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Abstract

Order statistics, i.e., quantiles, are frequently
used in databases both at the database server
as well as the application level. For example,
they are useful in selectivity estimation during
query optimization, in partitioning large rela-
tions, in estimating query result sizes when
building user interfaces, and in characterizing
the data distribution of evolving datasets in
the process of data mining.

We present a new algorithm for dynamically
computing quantiles of a relation subject to
insert as well as delete operations. The algo-
rithm monitors the operations and maintains
a simple, small-space representation (based on
random subset sums or RSSs) of the underly-
ing data distribution. Using these RSSs, we
can quickly estimate, without having to ac-
cess the data, all the quantiles, each guaran-
teed to be accurate to within user-specified
precision. Previously-known one-pass quan-
tile estimation algorithms that provide sim-
ilar quality and performance guarantees can
not handle deletions. Other algorithms that
can handle delete operations cannot guaran-
tee performance without rescanning the entire
database.

We present the algorithm, its theoretical per-
formance analysis and extensive experimental
results with synthetic and real datasets. In-
dependent of the rates of insertions and dele-
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tions, our algorithm is remarkably precise at
estimating quantiles in small space, as our ex-
periments demonstrate.

1 Introduction

Most database management systems (DBMSs) main-
tain order statistics, i.e., quantiles, on the contents of
their database relations. Medians (half-way points)
and quartiles (quarter-way points) are elementary or-
der statistics. In the general case, the ¢-quantiles of
an ordered sequence of N data items are the values
with rank k¢N, for k=1,2,...1/¢.

Quantiles find multiple uses in databases. Sim-
ple statistics such as the mean and variance are both
insufficiently descriptive and highly sensitive to data
anomalies in real world data distributions. Quantiles
can summarize massive database relations more ro-
bustly. Many commercial DBMSs use equi-depth his-
tograms [21, 23], which are in fact quantiles, during
query optimization in order to estimate the size of in-
termediate results and pick competitive query execu-
tion plans. Quantiles can also be used for determining
association rules for data mining applications [1, 3, 2].
Quantile distribution helps design well-suited user in-
terfaces to visualize query result sizes. Also, quantiles
provide a quick similarity check in coarsely comparing
relations, which is useful in data cleaning [16]. Finally,
they are used as splitters in parallel database systems
that employ value range data partitioning [22] or for
fine-tuning external sorting algorithms [9].

Computing quantiles on demand in many of the
above applications is prohibitively expensive as it in-
volves scanning large relations. Therefore, quantiles
are precomputed within DBMSs. The central chal-
lenge then is to maintain them since database relations
evolve via transactions. Updates, inserts and deletes
change the data distribution of the values stored in
relations. As a result, quantiles have to be updated
to faithfully reflect the changes in the underlying data
distribution. Commercial database systems often hide



this problem. Database administrators may periodi-
cally (say every night) force the system to recompute
the quantiles accurately. This has two well-known
problems. Between recomputations, there are no guar-
antees on the accuracy of the quantiles: significant
updates to the data may result in quantiles being ar-
bitrarily bad, resulting in unwise query plans during
query optimization. Also, recomputing the quantiles
by scanning the entire relation, even periodically, is
still both computationally and I/O intensive.

In applications such as described above, it often
suffices to provide reasonable approximations to the
quantiles, and there is no need to obtain precise val-
ues. In fact, it suffices to get quantiles to within a few
percentage points of the actual values.

We present a new algorithm for dynamically com-
puting quantiles of a relation subject to both insert
and delete operations.! The algorithm monitors the
operations and maintains a simple, small-space repre-
sentation (based on random subset sums or RSSs) of
the underlying data distribution. Using these RSSs,
we can estimate, without having to access the data,
all the quantiles on demand, each guaranteed a pri-
ori to be accurate to within user-specified precision.
The algorithm is highly efficient, using space and time
significantly sublinear in the size of the relation.

Despite the commercial use of quantiles, their pop-
ularity in database literature and their obvious fun-
damental importance in DBMSs, no comparable solu-
tions were known previously for maintaining approxi-
mate quantiles efficiently with similar a priori guaran-
tees. Previously known one-pass quantile estimation
algorithms that provide similar a priori quality and
performance guarantees can not handle delete oper-
ations; they are useful for refreshing statistics on an
append-only relation but are unsuitable in presence of
general transactions. Other algorithms that can han-
dle modify or delete operations rely on a small “back-
ing sample” or “distinct sample” of the database and
cannot guarantee similar performance without rescan-
ning the relation.

We perform an extensive experimental study of
maintaining quantiles in presence of general transac-
tions. We use synthetic data sets and transactions to
study the performance of our algorithm (as well as a
prior algorithm we extended to our dynamic setting)
with varying mixes of inserts and deletes. We also
use a real, massive data set from an AT&T warehouse
of active telecommunication transactions. Our exper-
iments show that our algorithm has a small footprint
in space, is fast, and it performs with remarkable accu-
racy in all our experiments, even in presence of rapid
inserts and deletes that change underlying data distri-

LUpdate operations of the form “change an attribute value of
a specified record from its current value z to new value y” can
be thought of as a delete followed by insert, for the purposes of
our discussions here. Hence, we do not explicitly consider them
hereafter.

bution substantially.

