
A Comparative Analysis of Various Time Warp Algorithms Implemented in the
WARPED Simulation Kernel�

Radharamanan Radhakrishnan, Timothy J. McBrayer, Krishnan Subramani,
Malolan Chetlur, Vijay Balakrishnan, and Philip A. Wilsey

Computer Architecture Design Laboratory
Dept. of ECECS, PO Box 210030, Cincinnati, OH 45221–0030

(513) 556-4779, phil.wilsey@uc.edu

Abstract

The Time Warp mechanism conceptually has the poten-
tial to speedup discrete event simulations on parallel plat-
forms. However, practical implementationsof the optimistic
mechanism have been hindered by several drawbacks such
as large memory usage, excessive rollbacks (instability),
and wasted lookahead computation. Several optimizations
and variations to the original Time Warp algorithm have
been presented in the literature to optimistically synchro-
nize Parallel Discrete Event Simulation. This paper uses
a common simulation environment to present comparative
performance results of several Time Warp optimizations in
two different application domains, namely: queuing model
simulation and digital system simulation. The particu-
lar optimizations considered are: Lowest Timestamp First
(LTSF) Scheduling, Periodic (fixed period) Checkpointing,
Dynamic Checkpointing, Lazy Cancellation, and Dynamic
Cancellation.

1 Introduction

The Time Warp Mechanism implements the concept of
Virtual Time to optimistically synchronize parallel simula-
tion. The Time Warp parallel synchronization protocol has
been the topic of research for a number of years. How-
ever, the successful utilization of the Time Warp mecha-
nism has been plagued by the time and space overheads of
rollback, namely: state saving, state restoration and event
reprocessing. Many modifications/optimizations to Time
Warp have been proposed and analyzed [7, 10]. However,
these investigations are generally conducted in distinct en-�Support for this work was provided in part by the Advanced Research
Projects Agency under contract J–FBI–93–116, monitored by the Depart-
ment of Justice.

vironments with each optimization reimplemented for com-
parative analysis. Besides the obvious waste of manpower
to reimplement Time Warp and its affiliated optimizations,
the possibilityfor a varying quality of the implemented opti-
mizations exists. The WARPED project is an attempt to make
a freely available Time Warp simulation kernel that is easily
ported, simple to modify and extend, and readily attached
to new applications. The primary goal of this project is to
release a system that is freely available to the research com-
munity for analysis of the Time Warp design space. In order
to make WARPED useful, the system must be easy to obtain,
available with running applications, operational on several
processing platforms, and easy to install, port, and modify.

In this paper, we present empirical data on the perfor-
mance of several Time Warp optimizations using the prob-
lem domains of queuing model simulation and digital system
simulation. In particular, performance results for the opti-
mizations lazy cancellation [8, 24], dynamic cancellation
[20], periodic checkpointing, [10] and dynamic checkpoint-
ing [6, 12, 17, 22] are given. Performance data is collected
using version 0.5 of the WARPED software [13, 14] running
on a 4 processor SUN SparcCenter 1000 and for compar-
ative purposes we also present data collected on the Intel
Paragon.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a high level overview of the WARPED kernel
and its interface to an application environment. Section 3
discusses the various optimizations that have been devel-
oped for the WARPED kernel. Performance results with two
distinct applications (queuing model simulation and digital
system simulation) are shown in Section 4. Finally, Section
5 contains some concluding remarks.

2 Overview of the WARPED System

The WARPED kernel provides the functionality to develop
applications modeled as discrete event simulations [13, 14].

This paper appeared in the Proceedings of the Annual Simulation Symposium, ASS-1996.
c 1998, IEEE. Personal use of this material is permitted. However, permission to reprint or republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained
from the IEEE.





