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ABSTRACT: Many knowledge-based expert systems employ
numerical schemes to represent evidence, rate competing hypoth
eses, and guide search through the domains problem space. This
paper has two objectives: first, to introduce one such scheme
developed by Arthur Dempster and Glen Shafer, to a wider
audience; second, to present results that can reduce the compu
tationtime complexity from exponential to linear allowing this
scheme to be implemented in many more systems. In order to
enjoy this reduction, some assumptions about the structure of the
type of evidence represented and combined must be made The
assumption made here is that each piece of the evidence either
confirms or denies a single proposition rather than a disjunction
For any domain in which the assumption is justified the savings
are available

1. INTRODUCTION

How should knowledge-based expert systems reason? Clearly
when domain-specific idiosyncratic knowledge is available it
should be formalized and used to guide the inference process
Problems occur either when the supply of easy-to-formalize
knowledge is exhausted before our systems pass the
"sufficiency" test or when the complexity of representing and
applying the knowledge is beyond the state of our system building
technology Unfortunately, with the current state of expert system
technology, this is the normal, not the exceptional case

At this point, a fallback position must be selected, and if our luck
holds, the resulting system exhibits behavior interesting enough to
qualify as a success. Typically a fallback position takes the form
of a uniformity assumption allowing the utilization of a non
domain-specific reasoning mechanism for example, the numer
ical evaluation procedures employed in MYCIN [17] and
INTERNIST (14) the simplified statistical approach described in
[10], and a multivalued logic in [18). The HEARSAY-Il speech
understanding system [13] provides another example of a numer
teat evaluation and control mechanism—however, it is highly
domain-specific

Section 2 describes-another scheme of plausible inference, one
that addresses both the problem of representing numerical
weights of evidence and the problem of combining evidence The
scheme was developed by Arthur Dempster [3,4, 5, 6, 7, 8, 9]
then formulated by his student, Glen Shafer [15,16). in a form that
is more amenable to reasoning in finite discrete domains such as
those encountered by knowledge-based systems The theory
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reduces to standard Bayesian reasoning when our knowledge is
accurate but is more flexible in representing and dealing with
ignorance and uncertainty Section 2 is a review and introduction
Other work in this area is described in [12].

Section 3 notes that direct translation of this theory into an
implementation is not feasible because the time complexity is
exponential However if the type of evidence gathered has a
useful structure, then the time complexity issue disappears
Section 4 proposes a particular structure that yields linear time
complexity In this structure, the problem space is partitioned in
several independent ways and the evidence is gathered within the
partitions The methodology also applies to any domain in which
the individual experiments (separate components of the evidence)
support either a single proposition or its negation

Section 5 and 6 develop the necessary machinery to realize linear
time computations It is also shown that the results of experiments
may vary over time, therefore the evidence need not be mono
tonic Section 7 summarizes the results and notes directions for
future work in this area

2. THE DEMPSTER-SHAFER THEORY

A theory of evidence and plausible reasoning is described in this
section it is a theory of evidence because it deals with weights of
evidence and numerical degrees of support based upon evidence
Further, it contains a viewpoint on the representation of uncer
tainty and ignorance It is also a theory of plausible reasoning
because it focuses on the fundamental operation of plausible
reasoning, namely the combination of evidence The presentation
and notation used here closely parallels that found in [16]

After the formal description of how the theory represents evidence
is presented in Section 2.1. an intuitive interpretation is given in
Section 2 2. then a comparison is made in Section 2.3. to the
standard Bayesian model and similarities and differences noted
The rule for combining evidence, Dempster s orthogonal sum is
introduced in Section 2 4 and compared to the Bayesians' method
of conditioning in Section 2.5. Finally, Section 2 6 defines the
simple and separable support functions These functions are the
theory's natural representation of actual evidence

2.1. Formulation of the Representation of Evidence

Let 6 be a set of propositions about the exclusive and exhaustive
possibilities in a domain For example, if we are rolling a die, G
contains the six propositions of the form 'the number showing is i'
where 1 <i<6. 0 is called the frame of discernment and 2° is the
set of all subsets of 0 Elements of 2°, i.e.. subsets of 0, are the
class of general propositions in the domain; for example, the
proposition the number showing is even' corresponds to the set
of the three elements of G that assert the die shows either a 2, 4,
or 6.

The theory deals with refimngs, coarsenings, and enlargements of



frames as well as families of compatible frames. However. these
topics ars nol pursued here—the inlerested reader should see
[16] where Ihey are developed.

A function 881:29-+[0,1] is a belef funcrion it it satisties Bel(D) «
0. Bel(©) = 1. and for any collection. A,..A_, of subsets of ©.

