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modular interpreters, and compiler construction. We will demonstrate that the

modular monadic semantics framework makes programming languages easy to

specify, reason about, and implement.
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Chapter 1

Introduction

1.1 Overview

Denotational semantics [Stoy, 1977] is among the most important developments

in programming language theory. It gives a precise mathematical description of

programming languages, useful in designing and implementing languages as well

as reasoning about programs. For example, advances in denotational semantics

have led to clarifications of features, to more consistent programming language

design, and to new programming constructs.

It has long been recognized, however, that traditional denotational semantics

lacks modularity and extensibility [Mosses, 1984] [Lee, 1989]. This is regarded

as a major obstacle in applying denotational semantics to realistic programming

languages.

In this thesis, we take advantage of a new development in programming lan-

guage theory—a monadic approach [Moggi, 1990] to structured denotational se-

mantics. The resulting modular monadic semantics achieves a high level of mod-

ularity and extensibility. It is able to capture individual programming language

features in reusable building blocks, and to specify programming languages by

composing the necessary features.

1



2 CHAPTER 1. INTRODUCTION

Because modular monadic semantics is no more than a structured denotational

semantics, all the equational reasoning methods apply. In addition, we will show

that modular monadic semantics further facilitates reasoning by allowing us to

specify axioms of programming language features and to construct reusable mod-

ular proofs.

Modular monadic semantics can be implemented using modern programming

languages such as Haskell [Hudak et al., 1992], ML [Milner et al., 1990], or Scheme

[Clinger and Rees, 1991]. The result is a modular interpreter. We have discovered

that the relatively new idea of constructor classes in Gofer (and Haskell 1.3) are

particularly suitable for representing some rather complex typing relationships in

modular interpreters.

Our work is directly applicable to semantics-directed compiler construction.

We will present a compilation method based on monadic semantics and monadic

program transformations, and test our ideas by retargeting a Haskell compiler.

Before introducing modular monadic semantics, in the next section we will

give an example to demonstrate that traditional denotational semantics lacks mod-

ularity. The presentation follows the traditional denotational semantics style, aug-

mented with a types declaration syntax similar to that of Haskell or ML. We assume

the reader has basic knowledge of denotational semantics and functional program-

ming.

1.2 The Lack of Modularity in Denotational Semantics

Let us first look at the semantics for a simple arithmetic language:E : Term ! ValueE[[n]] = nE[[e1 + e2]] = E[[e1]] + E[[e2]]
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Denotational semantics maps terms in the source language into values in the

meta language. The source language terms are enclosed in “[[ ]]”. The n and +
symbols on the right hand side correspond to the meta language concepts of a

number and the add arithmetic operation.

An important measure of modularity is how a semantic description can be

extended to incorporate new programming language features. For example, if we

extend the source language with variables and functions, we need to introduce an

environment—a mapping from variable names to values:E : Term ! Env! ValueE[[n]] = ��:nE[[e1 + e2]] = ��:E[[e1]]�+ E[[e2]]�E[[v]] = ��:�[[v]]
Even though numbers are independent of the environment, we must change

the semantics of numbers to accommodate the newly introduced environment

argument. Similarly, the environment argument must be passed recursively to the

subexpressions of e1+e2, even though the arithmetic operation itself is independent

of the environment.

If we further add continuations to our semantics (for supporting, for example,

the sequencing operator “;”), we must change the semantics of numbers once again:E : Term ! Env! (Value! Ans)! AnsE[[n]] = ��:�k:knE[[e1 + e2]] = ��:�k:E[[e1]]�(�i:E[[e2]]�(�j:k(i+ j)))E[[e1; e2]] = ��:�k:E[[e1]]�(�x:E[[e2]]�k)
In summary, we must make global changes to the traditional denotational se-

mantics in order to add new features into the source language. The lack of modular-

ity of traditional denotational semantics has long been recognized [Mosses, 1984]
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[Lee, 1989]. It is regarded as the most significant obstacle in applying denotational

semantics to realistic languages.

In the next section we will show how we can enhance the modularity by using

an abstraction mechanism called monads.

1.3 Monad — An Abstraction Mechanism

We will use a type constructor M and two functions:

return : a!M a
bind : M a! (a!M b)!M b

The intuitive meanings of these constructs are as follows:� M a: a computation returning a value of type a.� bind c1 (�v:c2): a computation that first computes c1, binds the result to v, and

then computes c2.� return v: a trivial computation that simply returns v as result.

Next, we write a parameterized semantics for arithmetic expressions using M , bind,

and unit:E : Term !M ValueE[[n]] = return nE[[e1 + e2]] = bind (E[[e1]])(�i:bind (E[[e2]])(�j: return (i+ j)))
The semantic function E maps terms to computations (of type M Value). The

semantics of E[[n]] is a trivial computation that returns n as result. The semantics

of E[[e1 + e2]] is a computation that computes E[[e1]], binds the result to i, computesE[[e2]], binds the result to j, and finally returns i+ j.



1.3. MONAD — AN ABSTRACTION MECHANISM 5E : Term !M ValueE[[e1 + e2]] = bind (E[[e1]])(�i:bind (E[[e2]])(�j: return (i+ j)))@@@R���	
typeM a = a
return x = x
bind e k = k e typeM a = Env! a

return x = ��:x
bind e k = ��:k (e �) �AAAAU�����E : Term ! ValueE[[e1 + e2]] = E[[e1]] + E[[e2]] E : Term ! Env! ValueE[[e1 + e2]] = ��:E[[e1]]�+ E[[e2]]�

Figure 1.1: A parameterized arithmetic semantics

The advantage of the parameterized semantics is that, depending on how we

instantiate M , return and bind, we get different semantics of our choice. Fig-

ure 1.1 shows how the arithmetic semantics can be instantiated to the trivial and

environment-based semantics described in the last section. Later in this thesis, we

will see that appropriate definitions of M , return and bind can also lead to other (for

example, continuation-based) semantics.

The type constructor M , together with the two functions return and bind, are

called a monad. The parameterized semantics defined above for arithmetic expres-

sions is called monadic semantics. Monadic semantics can be instantiated using

different underlying monads. To add a new feature to a monadic semantics, we only

need to add a semantic description of the new feature, and change the underlying

monad, but not the semantic descriptions of the existing features.
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1.4 Background and Organization of the Thesis

This thesis explores the theory and practical applications of monads and monadic

semantics, building on the previous work in this area. The concept of monads

originates from category theory [Mac Lane, 1971]. The formulation of monads

using a triple (bind, return, and the type constructor) is due to Kleisli. Moggi [Moggi,

1990] first proposed that monads provided a useful tool for structuring denotational

semantics. Early work by Wadler [Wadler, 1990] showed the relationships between

monads and functional programming. Recently, there has been a great deal of

interest in using monads to construct modular semantics and modular interpreters

[Wadler, 1992] [Jones and Duponcheel, 1993] [Espinosa, 1993] [Steele Jr., 1994].

In Chapter 2, we will present the modular monadic semantics for a wide range

of programming language features. We will demonstrate how monad transform-

ers capture individual features, and how liftings capture the interactions between

different features.

In Chapter 3, we will investigate the theory of monads and monad transform-

ers. This includes, for example, the formal properties of monad transformers and

liftings. We will use monad laws and axioms to perform equational reasoning at a

higher level than in traditional denotational semantics.

In Chapter 4, we will demonstrate how the formal concepts of monads and

monad transformers fit nicely into the Gofer [Jones, 1991] type system. By imple-

menting modular monadic semantics in Gofer, we obtain a modular interpreter.

In Chapter 5, we will apply monadic semantics to semantics-directed compi-

lation. We will show how an effective and provably correct complication scheme

can be derived, taking advantage of the modularity and reasoning power of the

monadic framework. We will put some of our ideas to test by building a retargeted

Haskell compiler.

Throughout the thesis, we will use a common source language to address var-

ious issues in monadic semantics, modular interpreters, and compilation. The
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source language is introduced in the next section.

1.5 The Source Language

The source language we consider in this thesis has a variety of features, including

different function call mechanisms, imperative features, first-class continuation,

tracing (for debugging), and nondeterminism.e ::= n j e1 + e2 (arithmetic operations)j v j �v:e (variables and functions)j (e1 e2)n (call-by-name)j (e1 e2)v (call-by-value)j (e1 e2)l (lazy evaluation)j callcc (first-class continuations)j e1 := e2 j ref e j deref e (imperative features)j label @ e (trace labels)j fe0; e1; : : :g (nondeterminism)

To simplify the presentation, we use one form of function abstraction that can be

applied using any of the three function application mechanisms. We can observe

the differences in various function call mechanisms with the help of trace messages.

For example, evaluating:((�x:x+ x)(l @ 1))n
results in 2 after printing the trace message “l” twice, whereas((�x:x+ x)(l @ 1))v
prints “l” only once. Nondeterminism is captured by returning all possible results.

For example:f1; 3g+ f2; 5g
results in f3; 6; 5; 8g.
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1.6 A Notation

For clarity, we adopt the following short-hand:E : Term !M ValueE[[e1 + e2]] = bind (E[[e1]])(�i:bind (E[[e2]])(�j: return (i+ j)))+E : Term !M ValueE[[e1 + e2]] = f i E[[e1]];j  E[[e2]];
return (i+ j)g

This notation is similar to the “do” syntax in Haskell [Peterson and Hammond,

1996], and is also somewhat similar to monad comprehensions [Wadler, 1990]. It

is important to remember that, despite the imperative feel, the monadic semantics

is still made up of lambdas and applications. We will use bind and its short-hand

notation interchangeably, depending on whichever is more convenient.



Chapter 2

Modular Monadic Semantics

In this chapter, we present the modular monadic semantics of our source lan-

guage. Compared with traditional denotational semantics, our approach captures

individual programming language features using modular building blocks.

Figure 2.1 shows how our modular monadic semantics is organized. High-level

features are defined based on a set of “kernel-level” operations. The expressione1 := e2, for example, is interpreted by the low-level primitive operation update.

While it is a well-known practice to base programming language semantics on a

kernel language, the novelty of our approach lies in how the kernel-level primitive

operations are organized. In our framework, depending on how much support the

upper layers need, any set of primitive operations can be put together in a modular

way using an abstraction mechanism called monad transformers [Moggi, 1990] [Liang

et al., 1995]. Monad transformers provide the power needed to represent the

abstract notion of programming language features, but still allow us to access

low-level semantic details. However, monad transformers are defined as higher-

order functions and our monadic semantics is no more than a structured version of

denotational semantics, so conventional reasoning methods (such as � conversion)

apply.

The modular monadic semantics is composed of two parts:

9
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callcc

nondeterminism

Functions

Assignments

Continuations

:=

lambda

nondeterminism

continuations
store

environment

Modular construction

of the kernel

callcc
update

err

inEnv rdEnv

error reporting

I/O

write

merge Arithmetic Ops

Lazy evaluation

Tracing
label @

(f x)
l

{e1, e2, ...}

e + 1

Figure 2.1: The organization of modular monadic semantics

Modular Semantic Building Blocks Semantic building blocks (represented by rect-

angular blocks in Figure 2.1) define the monadic semantics of individual

source language features. Semantic building blocks are independent of each

other, although they are based on a common set of kernel-level operations.

Two building blocks may be supported by the same kernel-level operation.

For example, both assignments and lazy evaluation may use the same store.

Monad Transformers Monad transformers define the kernel-level operations in a

modular way. Multiple monad transformers can be composed to form the

underlying monad used by all semantic building blocks. In Figure 2.1, monad

transformers that support environment, continuations, store, etc. are used to

construct the underlying monad.

Modular semantic building blocks and monad transformers are the topics of

the following sections.
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2.1 Modular Semantic Building Blocks

Each modular semantic building block defines the monadic semantics for a partic-

ular source language feature. Traditional denotational semantics maps, say, a term,

an environment and a continuation to an answer. In contrast, monadic semantics

maps terms to computations, where the details of the environment, store, etc. are

hidden. Specifically, our semantic evaluation function E has type:E : Term !M Value

where M is a monad equipped with two basic operations:

bind : M a! (a!M b)!M b
return : a!M a

Value is the domain sum of basic values and functions; and M Value repre-

sents computations that return Value as result. Functions map computations to

computations:

type Fun = M Value!M Value

type Value = Int + Bool + Addr + Fun + : : :
As will be seen, this generality allows us to model call-by-name, call-by-value

and lazy evaluation with only one kind of lambda abstraction (but 3 kinds of

function application) in the source language.

In this section, we will present the semantic building blocks needed for our

source language. The monad operations return and bind are the basic operations

used by every building block. In addition, each semantic building block depends

on several other kernel-level operations that are specific to its purpose.

2.1.1 The Arithmetic Building Block

The semantics for arithmetic expressions is as follows:



12 CHAPTER 2. MODULAR MONADIC SEMANTICSE[[n]] = return (inInt n)E[[e1 + e2]] = f v1  E[[e1]];v2  E[[e2]];
if (isInt v1 and isInt v2) then

return (inInt (outInt v1 + outInt v2))
else

err “type error00 g
inInt is the injection function from Int to the Value domain, whereas outInt is the

projection function from the Value domain to Int. The kernel-level function (to be

defined later):

err : String!M a
reports error conditions (which, in this case, are type errors). In other words, err is

an operation supported by the underlying monad M . For clarity, from now on we

will omit domain injection/projection and type checking.E[[n]] returns the number n (injected into the Value domain) as the result of a

trivial computation. To evaluate e1 + e2, we evaluate e1 and e2 in turn, and then

sum the results.

2.1.2 The Function Building Block

In denotational semantics, functions are supported using an environment—a map-

ping from variable names to their denotation. We introduce an environment Env

which maps variable names to computations,1 and two kernel-level operations that

retrieve the current environment and perform a computation in a given environ-

ment, respectively:

1We do not need an environment that maps names to computations in order to support call-by-
value. However, we need such an environment to support call-by-name and lazy evaluation. We
will discuss this issue in more details in Section 2.1.8.
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type Env = Name!M Value

rdEnv : M Env

inEnv : Env!M Value!M Value

The definition of rdEnv and inEnv will be given later. The semantics for variables,

function abstraction, call-by-name and call-by-value are as follows:E[[v]] = f� rdEnv; � [[v]]gE[[�v:e]] = f� rdEnv; return(�c:inEnv �[c=[[v]]]E[[e]])gE[[(e1 e2)n]] = ff  E[[e1]];� rdEnv; f(inEnv � E[[e2]])gE[[(e1 e2)v]] = ff  E[[e1]]; v E[[e2]]; f(return v)g
Because there is no risk of confusion, we drop the parentheses around �[c=v]

and E[[e]] in the application of inEnv.

The difference between call-by-value and call-by-name is clear: the former

reduces the argument before invoking the function,2 whereas the latter packages

the argument with the current environment to form a closure.

2.1.3 The References and Assignment Building Block

Imperative features can be supported using a store—a mapping from locations (of

type Loc) to computations. Three functions allocate, read from and write to the

memory cells in the store:

alloc : M Loc

read : Loc!M Value

write : (Loc; M Value)!M ()
The monadic semantics for references and assignment is as follows:

2To be precise, the call-by-value semantics is only preserved when the underlying monad en-
forces an evaluation order dependency. This is true of the continuation, state, and error monads.
However, the identity and environment monads do not actually force the evaluation of c1 before c2

in fx c1; c2g.



14 CHAPTER 2. MODULAR MONADIC SEMANTICSE[[ref e]] = fv E[[e]]; l alloc; write (l; return v)gE[[deref e]] = fl E[[e]]; read lgE[[e1 := e2]] = fl E[[e1]]; v E[[e2]]; write (l; return v)g
To create a reference, we evaluate the expression, allocate a new memory cell,

and store in the location of the memory cell a trivial computation that returns the

value of the expression. The argument of deref evaluates to a location, at which

the stored value can be read. To assign an expression to a location, we evaluate

the expression, and update the location with a trivial computation that returns the

value of the expression.

Note that we only store trivial computations. We could alternatively give

the semantics for references and assignment using a store that maps locations to

values, rather than locations to computations. The reason we store computations is

to simplify the overall presentation, so that we will not need to introduce a separate

kernel-level store operation for our next feature—lazy evaluation.

2.1.4 The Lazy Evaluation Building Block

Using the same store for references and assignments, we can implement lazy eval-

uation whose operational semantics implies caching of results.E[[(e1 e2)l]] = f f  E[[e1]];l alloc;� rdEnv;

let thunk = f v inEnv � E[[e2]]; write (l; return v);
return v g

in f  write (l; thunk);f (read l) g g
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Before entering the function, we allocate a memory cell and store a thunk (a

computation that updates itself) in it. After the argument is first evaluated, the

result is stored back to the memory cell, overwriting the thunk itself.