State Events

Execute Process

State Manager Communication
Manager

Kernel Code

User Code

Supplied by
kernel

Supplied by
user

Figure 1. The Relationship Between the Ap-
plication and the WARPED Kernel

Considerable effort has been made to define a standard pro-
gramming interface to hide the details of Time Warp from
the application interface. For example, sending events from
one simulation object to another is done in the same way
regardless of whether the objects are on a single processor
or on different processors; all Time Warp specific activities
such as state saving, rollback, and so on are performed au-
tomatically by the kernel without intervention from the ap-
plication. Consequently, an implementation of the WARPED

interface can be constructed using either conservative [15] or
optimistic [5, 10] parallel synchronization techniques; fur-
thermore, the simulation kernel can also exist as a sequential
kernel. In fact, the current software distribution of WARPED

includes both sequential and parallel (Time Warp) imple-
mentations. As previously indicated, this independence is
achieved through a standard interface [13]. This interface is
briefly described below.

The WARPED interface requires that the simulation kernel
provide the following services to the application:� Event delivery: communication between simulation

objects in the WARPED universe is provided by the
kernel.� Optimistic synchronization between parallel pro-
cesses: WARPED can be run on parallel processors
ranging from clusters of workstations to large scale
multiprocessors, and Time Warp activities will be per-
formed transparently to the user process.

In order for these services to be provided by the kernel,
the application must also provide certain constructs to the

kernel (Figure 1). In particular, the application specific
definitions of events and state must be defined. If a non-
integer definition time of time is desired, then this definition
must also be provided.

Simulation objects are grouped together into entities
called logical processes, or LPs (Figure 2). Processor par-
allelism occurs at the LP level and each LP is responsible
for GVT management, communication management, and
scheduling for the simulation objects that it contains. In
addition, communication between simulation objects within
the same LP is performed by direct insertion into the input
queue of the receiving object.

Since the parallelism occurs at the LP level, simulation
objects which execute relatively independently of each other
can be placed on separate LPs to maximize parallelism.
Conversely, simulation objects that frequently communicate
with each other should be placed on the same LP to benefit
from fast intra-LP communication.

Partitioning in WARPED occurs explicitly in the instantia-
tion and registration of simulation objects with an LP. Pro-
cessor allocation to LPs occurs at runtime using the MPICH
mechanism of group files — each machine in the simulation
is listed in the order that they will be assigned ids. Automatic
partitioning of simulation objects to LPs is not provided in
WARPED; furthermore, load balancing is not currently im-
plemented.

The WARPED system is composed of a set of C++ libraries
which the user accesses in several ways. Where the kernel
needs information about data structures within the applica-
tion, they are passed into kernel template classes. When
kernel data or functions need to be made available to the
user, they can be accessed by one of two mechanisms:

1. Through the C++ inheritance mechanism. That is,
certain classes that the user defines must be derived
from kernel defined classes.

2. Through “normal” function calls to methods defined
by objects in the WARPED kernel.

To use the WARPED kernel, the application programmer
must provide three class definitions corresponding to (i) the
simulation object, (ii) the notion of state for that simulation
object, and (iii) a definition (or definitions) for events. The
simulation object classes must be derived from the class
TimeWarp and the state class is derived from the class
BasicState. The TimeWarp class is templatized on
state, so a TimeWarp object must be instantiated with each
state class that is defined.

Events to be passed between simulation objects are de-
fined by the application programmer as a set of class defini-
tions. These must be derived from the BasicEvent class.
In the current version of WARPED events cannot contain dy-
namically allocated data or pointers to data.



Simulation
Object

Simulation
Object

Simulation
Object

Simulation
Object

Logical
Process

Simulation
Object

Simulation
Object

Simulation
Object

Simulation
Object

Simulation
Object

Simulation
Object

Logical
Process

Simulation
Object

Simulation
Object

MPI Communication

Direct Communication

Simulation
Object

Simulation
Object

Simulation
Object

Simulation
Object

Logical
Process

Simulation
Object

Simulation
Object

Simulation
Object

Simulation
Object

Simulation
Object

Simulation
Object

Logical
Process

Simulation
Object

Simulation
Object

Figure 2. Structure of LPs and Simulation Objects in the WARPED System

By default, WARPED has a simple notion of time. More
precisely, time is defined in the class VTime as a signed
integer. Obviously, particular instances of a simulation with
the WARPED kernel may have different requirements for the
concept of time. For example, simulators for the hardware
description language VHDL [16, 18] require a more com-
plex definition of time. Thus, WARPED includes a mechanism
for defining a more complex structure for time.

