This paper appeared in the Proceedings of the Annual Smulation Symposium, ASS-1996.

© 1998, IEEE. Personal use of this material is permitted. However, permission to reprint or republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution
to serversor lists, or toreuse any copyrighted component of thiSwork in other works must be obtained

fromthe |EEE.

A Comparative Analysis of Various Time Warp Algorithms I mplemented in the
WARPED Simulation Kernel*

Radharamanan Radhakrishnan, Timothy J. McBrayer, Krishnan Subramani,
Malolan Chetlur, ijay Balakrishnan, and Philip A. Wisey
Computer Architecture Design Laboratory
Dept. of ECECS, PO Box 210030, Cincinnati, OH 45221-0030
(513) 556-4779, phil.wilsey @uc.edu

Abstract

The Time Warp mechanism conceptually has the poten-
tial to speedup discrete event simulations on parallel plat-
forms. However, practical implementationsof theoptimistic
mechanism have been hindered by several drawbacks such
as large memory usage, excessive rollbacks (instability),
and wasted |ookahead computation. Several optimizations
and variations to the original Time Warp algorithm have
been presented in the literature to optimistically synchro-
nize Paralldl Discrete Event Smulation. This paper uses
a common simulation environment to present comparative
performance results of several Time Warp optimizationsin
two different application domains, namely: queuing model
simulation and digital system simulation. The particu-
lar optimizations considered are: Lowest Timestamp First
(LTSF) Scheduling, Periodic (fixed period) Checkpointing,
Dynamic Checkpointing, Lazy Cancellation, and Dynamic
Cancdlation.

1 Introduction

The Time Warp Mechanism implements the concept of
Virtua Time to optimistically synchronize parallel simula-
tion. The Time Warp parallel synchronization protocol has
been the topic of research for a number of years. How-
ever, the successful utilization of the Time Warp mecha-
nism has been plagued by the time and space overheads of
rollback, namely: state saving, state restoration and event
reprocessing. Many modifications/optimizations to Time
Warp have been proposed and analyzed [7, 10]. However,
these investigations are generally conducted in distinct en-

*Support for this work was provided in part by the Advanced Research
Projects Agency under contract J-FBI-93-116, monitored by the Depart-
ment of Justice.

vironmentswith each optimization reimplemented for com-
parative analysis. Besides the obvious waste of manpower
to reimplement Time Warp and its affiliated optimizations,
the possibility for avarying quality of theimplemented opti-
mizations exists. The WARPED project is an attempt to make
afreely available Time Warp simulation kernel that iseasily
ported, simple to modify and extend, and readily attached
to new applications. The primary goa of this project isto
release a system that isfreely available to the research com-
munity for anaysisof the TimeWarp design space. Inorder
to make WARPED useful, the system must be easy to obtain,
available with running applications, operational on severa
processing platforms, and easy to install, port, and modify.

In this paper, we present empirical data on the perfor-
mance of several Time Warp optimizations using the prob-
lem domains of queuing model simulationand digital system
simulation. In particular, performance results for the opti-
mizations lazy cancellation [8, 24], dynamic cancellation
[20Q], periodic checkpointing, [10] and dynamic checkpoint-
ing [6, 12, 17, 22] are given. Performance datais collected
using version 0.5 of the waRPED software [13, 14] running
on a 4 processor SUN SparcCenter 1000 and for compar-
ative purposes we aso present data collected on the Intel
Paragon.

The remainder of this paper isorganized asfollows. Sec-
tion 2 presents a high level overview of the WARPED kernel
and its interface to an application environment. Section 3
discusses the various optimizations that have been devel-
oped for the wARPED kernel. Performance results with two
distinct applications (queuing model simulation and digital
system simulation) are shown in Section 4. Finally, Section
5 contains some concluding remarks.

2 Overview of the WARPED System

ThewaRrPED kernel providesthefunctionality to develop
applicationsmodeled as discrete event simulations[13, 14].