Beia, U UA)D> T (-1)l+'Bei(M a).
g

A belie! function assigns 10 each subset of O a measure ¢l our
toal baliel in the proposition represented by the subset The
notation, |1} is the cardinatity of the set |

A funclion m:29[0,1] is called a basic probabiity assignment if it
satiglies miB)=0 and Ijcpmidl=1. The quanity, miA} s
called A'S basic probabity number: it represents pur exac! belief
in the propostion represented by A  The relanpn between these
concepts and probabillies are discussed in Sectien 2.3, ltmis a
basic probabitity assignment, then the function defined by

Bel(A) = T mi{B). forall ACO {1
8a

5 B baeliet tunction. Further, il Bel 15 a belief function. then the
tunction detined by

mia) = I (-1)*-BiBeiB) {2)
8CA

is 8 basic probabiiy assignment. | equations (1) and (2 are
compased in either grder. the resull 15 the wentily ransformation
Therefore. there corresponds 10 each beief function one and only
one basic probabihty assignment  Conversely. there Corresponds
to each basic probalnlily assgnment one and only one behel
funchon.  Hence. a belef function and a basic probapity
assignment convey exactly the same intormation

Ciher measures are uselul in dealng with beiief functions in This
theory. A function O:?U—'[OJ] 1S & commanalty lunction if thare
15 & basic probability assignment. m, such that

Qfa)= I miB) 3
ACB

for all ACB. Further. it O is a commonaiity funchion. then the
fungtion delined by
Bea) = I (-1)BloB)

ag—a
is & belie! function. From this behel function, the underlying basic
probability assignmant can be recovered using (2); if this is
substityied into (3), the onginal Q results. Theretore, the sets of
belie! tunctions, basic probability assignments, and commonalily
funclions are in pne-to-one correspondence and each represen-
1atign conveys the same infarmation as any of the others.

Corresponding 10 each belief function are two other commonly
vasd gquantties thol aiso carry the same information.  Given a
balie! function Bel, the funclion Dou(A) = Bel{=vAl. is called the
doubt funchion and the function P*(A) = 1-Dou{A}= 1-Bei{—A). 18
called the upper probability functon,

For notational convenience, it is assumed that the functions Bei.
m, 3, Dou, and P¥ are each derived lrom one anpther. If ane is
subscripted. then all others with the same subscrnipt are assumed
to e detived trom the same underlying information

2.2, An Intarpretation

It is uselul to think o! the basic probabiity number. m{A). as the
measure of a probaebilily mass constrained to stay in A bul
otherwise free to move. This freedom i1s 8 way of imagining the
noncommitial nalure ol our beliel. 1.e.. 1t represents our ignorance
becayse we can not further subdivide our belie! and restrict the
movemeant. Using this allusion, it is possible to give nlutive
interpretations to the other measures appeanng in the theory.
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The quantity Bel{A)= Zpc ,m(B) is the measure of the Total
probabiiity mass constrained to stay somewhere in A. On the
other hand. Q{A)=I,cam(B) is the measure of the tolal
probability mass that can move freely 1o any point in A. It is now
possible to understand the connotation interded in calling m the
measure of our exact betief and Bel the measure of our totel balief.
If ACBC 8. then this 15 equivalent 10 1he logical slatement that A
implies B Since m{A} is part of the measure Bel(B). but nol
conversely. it follows 1hat the total behet in 3 is the sum of the
exac! belief in all propositons that imply B plus the exact belie! in
B nself.

With this interpretation of Bel. 1t 15 easy to see that DouiA) =
1-Bel(—A} 15 the measure of the probabilty mass constrained to
stay oul of A, Therefore, P*(A) = 1-Dou(A} is the measure of the
total probabilily mass that ¢an move into &, though H is not
necessary thet it can all move to a single peint. hence P¥(A)»
argupM(B) is immediate. It lollows that P* (A)>Bei{A} be-
capse the (otal mass thal can move into A is a supersst ol the
mass constrained to stay in A

2.3. Comparison wilh Bayesian Stalistics

It 15 interesting to compare this and the Bayesian model. in the
latter. & function p:2—[0.1] is a chance density function it
Ijseqipla s 1; and the lunctian Ch:29—[0,1] 13 8 chance function
il Ch(@)=0, Ch(B}=1, and Ch{AUB}=Ch(A)+ Ch{B) whan
ANB = @. Chance densily functions and chance funclions are in
one-to-one correspondence and carry the same information. 1f Ch
is & chance lunction. then pla)=Ch({a}) iz 8 chance density
funclion: convarsely. it p is 8 chance density lunction. then
Chi{A}= El.“]u{a) is & chance function.

Il pis a chance density function and we detine mi{{a}) « p{a} tor all
a€0 and make m(A) =0 elsewhere. then m is a basic probability
assignment and Bel(A) = Ch(A) for all A€20 Theralore, the class
of Bayesian badief functions is a subset of the ciass of baliel
functions. Basic probability assignments are a generalization of
chance density funchons while belief funclicns assume the role ol
generalizad chance fungtions.

The crucial observation 1s that a Bayesian belef function ties all o
its probabilly masses to single points in O, hence there is no
freedom of motion. This follows immediately trom the definition ol
a chance density function ang its correspondence 1o & basic
probability assignment. In this case. P* « Bel because. with no
tfreaciorn of motion, the total probability mass that can move into a
set is the masgs constrained 10 stay there

What this means in practical terms 13 that the user ol a Bayesian
belef functicn must somehow divide his belief among the
singlelon propositions. In some instances, this s easy I we
pelieve that a tair die shows an gven number. then il seems natural
to divide that belief evenly into three parts  |f we don't know or
don't believe the die is fair, then we are stuck.

In pther words. there is trouble representing what we actually
know without baing lorced to overcommit when we are ignoram
With the theory described here there is no problem—ust iet
mM{EVEN} measure the belie! and the knowledge that /s available
This 15 not to say that one should not use Bayesian statistics. In
tact i one has the necessary information. | know of no other
proposed methodology that works as well  Nor are there any
seripus philosophical arguments agamnst the use of Bayesian
statistics  However, when our knowledge 15 not complete. as is
o'ten the case the theory ol Dempster and Shater s an altgrnative
o be considered.



