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1. PRELIMINARIES
The following propositions are true:

(1) Forevery elemerzof C holds||z|| = |2

(2) For all real numbers;, Y1, X2, Y2 hoIds(x1+y1i) . (X2—|—y2i) = (X]_ < Xo — yl-yz) + (X]_ Yo+
X2-y1)i.

(3) Forevery real numberholds(r 4+ 0i)-i = 0+ri.
(4) For every real numberholds|r + 0i| = |r|.

(5) Forevery elemerzof C such thaiz| # 0 holds|z| + 0i = ‘Z‘ﬁ -z

2. SOME FACTS ON THEFIELD OF COMPLEX NUMBERS
Letx, y be real numbers. The functer-yic, yielding an element o€k is defined as follows:
(Def. 1) x+Vice = X+Vi.
The elemenic, of Cr is defined as follows:
(Def. 2) ige =i.
We now state several propositions:
(6) ice =0+1iandic, = 0+ lic,.
7) licel =1.

(8) i(CF : i(CF = _1(C|:-
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9 (—1cp) —1cp = Lcp

(10) For all real numbersy, y1, X2, y2 holds (X1 + yiicy) + (X2 + Yoicy) = (X1 +%2) + (Y1 +
y2)iC|:~

(11) Forall real numbersy, y1, X2, Y2 holds(x1 + Yiicg) - (X2 + Yoice) = (X1 - X2 — Y1+ Y2) + (X1 -
Y2+ X2 Y1)ice-

(12) For every elemerztof Ce holds||Z]| = |Z.
(13) For every real numberholds|r + Oic.| = |r|.

(14) For every real numberholds(r +Oic;) - icy = 0+ ric,.

Letzbe an element ofg. The functorl(z) yields a real number and is defined by:
(Def. 3) There exists an elemezitof C such thaz = Z and0(z) = O(Z).
Letzbe an element ofg. The functor](z) yields a real number and is defined by:
(Def. 4) There exists an elemezitof C such thaz = Z and0(z) = 0(2).
Next we state several propositions:
(15) For all real numbers, y holdsO (X + Yic,) = x andO(X+Yice) = V.
(16) For all elements, y of Cr holdsO (x+y) = O(x) + O(y) andO(x+Yy) = O(x) + O(y).

(17) For all elements, y of Cg holdsO(x-y) = O(x) - O(y) — O(x) - O(y) andO(x-y) = O(X) -
O(y) +B(y) - D).

(18) For every elemertof Cr holds[(z) < |z.

(19) For every elemergtof Cg holdsO(z) < |Z.

3. FUNCTIONALS OFVECTORSPACE

Let K be a 1-sorted structure and Mtbe a vector space structure over A functional inV is a
function from the carrier o¥ into the carrier oK.

LetK be a non empty loop structure, Mthe a non empty vector space structure d¢eand let
f, g be functionals iV. The functorf + g yielding a functional irV is defined as follows:

(Def. 6} For every element of V holds(f +g)(x) = f(x) +g(x).

LetK be a non empty loop structure, Mthe a non empty vector space structure d¢eand let
f be a functional iV. The functor—f yields a functional iV and is defined by:

(Def. 7) For every elementof V holds(—f)(x) = — f(x).

LetK be a non empty loop structure, Mthe a non empty vector space structure d¢eand let
f, g be functionals iV. The functorf — g yields a functional iV and is defined as follows:

(Def.8) f—g=1f+—g.

LetK be a non empty groupoid, I&t be a non empty vector space structure d¢eletv be an
element oK, and letf be a functional in/. The functow- f yields a functional iV and is defined
as follows:

(Def. 9) For every elementof V holds(v- f)(x) = v- f(x).

Let K be a non empty zero structure and\ebe a vector space structure ower The functor
OFunctionaV/ yields a functional iV and is defined by:

1 The definition (Def. 5) has been removed.
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(Def. 10) OFunctional = Qy — 0Ok.

LetK be a non empty loop structure, Mthe a non empty vector space structure d¢eand let
F be a functional iv. We say thaf is additive if and only if:

(Def. 11) For all vectorg, y of V holdsF (x+y) = F(x) + F(y).

