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Abstract. Harness is an adaptable fault-tolerant virtual machine en-
vironment for next-generation heterogeneous distributed computing de-
veloped as a follow on to PVM. It additionally enables the assembly of
applications from plug-ins and provides fault-tolerance. This work de-
scribes the distributed control, which manages global state replication
to ensure a high-availability of service. Group communication services
achieve an agreement on an initial global state and a linear history of
global state changes at all members of the distributed virtual machine.
This global state is replicated to all members to easily recover from
single, multiple and cascaded faults. A peer-to-peer ring network archi-
tecture and tunable multi-point failure conditions provide heterogeneity
and scalability. Finally, the integration of the distributed control into
the multi-threaded kernel architecture of Harness offers a fault-tolerant
global state database service for plug-ins and applications.

1 Introduction

Parallel and scientific computing is a field of increasing importance in many
different research areas, such as fusion energy, material science, climate modeling
and human gnome research. Cost-effective, flexible and efficient simulations of
real-world problems performed by parallel applications based on mathematical
models are replacing the traditional experimental research.

Software solutions, like Parallel Virtual Machine (PVM) [4] and Message
Passing Interface (MPI) [5], offer a wide variety of functions to allow messag-
ing, task control and event handling. However, they have limitations in handling
faults and failures, in utilizing heterogeneous and dynamically changing commu-
nication structures, and in enabling migrating or cooperative applications.

The current research in heterogeneous adaptable reconfigurable networked
systems (Harness) [1]-[3] aims to produce the next generation of software so-
lutions for parallel computing. A high-available and light-weighted distributed
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virtual machine (DVM) provides an encapsulation of a few hundred to a few
thousand physical machines in one virtual heterogeneous machine.

A high availability of a service can be achieved by replication of the service
state on multiple server processes at different physical machines [6]-[12]. If one
or more server processes fails, the surviving ones continue to provide the service
because they know the state. The Harness DVM is conceived as such a high-
available service. It will survive until at least one server process is still alive.

Since every member (server process) of a DVM is part of the global state
of the DVM service and is able to change it, a distributed control is needed to
replicate the global state of the DVM service and to maintain its consistency.
This distributed control manages state changes, state replication and detection
of and recovery from faults and failures of members.

2 Distributed Peer-to-Peer Control

The distributed control symmetrically replicates the global state of the DVM,
which consists of the local states of all members, to all members. A global state
change is performed using a transaction, which modifies the local state of one or
more members depending on their local and/or the global state during execution.
These local state modifications are replicated to all members.

Such a transaction may join or split member groups, add or remove a member,
start or shutdown a service at one member or at a member group, change states of
services or report state changes of services. The global state is actively replicated
(hot-standby) only at a subset of the DVM members, while all other members
retrieve a copy of the global state only on demand.

The tradeoff between performance and reliability is adjustable by choosing
the number and location of members with active replication. The number of
hot-standby members affects the overall DVM survivability and robustness in
terms of acceptable fault and recovery rate. The classic client-server model with
its single point of failure is realized if there is only one.

The location of hot-standby members additionally addresses network bot-
tlenecks and partitioning. If different research facilities collaborate using a large
DVM, every remote site may choose its own hot-standby members. Additionally,
any member can become a hot-standby member if a faulty hot-standby member
needs to be replaced or the DVM configuration changes.

The hot-standby member group consistently maintains the replicated global
state using group communication in an asynchronous connected unidirectional
peer-to-peer ring network architecture. The members of this group are connected
in a ring of TCP/IP peer-to-peer connections. Messages are transmitted in only
one direction and received, processed and sent asynchronously.

3 Group Communication

The distributed control uses group communication services, such as Atomic
Broadcast and Distributed Agreement, to simplify the maintenance of consis-



tently replicated state despite random communication delays, failures and recov-
eries. These services are based on reliably broadcasting messages to all members
replicating the state in the hot-standby member group.