2.4, The Combination of Evidence

The previous sections describe belie! tunttions. the technigue lor
reprasenting evidance. Here, the theory's method o! combening
avidence is introduced. Lel m, and m, be basic probability
assignments on the same frame, ©. and define m=m &m,. ther
orthogona! sum, to be m(2) =0 and

m(A) = K :Ev.n_m‘(x]'ma{vj
-1 L] w .
K'm1a 2 mmmM e £ mytXpmy(Y).

when Ax@  The lunclion m is a basic probability assignment if
K-'%0; it K-' a0, then m,@m, does not exisi and m, and m, are
said to be iotally or Hatly contradictory. The gquantty logKs
Con{Bsl,.Bei,) is called the weignt of confiict between Bel, and
Belz. This tormusiation is calied Dempster's ruie of combinanon.

it ia sagy 1o show that it m,. m,. and m; are combinable, then
m Bmznmaam snd (m, ema]emsam ecm,em ). It vs the
basic probability assignment such thal v(©) = 1 and v(A) = 0 when
AzB. then v 1s calied the vacuous belial funchion and s the
represeniation of total ignorance. The funclion, v. 15 the dentity
element for @ ie., vm, =m,.

Figure 2-1 is a graphical interpretation of Dempster's rule of
combination.  Assume m,(A). m, (81l and my(X), my{Y).
my(Z)#0. and that m, and m, are O elsewhere. Then
m{A)+ m,(B) =1 and my(X)+ my{Y)+ my{2) = 1. Thersfore, the
square in the ligure has unit area since each side has unil length
The shaded rectangle has area m,(8)*m.(Y) and belief propor-
tional to this measure is committed to BY. Thus. the probability
number m(BMY) is proportional to the sum of the areas of all auch
rectangies committed Yo 8MY. The constant of proportionalty, K.
normalizes the result to compensate for the measure of belief
committed to @. Thus. K-'w & i and only il the combined belef
lunctions invest no belie! in intersecting sets: this 1s what is meant
when we say belief lunctions are totally contradictory.

Using the graphical interpretation, it is straightlorward 1o wrile
down the formula for the orthogonal sum of more than two betiel
lunctions. Letm=m & ®m_. then m(B) = 0 and

UNIT SQUARE

M, (A)

M, (B)

jos M5 (K)-L—— My (Y)—L My(Z) a-l

| 1

Figure 2~1: Graphical representation of an orthogonal sum
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when A®@ Ag above. the orthogonal sum is definsd only if
K120 ang the weight ot conflict is log K.

Since Bel. m. O. Dou. and P¥ are in one-to-one correspondence.
the notaticn Bei « Bel1$Belz. &t¢ s used in the obwvious way It
mteresting to note that if O = 01802. then Q(A) = KO (A)Q,(A) tor
all AC O where A= 2

2.5. Comparisen with Conditionai Probabilities

in the Bayesian theory, the function Ch(*jB) is the congitonal
chance functon. ie., Ch{A]B)=Ch{AMNB)/Ch(B}. is the chance
that A is true given that B ig true. Ch{*|B) is a chance function. A
similar maasure s available using Dempater's rule ol combination.

Let mpiB) =1 and let my be C elsewhere. Than Baly is & betiel
tunction that tocuses a! of our belisl on 8. Define Bei(+|B) =
Bel@Bely. Then [16] shows thal P*(AJB) = P¥(ANB)/P* (B); this
has the same form as the Bayesians' rule of condilioning. but in
general. Bal(A|B) = (Bel(AL—B)}-Bel{—B)/(1-Bei{—mB)). On the
other hand, if Bel is a Bayesian beliel funciion. then Bel(A|B) =
Bel{AMB)}/Bel(B)

Thus. Dempster's rule of combination mimics the Bayesians' ruile
of conditioning when &pplied 1o Bayesian belie! functions. N
should be noted. however. that the function Bely is nof a Bayesian
belie! function unless JB| « 1.

2.6. Simple and Separable Support Funclions

Certain kinds of belief lunctipns are particularly well suited for the
representation of actual evidence. among them are the classas of
simple and separable support funclions. | there exists an FC O
such that Bel{A)}=s®0 when FCA and A%8. Bel(®)=1, and
Bel(A) =0 when FZA. then Bel 1s & simple support lunchion, F 1s
called the focus of Bel. and s is called Bel's degree of suppor!.

The vacuous beliel function s a simple support function with
locus 8. I Bel 1s a simple support function with focus F* 8. then
m{F) = s, m(B)=1-5. and m is O elsewhere. Thus. a simple suppori
funclion invests all of our committed beief o the disjunction
represented by its focus, F. and all our uncommitted betiet on &.

A separable support lunchon is either a simple support function or
the orthogonai sum of two or more simple support functions that
can be combined. If it s assumed that simple support functions
are used to represent the resuits of experiments, then the
separable support tunclions are the possibie results when the
evidence 'rom the several experiments is pooled together.

A particular case has occurred frequently  Let Bel, and Bel,
simple support functions with respective degrees of sunport 5,
and s, and the common tocus, . Let Bel = Bel, BBel, Then
m(F]-1 =15, M-8 b 5 4 8t1-8) =5, 4 8, (1 52]=5 + 52-5 Sy
and m{) = {1-5,){1-5,): m 15 O elsewhere.