2.1.5 The Program Tracing Building Block

Given a kernel-level function:

output : String!M ()
that prints out a string, we can support tracing. Labels attached to expressions

cause a “trace record” to be invoked whenever that expression is evaluated:E[[l @ e]] = f  output (“enter ”++l);v E[[e]]; output (“leave ”++l);
return v g

Here we see that some of the features of monitoring semantics [Kishon et al.,

1991] are easily incorporated into our framework.

2.1.6 The Continuation Building Block

Continuation is a powerful mechanism for modeling control flow in denotational

semantics. In particular, callcc (call with current continuation) is a useful language

construct. Here is a simple example to show how callcc works:

callcc (�k:(k 100)v) =) 100

When applied to a function, callcc captures the current continuation, and passes

the continuation as the argument k. The continuation itself is captured as a function.

When captured continuation is later applied to the value 100, the control flow is
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transferred back to the point where the continuation was initially captured. The

value (100) passed to the continuation is the result returned from callcc.

The power of callcc lies in that the captured continuation does not have to be

invoked immediately. We may store the continuation into data structures, perform

other computations, and then invoke the stored continuation to transfer the control

back to where we issued callcc. For this reason, callcc can be used to model a

wide variety of non-local control flow, including, for example, catch/throw, error

handling, coroutines, and thread context switches. Scheme [Clinger and Rees,

1991] and SML [Milner et al., 1990] incorporate callcc as a language feature.

As expected, the kernel-level operation callcc takes a function argument that in

turn takes a continuation:

callcc : ((Value!M Value)!M Value)!M Value

We define the semantics of source-level callcc as a function expecting another

function as an argument, to which the current continuation will be passed:E[[callcc]] = return (�f:ff 0  f ; callcc(�k:f 0(�a:fx a;kxg))g)
The result of E[[callcc]] is a trivial computation that returns a function. The

argument of the function, f , evaluates to the current continuation (f 0).
2.1.7 The Nondeterminism Building Block

Given a kernel-level function:

merge : List (M a)!M a
that merges a list of computations into a single (nondeterministic) computation,

nondeterminism semantics can be expressed as:E[[fe0; e1; : : :g]] = merge [E[[e0]]; E[[e1]]; : : :]E[[e0]], E[[e1]], etc. are a list of computations denoting the nondeterministic

behavior.
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2.1.8 Alternative Definitions of the Environment and Store

In the building blocks presented so far, we used one environment that mapped

variable names to computations, and used one store that mapped locations to com-

putations. As we have pointed out, this generality is not necessary for some of the

building blocks. For example, the call-by-value semantics only needs an environ-

ment that maps variable names to values, whereas the reference and assignment

semantics only needs a store for values.

Modular monadic semantics is flexible enough that we can easily introduce

multiple environments and stores, so that each building block is supported by

exactly the right set of operations. To specify call-by-value functions, for example,

we can use an environment that maps variable names to values. If we later add call-

by-name functions, we simply add a new environment that maps variable names

to computations. Similarly for the reference and assignment building block, we

can introduce a store that maps locations to values, separate from the requirements

of lazy evaluation.

If we store variables in two separate environments, we will need to be able to

distinguish, at the source language level, call-by-value functions from call-by-name

functions. Thus instead of using one syntax for all three kinds of function abstrac-

tions (as in Section 1.5), we will need to have two separate syntactic constructs:

one for call-by-value, the other for call-by-name and lazy evaluation. Variables

will then be stored in either of the two environments, depending on what kind of

function abstraction the variable is introduced in.

We will not present the details of designing a modular semantics with multiple

environments and stores. Instead, we emphasize that the simplifications we made

in previous sections to ease presentation do not foundmentally limit the modularity

of our approach.
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Feature Function

Error reporting err : String!M a
Environment rdEnv : M Env

inEnv : Env!M a!M a
Store alloc : M Loc

read : Loc!M Value
write : (Loc;M Value)!M ()

Output output : String!M ()
Continuations callcc : ((a!M b)!M a)!M a
Nondeterminism merge : List (M a)!M a

Table 2.1: Monad operations used in the semantics

2.2 Monads With Operations

Semantic building blocks depend on other kernel-level operations in addition to

unit and bind. From the last section, it is clear that the operations listed in Table 2.1

must be supported.

If we were writing the semantics in the traditional way, now would be the

time to set up the domains and define the functions listed in the table. The major

drawback of such a monolithic approach is that we have to take into account all

other features when we define an operation for one specific feature. When we

define callcc, for example, we have to decide how it interacts with the store and

environment etc. And, if we later want to add more features, the semantic domains

and all kernel-level functions may have to be redefined.

Monad transformers, on the other hand, allow us to capture individual language

features. Furthermore, the concept of lifting allows us to account for the interactions

between various features. Monad transformers and lifting are the topics of the next

two sections.

To simplify the set of operations, we note that both the store and output (used

by the program tracing building block) have to do with some notion of state. Thus
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we could define alloc, read, write, and output in terms of the function:

update : (s! s)!M s
for some suitably chosen state type s. We can read the state by passing update

the identity function, and update the state by passing it a state transformer. For

example, we can model output by using String as the state type:

output : String ! m ()
output msg = f  update (� sofar:sofar ++ msg);

return ()g
The underscore ( ) indicates that the return value of update is ignored.

2.3 Monad Transformers

To get an intuitive understanding of monad transformers, consider the merging of

a state monad with an arbitrary monad, an example originally appeared in Moggi’s

note [Moggi, 1990]:

type StateT s m a = s! m (s; a)
The type variable m represents a type constructor. We will later show that, if m

is a monad, then so is StateT s m. Therefore StateT s is a monad transformer. For

example, if we substitute the identity monad:

type Id a = a
for m in the above monad transformer, then we arrive at:

StateT s Id a = s! Id (s; a)= s! (s; a)
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which is the standard state monad found, for example, in Wadler’s work [Wadler,

1992].

We will formally define monad transformers in Section 3.1.2. For now we note

that a monad transformer t has a number of capabilities:

First, it transforms any monad m to monad t m. Functions returnt m and bindt m
are naturally defined in terms of returnm and bindm.

Second, it can embed any computation in monad m as a computation in monadt m. Every monad transformer is equipped with a function:

liftt : m a! t m a
which maps any computation in monad m to a computation in monad t m.

Third, it adds operations (i.e., introduces new features) to a monad. The StateT

monad transformer, for example, adds state s to the monad it is applied to, and the

resulting monad accepts update as a legitimate operation.

Lastly, monad transformers compose easily. For example, applying both StateT s1

and StateT s2 to the identity monad, we get:

StateT s1 (StateT s2 Id) a = s1 ! (StateT s2 Id) (s1; a)= s1 ! s2 ! (s2; (s1; a));
which is the expected type signature for transforming both states s1 and s2. The ob-

servant reader will note, however, an immediate problem: in the resulting monad,

which state does update act upon? In general, this is the problem of lifting monad

operations through transformers, and will be addressed in the next section.

The remainder of this section introduces the monad transformers that cover all

the features listed in Table 2.1. Some of these (StateT, ContT, and ErrorT) appear in

an abstract form in Moggi’s note [Moggi, 1990]. The environment monad is similar

to the state reader by Wadler [Wadler, 1990]. The state and environment monad

transformers are related to ideas found in Jones and Duponcheel’s work [Jones,

1993] [Jones and Duponcheel, 1993].
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We will attach subscripts to monadic operations to distinguish between the

different monads they operate on. Some monad transformers use two additional

functions: map and join. These functions, which can be used in any monad, are

easily defined in terms of return and bind:

mapm : (a! b)! m a! m b
mapm f e = bindm e (�a: returnm (f a))
joinm z : m (m a)! m a
joinm z = bindm z (�a:a)
2.3.1 The State Monad Transformer

The state monad transformer introduces an updatable state into an existing monad.

The resulting monad accepts an additional operation update, and is called a state

monad.

Previously, we described the state monad transformer with a type definition:

type StateT s m a = s! m (s; a)
To complete the definition, we must also provide the return and bind functions

for StateT s m:

returnStateT s m = �s: returnm (s; x)
bindStateT s m m k = �s0:bindm (m s0) (�(s1; a):k a s1)

Given these definitions, if returnm, bindm, and m form a monad, then so do

returnStateT s m, bindStateT s m and StateT s m. A more formal characterization of the

relationships between m and StateT s m will be given in Chapter 3.

Next, we define the lift function, which simply performs the computation in the

new context and preserves the state.

liftStateT s : m a! StateT s m a
lift

StateT s c = �s:fx c; returnm (s; x)gm
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Finally, a state monad must support the update operation, which transforms the

state using the given f, and returns the old state:

updateStateT s m : (s! s)! StateT s m s
updateStateT s m f = �s: returnm (f s; s)
2.3.2 The EnvironmentMonad Transformer

EnvT r transforms any monad into an environment monad that supports inEnv and

rdEnv. The definition of bind shows that two subsequent computation steps run

under the same environment � (of type r). (Compare this with the state monad,

where the second computation is run in the state returned by the first computation.)

type EnvT r m a = r! m a
returnEnvT r m a = ��: returnm a
bindEnvT r m m k = ��:bindm (m �) (�a:k a �)

The result of lifting a computation through the environment monad is a com-

putation that ignores its environment.

lift
EnvT r : m a! EnvT r m a

liftEnvT r c = ��:c
InEnv ignores the environment carried inside the monad, and performs the

computation in the given environment.

inEnvEnvT r m : r! EnvT r m a! EnvT r m a
inEnvEnvT r m � m = ��0:m �
rdEnvEnvT r m : EnvT r m r
rdEnvEnvT r m = ��: returnm �
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2.3.3 The Error Monad Transformer

Monad Err completes a series of computations if all succeed, or aborts as soon as

an error occurs. The monad transformer ErrT transforms a monad into an error

monad that supports err as a valid operation.

data Err a = Ok a j Err String

type ErrT m a = m (Err a)
returnErrT m a = returnm (Ok a)
bindErrT m m k = bindm m (�a:case a of(Ok x) ! k x(Err msg) ! returnm (Err msg))

To lift a computation across ErrT, we tag the result with Ok:

liftErrT : m a! ErrT m a
liftErrT = mapm Ok

The semantic function err throws away any intermediate result, and returns the

error value Err.

err : String! ErrT m a
err = returnm � Err

2.3.4 The Continuation Monad Transformer

We define the continuation monad transformer as:

type ContT c m a = (a! m c)! m c
returnContT c m x = �k:k x
bindContT c m m f = �k:m (�a:f a k)
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ContT introduces an additional continuation argument (of type a ! mc), wherec is the answer type. By the above definitions of return and bind, all computations

in monad ContT c m are carried out in the continuation passing style.

Lift for ContT c m turns out to be the same as bindm. (Indeed they have the same

type signature.)

liftContT c : m a! ContT c m a
liftContT c = bindm

ContT transforms any monads to a continuation monad, which supports an addi-

tional operation callcc. Callcc f invokes the computation in f , passing it a continu-

ation that, once applied, throws away the current continuation k0 and invokes the

captured continuation k.

callccContT c m : ((a! ContT c m b)! ContT c m a)! ContT c m a
callccContT c m f = �k:f (�a:�k0:k a) k
2.3.5 The List Monad

In denotational semantics, nondeterminism is usually captured by a list of all

possible results. It is known that lists compose with a special kind of monads

called commutative monads [Jones and Duponcheel, 1993]. It is not clear, however, if

lists compose with arbitrary monads. Since many useful monads (e.g. state, error

and continuation monads) are not commutative, we cannot define a list monad

transformer—one which adds the operation merge to any monad.

Fortunately, every other monad transformer we have considered in this thesis

properly transforms arbitrary monads. We thus can use lists as the base monad, to

which other transformers can be applied. We recall the definition of the well-known

list type and its monadic operations:

data List a = a : List a - - Cons cellj [ ] - - Nil
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returnList x = [x]
bindList m k = case m of[ ] ! [ ](x : xs) ! k x ++ (bindList xs k)

The merge function of the List monad is the well-known list concatenation op-

eration:

mergeList : List (List a)! List a
mergeList [ ] = [ ]
mergeList (x : xs) = x ++ mergeList xs

2.4 Liftings

We have introduced monad transformers that add useful operations to a given

monad, but we have not addressed how these operations can be carried through

other layers of monad transformers. This process is called the lifting of operations.

Lifting an operation f in monad m through a monad transformer t results in an

operation whose type signature can be derived by substituting all occurrences ofm in the type of f with t m. For example, lifting:

inEnv : r! m a! m a
through t results in an operation with type:

inEnv : r! t m a! t m a
Moggi [Moggi, 1990] studied the problem of lifting under a categorical context.

The objective was to identify liftable operations from their type signatures. Un-

fortunately, many useful operations such as merge, inEnv and callcc failed to meet

Moggi’s criteria, and were left unsolved.

Instead, we consider how to lift these difficult cases individually. This allows

us to make use of their definitions (rather than just their types), and to find ways

to lift them through all of the monad transformers studied so far.
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This is exactly where monad transformers provide us with an opportunity to

study how various programming language features interact. The easy-to-lift cases

correspond to features that are independent in nature, while the more involved

cases require a deeper analysis of monad structures to clarify the semantics.

An unfortunate consequence of our approach is that, as we consider more

monad transformers, the number of possible liftings grows quadratically. It seems,

however, that there are not too many different kinds of monad transformers (al-

though there may be many instances of the same monad transformer such as StateT).

The monad transformers that we have introduced so far are able to model almost

all commonly known features of sequential languages. 3

Some operations are more difficult to lift than others. In particular, inEnv and

callcc require special attention. We will first list the easy cases, followed by the rest.

Although we present a number of liftings in this chapter, we will defer the formal

explanation of why these listing are the desirable ones to Chapter 3.

2.4.1 The Easy Cases

RdEnv, err and update take a non-monadic type, and return a computation. They

are handled by lift. For any monad transformer t applied to monad m, we have:

3An example of the features we cannot model is concurrent computation in multi-threaded
programs. In addition, the state monad transformer is more general than what is needed to model
output. The output monad transformer [Moggi, 1990] is also able to support the output operation:

type OutputT m a = m (String; a)
returnOutputT m x = returnm (" "; x)
bindOutputT m m k = f(o1; a) m; (o2; b) k a; returnm (o1 ++ o2; b)gm
liftOutputT : m a! OutputT m a
liftOutputT c = fx c; returnm (" "; x)gm
outputOutputT m : String! OutputT m
outputOutputT m s = returnm (s; ())
Investigating the properties of OutputT and its relationship with StateT is a topic for future

research.
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rdEnvt m = liftt rdEnvm
errt m = liftt � errm
updatet m = liftt � updatem

Because List always is the base monad, we only have to consider cases when

(possibly a sequence of) monad transformers are applied to List:

merge(t1:::(tn List):::) = join(t1:::(tn List):::) � liftt1
� : : : � lifttn

2.4.2 Lifting Callcc

The crucial issue in lifting callcc through a monad transformer, for example, EnvT r,

is to specify how it interacts with the newly introduced environment r. The fol-

lowing lifting discards the current environment �0 upon invoking the captured

continuation k. The execution will continue in the environment � captured when

callcc was first invoked. This is indeed how SML’s callcc normally interacts with

the environment.

callccEnvT r m : ((a! r! m b)! r! m a)! r! m a
callccEnvT r m = ��:callccm(�k:f(�a:��0:ka)�)

In lifting callcc through StateT, we have a choice of passing either the current

state s1 or the captured state s0. The former is the usual semantics for callcc, and

the latter is useful in Tolmach and Appel’s approach to debugging [Tolmach and

Appel, 1990].

callccStateT s m : ((a! s! m(s; b))! s! m(s; a))! s! m(s; a)
callccStateT s m f = �s0:callccm (�k:f (�a:�s1:k (s1; a)) s0)

The above shows the usual callcc semantics, and can be changed to the “debug-

ging” version by instead passing (s0, a) to k:

callccStateT s m f = �s0:callccm (�k:f (�a:�s1:k (s0; a)) s0)
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Callcc can be lifted through ErrT as follows:

callccErrT m : ((a! m(Err b))! m(Err a))! m(Err a)
callccErrT m f = callccm(�k:f(�a:k(Ok a)))
2.4.3 Lifting InEnv

The liftings of inEnv through EnvT and StateT are similar:

inEnvEnvT r0 m : r! (r0 ! m a)! r0 ! m a
inEnvEnvT r0 m � e = ��0:inEnvm � (e �0)
inEnvStateT s m : r! (s! m (s; a))! s! m (s; a)
inEnvStateT s m � e = �s:inEnvm � (e s)

A function of type: m a! m a
maps m (Err a) to m (Err a), thus inEnv stays the same after being lifted through

ErrT.