Supplied by

User Code User

Execute Process

State Events

Communication

State Manager Manager

Supplied by
kernel

Kernel Code
Figure 1. The Relationship Between the Ap-
plication and the warPED Kernel

Considerable effort has been made to define a standard pro-
gramming interface to hide the details of Time Warp from
the applicationinterface. For example, sending eventsfrom
one simulation object to another is done in the same way
regardless of whether the objects are on a single processor
or on different processors; al Time Warp specific activities
such as state saving, rollback, and so on are performed au-
tomatically by the kernel without intervention from the ap-
plication. Consequently, an implementation of the WARPED
interface can be constructed using either conservative[15] or
optimistic [5, 10] parald synchronization techniques; fur-
thermore, the simulation kernel can a so exist as asequential
kernel. In fact, the current software distribution of WARPED
includes both sequential and pardlel (Time Warp) imple-
mentations. As previoudy indicated, this independence is
achieved through a standard interface [13]. Thisinterfaceis
briefly described bel ow.

The wARPED interface requiresthat the ssimulation kernel
provide the following services to the application:

o Event delivery: communication between simulation
objects in the WARPED universe is provided by the
kernel.

e Optimistic synchronization between parallel pro-
Cesses: WARPED can be run on parallel processors
ranging from clusters of workstations to large scale
multi processors, and Time Warp activitieswill be per-
formed transparently to the user process.

In order for these services to be provided by the kernel,
the application must also provide certain constructs to the

kerne (Figure 1). In particular, the application specific
definitions of events and state must be defined. If a non-
integer definition time of timeisdesired, then thisdefinition
must also be provided.

Simulation objects are grouped together into entities
caled logical processes, or LPs (Figure 2). Processor par-
allelism occurs a the LP level and each LP is responsible
for GVT management, communication management, and
scheduling for the simulation objects that it contains. In
addition, communication between simul ation objectswithin
the same LP is performed by direct insertion into the input
gueue of the receiving object.

Since the paralelism occurs at the LP level, smulation
objectswhich executerelatively independently of each other
can be placed on separate LPs to maximize paralelism.
Conversaly, simul ation objectsthat frequently communicate
with each other should be placed on the same LP to benefit
from fast intra-LP communication.

Partitioningin WARPED occurs explicitly inthe instantia-
tion and registration of simulation objects with an LP. Pro-
cessor alocationto LPs occurs at runtimeusing the MPICH
mechanism of group files— each machineinthesimulation
islistedintheorder that they will beassignedids. Automatic
partitioning of simulation objectsto LPsis not provided in
WARPED; furthermore, load balancing is not currently im-
plemented.

ThewARPED system iscomposed of aset of C++ libraries
which the user accesses in several ways. Where the kernel
needs information about data structures within the applica-
tion, they are passed into kernel template classes. When
kernel data or functions need to be made available to the
user, they can be accessed by one of two mechanisms:

1. Through the C++ inheritance mechanism. That is,
certain classes that the user defines must be derived
from kernel defined classes.

2. Through “normal” function calls to methods defined
by objectsin the waRPED kerndl.

To use the WARPED kernel, the application programmer
must provide three class definitions corresponding to (i) the
simulation object, (ii) the notion of state for that ssimulation
object, and (iii) a definition (or definitions) for events. The
simulation object classes must be derived from the class
Ti meVr p and the state class is derived from the class
Basi cState. The Ti meWar p class is templatized on
state, soaTi meWar p object must beinstantiated with each
state class that is defined.

Events to be passed between simulation objects are de-
fined by the application programmer as a set of class defini-
tions. These must be derived fromthe Basi cEvent class.
In the current version of WARPED events cannot contain dy-
namically allocated data or pointersto data.



Simulation
Object Simulation
Object

Simulation
Object

Logical

Simulation
Simulation Object
Object

Simulation
Object

Logical

Process

Simulation
Object
Simulation
Object

Simulation

Object
Simulation
Object

Simulation
Object
Simulation
Object

Logical

Process

Simulation
Object
Simulation
Object

Simulation

Object
Simulation
Object

Simulation
Object
Simulation
Object

Logical

Process

Simulation
Object

Simulation
Simulation Object
Object

—~=g+P»-1P| Communication

Process

Simulation
Object

Simulation
Object Simulation
Object

~= Direct Communication

Figure 2. Structure of LPs and Simulation Objects in the wWARPED System

By default, wARPED has a simple notion of time. More
precisely, time is defined in the class VTi ne as a signed
integer. Obvioudly, particular instances of asimulationwith
the waRPED kernel may have different requirements for the
concept of time. For example, simulators for the hardware
description language VHDL [16, 18] require a more com-
plex definition of time. Thus, WARPED includesamechanism
for defining a more complex structurefor time.

