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Abstract

The problem of simulating sparse Hamiltonians on quantum computers is well studied. The
evolution of a sparseN×N HamiltonianH for time t can be simulated usingO(‖Ht‖ poly(logN))
operations, which is essentially optimal due to a no–fast-forwarding theorem. Here, we consider
non-sparse Hamiltonians and show significant limitations on their simulation. We generalize the
no–fast-forwarding theorem to dense Hamiltonians, ruling out generic simulations taking time
o(‖Ht‖), even though ‖H‖ is not a unique measure of the size of a dense Hamiltonian H . We
also present a stronger limitation ruling out the possibility of generic simulations taking time
poly(‖Ht‖, logN), showing that known simulations based on discrete-time quantum walk can-
not be dramatically improved in general. On the positive side, we show that some non-sparse
Hamiltonians can be simulated efficiently, such as those with graphs of small arboricity.

1 Introduction

One of the primary applications of quantum computers is the simulation of quantum systems.
Indeed, it was the apparent exponential time complexity of simulating quantum systems on a
classical computer that led Feynman to propose the idea of quantum computation [14].

In addition to predicting the behavior of physical systems, Hamiltonian simulation has algorith-
mic applications. For example, the implementation of a continuous-time quantum walk algorithm
is a Hamiltonian simulation problem. Examples of algorithms that can be implemented using
Hamiltonian simulation methods include unstructured search [13], adiabatic optimization [12], a
quantum walk with exponential speedup over classical computation [8], and the recent NAND tree
evaluation algorithm [10].

In the Hamiltonian simulation problem, our goal is to implement the unitary operator e−iHt for
some given Hamiltonian H and time t. We say that a Hamiltonian H acting on an N -dimensional
quantum system can be simulated efficiently if there is a quantum circuit using poly(logN, t, 1/ǫ)
one- and two-qubit gates that approximates (with error at most ǫ) the evolution according to H
for time t. (Of course, we can rescale t by rescaling H, so the complexity of simulating H for time
t must also depend on some measure of the size of H, as discussed in more detail below.)

Efficient simulations are known for various classes of Hamiltonians. For example, a Hamiltonian
for a system of qubits can be simulated efficiently whenever it is local, meaning that it is a sum of
terms, each of which acts on a constant number of qubits [18]. More generally, a Hamiltonian H
can be simulated efficiently if it is sparse (i.e., has only poly(logN) nonzero entries per row) and
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efficiently row-computable (i.e., there is an efficient means of computing the indices and the matrix
elements of the nonzero entries in any given row) [1].

These conditions lead to a convenient black-box formulation of the problem, in which a black
box can be queried with a row index j and an index i to obtain the ith nonzero entry in the jth

row. This black box can be implemented efficiently provided that H is efficiently row-computable.
A series of results has decreased the number of black-box queries, in terms of N , from the original
O(log9N) [1], toO(log2N) [6], to O(log∗ N) [4]. In particular, Berry, Ahokas, Cleve, and Sanders [4]
present an almost linear-time algorithm for simulating sparse Hamiltonians with query complexity

(log∗N)d4‖Ht‖
(‖d2Ht‖

ǫ

)o(1)

, (1)

where d is the maximum number of nonzero entries in any row and ǫ is the maximum error permitted
in the final state (quantified in terms of trace distance).

The dependence of (1) on the simulation time is nearly optimal, since it is not possible to
simulate a general sparse Hamiltonian for time t using o(t) queries. Intuitively, there is no generic
way to fast-forward through the time evolution of quantum systems. More formally,

Theorem 1 (No–fast-forwarding theorem [4, Theorem 3]). For any positive integer N there exists

a row-computable sparse Hamiltonian H with ‖H‖ = 1 such that simulating the evolution of H for

time t = πN/2 within precision 1/4 requires at least N/4 queries to H.