If the simple, kernel-supplied version of time is not suf-
ficient, the application programmer must define the class
VTime with data members appropriate to the application’s
needs. In addition, the user must define the preproces-
sor macro USE USER VTIME during compilation. The
WARPED kernel also has requirements about the defined
methods of the type VTime. Specifically, the implemen-
tation of VTime must supply the following operators and
data, either by default or through explicit instantiation:� Assignment (=), Addition (+), and subtraction (–) op-

erators.� The relational operators: ==, !=, >=, <=, >, <.� Constant objects of type VTime named ZERO,
PINFINITY, and INVALID VTIME, which define,
respectively, the smallest, largest, and invalid time
values. INVALID VTIME must be < ZERO.� The insertion operator (<<) for class ostream, for
type VTime.

A more detailed description of the internal structure and
organization of the WARPED kernel is available on the www
at http://www.ece.uc.edu/˜paw/warped.

3 Time Warp Optimizations Implemented in
WARPED

Parallel discrete event simulation (PDES), using the Time
Warp mechanism for synchronization, has the potential to
produce large speedup, but has never been fully utilized
due to implementation and memory overheads. Several op-
timizations have been proposed in the literature to reduce
overheads, and thereby produce a larger speedup. These
overheads can largely be classified along the following di-
mensions:� Wasted lookahead computation, and unnecessary re-

computation of states and event execution. Strag-
gler event processing can result in the propagation of
unnecessary rollback eventually creating a thrashing
effect in optimistically synchronized simulators [7].� Time and space overhead due to excessive state sav-
ing. Because most parallel systems have a somewhat
limited memory space, excessive state savings can
cause severe simulation slow-down (due to swapping
of memory), and in some cases, failure [3].

Correspondingly, Time Warp optimizations can be di-
vided into two types, namely: (i) optimizations to decrease
the wasted lookahead computation, and (ii) optimizations
to reduce the memory overhead. Lazy Cancellation and
Dynamic Cancellation have been proposed to avoid unnec-
essary lookahead computation. Periodic Checkpointing and
Dynamic Checkpointinghave been proposed to alleviate the
memory overhead problem.



In this paper, empirical data relating the effectiveness
of these Time Warp optimizations are presented. In par-
ticular, several applications from the domains of queuing
model simulation and digital system simulation are used
to exercise the WARPED kernel with various configurations
of optimizations enabled/disabled. The remainder of this
section describes these optimizations in more detail.

3.1 Lazy Cancellation

The performance of a Time Warp simulator depends on
the efficiency of the cancellation strategy employed to undo
the effects of the erroneous computation. Two known can-
cellation strategies exist, namely aggressive cancellation
[10], and lazy cancellation [8, 24]. Under aggressive cancel-
lation the arrival of a straggler message and the subsequent
rollback forces the immediate generation of antimessages
for all output messages that were processed prematurely. In
contrast, using lazy cancellation, the sending of antimes-
sages is delayed until forward processing demonstrates (by
comparison of old and new output) that the originally sent
output messages were incorrect. Thus, there is a potential
reduction in communication as well as a decrease in wasted
lookahead computation. As a consequence of lazy cancel-
lation the total number of rollbacks is frequently reduced.
Lazy cancellation, however, relies heavily on the regenera-
tion of the same output message for its performance. The
performance under lazy cancellation deteriorates if the prob-
ability of the regenerated output messages being different
from the originally sent messages is high. In contrast, ag-
gressive cancellation performs poorly if the same messages
are generated before and after a rollback most of the time.
Several independent studies have shown that lazy cancella-
tion frequently performs better than aggressive cancellation,
but that, even within the same application domain, some exe-
cutions perform better under aggressive cancellation [2, 21].
Unfortunately, practical techniques to statically analyze an
application for selecting cancellation strategies have yet to
be developed [11]. Consequently, many investigators sim-
ply use lazy cancellation. Recently, however, a technique
for dynamically selecting the cancellation strategy has been
proposed [20]

3.2 Dynamic Cancellation

Dynamic cancellation is a technique to have each Time
Warp object decide for itself which cancellation strategy to
employ [20, 19]. That is, each Time Warp object analyzes its
recent history for evidence of success in lazy cancellation.
More precisely, the object maintains a lazy hit/miss ratio
and uses this ratio to decide which cancellation strategy
to employ. The decision to dynamically switch at the Time
Warp object level was made by a detailed analysis of the lazy

hit/miss ratio for all objects in various applications [19]. In
this study, Rajan observes that the best cancellation strategy
varies even across the individual Time Warp objects of a
simulation.