In the rest of this section, we state our problem
formally, discuss prior work and describe our results
more, before presenting the specifics. In Section 2,
we describe the challenges in dynamically maintaining
quantiles and present non-trivial adaptations of prior
work. In Section 3 we present our algorithm in detail.
In Section 4, we present experimental results. Finally,
Section 5 has concluding remarks.

1.1 Problem Definition

We consider a relational database and focus on some
numerical attribute. The domain of the attribute is
U = {0,...,|U| — 1}, also called the Universe. In
general, the domain may be a different discrete set
or it may be real-valued and has to be appropriately
discretized. Our results apply in either setting, but we
omit those discussions.

At any time, the database relation is a multiset of
items drawn from the universe. We can alternately
think of this as an array A[0---|U| — 1] where AJi]
represents the number of tuples in the relation with
value ¢ in that attribute.

Transactions consist of inserts and deletes.?
Insert(i) adds a tuple of value i, i.e., Afi] + Afi] +1
and delete(i) removes an existing tuple with value i,
ie, Ali] « A[i] — 1. Let A; be the array after ¢
transactions and let N; = Y. A4[i]; we will drop the
subscript t whenever it is unambiguous from context.

Our goal is to estimate ¢ quantiles on demand. In
other words, we need to find the tuples with ranks
kN, k=1,...,1/¢. We will focus on computing e-
approzimate ¢ quantiles. That is, we need to find a jy
such that

(k¢ — )N < Y Ali

1<jk

and

> A[i] < (k¢ +€)N

1<Jk
for k =1,...,1/¢. The set of ji,...,j1/4 Will be the
¢ quantiles approximate up to £eN. (If ¢ = 0, then
we seek the exact quantiles.) Note that, for ¢ # 0, the
approximation above is in fact good to relative error

(1 + é)v one can set € = g€’ to get the factor (1+¢').

Our goal is to solve this problem using sublinear
resources. It would be ideal of course to use space no
more than 1/¢ that it takes to store the quantiles, but
that appears to be unrealistic since the quantiles may
change substantially under inserts and deletes. There-
fore, in the spirit of prior work, our data structure
will use space that is polylogarithmic in the universe
size, which is typically much less than the size of the

2Formally, the attribute we focus on is the key for the rela-
tion.



dataset. Furthermore, we will only use time per op-
eration nearly linear in the size our data structure,
namely, polylogarithmic in the universe size.

If no transactions are allowed, we refer to the prob-
lem as static. If only insertions are allowed, we refer to
it as incremental and when both insertions and dele-
tions are allowed, we refer to it as dynamic. It is obvi-
ous that, in a database system, A;[i] > 0 at any time
t, since one can not delete a tuple that is not present
in the relation. A sequence of transactions is called
well-formed if it leads to A; > 0; we will consider only
well-formed sequences of transactions in this paper.

1.2 Previous Work

Since the early 70’s, there has been much focus on
finding the median of a static data set. Following the
breakthrough result of [7] that there is a comparison-
based algorithm to find the median (and all the quan-
tiles) in O(NN') worst case time, more precise bounds
have been derived on the precise number of compar-
isons needed in the worst case [20].

A series of algorithms have been developed for find-
ing quantiles in the incremental model. The idea pre-
sented in [19] leads to an algorithm that maintains an
O((log* €N)/€) space data structure on A which gets
updated for each insert. Using this data structure, ¢-
quantiles can be produced that are a priori guaranteed
to be e-approximate. This algorithm was further ex-
tended in [6, 17] to be more efficient in practice, and
improved in [14] to use only O((logeN)/e) space and
time. The approach in these papers is to maintain a
“sample” of the values seen thus far, but the sample is
chosen deterministically by enforcing various weight-
ing conditions. Earlier, [19] had shown that any p-pass
algorithm needs time Q(N'/?) to compute quantiles
exactly and so one needs to resort to approximation in
order to get small space and fast algorithms.

A different line of research has been to use random-
ization so that the output is e-approximate ¢-quantiles
with probability at least 1 — § for some pre-specified
probability § of “failure.” The intuition is that allow-
ing the algorithms to only make probabilistic guaran-
tees will potentially make them faster, or use smaller
space. In [17, 18], O(e 'log”e ' + ¢ log”logd )
space and time algorithm was given for this problem.
Note that this is independent of V, dependent only on
probability of failure and approximation factor.

Other one-pass algorithms [3, 8, 15] do not provide
a priori guarantees; however, performance of their al-
gorithms on various data sets has been experimentally
investigated. Both [18] and [14] also presented exten-
sive experiments on the incremental model.

Despite the extensive literature above on proba-
bilistic/deterministic, approximate/exact algorithms
for finding quantiles in the incremental model, we
do not know of a significant body of work that di-
rectly addresses the problem of dynamic maintenance

of quantiles. An exception is the result of [11] on dy-
namic maintenance of equi-depth histograms which are
¢-quantiles. Using a notion of error different from
ours, the authors present an algorithm based on the
technique of a “backing sample” (an appropriately-
maintained random sample) and provide a priori prob-
abilistic guarantees on equi-depth histogram construc-
tion. Their algorithm works well for the case when
deletions are infrequent, but in general, it is forced
to rescan the entire relation in presence of frequent
deletes. In fact, the authors say “based on the over-
heads, it is clear that the algorithm is best suited for
insert-mostly databases or for data warehousing envi-
ronments.”