The point of interest 15 that this tormula appears as the rule ol
combinatron in MYCIN [17] and | 11] as wel as many other places
It fact. the earliest known development appears in the works of
Johr Bernouil [2] circa 1713, For more than two and & hail
cenluries, this formulation has had intuitive appeal to workers in g
variely ot lields trywng to combine bodies of evdence pointing in
the same direction. Why not use ordinary statistical methods?
Because the simple support tunclions are not Bayesian beliaf
tunctions uniess |Fj= 1.

We now turn 10 the problem of computational complaxity.



3. THE COMPUTATIONAL PROBLEM

Assume the rasult of an experimant—represented as the basic
probability assignment. m—is available. Then, in general, the
computation of Bel(A), Q{A). P*{A}, or Dou(A) requires lime
exponential in |8]. The reason® is the need to enumerate afl
subsets or supersats of A. Furthsr, given any one of the lunchons,
Bel. m, Q, P*, or Dow. computation of values of at ieast two of the
othera requires exponential time. If something is known about the
structure of the belief lunction, than things may not be so bad. For
sxample. with B simple support lunction. the computation time is
no worse than of|B]).

The complexity problem is exaggerated when belief funchons are
combined. Assume BelxBel,@. @Bel, and the Bel are repre.
sented by the basic probabnlnty assngnments m,. Then in general,
the computations ¢! K, Bel{A}, m{A), O[A). P‘{A} ang DoulA)
require exponential time. Once again, knowledge of the structure
of the m, may overcome the dilemma. For example. if a Bayesian
belief function is combined with a simple support function. then
the computation requires only linear lime.

The next section describes B particularly useful structuring of the
m,. Following sections show that all the basic guantities of inlerest
can be catculated in 0{|9]) time when this structure is used.

4. STRUCTURING THE PROBLEM

Tonight you expect a special guest for dinner  You know it
is important to play exactly the right music for her How
shall you choose 1rom your large record and tape collec-
tion? It is impractical to go through all the albums one by
one because time is short. First you try to remember what
style she likes—was it jazz, classical, or pop? Recalling past
conversations you find some evidence for and against each
Did she like vocals or was it instrumentals? Also, what are
her preferences among strings, reeds, horns, and percus-
sion instruments?

4.1. The Strategy

The problem solving strategy exemplified here is the well known
technique of partitioning a large problem space in several
independent ways, e.g .music style, vocalization, and instru-
mentation. Each partitioning is considered separately, then the
evidence from each partitioning is combined to constrain the final
decision. The strategy is powerful because each partitioning
represents a smaller, more tractable problem

There is a natural way to apply the plausible reasoning method-
ology introduced in Section 2 to the partitioning strategy. When
this is done, an efficient computation is achieved. There are two
computational components necessary to the strategy: the first
collects and combines evidence within each partitioned space,
while the second pools the evidence from among the several
independent partitions

In [16], the necessary theory for pooling evidence from the several
partitions is developed using Dempster's rule of combination and
the concept of refinings of compatible frames: in[i], computa-
tional methods are being developed for this activity. Below, a
formulation for the representation of evidence within a single
partitioning is described, then efficient methods are developed for
combining this evidence.

*| have not proved this However, if the formulae introduced in Section 2 are
directly implemented, then the statement stands
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4.2. Simple Evidence Functions

Let © be 8 pantitioning comprised ol n eiements, i.e., |8]=n; for
example, il O is the s#1 of possibilities that tha dinner gues! prafers
jazz, classical. or pop music, then n=3. O is a frame of
discernment and. with no loss of generality. let 8= {i[1<i<n}.
For each €. thare is a collection of basic probability assign.
ments u, thai represents evidence in tavor of the propositioni. and
a collection, v, that represents {he evidence against i. The nalural
embodiment of this evidence 15 as simple support functions with
the respective foci {i} and —{i}.

Defing p ({i}) = 1-TH{1-p, [{i}j) and p(B) w1 ({i}) Then u is a
basic probabiity asslgnmem and the orthogonat sum of the By

Thus. u, is the totality of the evidence in favor ol i.and &, = u {i}) is
the degree of support from this simple suppon functlon Similarly,
define v (D{i}) » -N(1-4 (D{i}}) and » Q) =3y [7{i}). Then
a = r ({1} is the total welgm of support against 1. Note. ={i} =
G {i}. i.e.. set compiementation is atways relative 10 the fixed
frame. 6. Note also that{. in p . and v, runs through raspectively
the sets of experiments that confirm or deny the proposition i.

The combination of all the evidence directly for and agains! 115 the
separable supporl function, & = ®r. The g formed in this
manner are celled the simpie evigence functions and there are n
of them. one for each i€8 The only basic probability numbers for
e, that are not identically zero are p =e({ih)=K { {1-a}). ¢ =
EI"'{ Pekeari1-f). and ree () K (1-f)(1- a) where K =
(1-af)"' Thus. p is the measure of support pro i. c, is the
measure of support ¢con i. and r is the measure of the residue,
uncommitied belis! given the body of evidence comprising u, and
vy Claarly, pc+r=t,

The goal of the rast of this paper is to fing efficient methods 1o
compute the quantiiies associated with the orthogonal sum of the
n simpie evidence functions. Though the simple evidence
functiong arise in & natural way when dealing with partitions, the
results are no! limited 1o this usage—whenever the evidence in our
domain consists of simpte support functions focused on singleton
propositions and their nagations, the methodoiogy is applicable.