The selection of which cancellation strategy to use is
decided using non-linear control techniques. In particular,
Rajan uses a thresholding function with a dead zone to se-
lect the cancellation strategy. More precisely, all Time Warp
objects begin by using aggressive cancellation. Then, after
a sufficiently long measurement cycle, the lazy hit/miss ra-
tio is used to select cancellation strategies; if the value falls
below a lower threshold, aggressive cancellation is used;
changes from aggressive to lazy occur when the ratio crosses
an upper boundary; and values in the dead zone remain un-
changed. The setting of the upper and lower bounds requires
some tuning based on the specific time warp simulator and
its implementation costs [19].

Dynamic cancellation does, however, require an addi-
tional cost for implementation. In particular, even when
using aggressive cancellation, a Time Warp object must
continue to perform comparison of output events in order to
revise the lazy hit/miss ratio. Alternative techniques such
as permanently switching into aggressive cancellation when
crossing the lower threshold and other approaches are al-
luded to by Rajan [19], but not fully investigated.

3.3 Periodic Checkpointing

Memory consumption is a potentially onerous problem
for large Time Warp simulations. Time Warp objects with
large states require considerable memory space as well as
CPU cycles for state saving. In general, states are saved after
every event execution in a Time Warp simulation. However,
it is possible to save state periodically, after a certain num-
ber of fixed event executions. Thus the arrival of a straggler
message with periodic state savings may require the system
to rollback to an earlier state and coast forward, reconstruct-
ing the state required to correctly execute the straggler event
in its proper order. While coasting forward, no messages
are sent out to the other processes in the system. The diffi-
culty of periodic state saving is determining an appropriate
fixed frequency for checkpointing. Some applications oper-
ate best with a fairly small value; while others require much
larger values. As with cancellation strategies, no practical
techniques for statically analyzing generic applications to
decide the checkpoint frequency are known.

3.4 Dynamic Checkpointing

There have been a variety of approaches to dynamically
adjusting the checkpoint interval [6, 12, 17, 22]. These
techniques all employ an adaptive control mechanism to dy-
namically establish values for the checkpoint interval. As



with any control system, dynamically adjusting the simula-
tors control parameters requires that several output values
be monitored [1]. While the particular output values mon-
itored by each proposed method vary, several of them are
shared [6]. The WARPED system has the ability to choose
from three algorithms to perform dynamic checkpointing.
In particular, it includes implementations of Lin’s model
[12], Palainswamy’s model [17] and Fleischmann’s model
[6]. For purposes of this paper, we show only results using
Lin’s model. Lin’s model was chosen because it tends to
produce slightly better results across the applications that
are considered herein.

4 Comparative Results of the WARPED Algo-
rithms

This section details the experiments conducted to charac-
terize the performance and effectiveness of the optimization
techniques in Section 3. To see the effect of the various op-
timizations presented earlier, a series of tests were conduced
on two application domains, namely the queuing model sim-
ulations and simulation of digital systems described in the
hardware description language VHDL [16, 18]. Perfor-
mance results from these studies are reported using three
chief measures: (i) total execution time (in seconds), (ii)
total events processed per second, and (iii) total events com-
mitted per second.

The results in this paper have been collected by running
the simulations on a 4-processor Sun SparcCenter 1000. In
the reported results, the applications are tested with various
configurations of LPs, namely: 1 (where it makes sense),
2, and 4. Also to illustrate performance on a parallel ma-
chine(the Intel Paragon), simulation results for the queu-
ing model applications have also been included. The ap-
plication description and performance results of these two
applications are given, respectively, in the following two
subsections.