3.1 Reliable Broadcast

The Reliable Broadcast is the most basic group communication service. It ensures
a message delivery from one member to all members in a group, so that if process
p transmits a message m, then m is delivered by all non-faulty processes and all
non-faulty processes are notified of any failures.
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Fig. 1. Reliable Broadcast (Phase I, Phase II, State-Machine)

In order to reliably broadcast a message, one member broadcasts it to all
members. Each member who receives it broadcasts an acknowledgement back to
all members. A member knows that a message is reliably broadcasted if mes-
sage and related acknowledgements of all members are received. The Reliable
Broadcast performs two phases of broadcast communication.
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Fig. 2. Reliable Broadcast in a unidirectional Ring (Phase I, Phase II)

A straightforward implementation of this Reliable Broadcast algorithm re-
sults in high communication costs (n broadcasts) and is not scalable. What fol-



lows is a description of a much more efficient algorithm based on a unidirectional
ring network which is used by the distributed control in Harness.

In a unidirectional ring, messages are forwarded from one member to the
next to reliably broadcast a message. In phase one, a member sends a message
to its neighbor in the ring until a member who has it already received before
receives it. In phase two, a member sends the acknowledgement to its neighbor
in the ring until a member who has it already received before receives it.

3.2 Atomic Broadcast

The Atomic Broadcast is an extension of the Reliable Broadcast. It additionally
ensures a globally unique order of reliably broadcasted messages at all members
in a group, so that if process p transmits a message m1 followed by a message
m2, then m1 is delivered by all non-faulty processes before m2 and all non-faulty
processes are notified of any failures.
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Fig. 3. Atomic Broadcast (Phase I, Phase II, State-Machine)

In order to atomically broadcast a message, the Reliable Broadcast is ex-
tended with a message numbering and sorting algorithm.

A global message number is maintained with the message broadcast, so that
members cannot reuse it immediately. Every member has a local copy of a global
message number counter, which is increased before every Atomic Broadcast and
constantly updated with higher received values.

All simultaneously broadcasted messages have the same message number and
all sequentially broadcasted messages have increasing message numbers. A static
and globally unique member priority, which is assigned by the group during
member admission, orders messages with equal numbers.

A message is broadcasted with its globally unique id (number/priority) and
sorted into a list on receiving, so that it is atomically broadcasted if all previous
messages are reliably broadcasted. One atomically broadcasted message may
cause other reliably broadcasted messages to be in the atomically broadcasted
state, so that blocks of messages may occur to be atomically broadcasted.
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Fig. 4. Atomic Broadcast in a unidirectional Ring (Phase I, Phase II)

In a unidirectional ring, the message id is passed with the message in phase
one from one member to the next until received twice. The message id is also
passed with the acknowledgement in phase two from one member to the next
until received twice. All messages with the same or a lower message number are
known in phase two, so that the total order of all previously and all simultane-
ously broadcasted messages is known.

3.3 Distributed Agreement

The Distributed Agreement group communication service is based on multiple
Reliable Broadcasts executed by all members in a group. It ensures that a de-
cision is taken at all members by all members, so that each member knows
the decision of every member and is able to evaluate it using the same voting
algorithm.

In order to perform a Distributed Agreement on a decision, every member
executes a Reliable Broadcast of its decision. A decision is taken at a member
by all members if the decisions of all members are reliably broadcasted. Com-
mon voting algorithms are: majority, minority (at least one) and unanimous
agreement.
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Fig. 5. Distributed Agreement in a unidirectional Ring (Phase I, Phase II, Phase III)



The Distributed Agreement in a unidirectional ring is based on interleaved
Reliable Broadcasts. One message is passed around the ring twice to reliably
broadcast information appended by all members in the first round. Collective
communication is used to avoid n Reliable Broadcasts or n messages.

Passing a message from one member to the next until received twice collects
the decisions of all members in phase one. Passing this message around the
ring again in phase two broadcasts the final decision and ensures the decision
collection of phase one. Passing an acknowledgement around the ring in phase
three ensures the final decision broadcast of phase two.

The decisions of all members are collected in phase one using a counter
for every class of decision. Their final count is broadcasted in phase two. The
voting algorithm compares these values at every member in phase three. This
anonymous voting may be replaced by collecting the member names for every
class of decision or by a mixture of both.

4 Member Fault Recovery

A single, cascade or multiple member fault does not affect group communication
services directly. However, they are based on acknowledgements for received
messages from all members and the membership changes when a fault occurs.
The underlying communication system notifies all indirectly affected members
who are waiting for acknowledgements from faulty members.

Messages may get lost if a faulty member was used as a router. Since all
messages are stored until acknowledged, they are sent again if a fault occurs to
ensure delivery of messages at least once. Doubled messages are filtered at the
receiving member based on the group communication service state.