4.3. Some Simple Observalions

In the development ol computational methods below, several
simple observations sre wsed repeatedly and the quantity d =
1-p,« ¢, +r, appears. The firs) thing to note is K;' =0 iff & o1 =1,
Further. if K- 120 and v is the vacuous belief function. than

p,=1ift f =1

p;=1 = = s«
!!"n iff 3].[.!. {{l})l'l
plnD i lrabvlllti
L =0ilf ¥ju =v
rwl i p.-c,-D

clt‘l itf a.-1

c=1 2 per=d

n=1ill 3j v|{"|{|}]-1
¢, =0 ift g -Dan

a =0 iff wr

rr-O iff f'-&la w1

5. ALGORITHMS AND COMPUTATIONS

The goal is to calculate quantities associated with m=¢e,8...%e,,
where n m |9| and the e, are the simple evidence functions defined
in the previous section. All computations are achieved in o(n) time
measured in arithmetic operations.

Figure 5-1 is a schematic of information flow in a mythical system.
The p and ,. may be viewed as sensors, where a sensor is an
instance of a knowledge source that transforms observations into
internally represented evidence, i.e.. belief functions. Each is
initially v. the vacuous belief function As time passes and events
occur in the observed world, these sensors can update their state
by increasing or decreasing their degree of support. The simple
evidence function, e;. recomputes its state, a, and f,. and changes
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Figure 5-1: Data flow model

the stored values of p,. d, ¢, and r each time one of its sensors
reporis a change. From the delinitions of y . v, and & it is evident
that the eflect ol an update can be recorded in constant time
That is 1o say. the time is independent of both the ranges of | in ™
and v andcofn

A user asks guestions about the current state of the evidence.
One set ol questions concerns the valuss of varicus measures
agsociated with arbitrary ACB. These guestions take the form
‘'what is the value of A(A)? . where A is one of the lunctions Bel. m,
0. P*, or Dou. The other posaible queries concern the general
siate of the infersnce process. Two examples are ‘what is the
weight of conllict in the svidence? and 'is there an A such that
miA)= 1. if sp, what is A?". The oin) time computations described
in this section and in Saction 6 answer all thess guestions.

COne more tiny detour is necessary before getting on with the
businesas al hand: it is assumed that subsets of O are represenied
by & form with the computationa! nicety of bit-vectors as opposed
to. say, unordered lists of elements. The computalional aspects of
this assumpticn are. (1) the set membership {es! takes constant
time indapendant of n and the cardinality of the set; (2) the
operators . M. L), =, complementation with regspect to ©, null,
and cardinality computa in o{n) time.

5.1. The Computaticn of K

From equation (4}, K™? = $ina wg)fTj1 << n}@,(A) 8D the weight of
internat conflict amang the e, is log K by definition. Note that there
may be contlict betweer the pairs of y and v, thal is not expressed
because K i3 calcuiated rom the point of view of the given e
Fertunately, the total waight of conHict is simply log[K=TIK }: this
quantity can be computed in o{n) time if K can be.

In order to calculate K. it is necessary 1o find the coliections of A
that satisfy A #@ and e,(4)#0, ie., those collections that
contribute 10 the summation. 1 A is not {i}, 2{(i}. or 6, then e, 0
identically lrom the definition of the simple evidence funclions.
Therefore. assume throughout that A €{{i} “{i} 8}.

There are exactly two ways to select the A such thet NAe @
LW A ={j) for some |. and A = 71{i} or A = © for ixj,

then NA = [iYye@. Howsver, if two or more A ere
singletons, than the inlérsection is empty.
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2. W none of the A_ara singletons. then the situation is as
tallows. Seiect any SCO and let A, « © when i€S and
A = —{i} when i{S. Then NA,«5. Therelore. when
no A isasingleton MA =2 unless A = (i) for alt i.

Let J, K. L be predicates respectively asserting thal exactly one A
is & singleton. no A is a singleton. 1.e.. all A€{—{i} B}. and all
A == {i} Thenequation (4) ¢an be written as
K'e I T efa)
MNAwd 1<i<n
= I eta)« I 11 efd}-2
J1gi€n Ki1gign L
Now the transformation. below called transformation T,
fey= I Z Hix).

1€%n ¥€S,

T efA)
185

It n
zjésl 115N

c&n be applied to each of the three terms on the right; after some
algebra. it follows that
K7 = I pql'] d+ 11 d- 11

1€qLn iwg 1Lin 12i€n

where p, e e ({i}. c =e(™{i}). and d = e({i))+e(O) have been

substituted. It p =1 lor some q. then d =c =0 and K=

Mjugyd, Onthe other hand. if p,®1 for all i, then giso for all ) and

equation (5} can be rewtitten as

K'«[ T dll1+ £ psd]-
1€:1%n 1iEn

c, {5

n c,.
1€asn

In either case. 1t is @asy to see thal the computation is achieved in
o(n) time, as is the check for p;= 1.

