants at all. This implies

that computations using pure spinor formalism are easier than the ones done in RNS or GS formalism.

This paper is organized as follows. In Section 2, the non-minimal pure spinor formalism will be reviewed

and the space time units will be defined. We will normalize the massless vertex operator of the pure spinors



formalism to coincide with the RNS normalization. In Section 3, the 4-point one-loop scattering amplitude
will be computed in the NS-NS sector using the non-minimal pure spinor formalism, up to an integration on
pure spinors space. In the Subsection 3.1 we will give a review to the z(z, 2z) fields contribution and we
justify the normalization of the path integral measures. In the Subsection 3.2 we compute the contribution of
the others fields and discuss biefly the modular invariance of the scattering amplitude. We use some results
found in [4][21][16][22] in which the authors showed: 1) the equivalence between the kinematic factor of the
non-minimal pure spinor formalism and the minimal pure spinors formalism, 2) the equivalence between the
kinematic factor of the minimal pure spinors formalism and the RNS formalism. At the end of the Section
we find all the factors in the 1-loop scattering amplitude, up to an integration over pure spinors space. In
the last Section, we will compute the integral on the pure spinors space. This is the most important Section
of the paper and we suggest the reader check the Appendix beforehand, in which we apply the tools used to
compute the integral in the pure spinors space in lower dimensions (D = 2n < 10). The aim is to be more
familiar with the concepts of algebraic geometry involved in the computation. In this Section we arrive to

the following result

JocpldN AldAle M = (2m) 1 (a®-12-5)71,  acR*

where O(—1) is the line bundle blow-up at the origin with base space SO(10)/U(5). In others words, O(—1)

is the pure spinors space. Finally, with this result we find the overall constant factor, which is called C; [14].

Our future goal is to compute the overall constants factors at tree level, which we call Cy, and at two
loops, called Cb9, in the non-minimal pure spinor formalism [31] and to show that the S-duality constraint

(C? = 27%Cy(C3)[14] is a consequence of the identities for massless four-point kinematic factors [20].

2 Review on the non-minimal pure spinor formalism

We will give a brief review of the non-minimal pure spinor formalism. The idea is to introduce our own
conventions and to normalize the massless vertex operator in the same way as in the D’Hoker, Phong and

Gutperle’s paper [14].

The superstring theory action in the right sector of the non-minimal pure spinor formalism [3] is given by
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The OPE’s for the matter variables are easily computed

2" (2)zn (w) ~ —%/5?1n|z —wl?,  pa(2)0°(w) ~ . (s_gw. (2.4)
The complex bosonic spinors A% and A, satisfy? the pure spinor constraint
AN = M\ =0, m=0,1,2,..9 (2.5)
and the fermionic spinor 7, satisfies the constraint
A" = 0. (2.6)

Because of the constraints on A%, A\, and rg, their conjugate momenta wy, @® and s are defined up to a

gauge tranformation,

30 = A ("N = (7)Y, 85% = P (A (2.8)
for arbitrary A,,, A, and ¢,,.

In the U(5) variables the pure spinor constraints takes the following form [3]

1
AT\ — Ze“bcdabcAde =0, a,be,d e=1,2...,5 (2.9)
2\P Aoy = 0. (2.10)

where just five equations are linearly independent. In the chart Uy, = {\T # 0} these equations are
solved by [33]

1
A =7, Ap = Yuw, A= gfye“bc‘ieubcude. (2.11)

As the ugy, variables parametrize the projective pure spinors space, then it is clear that the pure spinors space

is the total space of the O(—1) bundle over the projective pure spinors space with blow-up at the origin
(y=10) [11] [7] [10].

In this chart, we can take the gauge w, = w* = 0 and the parametrization

1 ab ab Uab
wy =p0— %v Ugp, w? = 7, (2.12)
_ 1 7
LD+ = ﬁ — %@abﬂaby a}ab = %7 (213)
so the pure spinors action takes the form
1 2 3 1 3, ,ab 29~ 1 —ab 3
Spgs = o d“z | poy + §’Uabau + Boy + 5’0 Oty | - (2.14)

2the X spinor is treated as the complex conjugate of the A* spinor.



With this action it is easy to get the OPE’s

B2y (w) — (z—w)7h, v (2)ueg(w) — (5{’652](2 —w)7, (2.15)
B3w) — (2= w0)™Y, ap(2)a ) — 8,58 (5 — ). (2.16)

For the s, r, fields the procedure is similar.

From the previous definitions of the space-time dimensions of the fields and their OPEs we can get the
following OPE’s [23]

1 1 1
do = Pa — ngb@ﬁaxm - 4—0/7;”5%75959’*895, ™ = 0x™ + 6™ 00,

2 Vs " o067
do(2)dg(w) ~ —— =22 ()T (w) ~ —2—

o z—w Z—w

do(2) f(O(w), (w)) ~ (2 = w) " Do f(B(w), z(w)),
where

0 1
= — — 6 m
D, 500 + 20 Ya0m,

is the covariant super-derivate on R'?. The supersymmetry generator is

1 1
o = / dz (pa + afyamﬁeﬁaxm + @fyamﬁymweﬁmae%

and it satisfies the algebra
2
(tora5} = 22l [ 420, [g ] =0, (a0 dp(2)} =0, (217)

The construction of the b-ghost is such that [3][29]

{Q0(2)} =T(2),

where )
Q= /dz ANy + @%y), T(z) = —a8$m8:pm — P00 + WX + YOy — $°Or,.

