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ABSTRACT: Many knowledge-based expert systems employ 
numerical schemes to represent evidence, rate competing hypoth 
eses, and guide search through the domains problem space. This 
paper has two objectives: first, to introduce one such scheme 
developed by Arthur Dempster and Glen Shafer, to a wider 
audience; second, to present results that can reduce the compu 
tationtime complexity from exponential to linear allowing this 
scheme to be implemented in many more systems. In order to 
enjoy this reduction, some assumptions about the structure of the 
type of evidence represented and combined must be made The 
assumption made here is that each piece of the evidence either 
confirms or denies a single proposition rather than a disjunction 
For any domain in which the assumption is justified the savings 
are available 

1. INTRODUCTION 
How should knowledge-based expert systems reason? Clearly 
when domain-specific idiosyncratic knowledge is available it 
should be formalized and used to guide the inference process 
Problems occur either when the supply of easy-to-formalize 
knowledge is exhausted before our systems pass the 
"sufficiency" test or when the complexity of representing and 
applying the knowledge is beyond the state of our system building 
technology Unfortunately, with the current state of expert system 
technology, this is the normal, not the exceptional case 

At this point, a fallback position must be selected, and if our luck 
holds, the resulting system exhibits behavior interesting enough to 
qualify as a success. Typically a fallback position takes the form 
of a uniformity assumption allowing the utilization of a non 
domain-specific reasoning mechanism for example, the numer 
ical evaluation procedures employed in MYCIN [17] and 
INTERNIST (14) the simplified statistical approach described in 
[10], and a multivalued logic in [18). The HEARSAY-II speech 
understanding system [13] provides another example of a numer 
teat evaluation and control mechanism—however, it is highly 
domain-specific 

Section 2 describes-another scheme of plausible inference, one 
that addresses both the problem of representing numerical 
weights of evidence and the problem of combining evidence The 
scheme was developed by Arthur Dempster [3,4, 5, 6, 7, 8, 9] 
then formulated by his student, Glen Shafer [15,16). in a form that 
is more amenable to reasoning in finite discrete domains such as 
those encountered by knowledge-based systems The theory 
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reduces to standard Bayesian reasoning when our knowledge is 
accurate but is more flexible in representing and dealing with 
ignorance and uncertainty Section 2 is a review and introduction 
Other work in this area is described in [12]. 

Section 3 notes that direct translation of this theory into an 
implementation is not feasible because the time complexity is 
exponential However if the type of evidence gathered has a 
useful structure, then the time complexity issue disappears 
Section 4 proposes a particular structure that yields linear time 
complexity In this structure, the problem space is partitioned in 
several independent ways and the evidence is gathered within the 
partitions The methodology also applies to any domain in which 
the individual experiments (separate components of the evidence) 
support either a single proposition or its negation 

Section 5 and 6 develop the necessary machinery to realize linear 
time computations It is also shown that the results of experiments 
may vary over time, therefore the evidence need not be mono 
tonic Section 7 summarizes the results and notes directions for 
future work in this area 

2. THE DEMPSTER-SHAFER THEORY 
A theory of evidence and plausible reasoning is described in this 
section it is a theory of evidence because it deals with weights of 
evidence and numerical degrees of support based upon evidence 
Further, it contains a viewpoint on the representation of uncer 
tainty and ignorance It is also a theory of plausible reasoning 
because it focuses on the fundamental operation of plausible 
reasoning, namely the combination of evidence The presentation 
and notation used here closely parallels that found in [16] 

After the formal description of how the theory represents evidence 
is presented in Section 2.1. an intuitive interpretation is given in 
Section 2 2. then a comparison is made in Section 2.3. to the 
standard Bayesian model and similarities and differences noted 
The rule for combining evidence, Dempster s orthogonal sum is 
introduced in Section 2 4 and compared to the Bayesians' method 
of conditioning in Section 2.5. Finally, Section 2 6 defines the 
simple and separable support functions These functions are the 
theory's natural representation of actual evidence 

2 . 1 . Formulat ion of the Representa t ion of Evidence 
Let 6 be a set of propositions about the exclusive and exhaustive 
possibilities in a domain For example, if we are rolling a die, G 
contains the six propositions of the form 'the number showing is i' 
where 1 < i < 6 . 0 is called the frame of discernment and 2° is the 
set of all subsets of 0 Elements of 2 e , i.e.. subsets of 0, are the 
class of general propositions in the domain; for example, the 
proposition the number showing is even' corresponds to the set 
of the three elements of G that assert the die shows either a 2, 4, 
or 6. 