More recently, methods have been presented for simulating a Hamiltonian H that is not nec-
essarily sparse. Of course, we do not expect to efficiently simulate a general Hamiltonian, simply
because there are too many Hamiltonians to consider (just as we cannot hope to efficiently imple-
ment a general unitary operation [17]). However, we can conceivably efficiently simulate non-sparse
Hamiltonians with a suitable concise description. In particular, by applying phase estimation to a
discrete-time quantum walk derived from H, one can simulate H for time t in a number of walk
steps that grows only linearly with t [7]. More precisely, we have

Theorem 2. For any Hermitian matrix H, there is a discrete-time quantum walk on the graph of

nonzero entries of H such that e−iHt can be simulated with error at most δ using O(‖abs(Ht)‖/
√
δ)

steps of the walk, where abs(H) is the matrix with entries abs(H)jk = |Hjk|.

Of course, to apply this result, we must implement the discrete-time quantum walk derived
from H. This can be done efficiently for various concisely specified non-sparse Hamiltonians [7].
Note that the same theorem holds with ‖abs(H)‖ replaced by ‖H‖1 (a matrix norm defined in
Section 2); this quantity is generally larger than ‖abs(H)‖, but the resulting walk may be easier to
implement.

Notice that the overhead of this simulation is proportional not to the spectral norm ‖H‖, but
to a measure of the size of H that can be much larger when some entries of H are negative (or
more generally, complex). This naturally raises the question of whether an improved simulation
is possible. In the present article, we examine this possibility. Unfortunately, our main result is
negative: there is no general Hamiltonian simulation algorithm that uses only poly(‖Ht‖, logN)
steps (Theorem 4).

The remainder of this article is organized as follows. In Section 2, we introduce various matrix
norms that arise when quantifying the complexity of Hamiltonian simulation and relate them to
one another. We then move on to lower bounds for non-sparse Hamiltonians in Section 3, where we
describe how the no–fast-forwarding theorem can be modified to give a lower bound that depends
on the spectral norm rather than various smaller measures of the size of a Hamiltonian. Then, in
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Section 4, we present the main result, an example of a family of Hamiltonians with ‖abs(H)‖ ≫ ‖H‖
that cannot be simulated in time poly(‖Ht‖, logN). We then turn to upper bounds in Section 5, and
investigate how certain structured Hamiltonians can be simulated in time O(‖Ht‖)—in particular,
we give a positive result on the simulation of Hamiltonians whose graphs have small arboricity.1

Finally, we conclude in Section 6 with a discussion of open problems.

2 Measures of simulation complexity

Upper and lower bounds on the complexity of simulating a Hamiltonian H depend on some measure
of the size of H. Since e−iHt depends only on the product Ht, the complexity of simulating H
for time t is some function of Ht. For example, the no–fast-forwarding theorem clearly cannot be
circumvented by simply multiplying H by a constant. Similarly, simulation results such as those for
sparse Hamiltonians, using ‖Ht‖1+o(1) operations, and Theorem 2, using O(‖abs(Ht)‖) operations,
depend on various measures of the size of Ht.

In this section, we take a step back and consider properties of various measures of the size of
H that may play a role in the complexity of simulating it. Let ν(Ht) be a function that measures
the complexity of simulating H for time t. We can infer various properties of ν(·) as follows. Since
it is trivial to simulate the identity operation, ν(0) = 0. On the other hand, if H 6= 0, then it
requires some work to simulate, so ν(H) > 0. It is also plausible to suppose that ν(tH) = |t|ν(H).
We clearly have ν(Ht) ≤ |t|ν(H) for t ∈ Z, since Ht can be simulated using t exact simulations of
H. On the other hand, the no–fast-forwarding theorem suggests that this is the best possible way
to simulate Ht in general. Finally, since the Lie product formula can be used to simulate H +K
using simulations of H and K, we expect that ν(H + K) / ν(H) + ν(K) (up to the fact that a
bounded-error simulation requires a slightly superlinear number of operations).