Since @ and T are space time dimensionless so is b, which is given by

A 2™ () — Ny (Y00) — J500% — 1526%)

b = 5%\ _
0%t A0
. (Ny™"P7) (5 dmnpd + 24N imnLp) G (rmnpr) Q™ d) N
192(AN)2 16(AN)3
g TN N,

128(AN)4



In order to build the vertex operators we use the following N =1 SYM 6 expansions [22][23][24]

Au(,8) = 5an("™ 00— 5 (@O O~ o Foun (8)a(677726) + . (2.18)
An(,0) = an — (Em0) — 5010 g + 75 (O3 P0) (Bp0) + - (2.19)
We(z,0) = & %(ymne)a - i(ymne)a(am@ne) b (2.20)
Fon(1,0) = an—2(a[mgm9)+i(ewm7pq9)an}zrpq+... . (2.21)

Here £%(z) = (2/a/)/2x%e™*, where [x*] = 1/2 and a,, = e,e®®, where [ep] = 0. Fp = 20;,ay) is the

curvature and [F),,] = —1. The dimensions of the superfields are
[An) =1/2, [An] =0, [W%=-1/2, [Fpnn]=-1,
hence the massless vertex operators have the following dimensions
o o
[V]=[\"4,] =1, [U] =[00%A, + A, T + EdaWO‘ + ZNmn“J"mn] =1, (2.22)

where U satisfies QU = 0(A*A, ). These vertex operators have the same normalization as the vertex operators
of [14], therefore we can compare the amplitudes in a straight forward way. For example, the closed superstring

massless operator in the NS-NS sector is [14]
V =eneén / A%z (02™ + ik - ) (02" + ik - Y_ypm)etk T (2.23)

where the dimension of V is two if the dimension of the polarization vectors is zero.

3 Four point 1-loop massless amplitude

Using the normalization of the previous Section we will compute the one loop amplitude for 4-massless vertex
operator in the NS-NS sector. Although the general structure of this Section can be found in the references
[27][23][16][22], we include it to justify the normalization of the measures and to find the overall constant

factor for the amplitude, which has not been computed.

As non-minimal pure spinor formalism is a critical topological string, then one can use the bosonic string
prescription for computing scattering amplitudes [3][10]. So the four points 1-loop massless amplitude is

given by

2
), (3.1)

A= bt [ e (o vien) H [ vt

where My = H/PSL(2,Z) is the fundamental region, u is the Beltrami differential, N is a regulator, z; is a
fixed point and finally, k is the normalization constant of the massless vertex operator. Its precise value will
not be needed here. The 1/2 factor is needed because the total group of automorphism on the torus is SL(2,Z)
instead of PSL(2,7Z) [26]]27]. As the amplitude is computed using the bosonic string prescription, we must



take in account the normalization of the inner product between the b-ghost and the Beltrami differential in

the same way as in bosonic string theory [27]

(o) = o= [ &2 bl = 20, (3:2)

where pzz = 1/275.

3.1 Review of the 2" (z, z) fields contribution

In this Subsection we compute the 2" (z, Z) contribution and justify, in a natural way, the normalization of

the integration measures.

In order to compute the z™(z, Z) contribution we expand it in terms of a complete set X;(z, Z) of eigen-

functions of the worldsheet Laplacian operator
2™(2,2) = Y aPX (2 2),
I
00X1(2,2) = —MX(z, %)
/ d?z X](Z, E)XJ(Z, 5) = 01J.
29

The bosonic contribution is given by [27]

4
dz 1
k;-x I 2 /: .
et = | | _ A cxy— 2 Jr) + - J 3.3
<|| e > Im/ 27T2O/exp 5o E ( txr-xr — 2walixy 1) 1xo - Jo (3.3)

i=1 I#£0
/
= (2m)'9%519 (1) (2720’ det'9) “exp |- Z %JI -Jr (3.4)
10~
where
4
TMz,2) = > k'(z,2) =) JrX(z,2) (3.5)
=1 I
Jp = A2z J™(z,2) X[ (2, 2). (3.6)

29
In particular

4
Ji = Xo/ A’z J™(2,2) = Xo > _ K",
g i=1

thus, we have



<H ek > 27?)105(10)(X0k:) (27T20/det 88 5eXp ——Zk: - k; Z 1(2i, %) X1(25, %)
i#£] I1#0

where k = 3% k™. The term

i=1"™"
/

T
Z VXI(Ziagi)XI(Zjagj)
10 1

is the Green’s function and it satisfies the differential equation

_Eaag(z w) = Y Xi(z2)X(w,) (3.7)
140
= 09 —w) - Xx2. (3:8)

In the torus we have defined the normalization of the Xy mode to be
X5 = (2m) 7, (3.9)

such that
1%/ = X3 [ a2 =1 (3.10)
29

where fzg d’z = 27,

With this normalization, the Green’s function for the torus is given by[25]

o 2 o 9
G(z,w,7) = —Eln\E(z,w)\ e —((z—-Z—w+w)
/

2 /
= —ﬁln\E(z,fw)\2 + 2 T e Imw,
2 T2

and therefore the final expression for the bosonic contribution is [25][14]

2ma

<H ek > (27)10(275)°6119) (k) (27T2o/det d9d) "~ H|E zl,z])|ak Kiexp | —k; - k‘j—almzi Imz;

T
1<j 2

The factors (272a’)~ /2 of the integration measure of (3.3) come from treating the z™(z, Z) action in a

first order formalism [28]. To see this, let’s take the action

1 - _ .
S = — /d2 z (9" pipj + pi0z" + p;0x") (3.11)
where the index i,7 = 1,...,5, p; and p; are (1,0) and (0,1) forms with conformal weight (1,0) and (0,1)

respectively and g’; = 54,



In this first order action we can easily see that the conjugate momenta of the 2’ and 2 fields are

P, :=p;/ma’ and B := p;/wa’ respectively, so the Dirac brackets (DB) are

[Pi(0),27 (")) = [p"("),xﬂ' (0')] = i6/0(c — o),

/
e DB

B2 ()| = {i(a"/),xj (0/)] = i825(c — o).