If the simple, kernel-supplied version of timeis not suf-
ficient, the application programmer must define the class
VTi me with data members appropriate to the application’s
needs. In addition, the user must define the preproces-
sor macro USE_USER VTI ME during compilation. The
WARPED kernel aso has requirements about the defined
methods of the type VTi ne. Specificaly, the implemen-
tation of VTi me must supply the following operators and
data, either by default or through explicit instantiation:

o Assignment (=), Addition (+), and subtraction (-) op-
erators.

e Thereational operators. ==, 1=, >=, <=, >, <.

e Congtant objects of type VTi me named ZERQ,
PI NFI NI TY, and | NVALI D_VTI ME, which define,
respectively, the smallest, largest, and invaid time
values. | NVALI D_VTI ME must be < ZERO.

e The insertion operator (< <) for class ostream, for
typeVTi ne.

A more detailed description of the internal structure and
organization of the WARPED kernel is avail able on the www
ahttp://ww. ece. uc. edu/~ paw war ped.

3 Time Warp OptimizationsImplemented in
WARPED

Parallel discreteevent simulation (PDES), usingthe Time
Warp mechanism for synchronization, has the potential to
produce large speedup, but has never been fully utilized
due to implementation and memory overheads. Severa op-
timizations have been proposed in the literature to reduce
overheads, and thereby produce a larger speedup. These
overheads can largely be classified along the following di-
mensions:

o Wasted lookahead computation, and unnecessary re-
computation of states and event execution. Strag-
gler event processing can result in the propagation of
unnecessary rollback eventualy creating a thrashing
effect in optimistically synchronized simulators[7].

o Time and space overhead due to excessive state sav-
ing. Because most paralld systems have a somewhat
limited memory space, excessive state savings can
cause severe simulation slow-down (dueto swapping
of memory), and in some cases, failure[3].

Correspondingly, Time Warp optimizations can be di-
vided into two types, namely: (i) optimizationsto decrease
the wasted lookahead computation, and (ii) optimizations
to reduce the memory overhead. Lazy Cancellation and
Dynamic Cancellation have been proposed to avoid unnec-
essary |ookahead computation. Periodic Checkpointing and
Dynamic Checkpointing have been proposed to aleviatethe
memory overhead problem.



In this paper, empirical data relating the effectiveness
of these Time Warp optimizations are presented. In par-
ticular, several applications from the domains of queuing
model simulation and digital system simulation are used
to exercise the warPED kerndl with various configurations
of optimizations enabled/disabled. The remainder of this
section describes these optimizationsin more detail .

3.1 Lazy Cancellation

The performance of a Time Warp simulator depends on
the efficiency of the cancellation strategy employed to undo
the effects of the erroneous computation. Two known can-
cellation strategies exist, namely aggressive cancellation
[10], and lazy cancellation[8, 24]. Under aggressive cancel -
lation the arrival of a straggler message and the subsequent
rollback forces the immediate generation of antimessages
for all output messages that were processed prematurely. In
contrast, using lazy cancellation, the sending of antimes-
sages is delayed until forward processing demonstrates (by
comparison of old and new output) that the originally sent
output messages were incorrect. Thus, there is a potential
reduction in communication as well as a decrease in wasted
lookahead computation. As a conseguence of lazy cancel-
lation the total number of rollbacks is frequently reduced.
Lazy cancellation, however, relies heavily on the regenera-
tion of the same output message for its performance. The
performance under | azy cancellation deterioratesif the prob-
ability of the regenerated output messages being different
from the originally sent messages is high. In contrast, ag-
gressive cancellation performs poorly if the same messages
are generated before and after a rollback most of the time.
Several independent studies have shown that lazy cancella
tionfrequently performsbetter than aggressive cancellation,
but that, even withinthe sameapplication domain, someexe-
cutionsperform better under aggressive cancellation [2, 21].
Unfortunately, practical techniques to statically analyze an
application for selecting cancellation strategies have yet to
be developed [11]. Consequently, many investigators sim-
ply use lazy cancellation. Recently, however, a technique
for dynamically selecting the cancellation strategy has been
proposed [20]