4.1 Application: Queuing Model Simulation on
the Sun SparcCenter 1000

Included in the WARPED distribution is a simulation li-
brary for building queuing models. This library is called
KUE. In addition to the library, the distribution includes
three instances of use of KUE. The three example queuing
models are:� Police: a queuing model of a simple traffic police

telecommunications network). Instantiations of vari-
ous sized models can be automatically generated. For
purposes of this paper, a simulation model containing
96 Time Warp objects was used.

� SMMP: modeling a shared memory multiprocessor.
Each processor is assumed to have a local cache with
access to a common global memory. This applica-
tion is also scalable, with instances generated by a
C program. For the experiments in this paper, a 16
processor machine with settings as follows: a 10ns
cache, a 100ns main memory, and a cache hit ratio of
90%.� RAID: model of a nine disk RAID level 5 dik ar-
ray of IBM 0661 3.5” 320Mb SCSI disk drives with
flat-Left symmetric parity placement policy. Sixty
processes send request for stripes of random lengths
and location to forks which split each the requests
into individual requests for each disk according to the
placement policy. Thirty server process the requests
in a FCFS fashion and route the appropriate requests
back to the source process.

Simulation results from these models are summarized in 3–
8 and discussed below. For comparison, the applications
were also executed on the sequential implementation of the
WARPED kernel. The event processing rates for the sequen-
tial kernel (computed in events per second) are: Police –
17,982; SMMP – 17,836 and, RAID – 16,908. Thus, in
this version of warped, the configurations of the Time Warp
kernel operate at about 50% of the efficiency of the corre-
sponding sequential kernel.
All the optimizations are shown in each graph for each ap-
plication. Optimizations are numbered 1 through 7. They
are as follows:
1 No Optimizations with Round Robin Scheduling
2 No Optimizations with LTSF Scheduling
3 Periodic Checkpointing with LTSF Scheduling
4 Dynamic Checkpointing with LTSF Scheduling
5 Lazy Cancellation with LTSF Scheduling
6 Dynamic Cancellation with LTSF Scheduling
7 Dynamic Cancellation and Dynamic Checkpointing with
LTSF Scheduling

Effects of the Scheduler

Two scheduling algorithms are available for testing, namely
Round Robin (RR), and Lowest Timestamp First (LTSF).
Both schedulers are written to remove inactive objects (ob-
jects with no events to be processed) from the ready to exe-
cute queue. Configurations of the queuing models for each
of these scheduling algorithms (with no other optimizations
enabled) are given in 3–8. While the overhead of sorting
the events for LTSF scheduling produces a lower overall
event processing rate, a faster execution time is actually
achieved because the slowest advancing objects are given
higher priority for execution. Comparing the data collected



0 1 2 3 4 5 6 7 8
Optimizations

0

2500

5000

7500

10000

12500

15000

Ev
en

ts
 c

om
m

itt
ed

 p
er

 s
ec

on
d

Application 1 : Police
24,000 Tokens

2 Logical Processes
4 Logical Processes

Figure 3. Sun SparcCenter 1000 results for
Police

for the three applications, we can see that the LTSF sched-
uler gets a speedup of 10% over the Round Robin scheduler
(with respect to committed events per second). Further-
more, preliminary studies (results not yet available) with
data structures requiring less expensive sorting overheads
(e.g., lazy queue, calendar queue [4, 23]) have shown even
greater performance improvements due to LTSF scheduling.

Effects of Periodic Checkpointing

For the (fixed) periodic checkpointing studies ,a fixed period
of 3 events between state saves was selected. This selection
was chosen because it gives the best overall performance
across all of the applications in the queuing model domain.
As a result of the less frequent state saving, the execution
time cost of state saving is reduced. The data collected for
this optimization indicate that there is a 15% improvement
in the number of committed events per second for at least
two of the applications. A 15% improvement is achieved
over the ordinary LTSF case. In some cases, a checkpoint
interval of 2 or 4 produces even better results and in stud-
ies with the application of VHDL simulation, much larger
checkpoint intervals (on the order of 10-20) give the best
results. Consequently, the need for dynamic checkpointing.