In quantum mechanics, because of the commutator relation [p, x] =i one has the identity

da: dp
Vi 27T \/ﬂ

and the integration measure on the phase space in the path integral is [27]

e P =1, (3.12)

dz dp
Vor\2r

In the same way, the measure on the phase space in the path integral for the action (3.11) is

(3.13)

H H dP; dF; da? da’ H H dp; dp; da’ da’
e 5\/27‘(’ V2T 2T\ 2T 2 ,_,]_770/ 21 ol 2T /21 A/ 27
dz? daz’

D;
H H \/27T20/ \/27T20/ Vo2l Vor2al

ZZ 2727]7

hence if we compute the integral by p;, p; fields we get (3.3).

We can see that the p™ fields have 10g zero modes in a Riemann surface of genus g and their normalizations

do not affect the answer.

Note that in this first order formalism the number of zero modes of the bosonic fields, including the pure
spinors at the right and left sectors, is equal to zero modes of the fermionic fields

. 2™ P A we Aa @Y AT D A ¢
bosonic

(3.14)
10 10g 11 11g 11 1lg 11 11g 11 1lg

« o

fermionic .
16 16g 16 16g9 11 11g 11 1lg

3.2 Pure spinors and p,, 0% fields contribution

First, we will compute the contribution of the non zero modes to the amplitude and we will show explicity
that in the non-minimal formalism it is not necessary to compute functional determinants.
The action of the pure spinors in a chart is given by [2]

1 = 1 = —= 1 =
S=—— [ d%2(80y + =v®dug + BOF + =0,0u).
2r Js, 2 2



ab

When the Riemann surface ¥, is the torus, all the elements of the set {~,%, 3, B, Ugp, Ugp, V ,T)“b} have one

zero mode only [25].

The contribution of the non-zero modes is given by

—

dﬁf dw [A08] [duqs] - [dBr] . [d3] /) [daf"
I/ i i, N, it v it " i, N, Vit Ve

e<f,g<h

1 _ 1
~ 0Py 1+ Brr + = ap 10$) (3.15)

1
exp | —o- > (B + 5 5

1#0

where the {\;} are the eigenvalues of the d operator and we write the measure in the same way as in the
previous Section. We can write the argument of the exponential function in the following form (for example
for the (v, 3) fields)

1 - 1
exp | —5— D (B +B8rn) | = exp <%VT MV> : (3.16)

140
0 A
_ (A 0) | (3.17)

where VT = (v;, 37), M is the matrix
and A is the matrix A := diag(\;). The same happens for the (v®, u.q) fields. Therefore the non-zero modes

contribution of the pure spinors is (det 9)~2

Although we computed the path integral of the pure spinors in a particular chart and gauge, the answer

is correct because the {y = 0} = SO(10)/U(5) space has measure zero with respect to the pure spinors space.

The integration measure for the I'*" mode can be written in a covariant way [21][22] as follows

1 (47T2)_11/2 m n ap...a507...0 I I
'] = B A7) (YD (177 s (g5 P, A A, (31
- . Ap2)~11/2
Mo (A s A7 s G = o g AN A 1 AN,

from which we can easily see that [d\;] and [dw!] have ghost number 8 and -8, respectively. Taking the

wedge product we get

(472)~H

[dA] A [dw'] = It

AP Adwl A A AN A dw] (3.19)

.-
In the chart Uy = {\T # 0}

)\a = (A—"_?Aab? Aa) Y

1
/\+ = 7, )\ab = YUab » A= _§76ab6deubcude

10



and in the gauge w, =0

Wo = (w+,w“b,wa) a,b=1,2,...,5
1
wy = f[B-— —vabuab, W = —vab, we =0,
2y g

we have the measure in the form desired

[AA] A [dw'] = (4r®)7 A dypdulydBrdog. (3.20)

a<b,c<d

For the A\, and @® fields we define the measures [d\!] and [dw;] for the I** mode in the following form

SVAYL:]
[da)f]()‘ffym)al ()‘I’Yn)az ()‘I’Yp)aa (’Ymnp)azxocs = (47T2)_11/2()\i%)ealmasﬁnﬁlldw?l A A d"DCIS11
N (4772)_11/2 m n D at...as5p1...p11 Y] vl
[dA] = W(AW Jar A1Y")an (A1) as (Ymnp) aaas € dA, A AdA, (3.21)
50 _ (47T2)—11 _ _
[AN] A [dwg] = ?dA{n Adoft A AL A def (3.22)

as expected.

The contribution of the fields of opposite worldsheet chirality is (det’d)~22. So, the contribution of the

non zero modes of the pure spinors is (det’09)~22.

