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Summary. In this paper we define binary and unary operations on dom#lifesalso
define the following predicates concerning the operationsis commutative, .. is associa-
tive, ... is the unity of..., and... is distributive wrt.... A number of schemes useful in
justifying the existence of the operations are proved.
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The articles [4], [3], [5], [6], [1], and [2] provide the ndtan and terminology for this paper.
Let f be a function and led, b be sets. The functdi(a, b) yielding a set is defined by:

(Def. 1) f(a, b)=f({a,b)).

In the sequeh is a set.

Let A, B be non empty sets, |& be a set, leff be a function from: A, B] into C, leta be an
element ofA, and letb be an element dB. Thenf(a, b) is an element of.

The following proposition is true

intoC. Suppose that for

(2} LetA, B,C be non empty sets arfd, f, be functions fronf. A, B]
= fz(a, b). Then fi = fo.

every elemené of A and for every elemerit of B holds f1(a, b)

Let A be a set. A unary operation @xis a function fromA into A. A binary operation o\ is a
function from[A, A] into A.
We adopt the following conventiont is a unary operation oA, o, o’ are binary operations on
A, anda, b, c, e, e, & are elements oA.
In this article we present several logical schemes. Themse@nOpEX deals with a non empty
set4 and a ternary predicat®, and states that:
There exists a binary operatianon 4 such that for all elements, b of 4 holds
Pla,b,0(a, b)]
provided the following condition is satisfied:
e For all elements, y of 4 there exists an elementf 4 such thatP[x,y, 7.
The schemd&inOpLambda deals with a non empty set and a binary functoff yielding an
element of4, and states that:
There exists a binary operatioron 4 such that for all elements b of 2 holdso(a,
b) = # (a,b)
for all values of the parameters.
Let us consideA, o. We say thab is commutative if and only if:

(Def. 2) For alla, b holdso(a, b) = o(b, a).

1 The proposition (1) has been removed.
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We say thab is associative if and only if:

(Def. 3) Foralla, b, choldso(a, o(b, c)) = o(o(a, b), c).
We say thab is idempotent if and only if:

(Def. 4) Forevenaholdso(a, a) = a.

Let us mention that every binary operation®is empty, associative, and commutative.
Let us consideA, e, 0. We say thagis a left unity w.r.t.o if and only if:

(Def. 5) Forevenaholdso(e a) =a.
We say thatis a right unity w.r.t.o if and only if:
(Def. 6) For every holdso(a, €) = a.
Let us consideA, e, 0. We say thatis a unity w.r.t.o if and only if:
(Def. 7) eis aleft unity w.r.t.o and a right unity w.r.to.
We now state several propositions:
(117 eis a unity w.r.t.o iff for every a holdso(e, a) = aando(a, €) = a.
(12) If ois commutative, theris a unity w.r.t.o iff for every a holdso(e, a) = a.
(13) If ois commutative, theris a unity w.r.t.o iff for every a holdso(a, €) = a.
(14) If ois commutative, theris a unity w.r.t.o iff eis a left unity w.r.t.o.
(15) If ois commutative, theris a unity w.r.t.o iff eis a right unity w.r.t.o.
(16) If ois commutative, theris a left unity w.r.t.o iff eis a right unity w.r.t.o.
(17) If ey is aleft unity w.r.t.o ande; is a right unity w.r.t.o, thene; = e.

(18) If ey is a unity w.r.t.0 ande; is a unity w.r.t.o, thene; = e.

Let us consideA, o. Let us assume that there exista/hich is a unity w.r.t.o. The functorl,
yields an element oA and is defined by:

(Def. 8) 1, is a unity w.r.t.o.
Let us consideA, 0, 0. We say that' is left distributive w.r.t.o if and only if:
(Def. 9) Foralla, b, choldso’(a, o(b, c)) = 0o(0d'(a, b), 0'(a, ¢)).
We say that! is right distributive w.r.t.o if and only if:
(Def. 10) For alla, b, c holdsod’(o(a, b), c) = 0(d'(a, ¢), d'(b, ¢)).
Let us consideA, 0/, 0. We say that' is distributive w.r.t.o if and only if:
(Def. 11) 0 is left distributive w.r.t.o and right distributive w.r.to.

The following propositions are true:

(239 o is distributive w.r.t. 0 iff for all a, b, ¢ holdsd'(a, o(b, ¢)) = o(d/(a, b), o'(a, ¢)) and
o'(o(a, b), c) = 0(0'(a, ¢), d'(b, ©)).

(24) LetAbe a non empty set araj o’ be binary operations of. Suppose’ is commutative.
Thend is distributive w.r.t. o if and only if for all elements, b, ¢ of A holdso’(a, o(b,
c)) =0(0d'(a, b), d(a, c)).

2 The propositions (3)—(10) have been removed.
3 The propositions (19)—-(22) have been removed.
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(25) LetAbe a non empty set ara o’ be binary operations of. Suppose’ is commutative.
Thend' is distributive w.r.t. o if and only if for all elements, b, ¢ of A holdsd’(o(a, b),
c) =0(d(a, ), d (b, c)).

(26) LetAbe a non empty set araj o’ be binary operations of. Suppose’ is commutative.
Thend' is distributive w.r.t.o if and only if o is left distributive w.r.t.o.

(27) LetAbe a non empty set araj o’ be binary operations of. Suppose’ is commutative.
Thend' is distributive w.r.t.0 if and only if 0’ is right distributive w.r.t.0.

(28) LetAbe a non empty set ara o’ be binary operations of. Suppose’ is commutative.
Thend' is right distributive w.r.t.o if and only if o is left distributive w.r.t.o.

Let us consideA, u, 0. We say thati is distributive w.r.t.o if and only if:
(Def. 12) For alla, b holdsu(o(a, b)) = o(u(a), u(b)).

Let A be a non empty set and letbe a binary operation oA. Let us observe thatis commu-
tative if and only if:

(Def. 13) For all elements, b of A holdso(a, b) = o(b, a).
Let us observe that is associative if and only if:

(Def. 14) For all elements, b, ¢ of A holdso(a, o(b, ¢)) = o(o(a, b), c).
Let us observe thatis idempotent if and only if:

(Def. 15) For every elememtof A holdso(a, a) = a.

Let A be a non empty set, letbe an element oA, and leto be a binary operation oA. Let us
observe thagis a left unity w.r.t.o if and only if:

(Def. 16) For every elememtof A holdso(e, a) = a.
Let us observe thatis a right unity w.r.t.o if and only if:
(Def. 17) For every elememtof A holdso(a, e) = a.

Let A be a non empty set and let, o be binary operations oA. Let us observe that' is left
distributive w.r.t.o if and only if:

(Def. 18) For all elementa, b, c of A holdso'(a, o(b, c)) = 0(d'(a, b), d'(a, c)).
Let us observe that is right distributive w.r.t.o if and only if:
(Def. 19) For all elementa, b, c of A holdso’(o(a, b), c) = o(d'(a, ¢), o'(b, c)).

Let A be a non empty set, letbe a unary operation ofy, and leto be a binary operation oA.
Let us observe thatis distributive w.r.t.o if and only if:

(Def. 20) For all elementa, b of Aholdsu(o(a, b)) = o(u(a), u(b)).
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