We do not know of a desirable way to lift inEnv through ContT. This means

that we always have to apply the continuation monad transformer before we ap-

ply environment monad transformers. In the following lifting, for example, the

environment is not restored when c invokes k, and would thus reflect the history

of dynamic execution.

inEnvContT c m � c = �k:inEnvm � (c k)
rdEnvContT c m = lift rdEnvm
2.5 Summary

Monad transformers and lifting are summarized in Figures 2.2 and 2.3. The most

problematic case is the continuation monad transformer ContT. Not only are
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State:

type StateT s m a = s! m (s; a)
returnStateT s m a = �s: returnm(s; a)
bindStateT s m e k =�s:f(s0; a) es;kas0gm
update f = �s: returnm(fs; s)
liftStateT se = �s:fa e; returnm(s; a)gm

Environment:

type EnvT r m a = r! m a
returnEnvT r m a = ��: returnm a
bindEnvT r m e k =��:fa e�;ka�gm
rdEnv = ��: returnm �
inEnv � c = ��0:c �
liftEnvT re = ��:e

Errors:

type Err a = Ok a j Err String
type ErrT m a = m (Err a)
returnErrT m = returnm �Ok
bindErrT me k =fa e;

case a of
Ok x ! kx
Err s ! returnm(Err s)g

err = returnm �Err

liftErrT = mapmOk

Continuation:

type ContT cma = (a! mc)! mc
returnContT c m a = �k:ka
bindContT c m e f = �k:e(�a:fak)
callcc f = �k:f(�a:�k0:ka)k
liftContT c = bindm

Figure 2.2: Monad transformers

operations relatively hard to lift though ContT, the callcc operation also requires

more work to lift through other monad transformers.

Equipped with the monad transformers, we can construct the underlying

monad M to support all of the semantic building blocks in Section 2.1:
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Functions err, update and rdEnv are easily lifted using lift:

errt m = liftt m � errm
updatet m = liftt m � updatem
rdEnvt ) = liftt mrdEnvm

List can only be the base monad:

merge(t1:::(tn List):::) = join(t1:::(tn List):::) � liftt1
� : : : � lifttn

Liftings of callcc and inEnv:

callcct m f inEnvt m � e
EnvT r m ��:callccm(�k:f(�a:��0:ka)�) ��0:inEnvm�(e�0)
StateT s m �s0:callccm(�k:f(�a:�s1:k(s0; a))s0) �s:inEnvm�(es)
ErrT m callccm (�k:f(�a:k(Ok a))) inEnvm � e

Figure 2.3: Liftings

typeM a = EnvT Env (environment)(ContT Answer (continuation)(StateT Store (store)(StateT IO (input/output)(ErrT (error reporting)

List)))) a (nondeterminism)

Env, Answer, Store, and IO are the types of environment, answer, store, and I/O

channels, respectively. The order of some monad transformers can be changed.

However, because of the limitations in lifting inEnv through ContT, we cannot

exchange the order of EnvT and ContT.

By using a series of abstractions, modular monadic semantics turns the mono-

lithic structure of traditional denotational semantics into reusable components.

The modularity is manifested at two levels, high-level monadic building blocks

and low-level monad transformers.
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We have, however, only achieved part of our goal. Without a theory of monads

and monad transformers, we would have to unfold the definitions of all kernel-

level monadic operations (such as bind and inEnv) to reason about semantic building

blocks and the source language. In the next chapter, we will present a theory that

enables us to perform equational reasoning at a higher-level with a set of laws and

axioms.



32 CHAPTER 2. MODULAR MONADIC SEMANTICS



Chapter 3

A Theory of Monads and Monad

Transformers

The purpose of developing a theory for monads and monad transformers is to

reason about the monadic semantics without having to unfold the definitions of

kernel-level monadic operations (e.g., bind, inEnv). Unfolding the monadic opera-

tions would defeat the purpose of the modular abstraction mechanism. Instead, we

will make it possible to perform equational reasoning at a high level by providing a

set of properties directly associated with various monadic operations. An example

in Chapter 5 will further demonstrate that reasoning in the monadic framework

offers modular proofs and more general results. In this chapter, we concentrate on

the fundamental properties of monads and monad transformers.

This chapter begins with the formal definition of monads and monad trans-

formers, based on Moggi’s and Walder’s earlier work. The main topics of this

chapter are:� how monadic axioms capture the properties of individual programming lan-

guage features, and� how natural liftings preserve existing features and capture the interactions

33
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between the newly added feature and existing features.

This chapter ends with a discussion of the order of composing monad transformers.

3.1 Monad and Monad Transformers

In this section we give a formal definition of monads and monad transformers.

3.1.1 Monads

Definition 3.1.1 A monad M is a triple consisting of a type constructor and two

functions: (m, returnm, bindm). Monads must satisfy the following laws [Moggi,

1990]: fb return a;k bg = k a (left unit)fa e; return ag = e (right unit)fv1  e1;fv2  e2; e3gg = fv2  fv1  e1; e2g; e3g (associativity)

Intuitively, the (left and right) unit laws say that trivial computations can be skipped

in certain contexts; and the associativity law captures the very basic property of

sequencing, one that we usually take for granted in imperative programming

languages.

Note that in the associativity law, e1 is in the scope of v2 on the right hand side

but not so on the left hand side. In applying this law, we must make sure that there

is no unwanted name capture.

The type constructors Id and List introduced in Chapter 2 are well-known mon-

ads (presented in, for example, [Wadler, 1990]):

Proposition 3.1.1 Id and List are monads.
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3.1.2 Monad Transformers

To capture monad transformers formally, we first introduce monad morphisms

[Moggi, 1990]:

Definition 3.1.2 Amonad morphism f between monads m and m0 is a function of

type: f : m a! m0 a
satisfying: f: returnm = returnm0f (bindm m k) = bindm0 (f m) (f � k)
Note that f is polymorphic in a. We can now define monad transformers as follows:

Definition 3.1.3 A monad transformer consists of a type constructor t and an

associated function liftt, where t maps any given monad (m, returnm, bindm) to

a new monad (t m, returnt m, bindt m). Furthermore, liftt is a monad morphism

between m and t m:

liftt : m a! t m a
Therefore lifting a trivial computation results in a trivial computation; lifting a

sequence of computations is equivalent to first lifting them individually, and then

combining them in the lifted monad.

The type constructors listed in Figure 2.2 satisfy the above definition.

Proposition 3.1.2 EnvT r, StateT s, ErrT, and ContT c are monad transformers.

It is well known that these type constructors transform monads to monads.

“EnvT r” is the composable reader monad presented in [Jones and Duponcheel,

1993]. The remaining three were discovered by Moggi [Moggi, 1990]. Appendix

A contains detailed proofs that the corresponding lift functions are indeed monad

morphisms.

Monad transformers compose with each other (a property that follows imme-

diately from the definition of monad morphisms):
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Proposition 3.1.3 Given monad transformers t1 and t2, t1 �t2 is a monad transformer

with:

type (t1 � t2) m a = t1 (t2 m) a
lift(t1�t2) = liftt1

� liftt2

3.2 Environment Axioms

Environments have a profound impact on programming language semantics and

compilation. For example, lexically scoped languages fit well into the environ-

ment model. The monadic framework provides us a way to capture the essential

properties of environments as follows:

Proposition 3.2.1 The environment operations, rdEnv and inEnv satisfy the follow-

ing axioms:(inEnv �) � return = return (unit)

inEnv � fv  e1; e2g = fv  inEnv � e1; inEnv � e2g (distribution)

inEnv � rdEnv = return � (cancellation)

inEnv �0 (inEnv � e) = inEnv � e (overriding)

Intuitively, a trivial computation cannot depend on the environment (the unit

law); the environment stays the same across a sequence of computations (the

distribution law); the environment does not change between a set and a read if there

are no intervening computations (the cancellation law); and an inner environment

supersedes an outer one (the overriding law). The distribution law, for example,

is what distinguishes the environment from a store. A store does not distribute

across a sequence of computations. It is updated as the computation progresses.

We can prove the environment axioms by first verifying that they hold after the

environment monad transformer is applied, and then by making sure that they are

preserved through the liftings of rdEnv and inEnv. A detailed proof of these results

is included in Appendix A.



3.3. NATURAL LIFTINGS 37

In Chapter 5, we will present an example that uses the environment axioms to

prove a property about compiling the source language.

The environment axioms provide an answer to the question: “what constitutes

an environment?” We expect that useful monadic axioms can be derived for other

features, following the earlier efforts on state [Hudak and Bloss, 1985] [Peyton Jones

and Wadler, 1993] [Hudak, 1992], continuations [Felleisen et al., 1986] [Felleisen and

Hieb, 1992] and exceptions [Spivey, 1990].

3.3 Natural Liftings

In this section, we investigate what conditions a desirable lifting must satisfy. First

we will formalize how types are transformed in the lifting process. We will then

introduce the natural lifting condition and verify that the liftings we constructed in

Section 2.4 are indeed natural.

3.3.1 Lifting Types

How does its type change when an operation is lifted? The set of operations we

consider has the following types in monad m:� ::= A (type constants)j a (type variables)j � ! � (functions)j (�; � ) (products)j List � (lists)j m � (computations)

When an operation is lifted through the monad transformer t, its new type can be

derived by substituting all occurrences of m in the type with t m. Formally, d�et is
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the mapping of types across the monad transformer t:dAet = Adaet = ad�1 ! �2et = d�1et ! d�2etd(�1; �2)et = (d�1et; d�2et)dList �et = List d�etdm �et = t m d�et
3.3.2 Natural Lifting Condition

What properties should a particular lifting satisfy? Recall that in Section 2.4.3, we

noted that the following was not a desirable lifting of inEnv through ContT:

inEnvContT c m r c = �k:inEnvm r (c k)
The problem is that the environment is not restored when c invokes k, which is

equivalent to, for example, not popping off the arguments after a function returns.

This lifting is not desirable because the new feature (continuation) has disrupted

the existing feature (environment).

Intuitively, any programs not using the added feature should behave in the

same way after a monad transformer is applied. The monad morphism property

of lift ensures that single computations are properly lifted. But some operations,

such as callcc, have more complex types—they take computations as arguments.

We extend Moggi’s original definition and define natural liftings as a family of

relations L� , indexed by type � :
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Definition 3.3.1 L� is a natural lifting of operations of type � along the monad

transformer t if it satisfies:L� : � ! d�etLA = id (1)La = id (2)L�1!�2
= �f:f 0 satisfying:8L�1

;9L�2
; such that: f 0 � L�1

= L�2
� f (3)L(�1;�2) = �(a; b):(L�1

a;L�2
b) (4)LList � = mapList L� (5)Lm � = liftt � (mapm L� ) (6)

Despite the similarity between cases 5 and 6, case 5 is in fact more similar to

case 4. Both cases 4 and 5 map � across the some basic data type. In case 6, m is

the monad on which the monad transformer t is applied.

Constant types (such as integer) and polymorphic types do not depend on any

particular monad. (See cases 1 and 2.) On the other hand, we expect a lifted

function, when applied to a value lifted from the domain of the original function,

to return a lifting of the result of applying the original function to the unlifted

value. This relationship is precisely captured by equation 3, which corresponds to

the following commuting diagram:d�1et d�2et�1 �2

-f 0 -f6L�1

6L�2

The liftings of tuples and lists are straightforward. Finally, the lift operator that

comes with the monad transformer m lifts computations in m. Note that L� is

mapped to the result of the computation, which may involve other computations.
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The above does not provide a constructive definition for a type-parametric lifting

function L. The “satisfying” clause in the third equation specifies a constraint,

rather than a definition of f 0. That is why we define L as a relation rather than a

function. In practice, we first find out by hand how to lift an operation through

particular monad transformers, and then use the above equations to verify that

such a lifting is indeed natural.

3.3.3 Examples

We now verify the natural lifting condition for the liftings in Section 2.4. The

easy cases (update, err and rdEnv) are covered by the following theorem by Moggi

[Moggi, 1990]:

Proposition 3.3.1 If function f ’s domain does not involve any monadic type, then:

liftt � f
is a natural lifting of f through any monad transformer t.
Since the domain type (call it � ) does not involve the monad, the lifting of � is � itself.

The above theorem follows from the commutativity of the following diagram:� d� 0et� � 0-liftt � f -f6
id

6
liftt

We address the remaining cases (merge, inEnv and callcc) separately.

Proposition 3.3.2

merge(t1:::(tn List):::) = join(t1:::(tn List):::) � liftt1
� � � lifttn

is a natural lifting of mergeList.
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To prove that the lifting for merge is natural, we need the following property of

map and join:

Lemma 3.3.1 If t is a monad transformer, m a monad, then:

liftt � joinm = joint m � liftt � (mapm liftt)
Proof:

liftt (joinme) = liftt fa e; agm (join)= fa liftte; lifttagt m (monad morphism)= fa liftte; b returnt m(liftta); bgt m (left unit)= joint m fa liftte; returnt m(liftta)gt m (join)= joint m fa liftte; liftt(returnm(liftta))gt m (monad morphism)= joint m (liftt fa e; returnm(liftta)gm) (monad morphism)= joint m (liftt (mapm liftt e)) (map)

We can now prove Proposition 3.3.2 by verifying that the following diagram com-

mutes:

List ((t1 : : : (tn List) : : :) a) (t1 : : : (tn List) : : :) a
List (List a) List a-merge(t1:::(tn List):::) -

mergeList

6
mapList (liftt1

� � � lifttn) 6
liftt1
� � � lifttn

Indeed we have:

merge(t1:::(tn List):::) �mapList (liftt1
� � � lifttn)= merge(t1���tn) List �mapList liftt1���tn (3.1.3)= liftt1���tn �mergeList (3.3.1)= liftt1
� � � lifttn �mergeList (3.1.3)
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Proposition 3.3.3

inEnvEnvT r0 m� e = ��0:inEnvm � (e �0)
inEnvStateT s m� e = �s:inEnvm � (e s)
inEnvErrT m� e = inEnvm � e

are natural liftings of inEnvm.

For inEnvt m to be a natural lifting, we need to prove that:

inEnvt m� � liftt = liftt � inEnvm�
Indeed we have:

inEnvEnvT r0 m� (liftEnvT r0 me) = ��0:inEnvm�(liftEnvT r0 me�0) (inEnvEnvT r0 m)= ��0:inEnvm�e (liftEnvT r0 m)= liftEnvT r0 m(inEnvm�e) (liftEnvT r0 m)

inEnvStateT s m� (liftStateT s me)= �s:inEnvm�(liftStateT s mes) (inEnvStateT s m)= �s:inEnvm�fa e; returnm(s; a)gm (liftStateT s m)= �s:fa inEnvm�e; returnm(s; a)gm (Prop. 3.2.1)= liftStateT s m(inEnvm�e) (liftStateT s m)

inEnvErrT m� (liftErrT me) = inEnvm�(liftErrT me) (inEnvErrT m)= inEnvm�fa e; returnm(Ok a)gm (liftErrT m, mapm)= fa inEnvm�e; returnm(Ok a)gm (Prop. 3.2.1)= liftErrT m(inEnvm�e) (liftErrT m)

Proposition 3.3.4

callccEnvT r m = ��:callccm(�k:f(�a:��0:ka)�)
callccStateT s m f = �s0:callccm (�k:f (�a:�s1:k (s0; a)) s0)
callccErrT m f = callccm(�k:f(�a:k(Ok a)))

are natural liftings of callccm.
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To prove Proposition 3.3.4, we apply Definition 3.3.1 to the type of callcc, and

arrive at the following lemma:

Lemma 3.3.2

callcct m is a natural lifting of callccm
iff:8f; f 0:(8k:f 0(liftt � k) = liftt(fk)) ) callcct mf 0 = liftt(callccmf)

Using Lemma 3.3.2, it is easy to show that callccEnvT r m is a natural lifting of callccm:

callccEnvT r mf 0 = ��:callccm(�k:f 0(�a:��0:ka)�) (callccEnvT r m)= ��:callccm(�k:f 0(�a:liftEnvT r(ka))�) (liftEnvT r)= ��:callccm(�k:liftEnvT r(fk)�) (prerequisite of 3.3.2)= ��:callccm(�k:fk) (liftEnvT r)= liftEnvT r(callccmf) (liftEnvT r)
Paterson [Paterson, 1995] showed a simple proof for the naturalness of callccErrT m

using the free theorem [Wadler, 1989] for callcc:8g; h; f; f 0:(8k; k0:k0 � g = map h � k ) f 0k0 = map g (fk)))
callccf 0 = map g (callccf)

By specializing f 0 to �k:f 00(k � g), we can transform the free theorem to:

Lemma 3.3.3 8g; h; f; f 00:(8k; f 00(map h � k) = map g (fk)))
callcc(�k:f 00(k � g)) = map g (callccf)

We use Lemma 3.3.3 to prove callccErrT m is a natural lifting. Let:g = h = Ok

we have:
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callccErrT mf 00 = callccm(�k:f(k �Ok)) (callccErrT m)= mapmOk (callccm f) (free theorem and prerequisite in 3.3.2)= liftErrT (callccm f) (liftErrT)

Thus callccErrT m is a natural lifting, following Lemma 3.3.2.