From the action of the p,, 0% fields

_ 1 2 aYale]
Spo = 7 /d Z pa00<, (3.23)

we get the anticommutation relation

Bt — palo) B 1 _ 5B o
{Pa(a),H (0 )}DB : { 00 )}DB 3Bo( — o). (3.24)
Therefore, the measure of the phase space in the path integral is [27]

TTT]dPxdo® =] [](27dpa)d6” = [T [ [(V2rdpa) (V2rde®), (3.25)

2,2 aﬁ Z,Z aﬁ 2,2 aﬁ

and the contribution of the non zero modes of p, and 0¢ fields is given by

11 / [dP,]'[d6°) exp (—% /E dQZpa59a>
apf g

- H /(\/%dpaj)(\/%def)exp —%thaﬂ?

aBI#0 140
= [det’ (9)]"°,

11



where p, 1, 07 are Grassmann numbers. As in the previous case, the contribution of the fields of opposite
worldsheet chirality is (det’d)'®. Thus the total contribution of the fermions p, and 6° is

[det’ (95)]'6

For the r, and s* Grassmann fields we can define the covariant measure in the path integral for the I*®
mode as [22]

[d I _ (27T)11/2 /_\I myoq 5\[ n\a 5\[ p\Q3 861 6511 3.26

r ] = 115! ( Y ) ( Y ) ( Y ) (’Ymnp) E061 .a561...011 1 ( . )
B _ B 9 11/2

[dS]]()\I’ym)al ()\I,Yn)az ()\I,Yp)ag (,Ymnp)a4a5 — %eay..aspl...,ﬂll aSI 8;{1

SO

[dr!][ds;] = (2m) oL 05" ...0M 01 (3.27)

In an analogous way as the previous case we get the contribution from the non-zero modes

(det’0d) " . (3.28)

Finally, the total contribution of the non-zero modes of the (A%, wq, /_\5, @B, g, sP) fields is

(det'0d) " (det'0d) " (det'08)'° (det'0) " = (det'0D)” . (3.29)

3.2.1 Modular invariance

Before to compute the zero mode contribution we discuss briefly the modular invariance. This subject is
important because the zero modes normalization of the vertex operators and the b-ghost contains modular

parameters.

With all the contributions that we have computed up to now, our 4-points 1-loop amplitude has the form

27)105(10) (1 ,
A= (;TT‘[M A2 (2m) [T, [ A2z HKJ LB (2, 2)| ¢ *Fiexp | —k; -kaf—;’lmz,- Imzj]

2

(%) J1dr][ds][dd)[a8] [AN][AN][dw] [d]e- M -@w—rb+sd) [OTLd) (X 1y (AA dWodW3dWy)|  (3.30)

19200)2

0

where the subindex “0” means that only the zero modes will be computed.

Is clear that (3.30) is not modular invariant since the scattering amplitude needs a (72)~° factor instead of
the (72)° factor. The reason for this is that we have not introduced yet the zero modes normalization of the
vertex operators (so as in the 2™(z,z) fields case). We will show that by introducing it we get the (73)~°

factor and the scattering amplitude will be modular invariant.

12



On the torus all the fields have one zero mode, so we can do the following expansion on a complete set of

eigenfunctions of the world-sheet operators 0 and 0

0%(z,2) = O3ho+ > 0FA1(22), palz2) =paQ+ > phfu(z,2)

140 1740
X (2,2) = Ao+ D AFAN(2,2), Aa(22) = AAo+ > A A(2,2)
1£0 1£0
5°(52) = @G+ Y 0FU(27), walsn?) =0 + 3 wl(z 2),
0 140
ra(2:8) = Ao+ S rAL(2,7), 5%(52) = 5800+ 3 5 (2, 2),
1£0 10
where
/d2ZQ[(Z, Z)QJ(Z, z) = 01g
/d2ZA](Z,Z),/_XJ(Z, Z) = 5]J,
in particular [|Ag||? = ||Q0]|? = (272)~!. From the previous Section we know that only the term O ™) (5 dymnpd)

192(A)N)2
of the b-ghost can saturate the d, zero modes. Since our interests are the zero modes then we write this

term as _ _
o (1/272)? (3™ ) (@ gd®) _ o (X™10)(d ) 1)
2 (1/279)2 192(AA0)2 2 192(A\0)2 '
To saturate the 11 zero modes of r, we need 107, zero modes. The regulator
e(—)\oj\o—aowo—roeoﬁ-sodo) (332)

supplies the 10r, zero modes plus 1060% zero modes. The 60% zero modes necessary to saturate the 160% zero
modes come from the vertex operator
(AN dWodW3dWy), (3.33)

so, these 60% zero modes contribute with a factor (273)~2 and the 3d,, and \* fields contribute with (275) 2
In this way the factor in the right sector is (275)7°. In the left sector the analysis is the same, so the total

factor is (272)71? and the amplitude

T 105(10) ’
A= %W (%) fml S e S oIl o Bz, )| Riexp | =i - by 228 Tme; Imzj]
2

[ [dr][ds][dd][A6)[AN][AN] [dw] [d@]e-MA—@w—ro+sd) (D) (X 0y (A A dWodWsd W)

192(A)) (3.34)

0

is modular invariant.

13



3.2.2 Contribution of the zero modes

Now we are going to compute the zero mode contribution in the NS-NS sector where we use some of the
results given in [22][21]. This calculation is totally algebraic and easy to follow due to our choice of the

integration measures.