Another related line of research is the mainte-
nance of wavelet coefficients in presence of inserts and
deletes. This was investigated in [12, 24] where the
emphasis was on maintaining the largest (significant)
coefficients. In [13], an algorithm was provided for dy-
namically maintaining V-Opt histograms. No a priori
guarantees for finding quantiles can be obtained by
using these algorithms.

1.3 Our Main Algorithmic Result

We present a new algorithm for the problem of
dynamically estimating quantiles. We maintain
O(log” |U|log(log(|U|)/8)/€?) space representation of
A. This gets updated with every insertion as well
as deletion. When quantiles are demanded, we can
estimate, without having to access the data, all the
quantiles on demand, each guaranteed a priori to be
accurate to within user-specified precision eN with
user-specified probability 1 — § of success.

2 Challenges and Partial solutions

In this section, we provide some intuition into the
problem of maintaining quantiles under inserts and
deletes. We also adapt prior work on incremental
quantile-finding algorithms to work in presence of
deletes for comparison purposes.

2.1 Challenges

In order to understand the challenge of maintaining
approximate quantiles using small space, let us con-
sider the following example. Our goal will be to main-
tain four quartiles to within moderate error of £0.1NV.
Suppose a transaction stream consists of one million
insertions followed by 999,996 deletions, leaving N = 4
items in the relation. Our problem specification es-
sentially requires that, with high probability, we re-
cover the database exactly.? A space-efficient algo-

3For each pair i1,i2 of consecutive items in such a small
relation, a quantiles algorithm gives us some j with i; < j < ia.
One can learn all four items exactly by making a few queries
about ¢-quantiles for ¢ slightly less than 1/4, on a database
consisting of the four original items and a few additional inserted
items with strategic, known values.



rithm knows very little about a dataset of size one mil-
lion and it does not know which 999,996 items will be
deleted; yet, ultimately, it must recover the four sur-
viving items. Although this is a contrived example, it
illustrates the difficulty with maintaining order statis-
tics in the face of deletes which dramatically change
the data distribution.

Some incremental algorithms work by sampling the
data, either randomly and obliviously or with care to
make sure the samples are spaced appropriately. Some
of these techniques give provable results in the incre-
mental setting. In the dynamic setting, however, a
sample of the million items in the database at its peak
size will be of little use at the time of the query in the
example above, since the sample is unlikely to con-
tain any of the four eventual items. To apply known
sampling algorithms, one needs to sample from the
net dataset at every point in time, which is difficult if
there is severe cancellation. For example, in [10], the
author addresses the problem of sampling from the net
data set after inserts and deletes and states that “If
substantial portion of the relation is deleted, it may be
necessary to rescan the relation in order to preserve
the accuracy of the guarantees.”

2.2 Extending Previous Algorithms

Among the previously known algorithms, we consider
the Greenwald-Khanna (GK) algorithm [14] in more de-
tail since it provides the best known performance for
the incremental case. It has other desirable proper-
ties: it uses small space and time, and does not rescan
the database for approximate quantile generation. We
will describe ways to modify the algorithm for the dy-
namic case. No a priori guarantees can be obtained
in this manner; nevertheless, this provides a useful
benchmark with which to compare our algorithm. Pre-
viously known algorithms that rely on backing or dis-
tinct samples can not be extended in this manner; as a
result, rescanning of the database can not be avoided
with those algorithms.

We consider the bounded-memory form of the GK
algorithm. The algorithm first fills its memory with
data points (values), as they arrive. When its mem-
ory is full and additional values arrive, the GK algo-
rithm kicks out some point it has (possibly the newly-
arrived point), and keeps a count of the number of data
points between samples. It chooses the point to kick
out carefully, to minimize the error in its answering
procedure, which is to return the least sample point
j such that 3, Afi] exceeds the desired rank. The
algorithm further specifies a data structure to facili-
tate efficient updates and queries. The error of the
algorithm depends on the memory available and the
number of items in the dataset.

Although the GK algorithm is designed for incremen-
tal (insert-only) data, there are several ways to extend
it to dynamic data.

Ignore deletions: One can simply ignore delete
transactions. This will be a reasonable solution pro-
vided the rate of deletions is small compared with the
rate of insertions.

Use two parallel GKs: One can use two instances
of GK, one for insertions and one for deletions. For
estimating each ¢ quantile, we search for two points iq
and is such that

e each of i1 and i5 appears as a sample point in one
of the instances of GK.

e there is no sample point between iy and iy in ei-
ther of the instances.

e Let iins be the greatest sample among insertions
such that " <y, let i be the greatest sample
among deletions such that i{®' < i, and similarly

-ins

for ii"s and i9¢!. We have

S A™E - Y AT <¢N <

j<iine

where A and Ade! are incremental datasets of
insertions and deletions, respectively.

Heuristically, one can then output 4; or 2 as an ap-
proximate answer.

There are several further ways to specify the above
algorithm.

e One can interpolate between i1 and i2 by return-
ing i1 + (ia — i1)A, where

A= [ X AT Y Aty
J<iips j<ige!

| 2 AT D A
j<iips j<ige!

e The pair (i1, 42) is not unique, in general. One can
look for all such pairs, and combine the results for
each, say, by taking a mean or median.

In our experimental section, we use the above-
mentioned dual instances of the GK algorithm, called
GK2 by us. We interpolated between 7; and iy and took
a mean over all pairs (iy,42); this performed well.