These properties are reminiscent of the axioms for matrix norms, suggesting that it may be
reasonable to quantify the complexity of simulating H in terms of some matrix norm ν(H). Indeed,
results on the simulation of sparse Hamiltonians are typically stated in terms of the spectral norm
‖H‖, and Theorem 2 also involves matrix norms. We now introduce various matrix norms relevant
to Hamiltonian simulation.

Definition 1 (Spectral norm). The spectral norm of a matrix H is defined as

‖H‖ := max
v 6=0

‖Hv‖
‖v‖ = max

‖v‖=1
‖Hv‖, (2)

where ‖v‖ is the standard Euclidean vector norm defined as ‖v‖ :=
√
∑

i |vi|2.

The spectral norm, also known as the operator norm or induced Euclidean norm, is equal to the
largest singular value of the matrix. For Hermitian matrices it is also equal to the magnitude of the
largest eigenvalue. This norm arises in the complexity of sparse Hamiltonian simulation algorithms,
and in Theorem 2 as the spectral norm of abs(H), the matrix with entries abs(H)jk = |Hjk|.

Definition 2 (Induced 1-norm). The induced 1-norm of a matrix H is defined as

‖H‖1 := max
v 6=0

‖Hv‖1
‖v‖1

= max
j

∑

i

|Hij |, (3)

where ‖v‖1 is the vector 1-norm defined as ‖v‖1 :=
∑

i |vi|.
1A graph is said to have arboricity k if its adjacency matrix can be written as the sum the adjacency matrices of

k forests, but not k − 1 forests.
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The induced 1-norm is equal to the maximum absolute column sum of the matrix. As mentioned
in Section 1, Theorem 2 holds with ‖abs(H)‖ replaced by ‖H‖1. This does not, however, lead to a
superior simulation method since ‖H‖1 ≥ ‖abs(H)‖, as shown in Lemma 1 below.

Definition 3 (Maximum column norm). The maximum column norm of a matrix H is defined as

mcn(H) := max
j

√

∑

i

|Hij|2 = max
v 6=0

‖Hv‖
‖v‖1

= max
j

‖Hej‖, (4)

where ej is the jth column of the identity matrix.

The maximum column norm is the maximum Euclidean norm of the columns of H. This
norm appears in the complexity of an algorithm for simulating Hamiltonians whose graphs are
trees [7, Theorem 4] and in the related Proposition 2 in Section 5.

Definition 4 (Max norm). The max norm of a matrix H is defined as

max(H) := max
i,j

|Hij |. (5)

The max norm is just the largest entry of H in absolute value. It is a matrix norm, and is
typically much smaller than the other norms mentioned.

The following lemma relates the various norms introduced above.

Lemma 1. For any Hermitian matrix H ∈ C
N×N , we have the following inequalities:

max(H) ≤ mcn(H) ≤ ‖H‖ ≤ ‖abs(H)‖ ≤ ‖H‖1 ≤
√
N mcn(H) ≤ N max(H). (6)

Furthermore, each of these inequalities is the best possible.

Proof. The first inequality follows from the fact that the maximum element in any column cannot
be greater than the Euclidean norm of that column. We have

max(H) = max
j

(

max
i

|Hij |
)

≤ max
j

√

∑

i

|Hij |2 = mcn(H). (7)

The next inequality follows from the observation that mcn(H) is defined by a maximum over
the standard basis vectors ej , whereas ‖H‖ is defined by a maximum over all vectors with norm 1,
which contains the set of all ej . Thus

mcn(H) = max
j

‖Hej‖ ≤ max
‖v‖=1

‖Hv‖ = ‖H‖. (8)

Using the triangle inequality with ‖H‖ = max‖v‖=1(
∑

i |
∑

j Hijvj |2)
1

2 , we get

‖H‖ ≤ max
‖v‖=1

(

∑

i

∣

∣

∣

∣

∑

j

|Hij||vj |
∣

∣

∣

∣

2) 1

2

= max
‖v‖=1
vj≥0

(

∑

i

∣

∣

∣

∣

∑

j

abs(H)ijvj

∣

∣

∣

∣

2)1

2

. (9)