The free theorem, however, is not powerful enough to prove the naturalness

of callccStateT s m. Instead, we introduce the following lemma, which is a slight

variation of the free theorem.

Lemma 3.3.48g; h; f; f 0; s0:(8k; f 0(�x:�s:map (�x:h(s; x)) (kx))s0 = map g (fk))
callcc (�k:f 0(�x:�s:k(gx))s0) = map g (callcc f)

The proof of the lemma is in Appendix A. We will apply Lemma 3.3.4 with the

following specialized definitions to prove callccStateT s m is a natural lifting:g = �x:(s0; x)h = �x:x
The proof is carried out in two steps. First, we verify the prerequisite of Lemma

3.3.4, using the prerequisite of Lemma 3.3.2.f 0(�x:�s:mapm (�x:h(s; x)) (kx))s0= f 0(�x:�s:mapm (�x:(s; x)) (kx))s0 (h)= f 0(�x:liftStateT s (kx))s0 (liftStateT s)= liftStateT s (fk)s0 (prerequisite of 3.3.2)= mapm g (fk) (liftStateT s)
Second, we use the result of Lemma 3.3.4 to establish the the sufficient and necessary

condition in Lemma 3.3.2:
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callccStateT s m f 0 s0 = callccm(�k:f 0(�a:�s1:k(s0; a))s0) (callccStateT s m)= mapm(�a:(s0; a)) (callccm f) (3.3.4)= liftStateT s (callccm f) (liftStateT s)
Apply the above to Lemma 3.3.2, we have proved that callccStateT s m is a natural

lifting.

So far we have established that all the liftings in Figure 2.3 are natural. Note

that the following lifting of callccStateT s m:

callccStateT s m f = �s0:callccm (�k:f (�a:�s1:k (s1; a)) s0)
which passes the current state to the continuation, is not natural. Here is a counter-

example discovered by Paterson [Paterson, 1995]. Let:f 0k = liftStateT s(f(�x:bind(kxs1)(�(s0; x): returnx)))
For any state s1, f’ and f meet the condition:8k:f 0(liftStateT s � k) = liftStateT s(fk))
However:

callccStateT s (ContT c Id)f 0 s0 k = f(�x:�k0:k(s1; x))(�x:k(s0; x))
liftStateT s(callccContT c Idf) s0 k = f(�x:�k0:k(s0; x))(�x:k(s0; x))

are different.

3.4 Ordering of Monad Transformers

The ordering of monad transformers has an impact on the resulting semantics. For

example, we have seen that lifting callcc through StateT results in a “debugging”

semantics. On the other hand, if we apply ContT to a state monad, then we get the

usual semantics for callcc. To demonstrate, we construct two monads:
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typeM1 a = ContT c (StateT Int Id) a
typeM2 a = StateT Int (ContT c Id) a

The program segment:

callcc(�k:f  update(�x:x+ 1); k0g)
expands to: �k:�s0:k 0 (s0 + 1)
in M1, but to: �s0:�k:k (s0; 0)
in M2.

The key difference is that one combination captures the state in the continuation,

whereas the other combination does not.

In general we can swap the ordering of some monad transformers (such as

between StateT and EnvT), but doing so to others (such as ContT) may effect se-

mantics. This is consistent with earlier experience in combining monads [King and

Wadler, 1993], and, in practice, provides us with an opportunity to fine tune the

resulting semantics.



Chapter 4

Modular Monadic Interpreters

We can transform a denotational semantics description into an executable inter-

preter by translating the mathematical notations into corresponding programming

constructs. Modern functional languages such as Haskell [Hudak et al., 1992] or

SML [Milner et al., 1990] are particularly suitable because these languages offer

features such as algebraic data types and higher-order functions that match well

with the mathematical notations used in denotational semantics.

While the static type system in Haskell or SML is capable of implementing

traditional denotational semantics, implementing monadic modular semantics in

a strongly typed language has proved to be a challenge. For example, Steele

[Steele Jr., 1994] reported numerous difficulties when he built a modular monadic

interpreter in Haskell. Although the Haskell type system can implement individual

monads and monad transformers as type constructors, modular monadic semantics

requires the type system to capture relationships among different monads and

monad transformers.

We have successfully implemented a modular monadic interpreter in Gofer

[Jones, 1991], whose constructor classes and multi-parameter type classes provide just

the added power over Haskell’s type classes1 to allow precise and convenient

1The newly defined Haskell 1.3 [Peterson and Hammond, 1996] supports constructor classes

47
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type Term = OR TermA -- arithmetic
( OR TermF -- functions
( OR TermR -- assignment
( OR TermL -- lazy evaluation
( OR TermT -- tracing
( OR TermC -- callcc

TermN -- nondeterminism
)))))

type M = EnvT Env -- environment
( ContT Answer -- continuations
( StateT Store -- memory cells
( StateT String -- trace output
( ErrT -- error reporting
List -- multiple results
))))

type Value = OR Int -- integers
( OR Loc -- memory locations
( OR Fun -- functions

()))

Figure 4.1: Gofer specification of a modular interpreter

expression of the typing relationships. Figure 4.1 gives the high-level definition of

the interpreter for our source language. The rest of the chapter will explain how

the type declarations expand into a full interpreter. For now just note that OR is

equivalent to the domain sum operator, and that Term, Value and M denote the

abstract syntax, runtime values, and the interpreter monad, respectively.

(but not multi-parameter type classes).
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4.1 Extensible Union Types

We begin with a discussion of a key idea in our implementation: how values and

terms may be expressed as extensible union types. This facility has nothing to do

with monads.

The disjoint union of two types is implemented by the data type OR:

data OR a b = L a
| R b

where L and R are used to perform the conventional injection of a summand type

into the union; conventional pattern-matching is used for projection. However,

such injections and projections only work if we know the exact structure of the

union. When building modular interpreters, an extensible union may be arbitrarily

nested or extended. We would like a single pair of injection and projection functions

to work on all such constructions.

To achieve this, we define a multi-parameter type class to implement the sum-

mand/union type relationship, which we refer to as a “subtype” relationship:

class SubType sub sup where
inj :: sub -> sup -- injection
prj :: sup -> Maybe sub -- projection

data Maybe a = Just a
| Nothing

The Maybe data type is used because the projection function may fail. We can now

express the relationships between the summand and union types:

instance SubType a (OR a b) where
inj = L
prj (L x) = Just x
prj _ = Nothing

instance SubType a b => SubType a (OR c b) where
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inj = R . inj
prj (R a) = prj a
prj _ = Nothing

It would appear that we could have a more symmetric instance declaration in place

of the second declaration above:

instance SubType a (OR b a) where
inj = R
prj (R x) = Just x
prj _ = Nothing

With this declaration, however, the Gofer type system complains that (OR a a)

is an overlapping instance. The type system cannot determine which of the two

injection/projection pairs are applicable if the programmer supplies, for example,

(OR Int Int) as the union type.

Now we can see how the Value domain used in Figure 4.1, for example, is

actually constructed:

type Value = OR Int (OR Loc (OR Fun ()))
type Fun = M Value -> M Value

With these definitions the Gofer type system will infer that Int, Loc, and Fun are

all “subtypes” of Value, and the coercion functions inj and prjwill be generated

automatically.2

4.2 Interpreter Building Blocks

As seen in Figure 4.1, the Term type is also constructed as an extensible union (of

subterm types). We define additionally a class InterpC to characterize the term

types that we wish to interpret:

2Most of the typing problems Steele [Steele Jr., 1994] encountered disappear with the use of our
extensible union types; in particular, there is no need for Steele’s “towers” of data types.
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class InterpC t where
interp :: t -> M Value

The behavior of the evaluation function interp on unions of terms is given in the

obvious way:

instance (InterpC t1, InterpC t2) =>
InterpC (OR t1 t2) where

interp (L t) = interp t
interp (R t) = interp t

The interpreter is just the method associated with the top-level type Term:

interp :: Term -> M Value

The interpreter building blocks are straightforward translations of the semantic

building blocks in Section 2.1 into instance declarations. For example, the arith-

metic building block can be implemented as follows:

data TermA = Num Int
| Add Term Term

instance InterpC TermA where
interp (Num x) = returnInj x
interp (Add x y) = interp x ‘bindPrj‘ \i ->

interp y ‘bindPrj‘ \j ->
returnInj ((i + j) :: Int)

returnInj = return . inj
m ‘bindPrj‘ k = m ‘bind‘ \a ->

case (prj a) of
Just x -> k x
Nothing -> error "type error"

Note the simple use of inj and prj to inject/project the integer result into/out of

the Value domain, regardless of how Value is eventually defined (returnInj

and bindPrjmake this a tad easier). The error function is Gofer’s runtime error

function which is denotationally equivalent to ?.
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We omit Gofer implementation of other interpreter building blocks. They can

be similarly translated from the corresponding monadic semantics.

Before discussing how to implement the monad transformers needed to con-

struct the interpreter monad M, we introduce Gofer’s constructor classes through a

motivating example.

4.3 Constructor Classes

Constructor classes [Jones, 1993] support abstraction of common features among

type constructors. Haskell, for example, provides the standard map function to

apply a function to each element of a given list:

map :: (a -> b) -> List a -> List b

Meanwhile, we can define similar functions for a wide range of other data types.

For example:

data Tree a = Leaf a
| Node (Tree a) (Tree a)

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f (Leaf x) = Leaf (f x)
mapTree f (Node l r) = Node (mapTree f l) (mapTree f r)

The mapTree function has similar type and functionality to those of map. With

this in mind, it seems a shame that we have to use different names for each of

these variants. Indeed, Gofer allows type variables to stand for type constructors,

on which the Haskell type class system has been extended to support overloading.

To solve the problem with map, we can introduce a new constructor class Functor

(in a categorical sense):

class Functor f where
map :: (a -> b) -> f a -> f b
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Now the standard list (List) and the user-defined type constructor Tree can be

defined as instances of Functor:

instance Functor List where
map f [] = []
map f (x:xs) = f x : map f xs

instance Functor Tree where
map f (Leaf x) = Leaf (f x)
map f (Node l r) = Node (map f l) (map f r)

Constructor classes are extremely useful for dealing with multiple instances of

monads and monad transformers (which are all type constructors).

4.4 Monads

We follow a well known approach [Jones, 1993] to define monads using a construc-

tor class:

class Monad m where
return :: a -> m a
bind :: m a -> (a -> m b) -> m b

map :: (a -> b) -> (m a -> m b)
join :: m (m a) -> m a

map f m = m ‘bind‘ \a -> return (f a)
join m = m ‘bind‘ id

Map and join are conveniently defined as default methods in terms of bind and

return. A specific monad, such as List, is an instance of the Monad class:

instance Monad List where
return x = [x]

[] ‘bind‘ k = []
(x:xs) ‘bind‘ k = k x ++ (xs ‘bind‘ k)
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The interesting properties of a monad are the additional operations it supports.

We can further define subclasses of Monad, each containing an additional set of

operations. For example, ListMonad has one extra operation merge:

class Monad m => ListMonad m where
merge :: List (m a) -> m a

The standard list monad List implements merge as follows:

instance ListMonad List where
--merge :: List (List a) -> List a

merge [] = []
merge (x:xs) = x ++ (merge xs)

Other classes of monads, such as StateMonad, EnvMonad, ContMonad and

ErrMonad, can be similarly defined. (See Appendix B for details.)

4.5 Monad Transformers

We implement monad transformers in the following constructor class definition:

class MonadT t where
lift :: (Monad m, Monad (t m)) => m a -> t m a

To illustrate how individual instances are defined, we use the state monad trans-

former (StateT) as an example. The Gofer implementation of EnvT, ContT, and ErrT

can be found in Appendix B.

From Section 2.3 we know that applying monad transformer StateT s to

monadm results in a monadStateT s m. Because Gofer only allows us to partially

apply a data type, not a type synonym, we introduce a dummy data constructor

and define StateT as an algebraic data type3:

3Haskell 1.3[Peterson and Hammond, 1996] introduces a newtype construct that can be used to
avoid the run-time penalty of dummy data constructors such as StateM.
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data StateT s m a = StateM (s -> m (s,a))
unStateM (StateM x) = x

instance Monad m => Monad (StateT s m) where
return x = StateM (\s -> return (s,x))
(StateM m) ‘bind‘ k =

StateM (\s0 -> m s0 ‘bind‘ \(s1, a) ->
unStateM (k a) s1)

The definition follows exactly from Figure 2.2, except for dealing with the StateM

data constructor. Note that bind and return are not recursive functions; the

constructor class system automatically infers that the functions appearing on the

right are for monad m.

Next, we define StateT s as a monad transformer:

instance MonadT (StateT s) where
-- lift :: m a -> StateT s m a

lift m = StateM (\s -> m ‘bind‘ \x -> return (s,x))

We introduce StateMonad as a subclass of Monad with an additional operation

update:

class Monad m => StateMonad s m where
update :: (s -> s) -> m s

Monad transformer StateT s adds the update function on s to any monad m:

instance Monad m => StateMonad s (StateT s m) where
update f = StateM (\s -> return (f s, s))

Finally, we can lift update through any monad transformer by composing it with

lift (see Proposition 3.3.1):

instance (StateMonad s m, MonadT t) =>
StateMonad s (t m) where

update = lift . update

As another example of lifting, we can apply any monad transformer to List and

obtain a ListMonad (see Proposition 3.3.2):

instance (MonadT t, Monad m) => ListMonad (t m) where
merge = join . lift
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4.6 Summary

We have shown that modular interpreter building blocks and monad transformers

can be implemented using two key features in Gofer type system: constructor classes

and multi-parameter type classes. Our approach offers several benefits. First, it allows

us to experiment with and debug our ideas. Second, the overloading mechanism

greatly facilitates representing multiple instances of monads and monad trans-

formers, eliminating the need for subscripts. Third, type checking guarantees that

we have enough features in the underlying monad to support the set of building

blocks needed for our source language. For example, if we had instead constructed

the monad M in figure 4.1 without the StateT String monad transformer:

type M = EnvT Env -- environment
( ContT Answer -- continuations
( StateT Store -- memory cells

-- missing state component for IO
( ErrT -- error reporting
List -- multiple results
)))

then the Gofer type system would complain that StateMonad String M cannot

be inferred from the definition of M.



Chapter 5

Compilation

In this chapter we investigate how to compile the source language from its monadic

semantics specification. The target language we consider is fairly high-level, pro-

viding support for closures, tagged data structures, basic control-flow (such as con-

ditionals) and garbage collection. How to implement a back-end that efficiently

supports such target languages has been investigated by a number of compiler

research efforts (e.g., the techniques developed for T [Kranz et al., 1986], SML/NJ

[Appel, 1992], and Haskell [Peyton Jones, 1992]).

Even though we do not tackle the problem of building compiler back-ends,

our work provides insights into how we may build a common back-end capable of

supporting a variety of source languages. Writing separate back-ends for different

source languages leads to duplication of efforts. On the other hand, a common

back-end has the following benefits:� It simplifies the task of constructing compilers.� It allows multiple source languages to interoperate by freely exchanging

compatible runtime data.

Modular monadic semantics fits well with a common back-end, because it is

suitable for specifying multiple source languages, and, as will be seen, it leads to an

57
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efficient and provably correct compilation scheme. This is achieved in several steps.

First, we require that our semantics be compositional: the arguments in recursive

calls to E are substructures of the argument received on the left-hand side. From

a theoretical point of view, it makes inductive proofs on programs possible. In

practice, this guarantees that, given any abstract syntax tree, we can recursively

unfold all calls to the interpreter, effectively removing runtime dispatch on the

abstract syntax tree.

Our second step is to simplify the resulting monadic style code composed out of

various monadic operations (such as bind and inEnv). As will be seen in Section 5.1,

monad laws are useful in simplifying code; and environment axioms can be used

to eliminate the costly interpretive overhead of environment lookups. In Section

5.2, we formally prove that all environment lookups can be removed.

The final step (Section 5.3) is to map monadic-style intermediate code to the

target language. The main focus is on how to utilize the built-in target language

features.

We will present a compilation method for our source language (defined in

Section 1.5) following the above steps. To demonstrate that our techniques are

applicable to realistic languages, in Section 5.4 we will use monadic semantics

to target the STG Language (the intermediate language of the Glasgow Haskell

Compiler) to the SML/NJ back-end.