Let K be a non empty groupoid, I8t be a non empty vector space structure d¢eand letF
be a functional in/. We say thafF is homogeneous if and only if:

(Def. 12) For every vectax of V and for every scalar of V holdsF (r - x) =r - F(X).

LetK be a non empty zero structure, {ébe a non empty vector space structure d¢egand let
F be a functional iV. We say thaF is 0-preserving if and only if:

(Def. 13) F(0y) = Ok.

Let K be an add-associative right zeroed right complementabtdidb associative left unital
distributive non empty double loop structure andMete a vector space ovir. One can check that
every functional iV which is homogeneous is also 0-preserving.

LetK be aright zeroed non empty loop structure an/lée a non empty vector space structure
overK. One can verify that OFunctior\lis additive.

Let K be an add-associative right zeroed right complementablg distributive non empty
double loop structure and I8t be a non empty vector space structure d¢eiOne can check that
OFunctionaV/ is homogeneous.

Let K be a non empty zero structure and\ebe a non empty vector space structure dser
Note that OFunction® is O-preserving.

Let K be an add-associative right zeroed right complementabtg distributive non empty
double loop structure and Igtbe a non empty vector space structure d¢eNote that there exists
a functional inv which is additive, homogeneous, and 0-preserving.

The following propositions are true:

(20) LetK be an Abelian non empty loop structuké,be a non empty vector space structure
overK, andf, g be functionals iV. Thenf +g=g+ f.

(21) LetK be an add-associative non empty loop structitdhge a non empty vector space
structure ovekK, andf, g, h be functionals iV. Then(f +g)+h= f + (g+h).

(22) LetK be a non empty zero structui ,be a non empty vector space structure d¢gand
x be an element df . Then(OFunctionaV/)(x) = Ok.

(23) LetK be aright zeroed non empty loop structuehe a non empty vector space structure
overK, andf be a functional iV. Thenf + OFunctionaV/ = f.

(24) LetK be an add-associative right zeroed right complementabieentpty loop structure,
V be a non empty vector space structure d¢eandf be a functional iV. Thenf — f =
OFunctionaV/.

(25) LetK be a right distributive non empty double loop structiwebe a non empty vector
space structure ovés, r be an element df, andf, g be functionals itV. Thenr - (f +g) =
r-f+r-g.

(26) LetK be aleft distributive non empty double loop structiéhe a non empty vector space
structure oveK, r, sbe elements dk, andf be a functional itv. Then(r +s)-f =r- f +s-. f.

(27) LetK be an associative non empty groupdidhe a non empty vector space structure over
K, r, sbe elements oK, andf be a functional in/. Then(r-s)- f =r-(s- f).

(28) LetK be a left unital non empty double loop structuxepe a non empty vector space
structure oveK, andf be a functional iV. Thenlk - f = f.
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Let K be an Abelian add-associative right zeroed right compleai#a right distributive non
empty double loop structure, I8t be a non empty vector space structure d¥eiland letf, g be
additive functionals iv. Observe thaf + g is additive.

Let K be an Abelian add-associative right zeroed right complaatda right distributive non
empty double loop structure, I8t be a non empty vector space structure dieand letf be an
additive functional in/. One can check that f is additive.

Let K be an add-associative right zeroed right complementabtg distributive non empty
double loop structure, |&t be a non empty vector space structure d¢elet v be an element ok,
and letf be an additive functional i¥. One can verify that - f is additive.

LetK be an add-associative right zeroed right complementaigié distributive non empty dou-
ble loop structure, I8¢ be a non empty vector space structure d¢gand letf, g be homogeneous
functionals inV. Observe thaf + g is homogeneous.

Let K be an Abelian add-associative right zeroed right compleai#a right distributive non
empty double loop structure, I8t be a non empty vector space structure dkemand letf be a
homogeneous functional V. Observe that-f is homogeneous.

Let K be an add-associative right zeroed right complementapte distributive associative
commutative non empty double loop structure,\lebe a non empty vector space structure over
K, let v be an element oK, and letf be a homogeneous functionalVh Observe thav- f is
homogeneous.