Effects of Dynamic Checkpointing

Dynamic checkpointing periodically adjusts the checkpoint
interval during the simulation in order to balance state sav-
ings costs against coast forward costs [6]. Two approaches

0 1 2 3 4 5 6 7 8
Optimizations

0

2000

4000

6000

8000

10000

Ev
en

ts
 c

om
m

itt
ed

 p
er

 s
ec

on
d

Application 2 : SMMP
16 Processors, 1000 requests per processor

2 Logical Processes
4 Logical Processes

Figure 4. Sun SparcCenter 1000 results for
SMMP

0 1 2 3 4 5 6 7 8
Optimizations

0

1000

2000

3000

4000

5000

6000

7000

8000

Ev
en

ts
 c

om
m

itt
ed

 p
er

 s
ec

on
d

Application 3 : RAID
60 Processes, 1000 requests per process

2 Logical Processes
4 Logical Processes

Figure 5. Sun SparcCenter 1000 results for
RAID



0 1 2 3 4 5 6 7 8
Optimizations

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

Ev
en

ts
 c

om
m

itt
ed

 p
er

 s
ec

on
d

Intel Paragon Results for Police
100,000 Tokens

4 Logical Processes
8 Logical Processes
16 Logical Processes

Figure 6. Intel Paragon results for Police

have been considered in the literature. The first, explored
by Lin et al [12], dynamically adjusts the checkpoint fre-
quency at only the beginning of the simulation and leaves it
fixed thereafter. The second approach is to continuously ad-
just the checkpoint period throughout the entire simulation
[6, 17, 22]. The former has a lower total overhead and works
well when the application reaches a steady state behavior.
The latter works best when the application processing rates
and rollback frequency vary over the lifetime of the simula-
tion. For the queuing model studies, we have observed that
Lin’s model works best (3–8). From the graphs, we see that
dynamic checkpointing gains a speedup of as much as 20%
for two of the examples.

Effects of Lazy Cancellation

Lazy Cancellation is dependent on the number of rollbacks
and how may of the rollbacks can be rolled forward. Given
the queuing models of this study, lazy cancellation provides
a 10% performance improvement over aggressive cancella-
tion, in at least two of the applications(3 – 8).

Effects of Dynamic Cancellation

This optimization takes into consideration the fact that dur-
ing the course of a simulation, it is necessary to apply ag-
gressive cancellation at certain intervals of time and lazy
cancellation during other intervals of time. Ideally, the dy-
namically selection should produce better execution times
than either approach singlely applied. The data from the
experiments support this claim. One of the applications gets
a speedup of 25% whereas another gets a speedup of 13%.

0 1 2 3 4 5 6 7 8
Optimizations

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Ev
en

ts
 c

om
m

itt
ed

 p
er

 s
ec

on
d

Intel Paragon Results for SMMP
16 Processors, 100,000 requests per processor

4 Logical Processes
8 Logical Processes
16 Logical Processes

Figure 7. Intel Paragon results for SMMP

0 1 2 3 4 5 6 7 8
Optimizations

0

1000

2000

3000

4000

5000

6000

7000

8000

Ev
en

ts
 c

om
m

itt
ed

 p
er

 s
ec

on
d

Intel Paragon Results for RAID
60 Processes, 100,000 requests per process

4 Logical Processes
8 Logical Processes
16 Logical Processes

Figure 8. Intel Paragon results for RAID



0 1 2 3 4 5 6 7 8
Optimizations

0

500

1000

1500

2000

2500

3000

Ev
en

ts
 c

om
m

itt
ed

 p
er

 s
ec

on
d

Application 4 : VHDL Example 1
Iscas’85 benchmark(c17)

2 Logical Processes
4 Logical Processes

Figure 9. Sun SparcCenter 1000 results for
c17

Effects of Dynamic Cancellation & Checkpointing

Performance results for these applications with LTSF
scheduling, Dynamic Checkpointing, and Dynamic cancel-
lation all enabled are summarized in 3 – 8. These opti-
mizations produce an average speedup of 20% and clearly
combine well to give the best overall performance for all of
the parallel runs.