5.1 Using Monad Laws to Transform Programs

Following the monadic semantics presented in Chapter 2, by unfolding all calls to

the semantic function E, we can transform source-level programs into monadic-

style code. For example, “((�x:x+ 1) 2)v” is transformed to:
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return (�x:inEnv �[x=[[v]]] f i f � rdEnv;�[[v]] g;j  return 1;

return (i+ j) g) g;v return 2;f(return v) g
Even without any further simplifications, the above code is clear enough to

describe the computation. By applying monad laws we can simplify it to:f � rdEnv;(�x:inEnv �[x=[[v]]] f � rdEnv;i �[[v]];
return (i+ 1) g) (return 2) g

By applying the distribution, unit and cancellation environment axioms, fol-

lowed by the unit monad law, we can further transform the example code to:f � rdEnv;(�x:fi inEnv �[x=[[v]]] x; return (i+ 1)g) (return 2) g
Note that explicit environment accesses have disappeared. Instead, the meta-

language environment is directly used to support function calls. This is exactly

what good partial evaluators achieve when they transform interpreters to compil-

ers.

Note that the true computation in the original expression “((�x:x+1) 2)v” is left

unreduced. With traditional denotational semantics, it is harder to distinguish the

redexes introduced by the compilation process from computations in the source

program. In the above example, we could safely further reduce the intermediate

code:
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However, in general, unrestricted reductions for arbitrary source programs

could result in unwanted compile-time exceptions, such as in “((�x:10=x) 0)v .”

5.2 A Natural Semantics

We successfully transformed away the explicit environment in the above example,

but can we do the same for arbitrary source programs? If that is possible, we will

have an effective compilation scheme that uses the target language environment

for the source language, without any interpretive overhead.

It turns out that we can indeed prove such a general result by using monad laws

and environment axioms. Following Wand [Wand, 1990], we define a “natural

semantics” that translates source language variables to lexical variables in the

meta-language, and we prove that it is equivalent to the standard semantics.

5.2.1 Definition of a Natural Semantics

We adopt Wand’s definition of a natural semantics (which differs from Kahn’s notion

[Clément et al., 1986]) to our functional sub-language. For any source language

variable name v, we assume there is a corresponding variable name v in the meta-

language, and � is an environment that maps variable name v to v.

Definition 5.2.1 The natural semantics for the source language is defined as follows:



5.2. A NATURAL SEMANTICS 61N [[v]] = vN [[�v:e]] = return(�v:inEnv � N [[e]])N [[(e1 e2)n]] = ff  N [[e1]]; f(inEnv � N [[e2]])gN [[(e1 e2)v]] = ff  N [[e1]]; v N [[e2]]; f(return v)gN [[(e1 e2)l]] = f f  N [[e1]];l alloc;

let thunk = f v inEnv � N [[e2]]; write (l; return v);
return v g

in f  write (l; thunk);f (read l) g g
Other source-level constructs, such as +, :=, and callcc, do not explicitly deal

with the environment, and have the same natural semantics as the standard se-

mantics.

The natural semantics uses the environment of the meta-language for variables

in the source language.

5.2.2 Correspondence between Natural and Standard Semantics

The next theorem, a variation of Wand’s [Wand, 1990], states that the standard

semantics and natural semantics are equivalent, and thus guarantees that it is

safe to implement function calls in the source language using the meta-language

environment.

Theorem 5.2.1 For any source language program e, we have:

inEnv � E[[e]] = inEnv � N [[e]]
The detailed proof is in Appendix A. The basic technique is equational rea-

soning based on the rules of lambda calculus (e.g., � reduction), monad laws, and
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environment axioms. We establish the theorem for each semantic building block,

independent of:� the existence of other building blocks, and� the organization of the underlying monad.

Therefore the result holds for each building block as long as the underlying monad

provides the necessary kernel-level support so that the monad laws and environ-

ment axioms hold. The proof can be reused, even after other features are added

into the source language.

The proof is possible because both the source language and meta language are

lexically scoped. If the source language supported dynamically scoped functions:E[[�v:e]] = return(�c:f� rdEnv; inEnv �[c=[[v]]]E[[e]]g);
where the caller-site environment is used within the function body, then the theo-

rem would fail to hold.

5.2.3 Benefits of Reasoning in Monadic Style

In denotational semantics, adding a feature may change the structure of the entire

semantics, forcing us to redo the induction for every case of abstract syntax. For

example, Wand [Wand, 1990] pointed out that he could change to a continuation-

based semantics, and prove the theorem, but only by modifying the proofs accord-

ingly.

Modular monadic semantics, on the other hand, offers highly modularized

proofs and more general results. This is particularly applicable to real program-

ming languages, which usually carry a large set of features and undergo evolving

designs.
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5.3 Targeting Monadic Code

In general, it is more efficient to use target language built-in features instead of

monadic combinators defined as higher-order functions. We have seen how the

explicit environment can be “absorbed” into the meta-language. This section ad-

dresses the question of whether we can do the same for other features, such as

stores and continuations.

5.3.1 The Target Language Monad

We can view a target language as having a built-in monad supporting a set of

monadic operations. For example, the following table lists the correspondence

between certain monadic operations and ML constructs:

Monadic operations ML constructs

returnx xfx c1; c2g let val x = c1 in c2 end

update ref; !; :=;print

callcc callcc

err raise Err

Note that the imperative features in ML (e.g., := and print) supports a single-

threaded store, whereas the monadic update operation more generally supports

recoverable store. It is easy to verify that the monad laws are satisfied in the above

context. For example, the ML let construct is associative (assuming no unwanted

name capturings occur):

let val v2 = let val v1 = c1

in c2 end

in c3 end

=

let val v1 = c1

in let val v2 = c2

in c3 end end
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5.3.2 Utilizing Target Language Features

We now investigate how to utilize the features directly supported by the target

language monad. Because of a technical limitation related to nondeterminism, we

tentatively drop it from our source language. (We will discuss the support for

nondeterminism later.) The underlying monad M becomes:

typeM a = EnvT Env (ContT Answer (StateT Store (StateT IO (ErrT Id)))) a
Now we substitute the base monad Id with the built-in ML monad (call it MML):

typeM1 a = EnvT Env (ContT Answer (StateT Store (StateT IO (ErrT MML)))) a
Note that M1 supports two sets of kernel-level operations for continuation, store,

I/O, and error reporting. The monadic code can choose to use the ML built-in

operations instead of those implemented as higher-order functions. In addition, if

we have used the natural semantics to transform away all environment accesses,

then the EnvT monad transformer is no longer useful. Because the natural lifting

condition guarantees that adding or deleting an unused monad transformer does

not effect the result of the computation, it suffices to run the target program on M2:

typeM2 a = MML a
which directly utilizes the more efficient ML built-in features.

Therefore, by using a monad with a set of primitive monadic combinators, we

can expose the features embedded in the target language. It then becomes clear

what is directly supported in the target language, and what needs to be compiled

explicitly.

The above process would have been impossible had we been working with

traditional denotational semantics. Various features clutter up and make it hard to

determine whether it is safe to remove certain interpretation overhead, and how to

achieve that.

We do not need to transform away all monad transformers. For example, the

following monad is also capable of supporting the source language:
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typeM3 a = ContT Answer MML a
Because M3 supports two callcc operations, the monadic code can either use the

ML built-in callcc function, or use the callcc supported by the continuation monad

transformer.

5.3.3 Limitations of This Approach

It is important to recognize the limitations of the transformation process:

1. Unlike other features, nondeterminism must be directly supported by the

target language, since the nondeterminism monad (List) must be the base

monad. This is why we put aside nondeterminism in the preceding discus-

sion.

2. We have shown that the ordering of monad transformers (in particular, the

cases involving ContT) has an impact on the resulting semantics. In practice,

we need to make sure when we use one monad transformer instead of another,

that the resulting change of ordering does not have unwanted effects on

semantics. For example, if we had left one of the state monad transformers

unreduced:

typeM4 a = StateT Store MML a
we have effectively swapped the order of StateT and ContT. (The latter is now

supported in MML.)

5.3.4 Implications for a Common Back-end

To overcome the above limitations, a common back-end must support a rich set of

features needed by a wide range of source languages, thereby guaranteeing that

we can always transform away the monad transformers.
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The ordering of monad transformers only effects the semantics of callcc. To

deal with situations where the order of monad transformers matters, the back-end

can provide multiple variations of the a monadic operation, with each version

implementing a variation of the semantics. For example, a back-end can support a

special version of callcc that captures the current state for the purpose of debugging.

5.4 An Experiment: Retargeting a Haskell Compiler

In this section, we put some of our ideas to the test by describing how we have

used them to retarget the Glasgow Haskell Compiler (GHC). Although monadic

semantics is equally capable of specifying various static semantics in the compi-

lation process—for example, the type checker and strictness analyzer in GHC are

both written in the monadic style—our focus has been on the dynamic semantics of

the source language. Therefore we begin with the STG language, the output of the

GHC front-end. The front-end has already transformed away Haskell’s syntactic

sugar, carried out type checking, and performed various program analysis (such

as strictness analysis) and front-end optimization (such as inlining).

The goal of this experiment is to connect the STG language with the SML/NJ

back-end [Appel, 1992]. We chose the SML/NJ back-end because it provided

efficient support for closures, tagged data structures (for implementing algebraic

data types), basic control flow (if and case constructs), and garbage collection. This

is exactly the set of run-time support needed to implement monadic semantics.

5.4.1 The STG Language

The STG language [Peyton Jones, 1992], whose grammar is shown in Figure 5.11, is

a small purely-functional language with an operational reading as well as the usual

1We dropped the update flag and free variable list from the lambda form because they are not
used in our framework.
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Expression e ::= let b in e (local definition)j letrec fb1; : : : ;bng in e (local recursion)j case e of (case on data type)c1 fv11; : : :g -> e1;: : :cn fvn1; : : : g -> en;v -> e (default)j case e of (case on literals)l1 -> e1;: : :ln -> en;v -> e (default)j v fa1; : : : ;ang (function application)j c fa1; : : : ;ang (constructor application)j p fa1; : : : ;ang (primitive application)j l (literals)

Binding b ::= v = � fv1; : : : ;vng : e (closure)

Atom a ::= v (variables)j l (literals)

Variable v
Primitive p
Constructor c
Literal l

Figure 5.1: The STG language
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denotational semantics. STG code has the following distinctive characteristics:� Arguments to functions and constructors are either variables or constants

(together called atoms).� All constructors and primitives are saturated. Functions, however, are by

default curried.� Case expressions cause evaluation to happen and perform one-level pattern

matching.� Let and letrec bindings create closures, which could either be functions or

delayed computations.

For example, given the Haskell program:

let f x y = x + y
in f 5

the corresponding STG code2 is:

let f = �fx; yg :+ fx; yg
in ff5g

Because the STG language supports partial applications, we pass one argument (5)

to f even though f takes two arguments.

5.4.2 Compiling the STG Language

The STG language is designed to run on the GHC back-end—the STG machine.

The major differences between the STG machine and the SML/NJ back-end are:

2To ease presentation, we use a slightly simplified version of STG code than the output of the
GHC front-end. In particular, we omit the primitive integer constructors (I#).
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Self-updating closures work similarly as the lazy evaluation semantics in

Section 2.1.4. The first evaluation of a closure causes the closure to update

itself to a trivial computation that simply returns the cached result. The

SML/NJ back-end, on the other hand, supports normal closures as well as

separate operations to create and update reference cells.� The STG machine directly supports curried function application. An efficient

built-in mechanism checks if functions have received enough arguments, and

if not, creates a closure that waits for more arguments. In comparison, the

SML/NJ back-end creates a closure for each intermediate argument, even if

the arguments are supplied at once. For example, suppose that g takes 3 ar-

guments. We first supply gwith 2 arguments, and supply the third argument

later in the computation. The STG machine only creates one intermediate

closure, whereas the SML/NJ back-end creates two closures, one for each of

the first two arguments.

Because the SML/NJ back-end does not support updatable closures, we im-

plement lazy evaluation using the cell mode [Bloss et al., 1988]. Figure 5.2 gives

an example of how an expression (factorial of 3) is delayed and cached in the cell

mode. To create a delayed computation, we allocate a two-element cell. The first

element contains a flag bit signaling whether the second element contains a delayed

computation or a cached value. The lazy evaluation semantics is guaranteed be-

cause the first evaluation sets the flag bit and overwrites the delayed computation

with the result.

Because a delayed computation incurs both space and time overhead, a well-

known technique in implementing lazy functional languages is to use the strictness

information so that we can directly pass values, instead of cells when it is safe to

do so. The GHC front-end includes a strictness analyzer. For example, given the

example program in Section 5.4.1:
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Before first evaluation After first evaluation

closure for:

fac(3)

0

1 6

Figure 5.2: How an expression (fac(3)) is evaluated in cell mode

let f x y = x + y
in f 5

The GHC front-end is able to determine that fmust evaluate both of its arguments,

i.e., f is strict in x and y.

5.4.3 Monadic Semantics of the STG Language

We will present a portion of monadic semantics for the STG Language in this

section. The complete semantics is listed in Appendix C.

As mentioned before, we can pass strict arguments directly without creating

a delayed computation (i.e., updatable cells). The Mode type signals whether the

data is passed as a value or a cell:

dataMode = C - - (updatable cells)j V - - (values)

Information about what mode each variable is in comes from the GHC strictness

analyzer, which is part of the GHC front-end. We will use the strictnessOf function

to obtain the mode of a given variable name. At run-time, a pair of functions

convert between these two modes:
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computation.

We introduce a strictness environment to keep track of what mode each variables

are in. The strictness environment maps variable names to strictness information:

data StrictnessInfo = VAR Mode - - (variables)j FUN [Mode1; : : : ;Moden] - - (functions)

VAR Mode implies that the variable is represented in the mode denoted by Mode.

On the other hand, FUN [Mode1; : : : ;Moden] implies that:� The variable is in the V (value) mode.� The variable is a known function.� The function takes n arguments, which are in modes Mode1, Mode2, etc.

We first present the monadic semantics for let bindings. Ee denotes the semantics

of STG expressions. Similarly, we will use Er,Ea andEv to denote the semantics for

closures (appearing on the right-hand side of let bindings), atoms, and variables,

respectively.
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letr = Er[[�fv1, : : :,vng.e1]]r0 = stdEntry v [[�fv1, : : :,vng.e1]]
body = inEnv �[FUN [strictnessOf v1; : : : ; strictnessOf vn]=[[v]]]Ee[[e2]]
inf(v; v) fix (�(v; v):fx r;x0 r0;

return (x; x0)g);
bodygg

We adopt the “natural semantics” style, which maps source language variables to

meta language variables. The fixed-point operator fix has type (a! m a)! m a.

Note that meta language variables v and v inside the argument of fix scope over r
and r0, whereas v and v on the left-hand side of scope over body. The environment

component above carries the strictness information, not runtime values.

The main difference between the above semantics and the source language

semantics in Section 5.2 is that here we map the STG variable v to two meta language

variables v and v. Meta language variable v denotes the optimized function entry

point; whereas v denotes the standard entry point.� The optimized function entry point allows us to pass multiple arguments

in an uncurried form and utilize the strictness information. The optimized

function entry point is only useful when all the arguments needed by the

function are available at the call site.� The standard entry point is used when we need to invoke an unknown

function, or when not all arguments are available. The standard entry point

expects all arguments to be passed in the cell mode.
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Optimized and standard entry points have been used in other Haskell compila-

tion systems, such as previous versions of the Yale Haskell Compiler [Yale Haskell

Group, 1994].

We build the standard entry from the optimized entry point using the semantic

function stdEntry, which will be defined later. Note that the meta language fixed

point operator fix defines v and v as recursive functions. This is because the

standard entry will be defined using the optimized entry; and the optimized entry

itself could also refer to the standard entry in the function body.

Following the natural semantics convention, we use meta language � abstrac-

tions to implement functions in the STG language. The semantics of � abstractions

is given by Er:Er[[�fv1, : : :,vng.e]] =f� rdEnv;

let

body = inEnv �[VAR (strictnessOf v1)=[[v1]]; : : : ;
VAR (strictnessOf vn)=[[vn]]] Ee[[e]]

in

return (�(v1; : : : ; vn):body)g
In the STG language, function applications always take the form of applying a

variable to a list of atoms. To utilize the strictness information, we treat function ap-

plications differently depending on whether we have received enough arguments.
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case �[[v]] of
VAR ! stdApp (Ev[[v]])[delay Ea[[a1]]; : : : ; delay Ea[[an]]] g
FUN [m1; : : : ;mk] !
if k > n then

stdApp (Ev[[v]])[delay Ea[[a1]]; : : : ; delay Ea[[an]]]
else if k = n then

optApp v [delay? m1 Ea[[a1]]; : : : ; delay? mk Ea[[an]]]
else

stdApp (optApp v [delay? m1 Ea[[a1]]; : : : ; delay? mk Ea[[ak]]])[delay Ea[[ak+1]]; : : : ; delay Ea[[an]]]
If the function is an unknown variable (the VAR case), then we evaluate the variable

and follow the standard calling convention. If the variable is a known function, then

we use the optimized or standard calling convention depending on the number

of arguments we have received. To apply an optimized entry point, we simply

evaluate all the arguments and pass them to the known function. Note that lazy

evaluation semantics is preserved because x1, ... xn below may denote either values

or cells.

optApp f [e1; : : : ; en] = fx1  e1; : : : ;xn  en; f(x1; : : : ; xn)g
Standard entry point application stdApp will be defined later.