Let K be an add-associative right zeroed right complementablg distributive non empty
double loop structure and lgtbhe a non empty vector space structure d¢eA linear functional in
V is an additive homogeneous functionaMn

4. THE VECTORSPACE OFLINEAR FUNCTIONALS

LetK be an Abelian add-associative right zeroed right compleai#aright distributive associative
commutative non empty double loop structure and/I&ke a non empty vector space structure over
K. The functorV yields a non empty strict vector space structure d¢eand is defined by the
conditions (Def. 14).

(Def. 14)(i) For every set holdsx € the carrier ofV iff xis a linear functional i,
(i) forall linear functionalsf, gin V holds (the addition o¥)(f, g) = f +g,
(i) the zero ofV = OFunctionaV/, and
(iv) forevery linear functionaf inV and for every elementof K holds (the left multiplication
of V)(x, f) =x-f.

Let K be an Abelian add-associative right zeroed right compldai#e right distributive as-
sociative commutative non empty double loop structure and/ Ibe a non empty vector space
structure oveK. Note thatV is Abelian.

Let K be an Abelian add-associative right zeroed right complaai#e right distributive as-
sociative commutative non empty double loop structure and/ Ibe a non empty vector space
structure oveK. One can check the following observations:

x V is add-associative,
* V isright zeroed, and
* V is right complementable.

Let K be an Abelian add-associative right zeroed right compleéaida left unital distributive
associative commutative non empty double loop structucklerlV be a non empty vector space
structure oveK. Note thatV is vector space-like.
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5. SEMI NORM OFVECTORSPACE

LetK be a 1-sorted structure and \éthe a vector space structure ower A RFunctional oV is a
function from the carrier o¥/ into R.

LetK be a 1-sorted structure, Itbe a non empty vector space structure d¢egand letF be a
RFunctional oV. We say thaF is subadditive if and only if;

(Def. 16 For all vectorsx, y of V holdsF (x+y) < F(x) +F(y).

LetK be a 1-sorted structure, Itbe a non empty vector space structure d¢egand letF be a
RFunctional olV. We say thaF is additive if and only if:

(Def. 17) For all vectorg, y of V holdsF (x+y) = F(x) + F(y).

LetV be a non empty vector space structure dierand letF be a RFunctional o¥. We say
thatF is Real-homogeneous if and only if:

(Def. 18) For every vector of V and for every real numberholdsF ((r + Oic.) -v) =r - F (V).

We now state the proposition

(29) LetV be a vector space-like non empty vector space structure@vandF be a RFunc-

tional of V. Supposé- is Real-homogeneous. Lebe a vector o¥/ andr be a real number.
ThenF ((0+ricg)-v) =r-F(icg V).

LetV be a non empty vector space structure derand letF be a RFunctional of . We say
thatF is homogeneous if and only if:

(Def. 19) For every vector of V and for every scalar of V holdsF (r - v) = |r| - F (V).

LetK be a 1-sorted structure, Etbe a vector space structure o¥erand let- be a RFunctional
of V. We say thaF is 0-preserving if and only if:

(Def. 20) F(Oy) =0.

LetK be a 1-sorted structure and \éthe a non empty vector space structure delObserve
that every RFunctional of which is additive is also subadditive.

LetV be a vector space ov€. Observe that every RFunctionadfvhich is Real-homogeneous
is also O-preserving.

LetK be a 1-sorted structure and\ébe a vector space structure o¥erThe functor ORFunction#l
yields a RFunctional of and is defined as follows:

(Def. 21) ORFunctiond = Qy — 0.

LetK be a 1-sorted structure and \éthe a non empty vector space structure delObserve
that ORFunctional is additive and ORFunctiondlis O-preserving.

Let V be a non empty vector space structure olflgt Note that ORFunction#l is Real-
homogeneous and ORFunctioxias homogeneous.

LetK be a 1-sorted structure and ¥tbe a non empty vector space structure d¢elOne can
check that there exists a RFunctionahMoivhich is additive and 0-preserving.