3.2 Dynamic Cancdllation

Dynamic cancellation is a technique to have each Time
Warp object decide for itself which cancellation strategy to
employ [20,19]. Thatis, each TimeWarp object anayzesits
recent history for evidence of success in lazy cancellation.
More precisely, the object maintains a lazy hit/miss ratio
and uses this ratio to decide which cancellation strategy
to employ. The decision to dynamically switch at the Time
Warp object level was made by adetailed analysisof thelazy

hit/missratio for all objectsin variousapplications[19]. In
thisstudy, Rajan observesthat the best cancellation strategy
varies even across the individua Time Warp objects of a
simulation.

The selection of which cancellation strategy to use is
decided using non-linear control techniques. In particular,
Rajan uses a thresholding function with a dead zone to se-
lect thecancellation strategy. More precisaly, al TimeWarp
objects begin by using aggressive cancellation. Then, after
a sufficiently long measurement cycle, the lazy hit/missra
tioisused to select cancellation strategies; if the valuefalls
below a lower threshold, aggressive cancellation is used;
changesfrom aggressiveto | azy occur when theratio crosses
an upper boundary; and values in the dead zone remain un-
changed. Thesetting of theupper and lower boundsrequires
some tuning based on the specific time warp simulator and
itsimplementation costs[19].

Dynamic cancellation does, however, require an addi-
tional cost for implementation. In particular, even when
using aggressive cancellation, a Time Warp object must
continueto perform comparison of output eventsin order to
revise the lazy hit/missratio. Alternative techniques such
as permanently switching into aggressive cancel lation when
crossing the lower threshold and other approaches are al-
luded to by Rgjan [19], but not fully investigated.

3.3 Periodic Checkpointing

Memory consumption is a potentialy onerous problem
for large Time Warp smulations. Time Warp objects with
large states require considerable memory space as well as
CPU cyclesfor statesaving. Ingenera, statesare saved after
every event executioninaTime Warp simulation. However,
itis possibleto save state periodically, after a certain num-
ber of fixed event executions. Thusthearrival of astraggler
message with periodic state savings may require the system
torollback to an earlier state and coast forward, reconstruct-
ingthe staterequired to correctly execute the straggler event
in its proper order. While coasting forward, no messages
are sent out to the other processes in the system. The diffi-
culty of periodic state saving is determining an appropriate
fixed frequency for checkpointing. Some applications oper-
ate best with afairly small value; while othersrequire much
larger values. Aswith cancellation strategies, no practical
techniques for statically analyzing generic applications to
decide the checkpoint frequency are known.

3.4 Dynamic Checkpointing

There have been a variety of approaches to dynamically
adjusting the checkpoint interval [6, 12, 17, 22]. These
techniquesall employ an adaptive control mechanism to dy-
namically establish values for the checkpoint interval. As



with any control system, dynamically adjusting the simula-
tors control parameters requires that severa output values
be monitored [1]. While the particular output values mon-
itored by each proposed method vary, several of them are
shared [6]. The WARPED system has the ability to choose
from three algorithms to perform dynamic checkpointing.
In particular, it includes implementations of Lin's model
[12], Palainswamy’s model [17] and Fleischmann's model
[6]. For purposes of this paper, we show only results using
Lin'smode. Lin's modd was chosen because it tends to
produce dightly better results across the applications that
are considered herein.

4 Comparative Results of the WARPED Algo-
rithms

Thissection detail sthe experiments conducted to charac-
terize the performance and effectiveness of the optimization
techniquesin Section 3. To see the effect of the various op-
timizationspresented earlier, aseries of testswere conduced
on two application domains, namely the queuing model sim-
ulations and simulation of digital systems described in the
hardware description language VHDL [16, 18]. Perfor-
mance results from these studies are reported using three
chief measures: (i) total execution time (in seconds), (ii)
total eventsprocessed per second, and (iii) total eventscom-
mitted per second.