4.2 Application: Queuing Model Simulation on
the Intel Paragon

The above 3 examples were simulated on the Intel
Paragon, using a larger number of Logical Processes. It
is clearly visible from the figures(6 – 8) that as we increase
the number of processors, the overall committment rate im-
proves as each processor has to do less. Consequently, the
optimizations also show similar improvement when com-
pared with the unoptimized case.

4.3 Application: VHDL Simulation

The second application studied is digital system simu-
lation. In particular, we have developed a VHDL simula-
tion kernel [9] that operates on top of the WARPED kernel.
A VHDL code generator is currently under development.
Consequently, we needed a simple technique for translating
moderately sized VHDL examples into executable code to
link with the VHDL simulation kernel. The ISCAS bench-
marks provide a good example of moderately sized VHDL

0 1 2 3 4 5 6 7 8
Optimizations

0

500

1000

1500

2000

2500

3000

Ev
en

ts
 c

om
m

itt
ed

 p
er

 s
ec

on
d

Application 5 : VHDL Example 2
Iscas’85 benchmark(c499)

2 Logical Processes
4 Logical Processes

Figure 10. Sun SparcCenter 1000 results for
c499

codes that are regular and easy to translate with a perl
script.

Three examples from the ISCAS 85 (combinational cir-
cuits) and ISCAS 89 (sequential circuits) were selected for
study. In particular, we chose the combinational circuits
c17 and c499 and the sequential circuit s27. c17 contains 6
gates, c499 contains 202 gates, and s27 contains 11 gate el-
ements. All of the tests were run with 10,000 input vectors.
The results of these test cases are summarized in 9–11.

Effects of the optimizations on the VHDL Simulation
Models

The results show similar performance gains as those dis-
cussed in Section 4.1. We see that LTSF scheduling gives
a considerable performance improvement over RR; each
input circuit show at least a 20% speedup. Periodic check-
pointing does not produce as much performance improve-
ment as it did in the queuing applications. However, dy-
namic checkpointing results in an additional 3% speedup
over the improvement gained from LTSF scheduling. Not
much speedup is gained from lazy cancellation or dynamic
cancellation. Dynamic cancellation causes a performance
improvement of 3 to 5%. But when dynamic cancellation
and dynamic checkpointing are applied in conjunction to the
VHDL simulation applications, a marked improvement in
performance is obtained. In this case, all of the examples
report at least a 5% improvement in performance.



0 1 2 3 4 5 6 7 8
Optimizations

0

500

1000

1500

2000

2500

3000

Ev
en

ts
 c

om
m

itt
ed

 p
er

 s
ec

on
d

Application 6 : VHDL Example 3
Iscas’89 benchmark(s27)

2 Logical Processes
4 Logical Processes

Figure 11. Sun SparcCenter 1000 results for
s27

5 Conclusions

We discussed how the WARPED Time Warp kernel was
extended to include dynamic selection of checkout intervals
and event cancellation strategies. Empirical performance
data was collected for two application domains, namely a
queuing model application and a VHDL simulation applica-
tion. Each application had three examples for simulation and
the optimizations were performed on these examples. Lazy
cancellation, dynamic cancellation, periodic checkpointing,
and dynamic checkpointing were the prime focus of this
paper. Performance results in terms of total execution time
and event processing rates were tabulated and discussed for
each Time Warp optimization discussed. In each case, the
dynamic selection was shown to provide better performance
and it was shown that the optimization with the best results
was dynamic cancellation and dynamic checkpointing ap-
plied together.

Acknowledgments

The authors would gratefully like to acknowledge the
suggestions and contributionsof David Charley, John Penix,
Dale E. Martin, Lantz Moore, Raghunandan Rajan, Balakr-
ishnan Kannikeswaran, and Christopher H. Young.

References

[1] K. J. Astrom and B. Wittenmark. Adaptive Control. Addison
Wesley, Reading, MA, 1989.

[2] D. Ball and S. Hoyt. The adaptive time-warp concurrency
control algorithm. In Distributed Simulation, pages 174–
177. Society for Computer Simulation, January 1990.