Now by maximizing over all v with ‖v‖ = 1 instead of only those with vj ≥ 0, we get

max
‖v‖=1
vj≥0

(

∑

i

∣

∣

∣

∣

∑

j

abs(H)ijvj

∣

∣

∣

∣

2) 1

2

≤ max
‖v‖=1

(

∑

i

∣

∣

∣

∣

∑

j

abs(H)ijvj

∣

∣

∣

∣

2) 1

2

= ‖abs(H)‖. (10)
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The last inequality is actually an equality due to the Perron–Frobenius theorem.
Since abs(H) is a symmetric matrix, there is an eigenvector z with eigenvalue equal in magni-

tude to ‖abs(H)‖. Clearly this eigenvector satisfies ‖abs(H)z‖1 = ‖abs(H)‖‖z‖1. Using this and
maximizing over all nonzero vectors, we have

‖abs(H)‖ =
‖abs(H)‖‖z‖1

‖z‖1
=

‖abs(H)z‖1
‖z‖1

≤ max
v 6=0

‖abs(H)v‖1
‖v‖1

= ‖abs(H)‖1. (11)

The inequality now follows from the fact that ‖H‖1 = ‖abs(H)‖1, since

‖abs(H)‖1 = max
j

∑

i

| abs(H)ij | = max
j

∑

i

|Hij| = ‖H‖1. (12)

For the next inequality, we use the fact that ‖v‖1 ≤
√
N‖v‖ for all vectors v. This can be

proved using the Cauchy–Schwarz inequality, |〈u, v〉| ≤ ‖u‖‖v‖, by taking ui = vi/|vi|. Let jmax

be the index j that maximizes
∑

i |Hij|. Thus ‖H‖1 =
∑

i |Hijmax
| = ‖Hejmax

‖1. Using these two
inequalities, it follows that

‖H‖1 = ‖Hejmax
‖1 ≤

√
N‖Hejmax

‖ ≤
√
N max

j
‖Hej‖ =

√
N mcn(H). (13)

The last inequality is proved using the fact that for any j, Hij ≤ maxi Hij; thus

mcn(H) = max
j

√

∑

i

|Hij |2 ≤ max
j

√

N max
i

|Hij |2 =
√
N max

ij
|Hij| =

√
N max(H). (14)

For each of these inequalities, there is a matrix that achieves equality. The first four inequalities
are saturated when H is the identity matrix since the relevant norms are all equal to 1. The last
two inequalities are satisfied with equality when H is the all-ones matrix (i.e., for all i, j, Hij = 1),
since then ‖H‖1 = N , mcn(H) =

√
N , and max(H) = 1.

Since Theorem 2 involves ‖abs(H)‖, we would like to relate ‖abs(H)‖ and ‖H‖. Lemma 1
gives ‖abs(H)‖ ≤

√
N‖H‖, which is also the best possible inequality between the two norms. For

example, when N is a power of 2, the matrix H = R⊗ logN achieves equality, where R :=
(

1 1
1 −1

)

/
√
2

is the Hadamard matrix. It has ‖H‖ = 1, but ‖abs(H)‖ =
√
N . This shows that Theorem 2

might not be as powerful as we would like, since for some Hamiltonians, the simulation method of
Theorem 2 may be infeasible even when ‖H‖ is small.

Although the above inequalities cannot be tightened in general, there can of course be stronger
relationships among the various norms for special classes of Hamiltonians. For example, if H is
sparse, observe that the norms mentioned above can differ at most by a factor of poly(logN).
Specifically, if H is k-sparse (i.e., it has at most k nonzero entries per row), then

max(H) ≤ mcn(H) ≤ ‖H‖ ≤ ‖abs(H)‖ ≤ ‖H‖1 ≤
√
kmcn(H) ≤ kmax(H). (15)

The first four inequalities are from Lemma 1. The inequality ‖H‖1 ≤
√
kmcn(H) follows from

(13) using the fact that ‖v‖1 ≤
√
k‖v‖ when v has at most k non-zero entries (this can be proved

using the Cauchy–Schwarz inequality as before). The last inequality follows from (14) and the
inequality

∑

i |Hij|2 ≤ kmaxi |Hij |2, which holds when H is k-sparse. Thus the choice of norm
for sparse matrices is quite flexible, since all the above-mentioned norms are equivalent up to
polynomial factors.