3 Our Algorithm for
Quantiles

Maintaining

In this section, we will first present the high level view
of our algorithm with the main idea. Then we will
present specific details. In what follows, E[X] and



var[X] denote the expected value and the variance of
a random variable X respectively. At the beginning,
we will assume that U is known to the algorithm; later,
we will remove this assumption.

3.1 High-Level View of Our Algorithm

In order to compute approximate ¢ quantiles we need
of a way to approximate A with a priori guarantees.
In fact our algorithm works by estimating range-sums
of A over dyadic intervals I. (Dyadic intervals will be
defined shortly.)

We describe the main idea behind our algorithm
here. The simplest form of a dyadic interval estimate
is a point estimate, A[i]. We proceed as follows. Let S
be a (random) set of distinct values, each drawn from
the universe with probability 1/2. Let Ag denote A
projected onto the set S, and let [[As| = >, Alf]
denote the number of items with values in S. We keep
|[As|l (a single number known as a Random-Subset-
Sum (RSS)) for each of several random sets S. Observe
that the expected value of |Ag| is 1 [|Al], since each
point is in S with probability %

For AJi], consider E[||As| |i € S], which can be es-
timated by looking at counts ||Ag]|, only for the S’s
that contain i (close to half of all S’s, with high prob-
ability). One can show that this conditional expected
value is Afi] + % ||AU\{i} || since the contribution of ¢
is always counted but the contribution of each other
point is counted only half the time. Since we also know
||A|l, we can estimate A[i] as

1
2 (Al + 3 [Anga ) - 1]

It turns out that this procedure yields an estimate
good to within eN additively if we take an average
of O(1/€?) repetitions.

We can similarly be in position to estimate the
number of dataset items on any dyadic interval in U
(defined below), up to £eN, by repeating the proce-
dure for each dyadic resolution level up to log |U|. Of
course, a set S in this case is a collection of dyadic
intervals from the same level, each taken with proba-
bility 1/2. Similar argument as above applies.

By writing any interval as a disjoint union of at most
log |U| dyadic intervals, we can estimate the number
of dataset items in any interval. Now, we can perform
repeated binary searches to find the quantiles left to
right one at a time (i.e, first, second, etc.).

The entire algorithm relies on summarizing A using
RSSs. Each item in 0,...,|U| — 1 participates in the
construction of RSSs. In other words, we summarize
the Universe using RSSs. This is a departure from
previous algorithms for finding quantiles, which rely
on keeping a sample of specific items in the input data
set.

3.2 Algorithm Details

We will first describe our data structure and its main-
tenance, before describing our algorithm for quantile
estimation, and presenting its analysis and proper-
ties. A dyadic interval I is an interval of the form
[k2108(UD=7 (k+1)2198(IUD=7 —1] for j and k integers.
The parameter j of a dyadic interval is its resolution
level from coarse: loo = U, to fine: Logup,: = {i}
There are log(|U|) + 1 resolution levels and 2|U| — 1
dyadic intervals altogether, in a tree-like structure.
3.2.1 Owur Data Structure and its Mainte-
nance

For each resolution level j of dyadic intervals we do the
following. Pick a subset of the intervals I ; at level j.
Let S be the union of these intervals and let ||Ag]|| be
the count of values in the datasets that are projected
onto S (formally, [[As| = >,c 4 Ali]) . We repeat this
process num_copies = 24log(log(|U])/d)1log(|U])/e?
times and get sets St1,. .., Snum_copies (Der level). The
counts ||Ag,| for all sets that we have picked comprise
our Random Subset Sum summary structure. In ad-
dition we store (and maintain) ||A|| = N exactly. We
maintain these RSSs during inserts/deletes as follows.

For insert(i), for each resolution level j, we quickly
locate the single dyadic interval I;; into which ¢ falls
(determined by the high order bits of 7 in binary).
Then quickly determine those sets S; that contain I j.
For each such set we increase count ||Ag,|| by one. For
deletions we simply decrease the counters. Notice that
this process can be extended to handle batch inser-
tions/deletion by increasing/decreasing the counters
with appropriate weights.

An important technical detail is how to store and
index various S;’s, which are random subsets. The
straightforward way would be to store them explicitly,
perhaps as a bitmap. This would use space O(|U])
which we can not afford. For our algorithm, we in-
stead store certain random seeds of size O(log |U]) bits
and compute a (pseudorandom) function that explic-
itly shows whether ¢ € S; or not. For this, we use
the standard 3-wise independent random variable con-
struction shown below, since it works well with our
dyadic construction.

We need a generator G(s,i) = S; that quickly out-
puts the i'th bit of the set S, given ¢ and a short seed
s. In particular, the generator takes a O(log|U|)-bit
seed and can be used to generate sets S of size O(|U|).
The generator G is the extended Hamming code, e.g.,

111 1 11 11
00001111
001 1 0011
01 01 01 01
which consists of a row of 1’s and then all the columns,
in order. So, for each resolution level j, there’s a G of



size (j + 1) x 27. Then G(s,i) is the seed s of length
j+1 dotted with the i’th column of G modulo 2, which
is efficient to compute—note that the ¢’th column of
G is a 1 followed by the binary expansion of i. This
construction is known to provide 3-wise independent
random variables [5]. We will use this property exten-
sively when we analyze our algorithm.

3.2.2 Estimating Quantiles

Our algorithm for estimating quantiles relies on esti-
mating sum of ranges, i.e., ||A;|| for intervals I. First
we will focus on dyadic intervals and then extend it to
general intervals. Then, we will show how to compute
the quantiles.