The resultsin this paper have been collected by running
the simulations on a 4-processor Sun SparcCenter 1000. In
the reported results, the applications are tested with vari ous
configurations of LPs, namely: 1 (where it makes sense),
2, and 4. Also to illustrate performance on a paralel ma-
chine(the Intel Paragon), simulation results for the queu-
ing model applications have also been included. The ap-
plication description and performance results of these two
applications are given, respectively, in the following two
subsections.

4.1 Application: Queuing Model Simulation on
the Sun SparcCenter 1000

Included in the WARPED distribution is a simulation li-
brary for building queuing models. This library is caled
KUE. In addition to the library, the distribution includes
three instances of use of KUE. The three example queuing
models are:

o Police: a queuing model of a simple traffic police
telecommunications network). Instantiationsof vari-
ous sized model s can be automatically generated. For
purposes of this paper, asimulation model containing
96 Time Warp objects was used.

¢ SMMP: modeling a shared memory multiprocessor.
Each processor isassumed to have aloca cache with
access to a common global memory. This applica
tion is also scalable, with instances generated by a
C program. For the experiments in this paper, a 16
processor machine with settings as follows: a 10ns
cache, a 100ns main memory, and a cache hit ratio of
90%.

e RAID: modd of a nine disk RAID level 5 dik ar-
ray of IBM 0661 3.5" 320Mb SCSI disk drives with
flat-Left symmetric parity placement policy. Sixty
processes send request for stripes of random lengths
and location to forks which split each the requests
intoindividual requestsfor each disk according to the
placement policy. Thirty server process the requests
in a FCFS fashion and route the appropriate requests
back to the source process.

Simul ation results from these model s are summarized in 3—
8 and discussed below. For comparison, the applications
were a so executed on the sequential implementation of the
WARPED kernel. The event processing rates for the sequen-
tial kernel (computed in events per second) are: Police —
17,982; SMMP — 17,836 and, RAID — 16,908. Thus, in
thisversion of warped, the configurations of the Time Warp
kernel operate at about 50% of the efficiency of the corre-
sponding sequential kerndl.

All the optimizations are shown in each graph for each ap-
plication. Optimizations are numbered 1 through 7. They
are asfollows:

1 No Optimizations with Round Robin Scheduling

2 No Optimizationswith LTSF Scheduling

3 Periodic Checkpointing with LTSF Scheduling

4 Dynamic Checkpointingwith LTSF Scheduling

5 Lazy Cancellation with LTSF Scheduling

6 Dynamic Cancellation with LTSF Scheduling

7 Dynamic Cancellation and Dynamic Checkpointing with
LTSF Scheduling

Effects of the Scheduler

Two scheduling algorithms are avail abl e for testing, namely
Round Robin (RR), and Lowest Timestamp First (LTSF).
Both schedul ers are written to remove inactive objects (ob-
jectswith no events to be processed) from the ready to exe-
cute queue. Configurations of the queuing models for each
of these scheduling al gorithms (with no other optimizations
enabled) are given in 3-8. While the overhead of sorting
the events for LTSF scheduling produces a lower overall
event processing rate, a faster execution time is actualy
achieved because the slowest advancing objects are given
higher priority for execution. Comparing the data collected



Events committed per second

Application 1 : Police

24,000 Tokens
15000 T T T

12500 ~ T

10000 ~ B

7500 B

5000 ~ b

2500 B

o 1 2 3 4 5 6 7 8

Optimizations

Figure 3. Sun SparcCenter 1000 results for
Police

2 Logical Processes
4 Logical Processes

for the three applications, we can see that the LTSF sched-
uler gets aspeedup of 10% over the Round Robin scheduler
(with respect to committed events per second). Further-
more, preliminary studies (results not yet available) with
data structures requiring less expensive sorting overheads
(eg., lazy queue, calendar queue [4, 23]) have shown even
greater performanceimprovementsdueto LTSF scheduling.

Effects of Periodic Checkpointing

For the (fixed) periodic checkpointing studies, afixed period
of 3 eventsbetween state saves was selected. Thisselection
was chosen because it gives the best overall performance
across all of the applicationsin the queuing model domain.
As aresult of the less frequent state saving, the execution
time cost of state saving isreduced. The data collected for
this optimization indicate that there is a 15% improvement
in the number of committed events per second for at least
two of the applications. A 15% improvement is achieved
over the ordinary LTSF case. In some cases, a checkpoint
interval of 2 or 4 produces even better results and in stud-
ies with the application of VHDL simulation, much larger
checkpoint intervals (on the order of 10-20) give the best
results. Conseguently, the need for dynamic checkpointing.