In Section 5, we discuss some more examples in which Lemma 1 can be strengthened, with
emphasis on the implications for simulations.
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3 A no–fast-forwarding theorem for dense Hamiltonians

The no–fast-forwarding theorem (Theorem 1 above) establishes a lower bound for the simulation of
sparse Hamiltonians. Although we stated the theorem with ‖H‖ = 1, any of the norms in Lemma 1
could have been used, since the Hamiltonian used in the proof of the no–fast-forwarding theorem
is 2-sparse, and by (15) the norms differ at most by a factor of 2. In particular, the theorem could
be restated with max(H) ≤ 1 or ‖H‖1 ≤ 2.

Since the choice of norm is unclear, it is conceivable that there are Hamiltonian simulation
algorithms that run in time O(max(Ht)) or O(mcn(Ht)). To distinguish between the norms, we
require a dense Hamiltonian. The aim of this section is use the proof techniques of Theorem 1 to
establish a similar theorem for dense Hamiltonians. In particular, we show that there does not exist
an algorithm for simulating dense Hamiltonians in time O(max(Ht)) or O(mcn(Ht)). However,
this does not appear to rule out poly(‖Ht‖) simulations, which we rule out in the next section.
Although Theorem 4 in the next section is stronger than Theorem 3 below, we briefly present
this straightforward generalization of the no–fast-forwarding theorem to show the extent of that
approach as applied to the non-sparse case.

As in Theorem 1, we consider a black-box formulation of the problem of simulating dense
Hamiltonians. There is a black box that can be queried with a row index j, which outputs the
entire jth row. Since the Hamiltonian is dense, this output can be exponentially large. This is not a
problem, however, since our goal is to find a lower bound on query complexity, not time complexity.
Even though each query takes exponential space, it counts as only one query. The black box used
here is more powerful than the one in Theorem 1, so the lower bound proved below also carries
over to the black box used in Theorem 1.

In terms of this black-box model, we have the following:

Theorem 3. For any positive integer N , there exists a non-sparse Hamiltonian H such that sim-

ulating the evolution of H for time t = πN/2 within precision 1/4 requires at least N/4 queries to

H. This Hamiltonian has ‖H‖ = 1, mcn(H) = Θ(1/
√
N), and max(H) = Θ(1/N).

Proof. The main idea, as in the proof of Theorem 1 [4], is to construct a Hamiltonian whose
simulation for time t = πN/2 determines the parity of N bits. Since we know that computing the
parity of N bits requires at least N/2 queries [3, 11], this Hamiltonian cannot be simulated with
o(N) queries. Moreover, we want this Hamiltonian to be non-sparse.

We start with a simple Hamiltonian H1 whose graph is just a line with N+1 vertices. Consider
the Hamiltonian acting on vectors |i〉 with i ∈ {0, . . . , N}. The nonzero matrix entries of H1 are
〈i |H1| i+ 1〉 = 〈i+ 1 |H1| i〉 =

√

(N − i)(i + 1)/N for i ∈ {0, 1, . . . , N − 1}. This Hamiltonian has
‖H1‖ = 1, and simulating H1 for t = πN/2 starting with the state |0〉 gives the state |N〉 (i.e.,
e−iH1t|0〉 = |N〉).