The delay? function is a variation of delay. It only delays the computation if the

first argument is C .

delay? V e = e
delay? C e = delay e
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Primitive applications in the STG language are always saturated. We use the

strictness information to determine whether an argument should be passed as a

value or a cell. p denotes that meta language support for the primitive p.Ee[[p fa1; : : : ;ang]] = let[m1; : : : ;mn] = strictnessOf p
infx1  delay? m1 Ea[[a1]]; : : :xn  delay? mn Ea[[an]];p [x1; : : : ; xn]g

Atoms are either variables or literal constants. In the STG language, functions,

primitives and constructors alway receive atoms as arguments.Ea[[v]] = Ev[[v]]Ea[[l]] = return l
Variables can denote either a known function, a value, or a cell. Ev looks up

variable in the strictness environment, and inserts force if necessary:Ev[[v]] = f� rdEnv;

case �[[v]] of
FUN ! return v
VAR m ! force? m vg

Note that v is the standard entry point of functions. Function force? is a variation

of force:

force? V v = return v
force? C c = force c

Using the above semantics, the example code in Section 5.4.1 can be translated

into the following monadic code:
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return (x; x0) g);

stdApp (return f ) [delay (return 5)] g
In the above code, we have transformed away the static strictness environment

using monad laws, environment axioms, and meta-language properties.

The complete listing of monadic semantics for the STG language is given in

Appendix C.

5.4.4 Implementing Standard Entries

The standard entry point must be able to handle any number of arguments. Since

the standard entry is used for unknown functions, there is no strictness information

available. All arguments are passed in the cell mode.

We will describe two ways to create a standard entry. The easiest approach is

to take advantage of curried functions in the meta language.

stdEntry f [[�fv1, : : :,vng.e]] =
return (�x1: : : : return (�xn:optApp f [ force? (strictnessOf v1) x1; : : : ;

force? (strictnessOf vn) xn]))
A new closure is created each time an argument becomes available. When a

standard entry is applied to a number of arguments, intermediate closures will

be created and immediately consumed by the next application. The result of

evaluating e1, : : :, en must be cells.

stdApp e [e1; : : : ; en] = ff  e;x1  e1; f1  f x1; : : : ;xn  en; fn�1 xng
To reduce the number of intermediate closures, standard entries can instead

take multiple arguments at once (in a vector, for example). The standard entry

determines whether enough arguments are available.
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entry point.� When given more than enough arguments, we invoke the optimized entry

point with just the necessary arguments. The result of the application is an

unknown function, and is in turn applied to the remaining arguments.� When given not enough arguments, we return a closure that expects further

arguments. Additional arguments, when they become available later, will be

appended to the existing arguments. The standard entry will then be invoked

again with all the arguments.

This is similar to the approach taken in the STG machine, where each self-

updatable closure checks if enough arguments have been received.

The stdEntry’ function builds a standard entry as described above. #[: : :]denotes

an ordered sequence. In practice, arguments can be passed in vectors.

stdEntry’ f [[�fv1, : : :,vng.e]] = fstd wherefstd = return (� #[x1; : : : ; xm] :
ifm = n then optApp f [x1; : : : ; xn]
else ifm > n thenff 0 optApp f [x1; : : : ; xn]; f 0 #[xn+1; : : : ; xm]g
else

return (� #[y1; : : : ; yk]:fstd #[x1; : : : ; xm; y1; : : : ; yk]))
Applying a function built with stdEntry’ is straightforward. We simply pass all

available arguments to the function. Expressions e1, : : :, en must evaluate to cells.

stdApp’ e [e1; : : : ; en] = ff  e;x1  e1; : : : ;xn  en; f #[x1; : : : ; xn]g
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5.4.5 Connecting to the SML/NJ Back-end

STG code generated from the GHC front-end is targeted to the SML/NJ back-end

in two steps:

First, we derive monadic intermediate code by unfolding the monadic semantics

for a given program. The strictness environment does not depend on any values or

computations that are only available at run-time. Monad laws, environment axioms

and meta-language properties allow us to propagate the strictness information

across the program and transform away the strictness environment.

Second, the resulting monadic code is transformed to ML code with extensions

that allow us to perform unsafe type casting. The ML type system cannot efficiently

express the constructs needed to implement updatable cells. The first component

of a cell is a boolean flag bit. The second component, however, may be a value

or a closure depending on whether the cell has been evaluated. Using the unsafe

operations, we can efficiently implement the following CELL signature. It captures

an abstract type cell and two operations delay and force:

signature CELL =
sig

type ’a cell
val delay : (unit -> ’a) -> ’a cell
val force : ’a cell -> ’a

end (* CELL *)

Note that we use unsafe castings only in the implementation of the above signature,

and only in places where we know that they are safe. This guarantees that no type

violations will actually occur at runtime.

The example code in Section 5.4.1 is translated into the following ML code: (The

standard entry is implemented using currying.)

let val rec f : int * int -> int = (* optimized entry *)
fn (x, y) => x + y

and f_std = (* standard entry *)
fn e1 => fn e2 =>
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let val x1 = force e1
val x2 = force e2

in f (x1, x2)
end

in let val x = delay 5
in f_std x
end

end

The code is a little more verbose than it needs to be, but this does not affect

performance because the SML front-end transforms away all the extra let bindings.

The reason we generated ML source code, instead of, for example, the continuation-

passing style (CPS) intermediate language, is that we could use ML’s type checker

to verify the type safety of the generated ML code. We have verified that the CPS

code generated by the SML/NJ front-end was indeed similar to what we would

manually generate.

Using these ideas, we built a retargeted Haskell compiler based on the GHC

version 0.26 front-end and on SML/NJ version 108.9. To verify the correctness of

our semantics and implementation, we compiled and ran a set of Haskell programs

with our system. The programs are listed in Table 5.1. Other than one (the list-

based set utilities), all Haskell programs are from the nofib test suite [Partain,

1992]. They range from small toy examples to relatively large applications. We

compared the result of running the same program using both the original GHC

compiler and the one retargeted to SML/NJ back-end. The outputs were verified

to be exactly the same.

Although it is not the main purpose of this exercise to obtain an efficient Haskell

compiler, it is interesting to measure the performance of our retargeted compiler.

The programs were run on a SparcStation 20 with 128 MB of memory. Table 5.2

lists the median time of 5 runs. The number of seconds include both system and

user time.

The column marked as GHC is the number of seconds it took for GHC 0.26 to
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Program Lines Description

anna 9611 Strictness analyzer
boyer 1016 Standard theorem-prover benchmark
calc 1137 Arbitrary precision calculator
compress 821 LZW compression program
infer 585 Hindley-Milner type checker
primetest 280 Primality testing for large numbers
prolog 637 Prolog Interpreter
queens 14 N queens
rsa 97 RSA encryption
set 102 List-based set operations

Table 5.1: Sample programs

Program GHC Currying Vector

anna 6.40 13.45 13.10
boyer 2.87 4.52 5.02
calc 11.11 12.17 12.10
compress 44.69 73.97 75.66
infer 4.94 9.04 10.83
primetest 61.64 105.02 106.71
prolog 17.88 33.56 32.88
queens 62.8 61.64 59.98
rsa 13.17 25.2 25.46
set 17.15 18.67 14.86

Table 5.2: Timing results of sample programs (in seconds)
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execute the programs. The Currying column contains the timing figures obtained

by implementing standard entry points using ML curried functions. The Vector

column contains the timing of implementing standard entry points using ML vec-

tors to hold multiple arguments. The Currying approach corresponds to stdEntry,

whereas the Vector approach corresponds to stdEntry’.

Overall, the GHC out-performs the retargeted compiler by about 60%. Our

system performs well in a number of simple tests (queens and set), and on the

arbitrary precision calculator (calc). Both queens and set are computation bound.

They require little garbage collection. The calc program is unique in that it spends

most of its time in a few C functions implementing arbitrary-precision integer

arithmetic.

We have not yet performed a thorough analysis of where the overhead of our

system is in other tests. Preliminary investigation suggests that our system spends

significantly more time on garbage collection than GHC. The SML/NJ runtime

does not appear to be well-tuned to handle the frequent updates required by lazy

evaluation. In addition, cell-mode data structures consume more memory than

self-updating closures in GHC.

TheCurrying andVector versions of standard entries do not make a significant

difference in most test programs. On one hand, the Vector version of standard

entry requires fewer closures to be created. On the other hand, packaging multiple

arguments in vectors requires additional memory and CPU time. The Vector

approach paid off in one test program (set). In that program a predicate function

expecting two arguments is first applied to one argument, and later to another. The

Vector approach saves time by not creating the intermediate closure.

Although there has been little work in optimizing our system, it performs

reasonably well comparing to the hand-crafted GHC compiler. The competitive

performance should be attributed to the efficiency and versatility of the SML/NJ

back-end and runtime system.
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Chapter 6

Related Work, Future Work and

Conclusion

In this thesis, we have demonstrated how monads and monad transformers can

be used to provide more modular specification of programming language fea-

tures than traditional denotational semantics. In addition, we have shown how the

modularity offered in our framework can provide better support for equational rea-

soning, program transformation, interpreter construction, and semantics-directed

compilation. More specifically, the contributions of the work presented in this

thesis are as follows:� We have constructed modular semantic building blocks that support a wide

variety of source language features, including arithmetic expressions, call-by-

value, call-by-name, lazy evaluation, references and assignment, tracing, first-

class continuation, and nondeterminism. Although each of these features has

been modeled using monads before, it is the first time all of them fit into a

single modular framework.� We have solved a number of open problems in how to lift operations through

monad transformers. We have extended Moggi’s [Moggi, 1990] natural lift-

83
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ing condition to higher-order types, making it possible to reason about the

relatively complex operations related to environment and continuation. In

addition, we have shown how liftings capture the interactions between vari-

ous programming language features.� We have implementationed modular semantic building blocks and monad

transformers in Gofer [Jones, 1991]. This is the first implementation of a

full-featured modular monadic interpreter using a strongly-typed language.� We have investigated high-level monadic properties of programming lan-

guage features (for example, the environment axioms). We have applied these

properties to construct modular proofs and to perform semantics-directed

compilation.� We have constructed a retargeted Haskell compiler that demonstrates a prac-

tical use of modular monadic semantics.

6.1 Related Work

Our work is built on a number of previous attempts to better organize modular

semantics, to more effectively reason about programming languages, and to more

efficiently compile higher-order programs.

6.1.1 Modular Semantics

The lack of modularity of traditional denotational semantics [Stoy, 1977] has long

been recognized [Mosses, 1984] [Lee, 1989].

Moggi first proposed to use monads and monad transformers to structure denota-

tional semantics. Wadler popularized Moggi’s ideas in the functional programming

community by showing how monads could be used in a variety of settings, includ-

ing incorporating imperative features [Peyton Jones and Wadler, 1993] and building
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modular interpreters [Wadler, 1992]. Wadler [King and Wadler, 1993] discussed

the issues in combining monads. Pseudomonads [Steele Jr., 1994] were proposed as

a way to compose monads and thus build up an interpreter from smaller parts.

However, implementing pseudomonads in the Haskell [Hudak et al., 1992] type

system turned out to be problematic.

Returning to Moggi’s original ideas, Espinosa formulated a system called Se-

mantic Lego [Espinosa, 1993] [Espinosa, 1995]. Espinosa’s Scheme-based system

was the first modular interpreter that incorporated monad transformers. Among

his contributions, Espinosa pointed out that pseudomonads were really just a spe-

cial kind of monad transformer, first suggested by Moggi as a way to leave a “hole”

in a monad for further extension. Espinosa’s work reminded the programming lan-

guage community—who had become distracted by the use of monads—that Moggi

himself, responsible in many ways for the interest in monadic programming, had

actually focussed more on the importance of monad transformers.

Related approaches to enhance modularity include composing monads [Jones

and Duponcheel, 1993] and stratified monads [Espinosa, 1994].

This thesis was motivated by the above line of work, which led to the so-

lution [Liang et al., 1995] of a number of open issues in how to lift operations

through monad transformers, as well as how to implement modular interpreters

in a strongly-typed language.

6.1.2 Reasoning with Monads

In his original note [Moggi, 1990], Moggi raised the issue of reasoning in the

monadic framework. The monadic framework has been used to specify state

monad laws [Wadler, 1990], and to reason about exceptions [Spivey, 1990]. A

related, but more general, framework to reason about states is mutable abstract

data types (MADTs) [Hudak, 1992].

This thesis extends previous work by presenting the environment axioms [Liang
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and Hudak, 1996]. In addition, we demonstrate how these axioms, together with

monad laws, can be used to reason about programs in a modular way.

6.1.3 Semantics-directed Compilation

Early efforts [Wand, 1984] [Paulson, 1982] were based on traditional denotational

semantics. The resulting compilers were inefficient.

Action Semantics [Mosses, 1992] allows modular specification of programming

language semantics. Action semantics and a related approach [Lee, 1989] have been

successfully used to generate efficient compilers. While action semantics is easy

to construct, extend, understand and implement, we note the following comments

([Mosses, 1992], page 5):

“Although the foundations of action semantics are firm enough, the theory

for reasoning about actions (and hence about programs) is still rather weak,

and needs further development. This situation is in marked contrast to that

of denotational semantics, where the theory is strong, but severe pragmatic

difficulties hinder its application to realistic programming languages.”

Our work essentially attempts to formulate actions in a denotational semantics

framework. Monad transformers roughly correspond to facets in action semantics,

although issues such as concurrency are beyond the power of our approach.

A related approach [Meijer] is to combine the standard initial algebra semantics

approach with aspects of Action Semantics to derive compilers from denotational

semantics.

One application of partial evaluation [Jones et al., 1989] is to generate compilers

from interpreters. A partial evaluator has been successfully applied to an action

interpreter [Bondorf and Palsberg, 1993], and similar results can be achieved with

monadic interpreters [Danvy et al., 1991] as well.

Staging transformations [Jørring and Scherlis, 1986] are a class of general pro-

gram transformation techniques for separating a given computation into stages.
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Monad transformers make computational stages somewhat more explicit by sepa-

rating compile-time features, such as the environment, from run-time features.

There have been several successful efforts (including [Kelsey and Hudak, 1989],

[Appel and Jim, 1989], and others) to build efficient compilers for higher-order lan-

guages by transforming the source language into continuation-passing style (CPS).

The suitability of a monadic form as an intermediate form has been observed by

many researchers (including, for example, [Sabry and Felleisen, 1992] and [Hatcliff

and Danvy, 1994]).

6.2 Future Work

6.2.1 Theory of Programming Language Features

We have used monads and monad transformers to study programming language

features and their interactions. Plenty of work remains on extending the theory to

handle other useful features we have not covered. As a result, we may be able to

better understand and implement these features.

6.2.2 Monadic Program Transformation

We have demonstrated that monadic code is particularly suitable for program

transformation. Because monadic semantics is no more than an abstraction of tradi-

tional denotational semantics, all equational reasoning techniques apply. Monadic

semantics can thus be used to facilitate various program transformation techniques

such as partial evaluation.

6.2.3 A Common Back-end for Modern Languages

The experience of building a retargeted Haskell compiler suggests the feasibility of

a common back-end for modern languages. An efficient, well-thought-out system
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such as SML/NJ is a strong candidate to serve as a common back-end for a variety

of modern languages.

We can further develop our monadic semantics based compilation method into

a compiler construction tool for a common back-end.

6.2.4 Concurrency

Concurrency is an important feature in many modern languages such as JavaTM

[Gosling et al., 1996]. The monadic framework covers the properties of callcc. Since

callcc captures the activities occur during a thread context switch, we expect the

results related to callcc will be useful in reasoning about multi-threaded concurrent

systems.

6.3 Conclusion

We have demonstrated the power of modular monadic semantics in two ways.

First, it is a powerful technique to specify and reason about programming language

features. Second, it can be used in practice to construct modular interpreters and

perform semantics-directed compilation.

The key benefit of our approach is modularity. The underlying mechanism is

monad-based abstraction. Modular monadic semantics helps to bridge the gap

between programming language theory and the complex practical languages.
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Appendix A

Proofs

This appendix contains detailed proofs for many of the results given in the body of

this thesis. For convenience, we repeat the statement of each result at the beginning

of the corresponding proof.

Proposition 3.1.2 EnvT r, StateT s, ErrT, and ContT c are monad transformers.

Proof: We need to show that the corresponding lift functions are monad morphisms.