LetV be a non empty vector space structure diler Observe that there exists a RFunctional
of V which is additive, Real-homogeneous, and homogeneous.

Let V be a non empty vector space structure oler A Semi-Norm ofV is a subadditive
homogeneous RFunctional \¢f

2 The definition (Def. 15) has been removed.
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6. THE HAHN BANACH THEOREM

LetV be a non empty vector space structure der The functor RealV§ yielding a strict RLS
structure is defined by the conditions (Def. 22).

(Def. 22)(i)) The loop structure of Real\&= the loop structure o¥, and

(i)  for every real number and for every vectov of V holds (the external multiplication of
RealVSV)(r, v) = (r + Oicg) - v.

Let V be a non empty vector space structure oger One can check that Real¥Sis non
empty.

Let V be an Abelian non empty vector space structure @ger Observe that Real\\s is
Abelian.

LetV be an add-associative non empty vector space structure(pveXote that RealV¥ is
add-associative.

LetV be aright zeroed non empty vector space structure ©gene can check that RealV¥s
is right zeroed.

Let V be a right complementable non empty vector space structuge@-. Observe that
RealVSV is right complementable.

Let V be a vector space-like non empty vector space structure @verOne can verify that
RealVSV is real linear space-like.

One can prove the following propositions:

(30) For every non empty vector spaveover Cg and for every subspackl of V holds
RealVAM is a subspace of RealW%s

(31) For every non empty vector space structdrever Cr holds every RFunctional of is a
functional in RealV¥.

(32) For every non empty vector spadeover Ck holds every Semi-Norm o¥ is a Banach
functional in RealV¥.

LetV be a non empty vector space structure dverand letl be a functional inV. The functor
projRel yields a functional in RealV® and is defined by:

(Def. 23) For every elememof V holds(projRel ) (i) = O(I(i)).

LetV be a non empty vector space structure d¥erand letl be a functional irvV. The functor
projiml yielding a functional in RealV¥ is defined by:

(Def. 24) For every elememof V holds(projiml) (i) = O(I(i)).

LetV be a non empty vector space structure dierand letl be a functional in RealV8. The
functorlg_c yields a RFunctional of and is defined by:

(DEf 25) I]RH(C =1.

LetV be a non empty vector space structure dveand letl be a RFunctional df . The functor
lc—r yielding a functional in RealV$ is defined by:

(DEf 26) I(CH]R =1.

LetV be a non empty vector space o@&r and letl be an additive functional in Real\X& Note
thatlr_c is additive.

LetV be a non empty vector space ov&f and letl be an additive RFunctional &. One can
check thatc_.r is additive.

LetV be a non empty vector space o¥&r and letl be a homogeneous functional in RealW.S
One can check that_.c is Real-homogeneous.

LetV be a non empty vector space ot and letl be a Real-homogeneous RFunctionaVof
Note that g is homogeneous.

LetV be a non empty vector space structure dveand letl be a RFunctional df . The functor
i-shiftl yields a RFunctional o¥ and is defined by:
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(Def. 27) For every elementof V holds(i-shiftl ) (v) = I (ic, - v).

LetV be a non empty vector space structure dierand letl be a functional in RealV8. The
functor prodRelnh yielding a functional iV is defined as follows:

(Def. 28) For every elementof V holds(prodRelm ) (v) = (Irg—c) (V) + (—(i-shiftlg_c) (V))ic.

One can prove the following propositions:

(33) LetV be a non empty vector space o@&randl be a linear functional iv. Then projRé
is a linear functional in RealV&.

(34) LetV be a non empty vector space ow&r andl be a linear functional ivV. Then projim
is a linear functional in RealV&.

(35) LetV be a non empty vector space o&t andl be a linear functional in Real\A& Then
prodRelm is a linear functional itv.

(36) LetV be a non empty vector space od&t, p be a Semi-Norm of/, M be a subspace of
V, andl be a linear functional itM. Suppose that for every vecteof M and for every vector
v of V such thatv = e holds|l (e)| < p(v). Then there exists a linear functiorlain V such
thatL [the carrier ofM = | and for every vectoe of V holds|L(e)| < p(e).
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