(6)

5.2. The Computation of m{A)
From equalion {4). \he basic probability numbers. m{A) for the
orthogonal sumn of the simpie evidence lunctions are
miA) « K I 1 efA)
MA =A1€i5n
for A= @ and by definition, m{@) = 0. Aisoc. m can be expressed by

mi@) = 0

mi{ah = Kip, Eqd. * g ch.l {7)

mA) = KID O ¢, when Al22

1t is masy 10 see that the calculation is achieved in o(n) time since
|ﬁ| + I_\ﬁr =N

Derivalion of these tormulae is straighttorward It A= NA then
ACA for 1€i<n and lfor all J§A. there is an A such that |{A
Consider the zase in which A is B nonsingleton nonempty set. |
i€A. then A = 8—1ihe only possibilities are {1} or {1}, but neiher
contains A. I i{A. then poth A = —{i) and A = 8 are consistent
with ACA . However, it A =8 for some 1£A, then MA DAU{}=A,
Therelore. the only choice is A = ={i} when ifA and A = B when
iEA. When it 15 noted that el@)=r and e(™{i}}=c. and
iransformation T is applied. the formuile for the nonsingleton case
in equation (7) follows.

when A= {g} there are twp possibilities: Aq.e or Aq ={g} It
AG-G. then the previous argument {or nonsingielons can be
applied 1o justify the appearance of theterm r 1 L. T A = {q}.
then for each i®q it is proper {0 select either A =8 or A = 7 {i}
because for both choices AC A aclually. MA ={g} = A because
A « A Using transtormation T ang noung that e t{g}) = p, and
d, = »r gives the term p [, 419, 0 the above and completes the
derwvalion of equation (7)



5.3. The Compuiations of Bal{A), P*{4), and Doula)

Since Dou{A) = Bel{A) and P*(A]=1-Dou(A). the compuialion
of P* and Dou 15 ofn) 1 Bel can be computed in ofn) because
complemaniation i an o(n) operation. Let Bel be the orthogonal
sum of the n simple evidence funclions. Then Bell@) =D by
definition and lor A= 2,

Bei(A) m» T m(B)
BEQA
= £ K I [ e
QuBCA MB:B1LiLn

=K X N e(a)
BeMACA1<IEn

Bel is ais0 expressed by

I{A K[[ TT / -
Beic) = KI[ TT_ ol o/l +|Tclflo)- N c)

15N

when d #0 for all i !l d°=0. then p,=1. Therefore. mi{q}i=
Bal{{q))= 1. in all vanations, Bel(A) can be calculsted in o(n}
time. Since the lormula evaluates Bel{@) to D, only the case of
nonempty A needs to be argued.

The tactic is to find the collections o A satisfytng @= MA CA then
apply transformation T. Recall that the only collections of A that
satisty @A are those in which (1) exactly one A is a singleton
or [2) no A is a singleton and at leasi cne A = 6. To satisly the
current congiraint, we must tind the subcollections of these two
thai aiso satisty MACA.

If exaclly one A 15 & singleton, say kqs {a} then MA ={q} In
order that NACA # is nacessary and sufficient that g€A. Thus,
the contribution to Bel(A). when exactly one singleton A s
permitted, is the sum of the contributions for all (€A, A brigl
computation shows this to be (1}, < <@ £ 4jp, 78]

When no A 15 a singleton. i is clear that A = {1} for 1{A;
otherwise, (€A and NA ZA For (€A either A="{i}orA =815
parmissible. The value of the contribution to Bel from this case 15
given by the term [M¢uc [T, cad] Since al least one ol the
A =8 is required, we must deduct tor the case n which A = 7{i}
for afi 1, and this explains the appearance of the term -ﬂh <igniCy

5.4. The Computation of Q(A)
The definiton of the commonality function shows that Qid)=1
identicaily For A=

Q{A) = Z m(B)
ACE

= I K I n el(ﬁll
ACEH NA=BiLign
=K I EIIA,)-

Ll n
ALMA 1€ign
Q can be expressed alsc by

H) =1
Otfal) = Kipg+ g N1¢,

e K . A
O(A) = K[DBrl[f1d). when[A|>2

In order that a collection, A, sausfy ACMA it s hecessary and
suflicient that AC A dor all. I} i€A, then both A = 2{i}) and A = 8
lill this reguirement but A = {i} taiis. H €A, then clearly A = D {i}
fails and A = © works. Further, A = {i} works iff A= {i}. ltis now a
simple matter to apply translormation T and generate the above
result. N is evident that O[A) can be calculated in o(n) time.

6. CONFLICT AND DECISIVENESS

In the previous seclion, a mythical system was introduced thal
gathered and pooled evidence from a collection of sensors. L was
shown how queries such as "what is the value of A[A)? could be
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answered efliciently, where A 15 an arbitrary subset of 8 and A 1s
one of Bel. m Q. P* or Dou It is interesting to nole that a sengor
may change ils vaiue over ime. The queries repon values for the
current slale ol the evidence. Thus it is easy to imagine an
implementation perlorming & monilonng task, lor which betler and
more decisive odatn become available, as tme passes and
decisions are reevaluatled and updated on the bases of the most
current evidance.