Computing ||A;|| for dyadic intervals 1.

Recall that ||A || is simply the number of values in the
dataset that fall within the interval I.

Given dyadic I;j, we want an estimate ||A1M ||N

of ||A1M || We consider the random sets only in the
resolution level j. Recall that there are num_copies
such sets. Again, using the pseudorandom construc-
tion, quickly test each set to see whether it contains
I; 1 and ignore the remaining sets for this interval. An
atomic computation for |Ap, || is 2||As,| — | Al for

A, corresponding to a set S; containing I; ;.

Computing ||A;|| for arbitrary intervals.

Given an arbitrary interval I, write I as a dis-
joint union of at most log|U| dyadic intervals I ;.
For each I;;, group the atomic computations into
3log(log(|U])/d) groups of 8log(|U|)/e? each and take
the average in each group. We can get an estimate for
I by summing one such average for each of the dyadic
intervals I; . Since we have 3log(log(|U|)/d) groups
this creates 3log(log(|U])/d) atomic estimates for I.
Their median is the final estimate ||Aj]_.

In what follows, it is more convenient to regard our
estimate ||A /|| as an overestimate, ||A;|| < ||Af|. <
IlAs]| + €N, by using a value of € half as big as desired
at top level, and adding §N to each estimate.

Computing the quantiles.

We would like to estimate e-approximate ¢-quantiles.
Recall that e is fixed in advance. For k =1,...,1/¢
we want an j such that ||A[O7jk) || = (k¢+e)N. (Here
ji is the value with rank k¢, not to be confused with
the resolution level j.) For each prefix I, we can com-
pute ||Ay]|| . as described above. Using binary search,
find a prefix [0,j;) such that [|[Ag )| < k¢N <
||A[07jk+1)||w’ and return jp. Repeat for all values of
k.

We call the entire algorithm for maintenance of
quantiles the RSS algorithm.

3.2.3 Analysis of Our Algorithm

First we consider the correctness of our algorithm in
the lemma below and then summarize its performance
in a theorem.

Lemma 1 Our algorithm estimates each quantile to
within € ||A|| = eN with probability at least 1 — 0.

Proof: First fix a resolution level 5. Consider the set
S formed by putting each dyadic interval I;; = I} at
level j into S with probability 1/2 as we did. In what
follows, we drop the resolution level when indexing a
dyadic interval. Let X be a random variable defined

by
X, — 2||A1k||7 I, ES;
k 0, otherwise,

and let X = 3", X;. Suppose we are presented with
an interval Iy, , dyadic at level 5. We have, using 3-wise
independence (pairwise will do),

ElX|Ii, €8] = 2|Ag |+ ElX
k#ko

= 2|AL, [+ D IlALl
k#ko
= |Ag, |+ 1Al

Also, since ||Ay, || < X < |Ay, || +2]A].
var[X| Iy, € S] < |A|”.

Each prefix I is the disjoint union of r < log|U]|
dyadic intervals at different levels, I = Ij,, U}, U---U
Ii,.. Let S; be a random set of intervals at level j, and
let Y be the sum of corresponding X estimates. Then

EY V) Iy; € Sj] = [Arll +r (Al

so E[Y|VjIy;, € Sjl—r||Al = ||A]], as desired. (Note
that we have stored ||A|| exactly.) Also,

var[Y'|Vj Iy, € S;] <log|U| ||A||2

It follows that, if we let Z be the average of
8log |U|/€?) repetitions of X, the conditional expec-
tation of Z — r||Al| is |[Af|| and the conditional vari-
ance of Z — r||A|| is at most €2N?2/8. By the Cheby-
shev inequality, |Z — ||Af||| < eN with probability
at least 7/8. Finally, if we take 3log(log(|U])/d) =
3(log(1/d) + loglog|U|) copies of Z and take a me-
dian, by the Chernoff inequality, |Z — ||A/||| < eN
with probability at least 1 — §/log|U|. Both Cheby-
shev and Chernoff inequalities can be found in [5], and
averaging arguments similar to above can be found in
for example [4].



We performed binary search to find a j; such that
A0l < kSN < ||Ajgjesny|| - It follows that

A0, | AL

7jk)||~

<
< koN

< Al

< A gyl + €N,

as desired.

To estimate a single quantile, we will, log |U| times,
estimate ||A;|| on a prefix I, in the course of bi-
nary search. Since each estimate fails with probability
d/log(|U]), the probability that any estimate fails is
at most log(|U|) times that, i.e., . |

Therefore, by summing up space used and the time
taken for algorithms we have described, we can con-
clude the following.

Theorem 2 Our RSS

O (log?(|U) log (12844} /e2)
vides e-approximate ¢-quantiles with probability at
least 1 — § for t queries. The time for each insert or
delete operation, and the time to find each quantile on
demand is proportional to the space.

algorithm uses

space and  pro-

Note that we can find a single quantile with cost
O((log® |U|loglog(|U|/8))/€?). 1f we make t queries,
each of which requests 1/¢ quantiles, we need the prob-
ability of each failure to be less than §¢/t in order that
the probability of any failure to be less than §. This
accounts for the cost factor log(t/¢).

3.2.4 Extension to when U is Unknown

Above we assumed that the universe U is known in
advance. In practice, this may not be the case; fortu-
nately, our algorithm can easily adapt to an increasing
universe, with modest increased cost factor of at most
log” log(|U|) compared with knowing the universe in
advance.