Now, as in Ref. [4], consider a Hamiltonian H2 generated from an N -bit string S0S1 . . . SN−1.
H acts on vertices |i, j〉, with i ∈ {0, . . . , N} and j ∈ {0, 1}. The nonzero matrix entries of this
Hamiltonian are

〈i, j |H2| i+ 1, j ⊕ Si〉 = 〈i+ 1, j ⊕ Si |H2| i, j〉 =
√

(N − i)(i+ 1)/N (16)

for all i and j. By construction, |0, 0〉 is connected to either |i, 0〉 or |i, 1〉 for any i; it is connected
to |i, j〉 if and only if j = S0⊕S1⊕ . . .⊕Si−1. Thus |0, 0〉 is connected to either |N, 0〉 or |N, 1〉, and
determining which is the case determines the parity of S. The graph of this Hamiltonian consists
of two disjoint lines, one of which contains |0, 0〉 and either |N, 0〉 or |N, 1〉 depending on the parity
of S. Just as for H1, starting with the state |0, 0〉 and simulating H2 for time t = πN/2 will give
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either |N, 0〉 or |N, 1〉, which determines the parity of S. Note that since H2 is a permutation of
H1 ⊕H1, ‖H2‖ = ‖H1‖ = 1.

Finally, we construct the dense Hamiltonian H that has the properties stated in the theorem.
As before, H is generated from an N -bit string S0S1 . . . SN−1. H acts on vertices |i, j, k〉, with
i ∈ {0, . . . , N}, j ∈ {0, 1}, and k ∈ {0, N − 1}. The nonzero entries of H are given by

〈i, j, k |H| i+ 1, j ⊕ Si, k
′〉 = 〈i+ 1, j ⊕ Si, k

′ |H| i, j, k〉 =
√

(N − i)(i+ 1)/N2 (17)

for all i, j, k, and k′. The graph of H is similar to that of H2, except that for each vertex in H2,
there are now N copies of it in H. This Hamiltonian is dense because it has Θ(N2) vertices and
each vertex is connected to all N copies of its neighboring vertices, which gives at least N nonzero
entries in each row.

Now we simulate the Hamiltonian starting from the uniform superposition over the copies of
the |0, 0〉 state, i.e., from the state 1√

N

∑

k |0, 0, k〉. The subspace span{∑k |i, j, k〉} of uniform

superpositions over the third register is an invariant subspace of this Hamiltonian. Since the initial
state lies in this subspace, the quantum walk remains in this subspace. In other words, the quantum
walk on this dense graph starting from the chosen state reduces to the quantum walk on H2 starting
from the |0, 0〉 state.

Now, just as before, the parity of S can be determined by simulating H for time t = πN/2.
This gives the lower bound of N/2 queries.

To calculate the norms of this Hamiltonian, we observe that H = H2 ⊗ J/N , where J is the
all-ones matrix of size N × N . This gives ‖H‖ = ‖H2‖ · ‖J‖/N = 1. Direct computation shows
that max(H) = Θ(1/N) and mcn(H) = Θ(1/

√
N).

This theorem rules out algorithms that make only O(max(Ht)) or O(mcn(Ht)) queries, since
for this Hamiltonian with t = πN/2 we have max(Ht) = Θ(1) and mcn(Ht) = Θ(

√
N), both of

which are disallowed by the lower bound of Ω(N). However, this does not distinguish between ‖H‖
and ‖abs(H)‖ (since abs(H) = H), and in fact ‖H‖1 ∼ 1 as well. In the next section we construct
examples with ‖absH‖ ≫ ‖H‖ in order to show that a general simulation using O(‖Ht‖) steps (or
even poly(‖Ht‖, logN) steps) is not possible.

4 A stronger limitation for dense Hamiltonians

As discussed in Section 1, there are dense Hamiltonian simulation algorithms that useO(‖abs(Ht)‖)
or O(‖Ht‖1) steps of a discrete-time quantum walk. However, in light of the no–fast-forwarding
theorem for dense Hamiltonians, it might be reasonable to hope that dense Hamiltonians can be
simulated in O(‖Ht‖) steps, or at least in poly(‖Ht‖, logN) steps. Indeed, if such simulations ex-
isted they could be applied to give new quantum algorithms for various problems [7]. Unfortunately,
in this section, we show that such simulations are not possible in general.