Effects of Dynamic Checkpointing

Dynamic checkpointing periodically adjusts the checkpoint
interval during the simulation in order to balance state sav-
ings costs against coast forward costs [6]. Two approaches

Events committed per second

Events committed per second

10000

Application 2 : SMMP

16 Processors, 1000 requests per processor
T

8000 r

6000 ~

4000 -

2000

-

Figure
SMMP

8000

Optimizations

2 Logical Processes
4 Logical Processes

4. Sun SparcCenter 1000 results for

Application 3 : RAID

60 Processes, 1000 requests per process
T T T T T

7000

6000 [

5000 ~

4000 -

3000

2000 ~

1000 -

-

Figure
RAID

1 2 3 4 5 6 7
Optimizations

2 Logical Processes
4 Logical Processes

5. Sun SparcCenter 1000 results for




Intel Paragon Results for Police

100,000 Tokens
15000 T T T

14000 r B

13000 ~ q

12000 r =T B

11000 | T ] 4

10000 r B

9000 B

8000 r q

7000 B

6000 B

Events committed per second

5000 B

4000 - q

3000 ~ 4

2000 ~ B

1000 - B

o 1 2 3 4 5 6 7 8
Optimizations
4 Logical Processes
8 Logical Processes
16 Logical Processes

Figure 6. Intel Paragon results for Police

have been considered in the literature. The first, explored
by Lin et a [12], dynamically adjusts the checkpoint fre-
guency at only the beginning of the simulation and leaves it
fixed thereafter. The second approach isto continuoudly ad-
just the checkpoint period throughout the entire simulation
[6,17,22]. Theformer hasalower total overhead and works
well when the application reaches a steady state behavior.
The latter works best when the application processing rates
and rollback frequency vary over thelifetime of the simula
tion. For the queuing model studies, we have observed that
Lin'smodel works best (3-8). From the graphs, we see that
dynamic checkpointing gains a speedup of as much as 20%
for two of the examples.

Effects of Lazy Cancellation

Lazy Cancellation is dependent on the number of rollbacks
and how may of the rollbacks can berolled forward. Given
the queuing models of this study, lazy cancellation provides
a10% performance improvement over aggressive cancella
tion, in at least two of the applications(3 — 8).

Effects of Dynamic Cancellation

This optimization takes into consideration the fact that dur-
ing the course of a simulation, it is necessary to apply ag-
gressive cancellation at certain intervals of time and lazy
cancellation during other intervas of time. 1dedly, the dy-
namically selection should produce better execution times
than either approach singlely applied. The data from the
experiments support thisclaim. One of the applicationsgets
a speedup of 25% whereas another gets a speedup of 13%.

Events committed per second

Events committed per second

10000

Intel Paragon Results for SMMP

16 Processors, 100,000 requests per processor

9000 ~

8000 ——

7000 T

6000

5000 ~

4000 -

3000

2000 ~

1000 -

(o) 1 2 3 4 5 6 7
Optimizations

4 Logical Processes
8 Logical Processes
16 Logical Processes

Figure 7. Intel Paragon results for SMMP

Intel Paragon Results for RAID

60 Processes, 100,000 requests per process
8000 T T T T

7000
6000 ~ —
5000
4000 -
3000 ~
2000

1000

o 1 2 3 4 5 6 7
Optimizations
4 Logical Processes
8 Logical Processes
16 Logical Processes

Figure 8. Intel Paragon results for RAID



Application 4 : VHDL Example 1

Iscas’85 benchmark(c17)
3000 T T T

2500 — —r B

2000 B

1500 - B

Events committed per second

1000 B

500 B

[0} 1 2 3 4 5 6 7 8
Optimizations

2 Logical Processes
4 Logical Processes

Figure 9. Sun SparcCenter 1000 results for
cl7

Effects of Dynamic Cancellation & Checkpointing

Performance results for these applications with LTSF
scheduling, Dynamic Checkpointing, and Dynamic cancel-
lation all enabled are summarized in 3 — 8. These opti-
mizations produce an average speedup of 20% and clearly
combine well to give the best overall performance for al of
the pardlé runs.