Case EnvT r:

returnEnvT r m e = ��: returnm e (returnEnvT r m)= liftEnvT r (returnm e) (liftEnvT r)
bindEnvT r m (liftEnvT rm) (�a:(liftEnvT r(ka)))= bindEnvT r m (��0:m) (�a:(��0:ka)) (liftEnvT r)= ��:fa (��0:m) �; (��0:ka)�gm (bindEnvT r m)= ��:bindm e k (�)= liftEnvT r (bindm e k) (liftEnvT r)
Case StateT s:

returnStateT s m e= �s: returnm(s; e) (returnStateT s m)= �s:fa returnm e; returnm(s; a)gm (left unit)= liftStateT s (returnm e) (liftStateT s)
95
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bindStateT s m (liftStateT se) (�a:liftStateT s(ka))= �s:f(s0; a) liftStateT s e s; liftStateT s (ka) s0gm (bindStateT s m)= �s:f(s0; a0) fa e; returnm(s; a)gm;b ka0; returnm(s0; b)gm (liftStateT s)= �s:fa e; (s0; a0) returnm(s; a);b ka0; returnm(s0; b)gm (associativity)= �s:fa e; b ka; returnm(s; b)gm (left unit)= liftStateT s (bindm e k) (liftStateT s)
Case ErrT:

returnErrT m e= returnm(Ok e) (returnErrT m)= fa returnm e; returnm(Ok a)gm (left unit)= mapm Ok (returnm e) (mapm)= liftErrT (returnm e) (liftErrT)

bindErrT m (liftErrTe) (�a:liftErrT(ka))= fa0 liftErrTe;

case a0 of Ok a! liftErrT(ka) : : :gm (bindErrT m)= fa0 fa e; returnm(Ok a)gm;

case a0 of Ok a! fb ka; returnm(Ok b)gm : : :gm (liftErrT, mapm)= fa e;a0  returnm(Ok a);
case a0 of Ok a! fb ka; returnm(Ok b)gm : : :gm (associativity)= fa e; b ka; returnm(Ok b)gm (left unit)= liftErrT (bindm e k) (liftErrT, mapm)

Case ContT:

returnContT c m e= �k:ke (returnContT c m)= bindm (returnm e) (left unit)= liftContT c (returnm e) (liftContT c)
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bindContT c m (liftContT ce) (�a:liftContT c(fa))= �k:(liftContT ce) (�a:liftContT c (fa) k) (bindContT c m)= �k:bindm e (�a:bindm (fa) k) (liftContT c)= �k:bindm (bindm e f) k (associativity)= liftContT c (bindm e f) (liftContT c)
Proposition 3.2.1 The environment operations, rdEnv and inEnv satisfy the fol-

lowing axioms:(inEnv �) � return = return (unit)

inEnv � fv  e1; e2g = fv  inEnv � e1; inEnv � e2g (distribution)

inEnv � rdEnv = return � (cancellation)

inEnv �0 (inEnv � e) = inEnv � e (overriding)

Proof: We verify that: 1) inEnv and rdEnv satisfy the axioms after being introduced

by EnvT, and that: 2) the axioms are preserved through EnvT, StateT, and ErrT.

(There is no lifting of inEnv through ContT.)

Base case:

inEnvEnvT r m � (returnEnvT r m x)= ��0:(returnEnvT r m x)� (inEnvEnvT r m)= ��0:(��00: returnm x)� (returnEnvT r m)= ��0: returnm x (�)= returnEnvT r m x (returnEnvT r m)

inEnvEnvT r m � fv e1; e2gEnvT r m= ��0:fv e1; e2gEnvT r m� (inEnvEnvT r m)= ��0:fv e1 �; e2 �gm (bindEnvT r m)= ��0:fv (��00:e1 �)�0; (��00:e2 �)�0gm= ��0:fv inEnvEnvT r m � e1 �0; inEnvEnvT r m � e2 �0gm (inEnvEnvT r m)= fv inEnvEnvT r m � e1; inEnvEnvT r m � e2gEnvT r m (bindEnvT r m)
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inEnvEnvT r m � rdEnvEnvT r m= ��0:rdEnvEnvT r m � (inEnvEnvT r m)= ��0:(��: returnm �)� (rdEnvEnvT r m)= ��0: returnm �= returnEnvT r m � (returnEnvT r m)

inEnvEnvT r m �0 (inEnvEnvT r m � e)= ��00:inEnvEnvT r m � e �0 (inEnvEnvT r m)= ��00:(��0:e �) �0 (inEnvEnvT r m)= ��00:e � (�)= inEnvEnvT r m � e (inEnvEnvT r m)

Case EnvT r0:
inEnvEnvT r0 m � (returnEnvT r0 m x)= ��0:inEnvm � (returnEnvT r0 m x�0) (inEnvEnvT r0 m)= ��0:inEnvm � ((��00: returnm x)�0) (returnEnvT r0 m)= ��0:inEnvm � (returnm x) (�)= ��0: returnm x (ind. hypo.)= returnEnvT r0 m x (returnEnvT r0 m)

inEnvEnvT r0 m � fv e1; e2gEnvT r0 m= ��0:inEnvm � (fv e1; e2gEnvT r0 m�0) (inEnvEnvT r0 m)= ��0:inEnvm � fv e1 �0; e2 �0gm (bindEnvT r0 m)= ��0:fv inEnvm � (e1 �0); inEnvm � (e2 �0)gm (ind. hypo.)= ��0:fv inEnvEnvT r0 m � e1 �0; inEnvEnvT r0 m � e2 �0gm (inEnvEnvT r0 m)= fv inEnvEnvT r0 m � e1; inEnvEnvT r0 m � e2gEnvT r0 m (bindEnvT r0 m)
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inEnvEnvT r0 m � rdEnvEnvT r0 m= ��0:inEnvm � (rdEnvEnvT r0 m �0) (inEnvEnvT r0 m)= ��0:inEnvm � (��00:rdEnvm �0) (rdEnvEnvT r0 m)= ��0:inEnvm � rdEnvm (�)= ��0: returnm � (ind. hypo.)= returnEnvT r0 m � (returnEnvT r0 m)

inEnvEnvT r0 m �0 (inEnvEnvT r0 m � e)= ��00:inEnvm �0 (inEnvEnvT r0 m � e �00) (inEnvEnvT r0 m)= ��00:inEnvm �0 ((��0:inEnvm � (e�0)) �00) (inEnvEnvT r0 m)= ��00:inEnvm �0 (inEnvm � (e�00)) (�)= ��00:inEnvm � (e�00) (ind. hypo.)= inEnvEnvT r0 m � e (inEnvEnvT r0 m)

Case StateT s:

inEnvStateT s m � (returnStateT s m x)= �s:inEnvm � (returnStateT s m xs) (inEnvStateT s m)= �s:inEnvm � ((�s: returnm(s; x))s) (returnStateT s m)= �s:inEnvm � (returnm(s; x)) (�)= �s: returnm(s; x) (ind. hypo.)= returnStateT s m x (returnStateT s m)

inEnvStateT s m � fv e1; e2gStateT s m= �s:inEnvm � (fv e1; e2gStateT s ms) (inEnvStateT s m)= �s:inEnvm � f(s0; v) e1 s; e2s0gm (bindStateT s m)= �s:f(s0; v) inEnvm � (e1 s); inEnvm � (e2s0)gm (ind. hypo.)= �s:f(s0; v) inEnvStateT s m � e1 s; inEnvStateT s m � e2 s0gm (inEnvStateT s m)= fv inEnvStateT s m � e1; inEnvStateT s m � e2gStateT s m (bindStateT s m)
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inEnvStateT s m � rdEnvStateT s m= �s:inEnvm � (rdEnvStateT s m s) (inEnvStateT s m)= �s:inEnvm � f�0  rdEnvm; returnm(s; �0)gm (rdEnvStateT s m)= �s:f�0  inEnvm � rdEnvm; inEnvm � returnm(s; �0)gm (ind. hypo.)= �s:f�0  returnm �; returnm(s; �0)gm (ind. hypo.)= �s: returnm(s; �) (left unit)= returnStateT s m � (returnStateT s m)

inEnvStateT s m �0 (inEnvStateT s m � e)= �s:inEnvm �0 (inEnvStateT s m � e s) (inEnvStateT s m)= �s:inEnvm �0 ((�s0:inEnvm � (es0)) s) (inEnvStateT s m)= �s:inEnvm �0 (inEnvm � (es)) (�)= �s:inEnvm � (es) (ind. hypo.)= inEnvStateT s m � e (inEnvStateT s m)

Case ErrT:

inEnvErrT m � (returnErrT m x)= inEnvm � (returnErrT m x) (inEnvErrT m)= inEnvm � (returnm(Ok x)) (returnErrT m)= returnm(Ok x) (ind. hypo.)= returnErrT m x (returnErrT m)
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inEnvErrT m � fv e1; e2gErrT m= inEnvm � (fv e1; e2gErrT ms) (inEnvErrT m)= inEnvm � fa e1;

case a of
Ok v! e2

Err s! returnm(Err s)gm (bindErrT m)= fa inEnvm�e1;

case a of
Ok v! inEnvm�e2

Err s! inEnvm� returnm(Err s)gm (ind. hypo.)= fa inEnvm�e1;

case a of
Ok v! inEnvm�e2

Err s! returnm(Err s)gm (ind. hypo.)= fv inEnvErrT m � e1; inEnvErrT m � e2gErrT m (bindErrT m)

inEnvErrT m � rdEnvErrT m= inEnvm � rdEnvErrT m (inEnvErrT m)= inEnvm � f�0  rdEnvm; returnm(Ok �0)gm (rdEnvErrT m)= f�0  inEnvm � rdEnvm; inEnvm � returnm(Ok �0)gm (ind. hypo.)= f�0  returnm �; returnm(Ok �0)gm (ind. hypo.)= returnm(Ok �) (left unit)= returnErrT m � (returnErrT m)

inEnvErrT m �0 (inEnvErrT m � e)= inEnvm �0 (inEnvm � e) (inEnvErrT m)= inEnvm � e (ind. hypo.)= inEnvErrT m � e (inEnvErrT m)
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Lemma 3.3.48g; h; f; f 0; s0:(8k; f 0(�x:�s:map (�x:h(s; x)) (kx))s0 = map g (fk))
callcc (�k:f 0(�x:�s:k(gx))s0) = map g (callcc f)

Proof: We establish the lemma by covering the cases when callcc was first intro-

duced by ContT and lifted through EnvT, StateT, and ErrT. (There is no lifting of

callcc through ContT.)

Base case:

callcc(�k:f 0(�x:�s:k(gx))s0)k= (�k:f 0(�x:�s:k(gx))s0)(�a:�k0:ka)k= f 0(�x:�s:�k0:k(gx))s0k= f 0(�x:�s:�k0:(�k00:k(gx))(�x:k0(h(s; x))))s0k= f 0(�x:�s:mapContT c m(�x:h(s; x)) (�k00:k(gx)))s0k= mapContT c m g (f(�x:�k00:k(gx))) k (pre-condition)

mapContT c m g (callccf) k = callcc f (�x:k(gx))= (�k:f(�a:�k0:ka)k)(�x:k(gx))= f(�a:�k0:k(ga))(�x:k(gx))= mapContT c m g (f(�a:�k0:k(ga)))k
Case “t = EnvT r:”

Let:f 0 k s0 = f 0(�x:�s:��0:kxs)s0�f k = f(�a:��0:ka)�
We first verify that:



103f 0(�x:�s:mapm(�x:h(s; x))(kx))s0= f 0(�x:�s:��0:mapm(�x:h(s; x))(kx))s0�= f 0(�x:�s:��0:bindm (kx) (�x: returnm(h(s; x))))s0�= f 0(�x:�s:��0:bindm ((��00:kx)�0)(�x:(��00: returnm(h(s; x)))�0))s0�= f 0(�x:�s:bindtm (��00:kx) (�x: returntm(h(s; x))))s0�= f 0(�x:�s:maptm (�x:h(s; x)) (��00:kx))s0�
(condition)= maptm g (f(�x:��00:kx))�= bindtm (f(�x:��00:kx)) (�x: returntm(gx))�= bindm (f(�x:��00:kx)�) (�x: returnm(gx))= bindm (fk) (�x: returnm(gx))= mapm g (fk)

We now set out to prove:

callcctm(�k:f 0(�x:�s:k(gx))s0)� = maptm g (callcctmf)�
callcctm(�k:f 0(�x:�s:k(gx))s0)�= callccm(�k:(�k:f 0(�x:�s:k(gx))s0)(�a:��0:ka)�)= callccm(�k:f 0(�x:�s:��0:k(gx))s0�)
maptm g (callcctmf)�= bindtm(callcctmf)(�x: returntm(gx))�= bindm(callcctmf �)(�x: returnm(gx))= mapm g (callccm(�k:f(�a:��0:ka)�))= mapm g (callccmf )

(induction hypo.)= callccm(�k:f 0(�x:�s:k(gx))s0)= callccm(�k:f 0(�x:�s:��0:k(gx))s0�)
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Case “t = StateT s:” (States of type s are underlined.)

Let:f 0 k s0 = f 0(�x:�s:�s1:k(s0; x)s)s0s0f k = f(�a:�s1:k(s0; a))s0g = �(s1; x):(s1; gx)h = �(s; (s2; x)):h(s2; (s; x))
We first verify that:f 0(�x:�s:mapm(�x:h(s; x))(kx))s0= f 0(�x:�s:�s1:mapm(�x:h(s; x))(k(s0; x)))s0s0= f 0(�x:�s:�s1:bindm (k(s0; x)) (�x: returnm(h(s; x))))s0s0= f 0(�x:�s:�s1:bindm ((�s2:k(s0; x))s1)(�(s2; x):(�s3: returnm(h(s; (s2; x))))s2))s0s0= f 0(�x:�s:bindtm (�s2:k(s0; x)) (�x: returntm(h(s; x))))s0s0= f 0(�x:�s:maptm (�x:h(s; x)) (�s2:k(s0; x)))s0s0

(condition)= maptm g (f(�x:�s2:k(s0; x)))s0= bindtm (f(�x:�s2:k(s2; x))) (�x: returntm(gx))s0= bindm (f(�x:�s2:k(s0; x))s0) (�(s2; x): returnm(s2; gx))= bindm (fk) (�(s2; x): returnm(s2; gx))= mapm g (fk)
We now set out to prove:

callcctm(�k:f 0(�x:�s:k(gx))s0)s0 = maptm g (callcctmf)s0

callcctm(�k:f 0(�x:�s:k(gx))s0)s0= callccm(�k:(�k:f 0(�x:�s:k(gx))s0)(�a:�s1:k(s0; a))s0)= callccm(�k:f 0(�x:�s:�s1:k(s0; gx))s0s0)
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maptm g (callcctmf)s0= bindtm(callcctmf)(�x: returntm(gx))s0= bindm(callcctmf s0)(�(s1; x): returnm(s1; gx))= mapm (�(s1; x):(s1; gx)) (callccm(�k:f(�a:�s1:k(s0; a))s0))= mapm g (callccmf )
(induction hypo.)= callccm(�k:f 0(�x:�s:k(gx))s0)= callccm(�k:f 0(�x:�s:�s1:k(g(s0; x)))s0s0)= callccm(�k:f 0(�x:�s:�s1:k(s0; gx))s0s0)

Case “t = ErrT:”

Let:f 0 k s0 = f 0(�x:�s:k(Ok x)s)s0f k = f(�a:k(Ok a))g = �a:case a of Ok x! Ok (gx)
Err s! Err sh = �(s; a):case a of Ok x! Ok (h(s; x))

Err s! Err s
We first verify that:



106 APPENDIX A. PROOFSf 0(�x:�s:mapm(�x:h(s; x))(kx))s0= f 0(�x:�s:mapm(�x:h(s; x))(k(Ok x)))s0= f 0(�x:�s:bindm (k(Ok x)) (�x: returnm(h(s; x))))s0= f 0(�x:�s:bindm (k(Ok x))(�x: returnm(case x of Ok y! Ok (h(s; y))
Err s! Err s )))s0= f 0(�x:�s:bindm (k(Ok x))(�x:case a of Ok y! returnm(Ok (h(s; y)))

Err s! returnm(Err s) ))s0= f 0(�x:�s:bindtm (k(Ok x)) (�x: returntm(h(s; x))))s0= f 0(�x:�s:maptm (�x:h(s; x)) (k(Ok x)))s0

(condition)= maptm g (f(�x:k(Ok x)))= bindtm (f(�x:k(Ok x))) (�x: returntm(gx))= bindm (fk) (�a:case a of Ok x! returnm(Ok (gx))
Err s! returnm(Err s))= mapm g (fk)

We now set out to prove:

callcctm(�k:f 0(�x:�s:k(gx))s0) = maptm g (callcctmf)
callcctm(�k:f 0(�x:�s:k(gx))s0)= callccm(�k:(�k:f 0(�x:�s:k(gx))s0)(�a:k(Ok a)))= callccm(�k:f 0(�x:�s:k(Ok (gx)))s0)
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maptm g (callcctmf)= bindtm(callcctmf)(�x: returntm(gx))= bindm(callcctmf)(�a:case a of Ok x! returnm(Ok (gx))
Err s! returnm(Err s) )= mapm g (callccmf )

(induction hypo.)= callccm(�k:f 0(�x:�s:k(gx))s0)= callccm(�k:f 0(�x:�s:k(g(Ok x)))s0)= callccm(�k:f 0(�x:�s:k(Ok (gx)))s0)
Theorem 5.2.1 For any source language program e, we have:

inEnv � E[[e]] = inEnv � N [[e]]
Proof:

We prove the theorem by induction over the structure of expressions.