We rewrite the integration measure in the following way

[dho] = (47%)712[dN],  [do®] = (4a®)712[dw],  [AXO] = (4n?) TN, [dao] = (4%) M2 da],
[dr] = (2m)"/2[dr],  [dso] = (2m)"/*[ds],  [d6o] = (27)'%/*[d0],  [dd°] = (27)'%/*[dd], (3.35)

where the measures [d-] are defined from the previous Subsection, for example

1

g1 Con--aspr- P dAST A LA AN, (3.36)

[AA](A07™)ar (A0 az (A0 ) as (Ymnp ) asas =

and similarly for the others measures. For the rest of this paper the subindex “0” will be dropped out. In

this new notation the scattering amplitude has the form

2 105(10
o ] s L

1<j=1

2
exp [ ki - kj :—jlmz, Imz]} |(27T)_173<|2

— (22:2)22()154 : ( >/ &7 () 5H/d22k

4
/ 2

-
i<j=1 2

where we have defined X to be

% = / [dr][ds][dd][d@][d)\][d/_\][dw][d@]e(_”‘_w_’“eJFSd)%()\qur YA dWodWsdWy).  (3.37)

In order to compute the X factor let’s remember that the measures of r, and s* are given by

[dr] = 11,5, = (™) ™) () (Ymnp) 4 €0y asr..51, O O
myo n\o2 (Y o3 aqo 1a...a S S
45130 ™) (297)72 (0P ()% = et P05 05
We rewrite the [ds] measure as
1 1 r s q Qq...a501...p11 9S s
[ds] = (M) ar A7) as (A7) ag (Vrsg)asas € ? 8 apn (3.38)

26 1115! (A\X)3
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Integrating the r,, s* and d, variables in X we get

B : / [A6] [AN][AN] [dw][d]el ) ()2 (hy®) 22 (M) (rse) ¥4

11111!5!-29-3-5

(2% - 1115!3!) -

Cosasis 87 S s D) AL (0 W2) O W) O W)

In [22] the following identity was proven
(M D) (AAL) (A Wa) (A" W3) (AP Wi)) = 40N (AA) (™ W) (M W) T, (3.39)

and the X factor takes the form

B 40 (24 - 11!5!3!) - _ elmM—Gw)
X = o35 23 /[de][dmdmd””dw] ()

(/_\,yr)oq (/_\/78)&2 (/_\,yt)ag (’77‘815)&4&5 6061---06551---511961 "‘0611 (>‘/_\)(AAl)()"ymW2)(>‘7nW3)5t§nn

Since we are interested in the NS-NS sector, we can use the following result found in [22]

1
1 m”r2 n”r?) 4 —
where K is the Kinematic factor of [14]
Ko = (e1 - e2) [2tu(es - e4) — 4t(e3 - k1)(eq - ko)] + perm. (3.41)

But as (3.40) was computed using the normalization ((Ay™0)(AY"0)(AVP0)(0Vmnpt)) = 1, we can write the
following equality for NS-NS sector

O WO WTE | = (™8) (")) (B g s (3.42)
NS-NS '
Now, we can integrate the 8% variable in the X factor
B 40 (24 1115131 . I e
K= IMIB 293520323 2880 /[de][dmdmdw”dw] ooyp M
)M ()22 (A2 (4rst) 1% €. astr. .11 01 07 (AY™) (A"0) (A7) (07mnp0) K

5 ey AN dufde] 3.43
~ st [ 45— (3.43)

4 Integration on Pure spinors space

In order to get the full expression of the one loop amplitude we need to compute the integral on the pure
spinors space. It is not a trivial integral. Actually, if we try to solve it in a straight forward way or using
computational methods maybe we could not do it. We will use some tools of algebraic geometry to solve it

and we suggest the reader to read before the appendix for a better understanding of this Section.
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Let’s remember that the measures [d)\] and [dw] were defined in (3.18) and (3.35)

11,5,()‘7 Jar (M) az (M) as (Ymnp) asas €1 0 dos, A A dwgyy,
1

[AAJ(AY™)ar (A" ez (AP ) s (Ymnp)asas = 111 Car-aspr.. o AP A LA A

[dw] =

and the measures [d)\] and [dw] were defined in (3.21) and (3.35)

- m n AN
45100 oy (s )os Cpasns = b, s A 13
- 1
d\| = ———
D = o0

511

(A™)ar (A" ) az ()‘7p)03 (’Ymnp)oczlas 6a1...a5p1...p11d5\p1 AR dj‘ﬂu'

With these measures it follows
(AN)?

T dway Ad@ A LA dway A dB™ = AN Pdwy Adet A dw™d@e,

a<b, c<d

[dw] A [do] =

where we have taken the gauge w® = w, = 0. Now the integral (3.43) on the w and @ variables is trivial

/[dw][dW] e = (A)\)?’/derAdef A dwdi e @ =3 e

a<b, c<d

= (W)’emt

INTEGRAL ON PURE SPINORS SPACE

From the above result we can write the integral (3.43) in the following form

_ ~ e—)\j\—wu_) _ _ 3
/ [dA][dN] [dw] [d@] 5 - (2m)H / [dA][AA] (AX)2e=2
= i [ e @)
= Cn i 5 o -
Thus the integral of our interest is simply
/ [AN] A [dX] =M (4.2)
and next we will show that it is equal to
1 —adX 2m)1t
/ [AA] A [AN] e~ = ((18 _)60. (4.3)
We can easily see that the measure [dA] A [d)\] can be written as
AN A AN = Tlﬂ)?’dw Addgy A AN A ARy
1 o o
Qll

1’
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where

1 _

is the Kihler form? on the pure spinors space in D = 2n = 10 dimension. In the parametrization (2.11) the

integration measure on pure spinors space is

Qll o .
T = ATdy /\ dugy A77dy /\ da?. (4.4)
’ a<b c<d

The Kahler form of the pure spinors space in any dimension is given by

1 o
Qp=2n = —gmaps—; 00(AN), (4.5)