[3] J. V. Briner, Jr. Parallel Mixed-Level Simulation of Digital
Circuits using Virtual Time. PhD thesis, Duke University,
Durham, North Carolina, 1990.

[4] R. Brown. Calendar queues: A fast O(1) priority queue
implementation for the simulation event set problem. Com-
munications of the ACM, 31(10):1220–1227, October 1988.

[5] K. M. Chandy and R. Sherman. Space-time and simula-
tion. In Distributed Simulation, pages 53–57. Society for
Computer Simulation, 1989.

[6] J. Fleischmann and P. A. Wilsey. Comparative analysis of
periodic state saving techniques in time warp simulators.
In Proc. of the 9th Workshop on Parallel and Distributed
Simulation (PADS 95), pages 50–58, June 1995.

[7] R. Fujimoto. Parallel discrete event simulation. Communi-
cations of the ACM, 33(10):30–53, October 1990.

[8] A. Gafni. Rollback mechanisms for optimistic distributed
simulation systems. In Distributed Simulation, pages 61–67.
Society for Computer Simulation, January 1988.

[9] IEEE Standard VHDL Language Reference Manual. New
York, NY, 1993.

[10] D. Jefferson. Virtual time. ACM Transactions on Program-
ming Languages and Systems, 7(3):405–425, July 1985.

[11] Y. Lin. Estimating the likelihood of success of lazy can-
cellation in time warp simulations. International Journal in
Computer Simulation, 1995. (to appear).

[12] Y.-B. Lin, B. R. Preiss, W. M. Loucks, and E. D. Lazowska.
Selecting the checkpoint interval in time warp simulation.
In Proc of the 7th Workshop on Parallel and Distributed
Simulation (PADS), pages 3–10. Society for Computer Sim-
ulation, July 1993.

[13] D. E. Martin, T. McBrayer, and P. A. Wilsey. WARPED:
A time warp simulation kernel for analysis and appli-
cation development, 1995. (available on the www at
http://www.ece.uc.edu/˜paw/warped/).

[14] D. E. Martin, T. J. McBrayer, and P. A. Wilsey. WARPED:
A time warp simulation kernel for analysis and application
development. In 29th Hawaii International Conference on
System Sciences (HICSS-29), January 1996. (forthcoming).

[15] J. Misra. Distributed discrete-event simulation. Computing
Surveys, 18(1):39–65, March 1986.

[16] Z. Navabi. VHDL: Analysis and Modeling of Digital Systems.
McGraw–Hill, New York, NY, 1993.

[17] A. Palaniswamy and P. A. Wilsey. Adaptive checkpoint
intervals in an optimistically synchronized parallel digital
system simulator. In VLSI 93, pages 353–362, September
1993.

[18] D. L. Perry. VHDL. McGraw–Hill, New York, NY, 2nd
edition, 1994.

[19] R. Rajan. Cancellation strategies in time warp simulators.
Master’s thesis, Dept of ECECS, University of Cincinnati,
Cincinnati, OH, December 1995. (expected).

[20] R. Rajan and P. A. Wilsey. Dynamically switching between
lazy and aggressive cancellation in a time warp parallel sim-
ulator. In Proc. of the 28th Annual Simulation Symposium,
pages 22–30. IEEE Computer Society Press, April 1995.

[21] P. L. Reiher, F. Wieland, and D. R. Jefferson. Limitation of



optimism in the time warp operating system. In Winter Sim-
ulation Conference, pages 765–770. Society for Computer
Simulation, December 1989.

[22] R. Rönngren and R. Ayani. Adaptive checkpointing in time
warp. In Proc. of the 8th Workshop on Parallel and Dis-
tributed Simulation (PADS 94), pages 110–117. Society for
Computer Simulation, July 1994.

[23] R. Rönngren, J. Riboe, and R. Ayani. Lazy queue: An
efficient implementation of the pending-event set. In Proc.
of the 24th Annual Simulation Symposium, pages 194–204,
April 1991.

[24] D. West. Optimizing time warp: Lazy rollback and lazy re-
evaluation. Master’s thesis, University of Calgary, Calgary,
Alberta, 1988.