The currently known dense Hamiltonian simulation algorithms rely on certain properties of
the Hamiltonian that we call its structural properties. By this we mean the location of nonzero
entries in H, which correspond to the location of edges in the graph of the Hamiltonian, and the
magnitudes of the edge weights. (The remaining information about the Hamiltonian is the phase
of each matrix entry Hij .)

Given the structural information, the currently known algorithms can simulate dense Hamilto-
nians using O(‖abs(Ht)‖) or O(‖Ht‖1) calls to an oracle that gives the phase of the matrix entry
at Hij. We call this the matrix entry phase oracle. This oracle provides the value of Hij/|Hij | when
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queried with the input (i, j). (The oracle may return any complex number of unit modulus—say,
1—when Hij = 0.)

We show that given this matrix entry phase oracle and complete structural information, there
exist some Hamiltonians that cannot be simulated with poly(‖Ht‖, logN) queries (although they
can be simulated with O(‖abs(Ht)‖) queries [7]). The following theorem is our main result.

Theorem 4. No quantum algorithm can simulate a general Hamiltonian H ∈ C
N×N for time t

with poly(‖Ht‖, logN) queries to a matrix entry phase oracle, even when given complete structural

information about the Hamiltonian.

Proof. The proof of the theorem is divided into two parts. First we show that there exists a set of
Hamiltonians of size N ×N that is hard to simulate on average for a particular time t. Specifically,
we show that simulating a Hamiltonian selected uniformly at random from this set for a chosen time
has average-case query complexity Ω(

√

N/ logN). Then we show that a Hamiltonian simulation
algorithm that makes poly(‖Ht‖, logN) queries would violate this lower bound. The lemmas used
in the proof are proved in the appendix.

To show the lower bound, we need a black-box problem with an Ω(
√

N/ logN) average-case
lower bound, and a set of Hamiltonians whose simulation would solve this problem. We consider
the problem of distinguishing strings s ∈ {−1,+1}M that have sum −B or +B, given a black box
for the entries of the string. When queried with an index i ∈ {1, 2, . . . ,M}, the black box returns
the value of si ∈ {−1,+1}, where s = s1s2 . . . sM . The following lemma characterizes the query
complexity of this problem.

Lemma 2. Suppose we are given black-box access to a string s ∈ {−1,+1}M , where s is chosen

uniformly at random from the set of strings with
∑

i si ∈ {−B,+B}. Then determining
∑

i si has
average-case quantum query complexity Θ(M/B).

Thus, determining whether the sum is −√
M logM or +

√
M logM , with the promise that one

of these is the case, requires Ω(
√

M/ logM) quantum queries on average. For each string s, we
construct a Hamiltonian Hs whose simulation for a particular time allows us to distinguish the two
possible cases assuming s satisfies the promise.

Let Hs be a symmetric circulant matrix of size N ×N , where N = 2M +1 is odd. (A circulant
matrix is a matrix in which each row is rotated one element to the right relative to the preceding
row.) In general, a circulant matrix is completely specified by its first row. However, since Hs is
a symmetric circulant matrix, it is completely specified by the first M + 1 entries of the first row.
Let the first entry of the first row be 0, and the next M entries of the first row be s1, s2, . . . , sM .
In other words, the first M + 1 entries of the first row of Hs are 0 followed by the string s. Then
the remaining entries of the first row are sM , sM−1, . . . , s1.

Given a black box for the entries of s, we can easily construct a black box for the entries of Hs.
Indeed, one query to H can be simulated with at most one query to the string s. Sometimes no
query to s is needed, since the diagonal entries of Hs are always 0.

Since Hs is a circulant matrix, it is diagonalized by the discrete Fourier transform. Its eigen-
values λ0, λ1, . . . , λN−1 are

λk = 2

M
∑

j=1

sj cos

(

2πjk

N

)

, and in particular, λ0 = 2

M
∑

j=1

sj. (18)

Thus the time evolution of Hs can be used to learn whether
∑

j sj is −√
M logM or +

√
M logM .