In this seclion, we examine more general gqueries about the
combined evidence. These queries saek the subsets ol B thal
optimize one of the measures. The sharpest question seeks the
ACO. if any suchthat m{A) =Y. If such Bn A exists. 1l is said to be
the decrsion  Vaguer notions of decision in terms of the other
measures are gxamined too

The first rasult is the necessary and sufficient congnions that the
ewndence be tolally contradiciory. Since the orthogonal sum of the
evidence does not exist in this case. it is necessary 10 factor this
out belfore the analysis of decisiveness can be realized  All
gueries discussed in this section can be answered in o(rm) ime

€ 1. Totally Contradictory Evidence
Assume there are two or more p « 1. say P Pp=1. where a=zh.
Thend =¢ = rE 0. forboth =g and | =b. The formulator K1s

K1 e Dundi- n d-n =

wmg | 1<i€n | i<

w

-

1<agn
and it 15 easy 10 see thal K~' = 0 under this assumption  Therelore.
the evnidence is in total confiict by defintion,

Let p,=1ang p#1 for 1#a. Thend,=c,=0. and d #0 for 1=a
Theretore. the above tormula reduces to K" = T, 10, #0 and the
evidence s nol1otally contradictory.

Now assume p *1. hence d*0. for allr Can K™'«0? Since g =
c «r. it follows that Tld-Tle >0. It K 2D, this difference must
vanish. This can happen only if 1 =0 for all . Since p®1. this
enlais ¢ = 1 for alli Inthis eventthep e 0and K" 0.

Summary: The evidence is in 10tal conllict I either (1) there
exigts an a¥h such thatboth p, = py = 10r {2) ¢ = 1 tor all i€6.

§.2. Decisivenesss inm

The evidence is decisive when miA)=1 lor some AQO and A is
callec the dacision. Il the svidence is decisive and A is the
decision, then m{B) = 0 whan B» A becaiuse the measure ot mig 1,
The evidence cannol he decisive if it s tetally contradictory
because the orthogonal sum does nol exist. hence m s not
defined. The determination of necessary and suflicient conditions
that the evidence is decisive and the search for the decision is
argued by cases,

It p, = 1 for some q€8. then the evidence 15 totally contradictory i
p, =1 lor some 1#q. Therefore, assume that p =1 for izg. From
equahon (7) il 15 easy to see m{{n}} = KIl},qd, because r = 0.
Further. it was shown directiy above that K" = I .qd, under the
same set of assumptions Thus, mi{q})s 1.

Tne other possibitity is that p®1. hence d=0. for all iI€. Define
Cx={ilc,=1}. and note that if [Cl=n. the evidence s totally
contradictory. Fori€C. p =r =0 and d = 1. it {C = n-1, then there
1% @ w such that {w}=6-C. Nowp #1and c_#1 entaiis r_#0;
therefore, from equation (7)

mi{w)) = Kp, M d +«r I ¢l =Klp, +r ]x0
(L2 (LA
H there is a decision in this case. ¢ must be {w} Direct

substitution into equalen |5) shows that. in this case. K= Bt
and therelare m{{w)})=1.



Nexl. we consider tha cases where 0<|Ci<n 2 and therefore.
|=Cizr2. Then. from equation {7)

m(=1C) = K[ rlifl el = KO ri# 0 (9
I 1 I

because i§C iif c#1 {and p* 1 lor all i€8) has been assumed
hence. r®0 for al i€C. Therelore. il the evidence 15 decisive.
m{—C) =1 is the only nonzero basic probability number. Can
there be a p,#0? Obwviously. q{C. The answer s no since 6,0
hence m({g}i= K[pqﬂp.q]dgrqﬂ|,.q}c,]=0. a contradichion
Thus. p,= D tor all i€8. From eguaten (5] it now follows that Klx
Dicien@-TicigniS, Therelfore. trom {9). Migcy, = Mpcignpd-
n1‘£,£n1c| if m{(0C)=1. Since d =c =1 when £C. this can be
rewritten a8 Fljecyr, = Megyd-Djegie, Butd ac «r, Therelore
this 15 possible exactly where ¢, = 0 when €.

Summary: Assuming the ewvigence 15 not in total conlict. il s
decisive ift eiher (1) exactly one p =1: the cecision is {1} (2)
There exisis & w such that ¢, 21 and ¢ = 1 when (#w: ihe decision
is {w). Or (3) there exists 8 W*@ such that 1 =1 when (W and
¢, = 1 when i€W: the decision 15 W.

6.3. Dacisivensss in Bel, P®, and Dou
il BatiA) = Bol(B) = 1, then Bel(ANB) = 1 and it is always true that
Bel{0} s 3. The minimal A such that Bel(A) = 1 i3 called the core of
Bel. if the enidence is decisive, i.e., m(A}« 1 for some ACE, then
clearly A is the core of Bel. Assume the evidente 15 not dacisive,
not totally contracdicicry, and Bel{(A) = 1, then equations (B) and (6)
can ba smashed together and rearranged 1o show that

b - -

q€aa End * BoRo-Ret=o
Since the evidence is not decisive, d ®0. Further. d =c +r 5o that
r=0 when i{A: otherwise, the expression Tld-Nc, makes a
nonzero coniribulion to the above. Similarly. p = 0 when €A
hence ¢ =1 is necessary. Let A={ilc®1}. then substitulion
shows Bel{A) « 1 and A is clearly minimal.

Summary: The decision is the core when the avidence s
decisive, otherwise {ilc * 1} 15 the core.

P* and Dou do not give us ineresting concepts of decisiveness
because Dou(A)}= Bel(™A}=0 would be the nalural critenon.
However this test is passed by any set in the complement of the
core as wall as others. Therelore. in general, no unigue decision
15 found. A similar difficulty occurs in an atiempl to form a
concapt of decisiveneass n P* because P™ (A) = 1-Dou(A).