Arithmetic expressions:

inEnv � E[[n]] = inEnv � (return n) (E)= inEnv � N [[n]] (N )

inEnv � E[[e1 + e2]]= inEnv � fv1  E[[e1]]; v2  E[[e2]]; return (v1 + v2)g (E)= fv1  inEnv � E[[e1]]; v2  inEnv � E[[e2]];
inEnv � return (v1 + v2)g (distribution)= fv1  inEnv � N [[e1]]; v2  inEnv � N [[e2]];
inEnv � return (v1 + v2)g (ind. hypo.)= inEnv � fv1  N [[e1]]; v2  N [[e2]]; return (v1 + v2)g (distribution)= inEnv � N [[e1 + e2]] (N )

Functions:
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inEnv � E[[v]] = inEnv � f� rdEnv;�[[v]]g (E)= f� inEnv � rdEnv; inEnv � (�[[v]])g (distribution)= f� return �; inEnv � (�[[v]])g (cancellation)= inEnv � (�[[v]]) (left unit)= inEnv � v (�)= inEnv � N [[v]] (N )

inEnv � E[[�v:e]]= inEnv � f� rdEnv; return(�c:inEnv �[c=[[v]]]E[[e]])g (E)= f� inEnv � rdEnv;

inEnv � (return(�c:inEnv �[c=[[v]]]E[[e]]))g (distribution)= f� return �; return(�c:inEnv �[c=[[v]]]E[[e]])g (cancel., unit)= return(�c:inEnv �[c=[[v]]]E[[e]]) (left unit)= return(�v:inEnv �[v=[[v]]]E[[e]]) (� renaming)= return(�v:inEnv � E[[e]]) (�)= return(�v:inEnv � N [[e]]) (ind. hypo.)= inEnv � N [[�v:e]] (N )

inEnv � E[[(e1 e2)n]]= inEnv � ff  E[[e1]];� rdEnv; f(inEnv � E[[e2]])g (E)= ff  inEnv � E[[e1]];� inEnv � rdEnv;

inEnv � (f(inEnv � E[[e2]]))g (distribution)= ff  inEnv � E[[e1]];� return �;

inEnv � (f(inEnv � E[[e2]]))g (cancellation)= ff  inEnv � E[[e1]]; inEnv � (f(inEnv � E[[e2]]))g (left unit)= ff  inEnv � N [[e1]]; inEnv � (f(inEnv � N [[e2]]))g (ind. hypo.)= inEnv � ff  N [[e1]]; f(inEnv � N [[e2]])g (distribution)= inEnv � N [[(e1 e2)n]] (N )
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inEnv � E[[(e1 e2)v]]= inEnv � ff  E[[e1]]; v E[[e2]]; f(return v)g (E)= ff  inEnv � E[[e1]]; v inEnv � E[[e2]];
inEnv � (f(return v))g (distribution)= ff  inEnv � N [[e1]]; v inEnv � N [[e2]];
inEnv � (f(return v))g (ind. hypo.)= inEnv � ff  N [[e1]]; v N [[e2]]; f(return v)g (distribution)= inEnv � N [[(e1 e2)v]] (N )

References and assignment:

We can prove:

inEnv � E[[ref e]] = inEnv � N [[ref e]]
inEnv � E[[deref e]] = inEnv � N [[deref e]]
inEnv � E[[e1 := e2]] = inEnv � N [[e1 := e2]]

the same way we established the case for [[e1 + e2]].
Lazy evaluation:

inEnv � E[[(e1 e2)l]]= inEnv � ff  E[[e1]]; l alloc;� rdEnv;

let thunk = fv inEnv � E[[e2]]; : : :g in : : :g (E)= ff  inEnv � E[[e1]]; l inEnv � alloc;� inEnv � rdEnv;

inEnv � (let thunk = fv inEnv � E[[e2]]; : : :g in : : :)g (distribution)= ff  inEnv � E[[e1]]; l inEnv � alloc;

inEnv � (let thunk = fv inEnv � E[[e2]]; : : :g in : : :)g (can., l. unit)= ff  inEnv � N [[e1]]; l inEnv � alloc;

inEnv � (let thunk = fv inEnv � N [[e2]]; : : :g in : : :)g (ind. hypo.)= inEnv � ff  N [[e1]]; l alloc;

let thunk = fv inEnv � N [[e2]]; : : :g in : : :g (distribution)= inEnv � N [[(e1 e2)l]] (N )
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Tracing:

Again, we can prove:

inEnv � E[[l @ e]] = inEnv � N [[l @ e]]
the same way we established the case for [[e1 + e2]].
First-class continuations:

We can prove:

inEnv � E[[callcc]] = inEnv � N [[callcc]]
the same way we established the case for [[n]].
Nondeterminism:

First we establish a lemma:

inEnv � (merge (map (�x:inEnv � x) e))= inEnv � (join (lift (map (�x:inEnv � x) e))) (merge)= inEnv � (join (lift fx e; return (inEnv � x)g)) (map)= inEnv � (join fx lift e; lift (return (inEnv � x))g) (monad morphism)= inEnv � (join fx lift e; return (inEnv � x)g) (monad morphism)= inEnv � fx lift e;a return (inEnv � x);ag (join)= inEnv � fx lift e; inEnv � xg (left unit)= fx inEnv � (lift e); inEnv � (inEnv � x)g (distribution)= fx inEnv � (lift e); inEnv � xg (overriding)= inEnv � fx lift e;xg (distribution)= inEnv � (join (lift e)) (join)= inEnv � (merge e)) (merge)

Now we can prove:
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inEnv � E[[fe0; e1; : : :g]]= inEnv � merge [E[[e0]]; E[[e1]]; : : :] (E)= inEnv � merge [inEnv � E[[e0]]; inEnv � E[[e1]]; : : :] (lemma)= inEnv � merge [inEnv � N [[e0]]; inEnv � N [[e1]]; : : :] (ind. hypo.)= inEnv � merge [N [[e0]]; N [[e1]]; : : :] (lemma)= inEnv � N [[fe0; e1; : : :g]] (N )
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Appendix B

Gofer Code for Monad Transformers

This section lists the Gofer implementation for three monad transformers (environ-

ment, continuation and error reporting) and their associated liftings.

-- Environment monad transformer ---------------------------

data EnvT r m a = EnvM (r -> m a)
unEnvM (EnvM x) = x

instance Monad m => Monad (EnvT r m) where
return a = EnvM (\r -> return a)
(EnvM m) ‘bind‘ k = EnvM (\r -> m r ‘bind‘ \a ->

unEnvM (k a) r)

instance MonadT (EnvT r) where
-- lift :: m a -> EnvT r m a

lift m = EnvM (\r -> m)

class Monad m => EnvMonad r m where
inEnv :: r -> m a -> m a
rdEnv :: m r

instance Monad m => EnvMonad r (EnvT r m) where
inEnv r (EnvM m) = EnvM (\_ -> m r)
rdEnv = EnvM (\r -> return r)
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-- lift EnvMonad through EnvT
instance (MonadT (EnvT r’), EnvMonad r m) =>

EnvMonad r (EnvT r’ m) where
inEnv r (EnvM m) = EnvM (\r’ -> inEnv r (m r’))
rdEnv = lift rdEnv

-- lift EnvMonad through StateT
instance (MonadT (StateT s), EnvMonad r m) =>

EnvMonad r (StateT s m) where
inEnv r (StateM m) = StateM (\s -> inEnv r (m s))
rdEnv = lift rdEnv

-- lift EnvMonad through ErrT
instance (MonadT ErrT, EnvMonad r m) =>

EnvMonad r (ErrT m) where
inEnv r (ErrM m) = ErrM (inEnv r m)
rdEnv = lift rdEnv

-- Error monad transformer ---------------------------------

data Err a = Ok a | Err String
data ErrT m a = ErrM (m (Err a))
unErrM (ErrM x) = x

instance Monad m => Monad (ErrT m) where
return = ErrM . return . Ok
(ErrM m) ‘bind‘ k = ErrM (m ‘bind‘ \a ->

case a of
Ok x -> unErrM (k x)
Err msg -> return (Err msg))

instance MonadT ErrT where
-- lift :: m a -> ErrT m a

lift c = ErrM (map Ok c)

class Monad m => ErrMonad m where
err :: String -> m a

instance Monad m => ErrMonad (ErrT m) where
err = ErrM . return . Err
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instance (ErrMonad m, MonadT t) => ErrMonad (t m) where
err = lift . err

-- Continuation monad transformer --------------------------

data ContT ans m a = ContM ((a -> m ans) -> m ans)
unContM (ContM x) = x

instance Monad m => Monad (ContT ans m) where
return x = ContM (\k -> k x)
(ContM m) ‘bind‘ f =

ContM (\k -> m (\a -> unContM (f a) k))

instance MonadT (ContT ans) where
-- lift :: m a -> ContT ans m a

lift m = ContM (\f -> m ‘bind‘ f)

class Monad m => ContMonad m where
callcc :: ((a -> m b) -> m a) -> m a

instance Monad m => ContMonad (ContT ans m) where
callcc f =
ContM (\k -> unContM (f (\a -> ContM (\_ -> k a))) k)

-- lift callcc through EnvT
instance (MonadT (EnvT r), ContMonad m) =>

ContMonad (EnvT r m) where
callcc f = EnvM (\r -> callcc (\k ->

unEnvM (f (\a -> EnvM (\r -> k a))) r))

-- lift callcc through StateT
instance (MonadT (StateT s), ContMonad m) =>

ContMonad (StateT s m) where
callcc f = StateM (\s -> callcc (\k -> unStateM

(f (\a -> StateM (\s1 -> k (s, a)))) s))

-- lift callcc through ErrT
instance (MonadT ErrT, ContMonad m) =>

ContMonad (ErrT m) where
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callcc f = ErrM (callcc (\k ->
unErrM (f (\a -> ErrM (k (Ok a))))))



Appendix C

Monadic Semantics of the STG

Language

We split the overall semantics for the STG language into a number of semantic

functions. There are separate functions for literals, variables, atoms, function

applications, constructors, primitives, case expressions, let bindings, and right-

hand sides.

We use the following notations introduced in Chapter 5.� The strictness environment �.� Meta-language variables v and v corresponding to the optimized and stan-

dard entries of functions.� Conversion functions delay and force.� Helper functions optApp, stdApp, and stdEntry.

C.1 Literals, Variables and Atoms

Literals map to their meta-language counterparts:
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118 APPENDIX C. MONADIC SEMANTICS OF THE STG LANGUAGEEe[[l]] = return l
The strictness environment keeps track of whether a given variable is a known

function. Although variables can be either a value or a cell, known functions are

always a value.Ev[[v]] = f� rdEnv;

case �[[v]] of
FUN ! return v
VAR m ! force? m vg

Note that v is the standard entry point of functions. Function force? is a variation

of force:

force? V v = return v
force? C c = force c

Atoms are either literals or variables:Ea[[v]] = Ev[[v]]Ea[[l]] = El[[l]]
C.2 Function Applications

In the STG language, a function application with no arguments denotes an expres-

sion made up of a single variable. Normal function applications take at least one

argument.

If the function is known, and there are enough arguments available, the opti-

mized entry can be used; otherwise, the standard entry is used.



C.3. CONSTRUCTORS AND PRIMITIVES 119Ee[[v fg]] = Ev[[v]]Ee[[v fa1; : : : ;ang]] =f� rdEnv;

case �[[v]] of
FUN [m1; : : : ;mk] !
if k > n then

stdApp (Ev[[v]])[delay Ea[[a1]]; : : : ; delay Ea[[an]]]
else if k = n then

optApp v [delay? m1 Ea[[a1]]; : : : ; delay? mk Ea[[an]]]
else

stdApp (optApp v [delay? m1 Ea[[a1]]; : : : ; delay? mk Ea[[ak]]])[delay Ea[[ak+1]]; : : : ; delay Ea[[an]]]
VAR ! stdApp (Ev[[v]])[delay Ea[[a1]]; : : : ; delay Ea[[an]]] g

C.3 Constructors and Primitives

Constructor and primitive applications are always saturated. Therefore we can

take advantage of the strictness information.Ee[[c fa1; : : : ;ang]] = let[m1; : : : ;mn] = strictnessOf c
infx1  delay? m1 Ea[[a1]]; : : :xn  delay? mn Ea[[an]];c [x1; : : : ; xn]g



120 APPENDIX C. MONADIC SEMANTICS OF THE STG LANGUAGEEe[[p fa1; : : : ;ang]] = let[m1; : : : ;mn] = strictnessOf p
infx1  delay? m1 Ea[[a1]]; : : :xn  delay? mn Ea[[an]];p [x1; : : : ; xn]g

C.4 Case Expressions

The meta-language case construct is used to interpret STG case expressions. In the

default case, the strictness environment is augmented with the pattern variable.Ee[[case e ofl1 -> e1; : : :ln -> en;v -> ed ]] = f� rdEnv;x Ee[[e]];
case x ofl1 ! Ee[[e1]]; : : :ln ! Ee[[en]];v ! inEnv �[VAR V=[[v]]]Ee[[ed]] g

The semantics for case expression on data types is very similar. The strictness

environment is augmented with all pattern variables. The variable matching the

default case is always a value, because expression e has already been evaluated.

On the other hand, variables matching the components of a data type can be either

a value or a cell, depending on the strictness property of the data constructor.



C.5. LET BINDINGS 121Ee[[case e ofc1 fv11; : : : g -> e1; : : :cn fvn1; : : :g -> en;v -> ed ]] =f� rdEnv;x Ee[[e]];
case x ofc1 fv11; : : : ; g ! inEnv �[VAR (strictnessOf v11)=[[v11]]; : : :] Ee[[e1]] : : :cn fvn1; : : : ; g ! inEnv �[VAR (strictnessOf vn1)=[[vn1]]; : : :] Ee[[en]]v ! inEnv �[VAR V=[[v]]]Ee[[ed]] g

C.5 Let Bindings

To simplify the presentation, we introduce a helper function that maps right-hand-

sides to strictness information:

info [[�fg.e]] = VAR C
info [[�fv1, : : :,vng.e]] = FUN [strictnessOf v1; : : : ; strictnessOf vn]

The semantics of let bindings is as follows. Note that we need the fix operator

even for the non-recursive binding. The reason is that the standard entry point is

defined in terms of the optimized entry point, but may also be used inside the body

of function definition.



122 APPENDIX C. MONADIC SEMANTICS OF THE STG LANGUAGEEe[[let v = rhs in e]] = f� rdEnv;

let�0 = �[info [[rhs]]=[[v]]]r = inEnv � Er[[rhs]]r0 = stdEntry v [[rhs]]
body = inEnv �0 Ee[[e]]
inf(v; v) fix (�(v; v):fx r;x0  r0;

return (x; x0)g);
bodyggEe[[letrec v1 = rhs1; : : : ; vn = rhsn in e]] =f� rdEnv;

let�0 = �[info [[rhs1]]=[[v1]]; : : : ; info [[rhsn]]=[[vn]]]r1 = inEnv �0 Er[[rhs1]] : : :rn = inEnv �0 Er[[rhsn]]r01 = stdEntry v1 [[rhs1]] : : :r0n = stdEntry vn [[rhsn]]
body = inEnv �0 Ee[[e]]
inf(v1; : : : ; vn; v1; : : : ; vn) fix (�(v1; : : : ; vn; v1; : : : ; vn):fx1  r1; : : : ;xn  rn;x01  r01; : : : ;x0n  r0n;

return (x1; : : : ; xn; x01; : : : ; x0n)g);
bodygg
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C.6 Right-hand Sides

The right-hand-sides of let-bindings are always closures. When the argument list is

empty, it denotes a delayed computation. Otherwise, the right-hand-side contains

the definition of a known function.Er[[�fg.e]] = delay Ee[[e]]Er[[�fv1, : : :,vng.e]] =f� rdEnv;

let

body = inEnv �[VAR (strictnessOf v1)=[[v1]]; : : : ;
VAR (strictnessOf vn)=[[vn]]] Ee[[e]]

in

return (�(v1; : : : ; vn):body)g