Single or multiple faults in a ring are recovered by connecting the two correct
neighbor members of the faulty member(s) to each other. The neighbor who
had sent messages and acknowledgements to a faulty member assumes that all
unacknowledged messages and all acknowledgements are lost.

All unacknowledged messages are sent again in the same order. A hop counter
contained in every message which is increased when passed to the next member
is used to distinguish doubled messages from messages seen twice. A message is
ignored if the hop count is less than the stored one.

The last acknowledgement is always stored at a member and sent again. The
receiving member regenerates all lost acknowledgements based on his last stored
and based on the order the related messages passed previously.

Cascaded faults, which are single or multiple faults occurring during a recov-
ery from previous ones, are handled by restarting the recovery.

5 Membership

The group membership requires an agreement on an initial group state and a
linear history of group state changes at all members, so that each member has
a complete and consistent replicated copy of the group state.



In order to achieve an agreement on an initial group state, every new member
obtains a copy of the group state from a group member. In order to achieve an
agreement on a linear history of state changes, every state change is performed
as a transaction using an Atomic Broadcast of the state change followed by a
Distributed Agreement on the state change execution result.

Transactions consistently replicate the list of members as part of the group
state while admitting or removing members. In order to admit a new member,
a member of the group connects to the new member and updates it with a copy
of the group state. A member removal is based on a controlled member fault. In
order to remove a member, the member to be removed disconnects itself from
the group. All members expect the member fault and recover easily.

6 Transaction Types

The distributed control extends the management of a symmetrically distributed
global state database by enabling transactions to be partially or completely com-
mitted or rejected depending on their execution result, which may be different
at every member. Transactions may involve local state changes that may fail at
one or more members, local state changes at one or more members that cannot
fail and global state changes that may fail at all members.
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Fig. 6. Transaction Control State-Machines (Type I, II, III)

A linear history of state changes is realized using an Atomic Broadcast of a
state change followed by a Distributed Agreement on the execution result, since
a state change may involve multiple local state change failures (Type III).

A Reliable Broadcast of the execution result replaces the Distributed Agree-
ment if only one local state change that may fail is involved (Type II). The
Atomic Broadcast alone is performed if a transaction involves only local state
changes that cannot fail or global state changes that may fail (Type I).

A transaction control algorithm decides the transaction type on a case-by-
case basis and guarantees the total order of state change executions and state
change commits, so that all state changes are executed and committed/rejected
in the same order at all members.



7 Harness Kernel Integration

A first prototype was developed as a distributed stand-alone server application
in C on Linux to test and experiment with different variations of the described
group communication algorithms. The results were used to refine the algorithms
and to define the requirements for the integration of the distributed control into
the multi-threaded Harness kernel architecture.
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Fig. 7. Scheme of Harness Kernel

The transaction control algorithm manages all transactions in the controller
module (HCtl). The central message handler (HMsg) delivers all messages to
and from the controller. Communicator plug-ins (HCom) maintain the network
connections to communicator plug-ins of other kernels.

Group communication messages are exchanged between a communicator plug-
in and the controller using the message handler. State changes are executed by
the controller or by a plug-in, while the controller maintains the state database.
State change requests are delivered from a plug-in to the controller via the mes-
sage handler or directly using the kernel API.

8 Conclusions

We have developed a distributed control that automatically detects and recov-
ers single, multiple and cascaded member faults. Its design allows a trade-off
between performance and robustness, i.e. tunable multi-point failure conditions.
A strictly symmetric global state control and replication ensures fault-tolerance
and protects members against denial-of-service and starvation.

The distributed control uses group communication services, such as Reliable
Broadcast, Atomic Broadcast and Distributed Agreement, to simplify the main-
tenance of consistently replicated state despite random communication delays,



failures and recoveries. These algorithms were adapted to a peer-to-peer ring
network architecture to improve scalability and heterogeneity.

Global state changes are transactions that are executed at all members or at
a member group and consistently committed or rejected at the state database of
all members depending on the execution results of all members. The transaction
control algorithm classifies transactions into different types and chooses the most
efficient combination of group communication services.

The integration into the multi-threaded Harness kernel architecture distributes
the network communication, the message handling and the transaction control
algorithm over different modules. The plug-in concept enables the distributed
control to use different network protocols for every communication link, while
providing its global database service to plug-ins and applications.
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