The theory deals with refimngs, coarsenings, and enlargements of 
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4. STRUCTURING THE PROBLEM 
Tonight you expect a special guest for dinner You know it 
is important to play exactly the right music for her How 
shall you choose 1rom your large record and tape collec­
tion? It is impractical to go through all the albums one by 
one because time is short. First you try to remember what 
style she likes—was it jazz, classical, or pop? Recalling past 
conversations you find some evidence for and against each 
Did she like vocals or was it instrumentals? Also, what are 
her preferences among strings, reeds, horns, and percus­
sion instruments? 

4 . 1 . The Strategy 
The problem solving strategy exemplified here is the well known 
technique of partitioning a large problem space in several 
independent ways, e.g .music style, vocalization, and instru­
mentation. Each partitioning is considered separately, then the 
evidence from each partitioning is combined to constrain the final 
decision. The strategy is powerful because each partitioning 
represents a smaller, more tractable problem 

There is a natural way to apply the plausible reasoning method­
ology introduced in Section 2 to the partitioning strategy. When 
this is done, an efficient computation is achieved. There are two 
computational components necessary to the strategy: the first 
collects and combines evidence within each partitioned space, 
while the second pools the evidence from among the several 
independent partitions 

In [16], the necessary theory for pooling evidence from the several 
partitions is developed using Dempster's rule of combination and 

the concept of refinings of compatible frames: i n [ i ] , computa­
tional methods are being developed for this activity. Below, a 
formulation for the representation of evidence within a single 
partitioning is described, then efficient methods are developed for 
combining this evidence. 

*l have not proved this However, if the formulae introduced in Section 2 are 
directly implemented, then the statement stands 

5. ALGORITHMS AND COMPUTATIONS 
The goal is to calculate quantities associated with m= e ,8 . . .$e n , 
where n ■ |9 | and the e, are the simple evidence functions defined 
in the previous section. All computations are achieved in o(n) time 
measured in arithmetic operations. 

Figure 5-1 is a schematic of information flow in a mythical system. 
The μ and μx. may be viewed as sensors, where a sensor is an 
instance of a knowledge source that transforms observations into 
internally represented evidence, i.e.. belief functions. Each is 
initially v. the vacuous belief function As time passes and events 
occur in the observed world, these sensors can update their state 
by increasing or decreasing their degree of support. The simple 
evidence function, ei. recomputes its state, a, and f,. and changes 
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7. CONCLUSION 
Dempster and Shafer s theory of plausible inference provides a 
natural and powerful methodology for the representation and 
combination of evidence I think it has a proper home in 
knowledge based expert systems because of the need for a 
technique.' to represent weights of evidence and the need for a 
uniform method with which to reason. This theory provides both 
Standard statistical methods do not perform as well in domains 
where prior probabilities of the necessary exactness are hard to 
come by. or where ignorance of the domain model itself is the 
case One should not minimize these problems even with the 
proposed methodology It is hoped that with the ability to directly 
express ignorance and uncertainty the resulting model will not be 
so brittle 

However more work needs to be done with this theory before it is 
on a solid foundation Several problems remain as obvious topics 
for future research Perhaps the most pressing is that no effective 
decision making procedure is available The Bayesian approach 
masks the problem when priors are selected Mechanical 
operations are employed from gathering evidence through the 
customary expected value analysis But our ignorance remains 
hidden in the priors 

The Dempster-Shafer theory goes about things differently— 
ignorance and uncertainty are directly represented in belief 
functions and remain through the combination process. When it is 
time to make a decision, should the estimate provided by Bel or 
the one provided by P* be used0 Perhaps something in between. 
But what'' No one has a good answer to this question. 

Thus, the difference between the theories is that the Bayesian 
approach suppresses ignorance up front while the other must deal 
with it after the evidence is in. This suggests one benefit of the 
Dempster-Shafer approach surely it must be right to let the 
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evidence narrow down the possibilities first, then apply some ad 
hoc method afterward 

Another problem, not peculiar to this theory, is the issue of 
independence. The mathematical model assumes that belief 
functions combined by Dempsters rule are based upon inde 
pendent evidence, hence the name orthogonal sum When this is 
not so, the method loses its feeling of inevitability. Also, the 
elements of the frame of discernment. 0, are assumed to be 
exclusive propositions. However, this is not always an easy 
constraint to obey. For example, in the MYCIN application it 
seems natural to make the frame the set of possible infections but 
the patient can have multiple infections. Enlarging the frame to 
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