(AX) dmcPs

where ¢; = 2n—2 is the first Chern class of the tangent bundle over SO(2n)/U(n) [5] and dimc PS = @—H
is the complex dimension of the pure spinors space.
Writing (4.2) in the coordinates (2.11) we get

/ [dAA][dN] e~ = / (NTdyAdY A\ dugdact e TIF R et e nitnenac a6
a<b,c<d
The =, 4 variables can be integrated easily
Ny nds et — 5 b1 L
(vy)'dyndye = "o dyndye =(2m) -7 R (4.7)
where ) )
b= a(l + §uabﬁ“b + ?Eadeeeafghiubcudeﬁfgﬁhi), (48)
o0 (4.2) has now the form
_ < (2n) -7
(AN A [d] e = B0 T a, (4.9)
a8
S0(10)/U(5)

where

dugpdac®
o= /\a<b7 c<d b (410)

= —— - —
(1 + Suapu® + gretedec, fopiupugeu/ 9 )®

is a global form on SO(10)/U (5), therefore it belongs to the HA%(SO(10)/U(5)) de-Rham cohomology group
[7][8]. Note that the number 8 is the first Chern class of the tangent bundle over SO(10)/U(5).

The a-form can be written as

wlO

o= (4.11)

Seasily we can see that (A\) is a scalar function (global) on the pure spinors space.
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where

w = —00 In(AN) (4.12)

and X\ and \ are projective pure spinors, in others words

_ 1 1 .
M=1+ §uabﬁ“b + @eadeeeafghiubcudeﬂfgﬁhl, (4.13)

where {ug} is a complex parametrization on SO(10)/U(5). The 2-form w is the Kéhler form, so In (A)) is
the Kéahler potential [7]. From the identity

00 = %d(a —9)
we can see that dw = 0 is closed, therefore SO(10)/U(5) is a Ké&hler manifold.

From the algebraic geometry point of view, the projective pure spinors space in d = 2n = 10 is a variety
(manifold) on the projective space CP'?, then its Kilher form is the pullback of the Kéhler form of CP'?
given by [7][9]

w=f*Q, (4.14)

where (2 is the Fubini-Study [7] metric of CP' and
f:80(10)/U(5) — CPY (4.15)

is the corresponding map. It is given locally on the chart U = {\" # 0} by the following five holomorphic

homogeneous polynomials [33][2]
1
AN — Ze“b“le/\bc/\de =0, a=1,..,5. (4.16)

As SO(10)/U(5) is a closed manifold on CP', then it belongs to the Hao(CP'®) = Z homology group [34], so
the projective pure spinors space is proportional to the [(CPIO] homology class because CPY is the generator
of the Hao(CP®) homology group [34][32]. The proportionality factor is called the “ degree” of a variety and

it is a integer number since Hoo(CP'®) = Z. The degree of projective pure spinors is given by
degree(SO(10)/U(5)) = #(SO(10)/U(5) - CP?), (4.17)

where #(S0(10)/U(5)-CP®) are the intersection numbers between SO(10)/U(5) and CP® inside CP'S, hence

the previous integral can be written as

10

w 10
Y = dearee(SO(10)/U(3)) / {2

— 4.18
cpio 10! ( )

/50(10)/(](5) CPp1o

Remember that the pure spinors space is identified with the total space of the line bundle O(—1); which is
the inverse of the line bundle £ = O(1) [7][11]. The first Chern class ¢; (L) of L is simply the pullback of the
hyperplane class H [7][8]

a(L)=f"H (4.19)

18



and the degree of the projective pure spinors space is given by

H10‘

aR)” = degree(so(0)0) [

/50(10)/U(5) cpo

. 10
= degree(SO(10)/U(5)) /CPIO%

= degree(SO(10)/U(5)), (4.20)

where f(CPIO c10(TCP) is the Euler characteristic of CP'. We will compute this degree using the pure
spinors character at zero level. The Riemann-Roch formula gives us an expression for the pure spinors

character at level zero [5]

1

Ziolt) = /5 o T TAT (SO0 /U G)), (1.21)
where Td(T(SO(10)/U(5))) is the Todd genus
Td(T(SO(10)/U(5))) =1+ %cl(T(SO(lo)/U(@) + o (4.22)

Expanding Z;¢(t) near to t = 1 or near to e = 1 —t = 0, the most singular term is [11]

1

v 1 (L)1, (4.23)

/50(10)/U(5)
The pure spinors character can also be computed with the reducibility method, in this case the result is

[5][12]
1+ 5t + 5t + ¢3

Again, expanding near ¢ = 0 we get that the most singular term is
12
i (4.25)
Comparing both results we conclude that the projective pure spinors degree is
degree(SO(10)/U(5)) = / e (L) =12, (4.26)
SO(10)/U(5)
Therefore we have solved in a easy way the integral (4.2)
B _ 27) - 7! *() 10
/ [dA] A [dA] e—a)\)\ — ( 77)8 7 / (f ')
O(-1) a soqoyvi) 10!
 a8-10! cpo  CPY
o emttemia2
B a® - 10!
ot 11
= 28 -)60' (4.27)

Actually, we can compute (4.2) for any dimension using the Kéhler form (4.5) (see appendix)
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N 2\ < n(n—1)/2 n(n—
f(‘)(—l) [d)\] A [d)\] e AN — (2m)e1 (TCP ) c1(TQap)! c1 (TCpn(n—1)/2) ' degree(QQTl)

ac1(T225,) " e (TCPr(=D/2) c1(TQ2,)

where ¢1(T'Qgy,) = 2n — 2 is the first Chern class of the tangent bundle over projective pure spinors space
Qy, = SO(2n) /U (n), c1(TCP™™=1/2) = (n(n — 1) 4+ 2)/2 is the first Chern class of the tangent bundle over

projective space CP™"~1/2 and degree(Qy,) is the degree of the projective pure spinors space