6.4. Dacinlvensss in

Since Q(R) = 1 and Q(A)< OB} when BL A, i is reasonable to ésk
for the maximal N such that Qi{N)=1 This sel. N. 18 calied the
nucleus of Bel. If m(A)=1, then the decision. A 15 Ciearly the
nucheus. IF €N, then i€A for all m{a)=0. Further. Qi{ih =1 i1
an slament of the nucieus.

Assume thst the simple evidence funclions are not totally
contradictory and there is no decimon. Then ¢ 20 and there 1s no
w such thal ¢ =1 whenever izw. The neccssary and sulficient
conditions. then. that Q{{2})=1. and hence zEN are (1] p,= 0 if
‘ez and (2)¢, e 0. Towil

Qi{zhr = 1

K fld «1

p,+ f,}_zd,

Md « K
(pz + r!}.-: -

ln,“,)'l]‘d. " 15:qgnp“ Eqd' v lgsnd'- 15_F.Ignc'
Lp,ild+id-r)1d- T ¢ =0
av: - (L 1N
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qund.-czl'ld‘— N e«0
gewz e L} 15En
IpTidacilid-Nc)=o0
ger Camg [LF] Ing

Since d;#0. it foliows that p, = 0 for g# 2. else the tirst term makes
a nonterg contribution. Since d, = ¢, +r, the quantity, MNd-Mc,
can vanish only il 7,=0 when ixz. However. this and p*1.
because there 15 no decision. entails ¢ = 1 when i#2. Therefore,
either {2} 15 the decision or the ewidence is contradictory. Thus.
¢, = 0 50 that the second term of the Jast equation vanishes. Since
the steps above are reversibie. these are suflicient conditions too.

Summary: if A s the decision, then A is the nucleus. I two of
more p,*0. then the nucleus s @. Itp *0. ¢, =0. and p, = 0 when
i#z. then {z} is the nucleus. 1! p =0 for all i then {ifc =0} is the
nucleus Clearly. this construction can be carnied aut in ofn) time.

6.5. Discussion

It has been noted that p,=1 or ¢ =1 if and only if there is a ; such
that respectively pu({'l}:lt'l or v“{"'{n]} =1, i.e. it and only if the
result of some experiment 15 decisive within its scope  The above
analyses show the eflecls occurnng when p =1 01 € = 1: subsets
of possibilities are irrevocably lost—most or all the nondecisive
evidence is completely suppressed-—or the ewidence becomes
iolally contradictory.

Any smplementation of this theory should keep careful tabs on
those condibons leading to confiict and/or decisveness. In lact.
any decisive expenment (a degree of support ol 1) shoutd be
viewed as based upon evidence so conclusive that no furiher
intormalion can change one's view. A value ol 1.n this theory i
indeed a sirong statement

7. CONCLUSION

Dempster and Shafer s theory of plausible inference provides a
natural and powerful methodology for the representation and
combination of evidence | think it has a proper home in
knowledge based expert systems because of the need for a
technique.' to represent weights of evidence and the need for a
uniform method with which to reason. This theory provides both
Standard statistical methods do not perform as well in domains
where prior probabilities of the necessary exactness are hard to
come by. or where ignorance of the domain model itself is the
case One should not minimize these problems even with the
proposed methodology It is hoped that with the ability to directly
express ignorance and uncertainty the resulting model will not be
so brittle

However more work needs to be done with this theory before it is
on a solid foundation Several problems remain as obvious topics
for future research Perhaps the most pressing is that no effective
decision making procedure is available The Bayesian approach
masks the problem when priors are selected Mechanical
operations are employed from gathering evidence through the
customary expected value analysis But our ignorance remains
hidden in the priors

The Dempster-Shafer theory goes about things differently—
ignorance and uncertainty are directly represented in belief
functions and remain through the combination process. When it is
time to make a decision, should the estimate provided by Bel or
the one provided by P* be used® Perhaps something in between.
But what" No one has a good answer to this question.

Thus, the difference between the theories is that the Bayesian
approach suppresses ignorance up front while the other must deal
with it after the evidence is in. This suggests one benefit of the
Dempster-Shafer approach  surely it must be right to let the



evidence narrow down the possibilities first, then apply some ad
hoc method afterward

Another problem, not peculiar to this theory, is the issue of
independence. The mathematical model assumes that belief
functions combined by Dempsters rule are based upon inde
pendent evidence, hence the name orthogonal sum When this is
not so, the method loses its feeling of inevitability. Also, the
elements of the frame of discernment. 0, are assumed to be
exclusive propositions. However, this is not always an easy
constraint to obey. For example, in the MYCIN application it
seems natural to make the frame the set of possible infections but
the patient can have multiple infections. Enlarging the frame to

handle all subsets of the set of infections increases the difficulty in
obtaining rules and in their application; the cardinality of the frame
grows from [9] to 2°!.

One more problem that deserves attention is computational
efficiency. Above it is shown that, with a certain set of
assumptions, it is possible to calculate efficiently. However, these
assumptions are not valid in all or even most domains A thorough
investigation into more generous assumptions seems indicated so
that more systems can employ a principled reasoning mechanism

The computational theory as presented here has been imple

mented in SIMULA. Listings are available by wnttmg directly to
the author.
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