We start the algorithm as above, with a predicted
range [0,u — 1] for U. Suppose we see an insertion
of i > u = |U|, where, at first, we assume i < u?.
We then keep statistics for the universe [0, u — 1] and
[0,u? — 1], directing all insertions and deletions with
value in [0, u — 1] to the original instance of RSS and all
insertions and deletions with value in [u, u? — 1] to the
new instance. In general, we may need to square the
size of the universe repeatedly, upon seeing a sequence
of insertions with growing values or even a single in-
sertion with very large value. We thus get several in-
stances of RSS; each but the first extends the previous
ones. The number of items in each dyadic interval can
be estimated by consulting a single instance of RSS.
Thus we have specified how to perform updates and
queries; it remains to analyze the costs of the data
structure.

Suppose the largest item seen is i, and let u, be
the smallest power of 2 greater than i,. Thus, if we
knew i, in advance, we would use a single instance
of RSS on a universe of size u,, with cost f(u.) for f
given in Theorem 2. The multi-instance data struc-
ture we construct has largest instance on a universe of
size at u? and loglog(u?) instances altogether. Thus
the time and space costs of the multi-instance data
structure are at most O(f(u2)loglog(u,)). Since the
dependence on u of f is polylogarithmic, the cost of
the multi-instance dataset is just the factor loglog(u.)
compared with knowing u, in advance. An additional
cost factor of 2logj is needed for the j’th instance,
j=1,2,...,loglog(us), to drive down the probability
of failure to 1/52, so that the overall probability Zj ]%
remains bounded.

3.3 Some Observations on Our Algorithm

Our approach of summarizing the Universe using RSSs
has interesting implications for our algorithm which we
summarize here.

e Previous (incremental) algorithms for quantiles
can guarantee always to return a value in the in-
put dataset, whereas our algorithm may return a
quantile value which was not seen in the input.
This does not appear to have severe implications
in various applications of quantiles. In general,
in the face of severe cancellation, an algorithm
with less than IV space cannot keep track of which
items are currently in the dataset.

e The distribution on values returned by our algo-
rithm depends only on the dataset active at the
time of the query. Thus, one can change the or-
der of insertions and deletions without affecting
results. This contrasts with previously known al-
gorithms for finding quantiles where the order of
inserts impacts the approximate quantiles output
by the algorithm.

e Our RSSs are composable, that is, if updates are
generated in two separate locations, each location
can compute random subset sums on its data,
using pre-agreed common random subsets. The
subset sums for the combined dataset is just the
sum of the two subset sums. Hence, we can com-
pute the quantiles of the combined data set very
quickly from their RSSs alone. Because RSSs are
composable; our entire algorithm is easily paral-
lelizable. If data is arriving quickly (for example,
in the case of IP network operations data), the
data can be sent to an array of parallel machines
for processing. Results can be composed at the
end.



4 Experiments
4.1 Datasets, Algorithms Implementation

To ratify our performance claims, we present an exten-
sive set of experiments, with synthetic and real data
sets. The synthetic data that we used are described in
Table 1.

4.2 Performance of Our Algorithm

Each dataset is used to generate a population of size
N, drawn from the range [0...U — 1]. We use this
data to compare the following algorithms:

e Naive[/]: This is a simple algorithm that
maintains exact counts on all dyadic intervals
Ipo,...,Ig 91 at level j = £ and uses them to
compute quantiles. Estimates for intervals below
level ¢ are zero. The purpose of presenting the
performance of this algorithm is twofold. First, it
allows as to verify the performance of the RSS[/]
(see below) implementation that maintains exact
counts at level ¢ and random sums below that
level. Second, the performance of Naive is an in-
dication of the hardness of the data for computing
quantiles. E.g. Naive will do well if the quantiles
are fairly wide-spread.

e RSS[/]: This is a implementation of a variation
of our RSS algorithm. For the coarsest few levels,
say, to level £, it is more efficient to store exact
subset sums for each of the (few) dyadic intervals
at that level. This immediately lets us get ||A||
for any I dyadic at that level, in time O(1). In
fact, we can store just the subset sums for the
dyadic intervals at level £ itself, since any coarser
interval can be written as the disjoint union of
dyadics at level £. We refer to such an implemen-
tation as RSS[/]. In our implementation, dyadic
sums at level ¢ are stored explicitly. A short cut
that we implemented is that we store the random
sets below level £ using bitmaps instead of using
random seeds. This does not affect the quality
of the results presented here. The space require-
ments are computed as if random seeds were used.

e GK: This is an implementation of the Greenwald-
Khanna algorithm.

e GK2: This uses two GK instances, one for inser-
tions and one for deletions and interpolates to es-
timate the quantiles as described in Section 2.2.

The rest of this section is organized as follows. Sub-
section 4.2 presents a study on the performance of RSS
on synthetic data. Subsection 4.3 compares our algo-
rithm against the other competitors for datasets that
include both insertions and deletions. Finally, subsec-
tion 4.4 compares all algorithms using Call Detail Data
from AT&Ts telephony network and demonstrates the

effectiveness of RSS for computing quantiles on large,
dynamic datasets.