[Qo] = degree(an)[CP"("_l)/z]. (4.28)

With this result, we finally have that the 4-points scattering amplitude is

4
1 o'\ 2 o a2 & 4 /
A = (27T)105(10)(]<;) - - <_> K KOKO/ /d22k ]E(zi,z-)\o‘ k;-k;
2T 12 (0/)5 2 M, (12)? kl;Il i<g111 J
2 /
exp | —k; - k; e Imz; Imzj] (4.29)
T2

This answer is in perfect agreement with the result found by D’hoker, Phong and Gutperle in [14] up to a
(a'/2)® factor. Is easy to see that this factor is needed in order to have the right space-time dimensions [30].

Hence the amplitude found in [14] by D’hoker, Phong and Gutperle missed this term.
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A Pure spinors in lower dimensions and partition function

The aim of studying pure spinors in lower dimensions (D = 2n < 10) is to have a better feeling of some
algebraic properties of the pure spinors space. At the end of the appendix we make some remarks and give

a nice geometric interpretation of the character of pure spinors.

We know that in D = 4,6,8 the projective pure spinors space are CP!, CP? and a quadric variety
embedded in CP7, respectively.

CP! and CP? are the trivial cases because in D = 4,6 the pure spinors don’t have any constraints and

the pure spinors space is the simple blow-up of the origin [9] (the pure spinors space is the total space of the
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line bundle O(—1)). In these cases the Kélher form of the pure spinors space is simply
Q = 89(AN), (A1)

where we have used the general formula (4.5)

_ dimg PS—cy

Qp_op = ()\)\)_ dimg PS 85()\5\)

and the notation

A = (1 4+ 22), for D =4, (A.2)
A = 31+ 22+ ua+vv), for D=6, (A.3)
where {2z} parametrize CP!, {z, u, v} parametrize CP3, {y} is the fiber and ¢, is the first Chern class of

projective pure spinors space. From [5] we can see that in D = 4,6 the first Chern class of the tangent bundle

over the projective pure spinors space is

c1(TCPY)
c1(TCP?)

2,
4 (A4)
and it has the same value of the complex dimension of the pure spinors space (dimcP.S).

The integration measures for the pure spinors space in D = 4,6 are given by

Q2
o7 = wA® for D =4, (A.5)
04
i WA for D =6, (A.6)
where
w = ydyAdz for D =4 (A.7)
w = YPdyAdzAdunde for D=6 (A.8)

are the holomorphic top forms, which agree with the ones of [11]. To compute (A.4) is very easy from the

following exact sequence of bundles (the Euler sequence)[7][9]
0 — C— H®O) . 7CP" — 0, (A.9)

where C is a trivial bundle, H is the hyperplane class and TCP" is the tangent bundle on CP™. This sequence
implies that
H®HD) — TCP" & C. (A.10)

Therefore, the total Chern class of the tangent bundle on CP"™ is

¢(TCP") = (1 + H)"*! (A.11)
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where we have denoted the first Chern class of the hyperplane bundle H with the same letter H. Now it is
clear that ¢;(TCP™) = (n+ 1)H and that ¢,(TCP™) = (n+ 1)H™. As the Euler characteristic of a complex

manifold M of complex dimension n is [7]

x(M) = /M en(TM) (A.12)

then we have that

H" =1, (A.13)
cpr

which was used in (4.20) and (4.27). Let’s apply the previous results to the pure spinors space in D = 4.
We know that the integration measure on the pure spinors space in D =4 is
Q2

57 =~y AdyAdz Adz, (A.14)

Let’s integrate the function exp{—aA\}, with a € R,

/ [dAA A Y] e = - / V7 dy Ady Adz Adz e (HE2)
O(-1) C2

s

2 _

We can see that g,z = 2/(1 + 22)? is the metric of S? with radius 1 on a chart homeomorphic to C. The
area of a sphere with radius R is 47 R?, so the integral (A.15) is 472/a?. Nevertheless we want to show how
to compute the integral (A.15) using simple topological properties of the projective pure spinors space (S52).

Let’s remember that the first Chern class of a complex manifold M is given by the expression
c1(TM) = %38 In det (g;5), (A.16)

80, in our example we have
2 dzAdz
T8%) =~~~ A7
a(TS) = 3 m sy (£.17)
Note that the number 2 on the numerator, which comes of the exponent of (1+ 22)?, is simply the first Chern

class of the tangent bundle with respect to the hyperplane bundle H (c;(T'S?) = 2H)*, hence

1 dzAdz

~ 2mi (1+ 22)2 (A.18)

on the chart. Now, using (A.13) we can easily compute (A.15)

- Y 27 dz NdZz 472 472
—ai\
/O(_l)[d)\] AldA e a? 7T/(c 2mi(1 4+ 22)?2  a? /Cpl a?’ (A.19)

as expected.