4.2 Application: Queuing Model Simulation on
the Intel Paragon

The above 3 examples were simulated on the Intel
Paragon, using a larger number of Logical Processes. It
isclearly visiblefrom the figures(6 — 8) that as we increase
the number of processors, the overall committment rate im-
proves as each processor has to do less. Consequently, the
optimizations also show similar improvement when com-
pared with the unoptimized case.

4.3 Application: VHDL Simulation

The second application studied is digital system simu-
lation. In particular, we have developed a VHDL simula
tion kernel [9] that operates on top of the WARPED kerndl.
A VHDL code generator is currently under development.
Consequently, we needed a simple technique for trandlating
moderately sized VHDL examples into executable code to
link with the VHDL simulation kernel. The ISCAS bench-
marks provide a good example of moderately sized VHDL

Application 5 : VHDL Example 2

Iscas’85 benchmark(c499)
3000 T T T

2500 B

2000 B

1500 - B

1000 B

Events committed per second

500 - B

o 1 2 3 4 5 6 7 8
Optimizations

2 Logical Processes
4 Logical Processes

Figure 10. Sun SparcCenter 1000 results for
c499

codes that are regular and easy to trandate with a per |
script.

Three examples from the ISCAS 85 (combinationa cir-
cuits) and ISCAS 89 (sequential circuits) were selected for
study. In particular, we chose the combinationa circuits
c17 and ¢499 and the sequential circuit S27. c17 contains 6
gates, c499 contains 202 gates, and s27 contains 11 gate el -
ements. All of the tests were run with 10,000 input vectors.
The results of these test cases are summarized in 9-11.

Effects of the optimizations on the VHDL Simulation
Models

The results show similar performance gains as those dis-
cussed in Section 4.1. We see that LTSF scheduling gives
a considerable performance improvement over RR; each
input circuit show at least a 20% speedup. Periodic check-
pointing does not produce as much performance improve-
ment as it did in the queuing applications. However, dy-
namic checkpointing results in an additional 3% speedup
over the improvement gained from LTSF scheduling. Not
much speedup is gained from lazy cancellation or dynamic
cancellation. Dynamic cancellation causes a performance
improvement of 3 to 5%. But when dynamic cancellation
and dynamic checkpointing are applied in conjunctionto the
VHDL simulation applications, a marked improvement in
performance is obtained. In this case, all of the examples
report at least a 5% improvement in performance.



Application 6 : VHDL Example 3

Iscas’89 benchmark(s27)
3000 T T T

2500 — B

2000 ] B

1500 - i

Events committed per second

1000 - B

500 B

o 1 2 3 4 5 6 7 8
Optimizations

2 Logical Processes
4 Logical Processes

Figure 11. Sun SparcCenter 1000 results for
s27

5 Conclusions

We discussed how the wWARPED Time Warp kernel was
extended to include dynamic selection of checkout intervals
and event cancellation strategies. Empirical performance
data was collected for two application domains, namely a
gueuing model applicationand aVHDL simulation applica-
tion. Each application had threeexamplesfor simulationand
the optimizationswere performed on these examples. Lazy
cancellation, dynamic cancellation, periodic checkpointing,
and dynamic checkpointing were the prime focus of this
paper. Performance resultsin terms of total execution time
and event processing rates were tabulated and discussed for
each Time Warp optimization discussed. In each case, the
dynamic sel ection was shown to providebetter performance
and it was shown that the optimization with the best results
was dynamic cancellation and dynamic checkpointing ap-
plied together.

Acknowledgments
The authors would gratefully like to acknowledge the
suggestionsand contributionsof David Charley, John Penix,

DaeE. Martin, Lantz Moore, Raghunandan Rajan, Bal akr-
ishnan Kannikeswaran, and Christopher H. Young.

References

[1] K.J.AstromandB. Wittenmark. Adaptive Control. Addison
Wesley, Reading, MA, 1989.

[2] D.Ball and S. Hoyt. The adaptive time-warp concurrency
control algorithm. In Distributed Smulation, pages 174—
177. Society for Computer Simulation, January 1990.