For these experiments we evaluate RSS for comput-
ing quantiles for datasets of various sizes and distribu-
tions. Naive gives us a measure of the hardness of com-
puting quantiles for these datasets. The universe size
in all experiments was U = 22°. In all cases we com-
pute 15 quantiles at positions k% for k =1,2,...,15
(e.g. median is for k = 8). The footprint of the RSS al-
gorithm was 11K in all runs. All numbers are averages
over four runs with different seeds/data values.

Table 2 summarizes our results for Zipf distributed
data varying N. The large errors reported by Naive
for small values of k£ are because most of the mass of
the Zipf distribution is concentrated on the left size of
the domain, with 0 being the most popular item. As a
result, small errors in identifying the correct quantiles
near zero result in large errors for these quantiles. As
expected, the errors for RSS seem to be independent of
the population size N for a fixed domain.

The results for a Normal distribution of the data
are tabulated in Table 3. This time Naive is a more
serious competitor and sometimes surpasses RSS, es-
pecially for the “easy” quantiles (14/16,15/16). Since
RSS stores the same sets as Naive for level 7, the rela-
tive success of Naive is due to the variance introduced
by the random sets below that level. A bigger foot-
print for RSS closes the gap for these cases (results are
omitted due to space limitations).

4.3 Comparison for Mix of Inserts/Deletes

We now investigate the performance of the algo-
rithms when both insertions and deletions are present.
We model the following scenario: we insert N =
104,858 items drawn uniformly from distribution
D1 =Uni[l,U], U = 22°. Then we super-impose a sec-
ond compact distribution D2 =Uni[U/2-U/32,U/2+
U/32] with aN values. Finally, all values from the first
distribution are deleted so that the remaining values
all come from D2. Parameter a controls the mass of
the second distribution with respect to the mass of D1.
All algorithms were set up to use 11KB of memory for
their data structures.

Table 4 summarizes the average error over all quan-
tiles (for k = 1,...,15) and 4 repetitions of the experi-
ment. For GK we simply ignore deletions. Performance
of RSS does not depend of the volume of the data
((1+«)N after all insertions, a* N in the end). When
the mass of D2 is much larger that the mass of the
initial distribution, even GK performs well as inser-
tions/deletions (from D1) do not significantly affect
the final picture. However, when the values of D2 be-
come indistinguishable within the mass of D1 + D2,
RSS is the clear winner with average error about 10
times less the errors of GK, GK2. In these cases, even
Naive is better that both of them.

Hence, under severe cancellations, summarizing the



| Dataset | Description
Uni[A,B] Uniform data within range [A...B]|
Zipf Zipf distributed values

Normal[m,v]

Normal distribution with mean=m and variance=v

Table 1: Synthetic Datasets

N=10,485 N=1,048,576 N=10,485,760
k [ Naive[7] [ RSS[7] [ Naive[7] [ RSS[7] | Naive[7] | RSS[7]
1 0.7526 | 0.0818 0.9753 [ 0.0272 0.9812 | 0.0090
2 0.7526 | 0.0818 0.9753 | 0.0272 0.9812 | 0.0090
3 0.7526 | 0.0001 0.9753 | 0.0000 0.9812 | 0.0000
4 0.5281 | 0.1134 0.7031 | 0.1490 0.8731 | 0.0496
5 0.4154 | 0.0000 0.5545 | 0.2222 0.6014 | 0.0740
6 0.4154 | 0.0000 0.5545 | 0.2222 0.6014 | 0.0740
7 0.4154 | 0.0000 0.5545 | 0.0000 0.6014 | 0.0000
8 0.4153 | 0.0000 0.5545 | 0.0000 0.6014 | 0.0000
9 0.4154 | 0.0000 0.5545 | 0.0000 0.6014 | 0.0000
10 0.2932 | 0.0000 0.3888 | 0.0833 0.4211 | 0.0277
11 0.2932 | 0.0000 0.3888 | 0.0416 0.4211 | 0.0138
12 0.2265 | 0.0221 0.3001 | 0.0296 0.3249 | 0.0459
13 0.1754 | 0.0142 0.2413 | 0.0186 0.2637 | 0.0157
14 0.1154 | 0.0312 0.1562 | 0.0104 0.1700 | 0.0320
15 0.0595 | 0.0272 0.0803 | 0.0289 0.0873 | 0.0208

Table 2: Errors for Zipf data

Universe (as Naive and RSS do) seems to be the only
viable approach.

4.4 Performance with Real Data Sets

For this experiments we used Call Detail Records
(CDRs) that describe usage of a small population
from AT&T’s customers. Switches constantly gener-
ate flows of CDRs that describe the activity of the net-
work. Ad-hoc analysis as part of network management
focuses on active voice calls, that is, calls currently in
progress at a switch. The goal is to get an accurate,
but succinct representation of the length of all active
calls and monitor the distribution over time.

The basic question we want to answer is how to
compute the median length of ongoing calls at any
given point in time; i.e, what is the median length of a
call that is currently active in the network? We then
focus on other quantiles.

Our data is presented here as a stream of transac-
tions of the form

(time_stamp, orig_tel, start_time, flag)

where time_stamp indicates the time an action has
happened (start/end of a call), orig_tel is the tele-
phone number that initiates the call, start_time indi-
cates when a call was started and flag has two values:
+1 for indicating the beginning of the call and —1 for
indicating the end of the call.

Given this data we define a virtual array Alt;] that

counts the number of phone calls started at time t;.