“This is the same argument by which the number 8 is in the 20-form (4.10).
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We can get the same result (A.13) from the partition function, for example, computing the partition
function for O(—1) over CP™ in the zero level with the reducibility method [13] we have

Zor1y(t) = W (A.20)

Expanding around to € = 1 — ¢ = 0 the most singular term is

1
E/,/LT, (A-21)
and by comparing with the Riemann-Roch formula (4.21) we get (A.13).

Now we discuss some aspects of intersection theory. It is clear that in CP™ we have a set {CP™} with

m < n which is embedded it. It is easy to see that these CP™’s intersect transversally of a point [7], i.e
#CP™-CP"™)=1, m<n. (A.22)
As the homology groups of CP™ are [34]
Hy(CP") =17, i=1,2,..,n (A.23)

then by (A.22) we can take the homology generators to be the [CP?] classes. With this, we define the degree

of a closed variety V' of complex dimension m by
degree(V) = #(V-CP™™). (A.24)

This is a topological number because it depends only on the homology class.

Now we compute the degree for projective pure spinors in D = 8.The projective pure spinors space in
D = 8 (Qg) is a hypersurface in CP7. It is given in terms of homogeneous coordinates {A*, 12, A13, A14, Aa3,
Ao4, A34, A1234} on CP7 as the zero locus of [33]

AT A1231 — A12A34 + A3 Aag — AazAig = 0. (A.25)

Since degree(Qg) is the number of points where Qg and CP! are intersected, if we take CP! as the locus
A2 = A13 = A14 = A2z = Aoy = A3q = 0, the degree(Qg) will be the number of solutions of the homogeneous
polynomial

AT A1234 = 0. (A.26)

The solutions of this polynomial are the points [1,0,0,0,0,0,0,0] and [0,0,0,0,0,0,0, 1], therefore
degree(Qg) = 2. (A.27)

Using the partition function we get the same answer, i.e, the partition function for O(—1) over Qg is given
by [13]
Zag(t) = . (A.28)
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Expanding near to e = 1 — ¢t = 0, the most singular term of Zq,(t) is

Z (A.29)

so, by comparing with the Riemann-Roch formula (4.21) we get

/ (L)% =2. (A.30)
Qg

Actually this result was expected, since Qg is a hypersurface given by a homogeneous polynomial of degree
2, then the first Chern class of the divisor [Qg] is

c1([Qs]) = 24, (A.31)

which is Poincaré dual to Qg [7][8]. So

/ (L) = / (f*H) = HO A ¢ ([Qg]) =2 H™ =2. (A.32)
Qg Qg cP7 CcP7

where f : Qg — CP7 is the embeding.

We now have a geometric interpretation to the result found in [5]. In [5] it was shown that the partition

function of pure spinors can be written as a rational function®
Zon(t) = =5 (A.33)
where P(t) and Q(t) are polynomials. In D = 2n the Q(¢) polynomial has the form [5][12]
Q(t) = (1 —t)tmePs, (A.34)

In [5] it was also shown that Zo_1)(t) can be written as an infinite product (ghost — ghost)

o)

Zon(t) = [J@ -t~ (A.35)

n=1

The N, coefficients contain the information about the Virasoro central charge, ghost number anomaly, etc
1
Sovir = %:Nn, (A.36)

Gghost = ZnNn (A37)

From (A.33) and (A.35) we have

T > B2 z z
() 2 Nk D )Nt g D mNuk D gy 2N = I P(E) £ Q). (A3
n n n g=1 n

Swe are only interested in the zero level.
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where {B,} are the Bernoulli numbers. Replacing (A.34) in the previous expression we get

dimcPS dimcPS
imgc n img 2

In(1 — e*)4mePS — (dime PS) In(—z) + SR o0 (A.39)
Without loss of generality we can suppose that
P(e®) =y+ae” +be* +ce’ + ..., (A.40)
SO
~InP(e*) = —InP(1) -0, InP(x)|p=1 2+ ..... (A.41)
= —InP(1) — %az + ... (A.42)
= —1n(y+a+b+c+...)—;Iji:icci’:wr ..... (A.43)
(A.44)
and therefore we have
%cm = ) N, =dimcPS, (A.45)
Qghost = Z nN, = dim¢PS — 2% , (A.46)
InP(1) = — Zln n(degreeQs, ), Qgy, == S0(2n)/U(n). (A.47)

From the Riemann-Roch formula (4.21) and by expanding (A.33) with (A.34) near to e = 1 —¢ = 0 it is clear
than degree(Qy,) = P(1).
We know that aghost is the first Chern class of T'Qy, and that the degree(Qa),) gives the homology class

[Q2n] = degree(Q2n)[CPn(n_1)/2] ) (A48)

in others words, the degree(Qs,) gives us the Poincaré dual class of Qg,. Noting that the homology class of
Qy, is an integer number times the homology class of CP™"*~1/2 we can interpret dim¢PS = 1+n(n—1)/2
as the first Chern class of TCP™=1/2 Thus we have

e (TCPr=1/2) Z Ny, (A.49)

c1(TQay,) ZnNn, (A.50)
-1

degree(Qay,) = exp(— Zln(n)Nn) = (H nN”> . (A.51)

With these geometric interpretation we get a geometric constraint on the coefficients of the P(t) polyno-
mial

degree(Qa,,) {e1 (TCP™ ™ V/2) — ¢ (T'Qy,)} = 20, P(2)]p—1. (A.52)
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We can also rewrite the integration measure of the pure spinors space (4.5) as

e (reP™nD/2) ) (105,) —20¢ P(@)|p—]

Qp—op = (/\)\) ey (Tepn(n—=1)/2) 85(/\)\) — (/\j\) degree(Qgy, )ey (TCPT(n—1)/2) 85()\/_\) , (A.53)

where we interpret the term {c; (TCP™"~1D/2) — ¢ (TQy,)} as a topological deviation and find a relationship

between the integration measure and the character of the pure spinors space.
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