[3] J.V.Briner, Jr. Parallel Mixed-Level Smulation of Digital
Circuits using Virtual Time. PhD thesis, Duke University,
Durham, North Carolina, 1990.

[4] R. Brown. Calendar queues: A fast O(1) priority queue
implementation for the simulation event set problem. Com-
munications of the ACM, 31(10):1220-1227, October 1988.

[5] K. M. Chandy and R. Sherman. Space-time and simula-
tion. In Distributed Smulation, pages 53-57. Society for
Computer Simulation, 1989.

[6] J. Fleischmann and P. A. Wilsey. Comparative analysis of
periodic state saving techniques in time warp simulators.
In Proc. of the 9th Workshop on Parallel and Distributed
Smulation (PADS 95), pages 50-58, June 1995.

[7] R. Fujimoto. Parallel discrete event simulation. Communi-
cations of the ACM, 33(10):30-53, October 1990.

[8] A. Gafni. Rollback mechanisms for optimistic distributed
simulation systems. In Distributed Smulation, pages61-67.
Society for Computer Simulation, January 1988.

[9] IEEE Sandard VHDL Language Reference Manual. New
York, NY, 1993.

[10] D. Jefferson. Virtual time. ACM Transactionson Program-
ming Languagesand Systems, 7(3):405-425, July 1985.

[11] Y. Lin. Estimating the likelihood of success of lazy can-
cellation in time warp simulations. International Journal in
Computer Smulation, 1995. (to appear).

[12] Y.-B.Lin, B.R. Preiss, W. M. Loucks, and E. D. Lazowska.
Selecting the checkpoint interval in time warp simulation.
In Proc of the 7th Workshop on Parallel and Distributed
Smulation (PADS), pages 3-10. Society for Computer Sim-
ulation, July 1993.

[13] D. E. Martin, T. McBrayer, and P. A. Wilsey. WARPED:
A time warp simulation kernel for analysis and appli-
cation development, 1995. (available on the www at
http://ww. ece. uc. edu/~ paw war ped/).

[14] D. E. Martin, T. J. McBrayer, and P. A. Wilsey. WARPED:
A time warp simulation kernel for analysis and application
development. In 29th Hawaii International Conference on
System Sciences (HICSS-29), January 1996. (forthcoming).

[15] J. Misra. Distributed discrete-event simulation. Computing
Surveys, 18(1):39-65, March 1986.

[16] Z.Navabi.VHDL: Analysisand Modeling of Digital Systems.
McGraw—Hill, New York, NY, 1993.

[17] A. Palaniswamy and P. A. Wilsey. Adaptive checkpoint
intervals in an optimistically synchronized parallel digital
system simulator. In VLS 93, pages 353-362, September
1993.

[18] D. L. Perry. VHDL. McGraw—Hill, New York, NY, 2nd
edition, 1994.

[19] R. Rajan. Cancellation strategies in time warp simulators.
Master’s thesis, Dept of ECECS, University of Cincinnati,
Cincinnati, OH, December 1995. (expected).

[20] R. Rajanand P. A. Wilsey. Dynamically switching between
lazy and aggressive cancellation in atime warp parallel sim-
ulator. In Proc. of the 28th Annual Smulation Symposium,
pages 22—-30. |[EEE Computer Society Press, April 1995.

[21] P L. Reiher, F. Wieland, and D. R. Jefferson. Limitation of



[22]

[23]

[24]

optimism in the time warp operating system. In Winter Sm-
ulation Conference, pages 765—770. Society for Computer
Simulation, December 1989.

R. Ronngren and R. Ayani. Adaptive checkpointingin time
warp. In Proc. of the 8th Workshop on Parallel and Dis-
tributed Smulation (PADS 94), pages 110-117. Society for
Computer Simulation, July 1994.

R. Ronngren, J. Riboe, and R. Ayani. Lazy queue: An
efficient implementation of the pending-event set. In Proc.
of the 24th Annual Smulation Symposium, pages 194-204,
April 1991.

D. West. Optimizing time warp: Lazy rollback and lazy re-
evaluation. Master’s thesis, University of Calgary, Calgary,
Alberta, 1988.