This array can be maintained in the following manner:
each time a phone call starts at time ¢; we add 1 to
Alt;] and when the call ends we subtract 1 from Alt;]
(notice t; is the start_time in both cases). For example
the following CDRs:

12:00 | 999-000-0000 | 12:00 | +1
12:01 | 999-000-0001 | 12:01 | +1
12:03 | 999-000-0001 | 12:01 | —1
12:10 | 999-000-0000 | 12:00 | —1

describe two phone calls. The first originates from
number 999-000-0000, starts at 12:00, and ends at
12:10, while the second originates from number 999-
000-0001 at 12:01 and lasts for two minutes.

We used a dataset of 4.42 million CDRs covering
a period of 18 hours. All algorithms were set up to
use 4KB of space (£ was 6 for Naive and RSS). Fig-
ure 1 shows the number of active calls over time, while
Figure 2 plots the error in computing the median of
the ongoing calls (in resolution of 1 sec) over time (we
probed for estimates every 10,000 records). We do not
include Naive in this figure for clarity. RSS seems to
introduce sporadic large variations in the error of the
reported median, especially when lots of deletions are
happening (e.g. near the end of the run). Our inter-
polation used for GK2 does not seem to work in this
case. As more data is processed, RSS shows a clear
advantage over both GK and GK2.

This dataset stretches performance on all algo-
rithms. As phone calls end and new calls are initi-
ated, the mass of the distribution is smoothly shifted



N=10,485 N=1,048,576 N=10,485,760
k | Naive[7] [ RSS[7] | Naive[7] | RSS[7] | Naive[7] | RSS[7]
1 0.0579 0.0181 0.0775 0.0361 0.0839 0.0320
2 0.0920 0.0435 0.1231 0.0292 0.1333 0.0310
3 0.0295 0.0295 0.0397 0.0270 0.0430 0.0311
4 0.0973 0.0438 0.1306 0.0457 0.1415 0.0842
5 0.0349 0.0288 0.0473 0.0244 0.0512 0.0347
6 0.1219 0.0284 0.1655 0.0254 0.1801 0.0531
7 0.0594 0.0268 0.0821 0.0202 0.0898 0.0309
8 0.1510 0.0213 0.1518 0.0079 0.1518 0.0163
9 0.0885 0.0093 0.1190 0.0206 0.1291 0.0396
10 0.0259 0.0118 0.0357 0.0258 0.0388 0.0362
11 0.0946 0.0042 0.1265 0.0356 0.1373 0.0147
12 0.0322 0.0120 0.0432 0.0143 0.0471 0.0195
13 0.0660 0.0214 0.0886 0.0134 0.0964 0.0412
14 0.0035 0.0082 0.0053 0.0459 0.0061 0.0197
15 0.0027 0.0220 0.0042 0.0216 0.0048 0.0100
Table 3: Errors for Normal[U/2,U/50] distribution
[ a[VNaive[7] [RSS[7] [ GK ]| GK2]
10.00 0.1196 0.0362 | 0.0211 | 0.0009
1.00 0.1145 0.0384 | 0.1203 | 0.0036
0.10 0.1018 0.0464 | 0.2194 | 0.0204
0.01 0.1097 0.0304 | 0.2203 | 0.2742
Table 4: Errors for insertions and deletions
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Figure 1: Number of active phone calls over time

to larger values (¢;8). We can think of the array
as a queue with values inserted from the front (at
t; = present()) but deletions may happen anywhere
depending on the length of the call.

The actual median length of the calls that were still
active when the last median computation was done
(last snapshot) was 4 minutes. RSS reported 3.7 min-
utes, while GK and GK2 168.8 and 206.7 minutes re-
spectively. The error of these estimates is 0.0126 for
RSS[6] (e.g. the reported quantile was 0.5 £+ 0.0126),
0.4944 for GK and 0.4977 for GK2. All estimates but for
RSS indicate a length that is beyond 99% of all active
calls, thus they are completely inaccurate. This is to

Figure 2: Error in computation of median over time

be attributed to the dynamics of the data.

In Figure 3, we plot the average error over the
last 50 snapshots of the data for all k¢ quantiles for
¢ = 0.10 (deciles). For example the 0.90-quantile de-
notes a time period (from present going backwards)
that includes 90% of all active calls (e.g., the sort or-
der is reversed based on t;s.). Quantile computation is
hard for small quantiles as the data is clustered around
t;=present() and this is depicted in the errors of GK
and GK2. The errors for Naive are increased around
the median. This is an indication that most data calls
are voice calls with length around 4 minutes. Since
Naive uses a fixed resolution level it can not distin-
guish among them at places with high data density
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Figure 3: Average error over the last 50 snapshots for
all p=0.1 quantiles

(e.g. around the median). To our knowledge RSS
seems the only viable choice for these computations.

5 Conclusions

We have presented an algorithm for maintaining dy-
namic quantiles of a relation in presence of both in-
sert as well as delete operations. The algorithm main-
tains a small-space representation (RSSs) that sum-
marizes the universe and the underlying distribution
of the data within it. This algorithm is novel in that,
without having to access the relation, it can estimate
each quantile to within user-specified precision. Previ-
ously published algorithms provide no such guarantees
under the presence of deletions.

We believe our techniques are unique for handling
massive dynamic datasets. Drawing from the property
that we summarize the universe instead of a snapshot
of the dataset, RSSs can handle dramatic changes or
shifts in the data distribution as is demonstrated from
our experiments with real datasets.
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