Since λ0 = 2
∑

j sj, the two cases can be distinguished by determining the sign of λ0. Note that we
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know the eigenvector corresponding to λ0: it is the first column of the discrete Fourier transform
matrix, i.e., the uniform superposition over all computational basis states.

Consider the eigenvalues and eigenvectors of the unitary matrix e−iHτ that corresponds to evolv-
ing H for time τ = π/4

√
M logM . The eigenvectors of this matrix are the same as those of H, and

each eigenvalue λk of H corresponds to the eigenvalue exp (−iλkτ) of e
−iHτ . Thus the uniform su-

perposition is an eigenvector of e−iHτ with eigenvalue exp (−iλ0τ) = exp
(

−iπ
∑

i si/2
√
M logM

)

.
Since

∑

i si/
√
M logM is either ±1, the two possible eigenvalues are ±i. Because the eigenvector is

known, the two possibilities can be easily distinguished by phase estimation on the unitary e−iHτ .
Since the problem of distinguishing these two cases has an Ω(

√

M/ logM) average-case lower bound
by Lemma 2, we get an Ω(

√

M/ logM) average-case lower bound for simulating such Hamiltonians
for time τ = π/4

√
M logM .

Now we want to show that a poly(‖Ht‖, logN) Hamiltonian simulation algorithm violates this
lower bound. To do this, we need to know the typical behavior of ‖Hs‖ when s satisfies the promise.
Let S := {−1,+1}M and let P be the subset of strings in S that satisfy the promise. As a first
step, let us see the behavior of ‖Hs‖ for all strings s ∈ S, not just those that satisfy the promise.

Lemma 3. Let Hs ∈ R
N×N be a symmetric circulant matrix of size N = 2M + 1 with the first

M + 1 entries of the first row given by 0 followed by a string s ∈ S. If s is chosen uniformly at

random from S, denoted s ∈R S, then for any d > 0,

Pr
s∈RS

(

‖Hs‖ ≥ 4d
√

M logM
)

≤ 4 + o(1)

M2d2−1
. (19)

In fact, even stronger results of this kind are known [15, 20], but the above bound is easy to
prove and sufficient for our purposes. Using Lemma 3, we wish to bound the spectral norm of Hs

when s ∈R P. We can do so by first calculating the probability that a randomly selected string
satisfies the promise.

Lemma 4. If s ∈R S, then the probability that s satisfies the promise is

Pr
s∈RS

(s ∈ P) = Θ(1/M). (20)

Using Lemmas 3 and 4, we can upper bound the probability that ‖Hs‖ is large when s is chosen
uniformly at random from P. If X is the event that ‖Hs‖ ≥ 4d

√
M logM and Y is the event that

s ∈ P, then Pr(X) is given by Lemma 3 and Pr(Y ) is given by Lemma 4. In these terms, we can
compute an upper bound for Pr(X|Y ) as follows:

Pr
s∈RP

(

‖Hs‖ ≥ 4d
√

M logM
)

= Pr(X|Y ) =
Pr(X ∩ Y )

Pr(Y )
≤ Pr(X)

Pr(Y )
= O(M2−2d2). (21)

To achieve a contradiction, assume that for some constant c > 0, there exists a Hamiltonian
simulation algorithm using O ((‖Ht‖ logM)c) queries to simulate H for time t. By (21), we know
that Hs almost always has spectral norm smaller than 4d

√
M logM when s ∈R P. Since ‖Hs‖ ≤

‖Hs‖1 = 2M , we can compute the average-case query complexity of the claimed algorithm as
follows:

E
s∈RP

(‖Ht‖c) ≤ Pr
s∈RP

(

‖Hs‖ < 4d
√

M logM
)

O

((

4d
√

M logM
π

4
√
M logM

logM

)c)

+ Pr
s∈RP

(

‖Hs‖ ≥ 4d
√

M logM
)

O

((

(2M)
π

4
√
M logM

logM

)c)

(22)

≤ O((d logM)c) +O
(

M c/2−2d2+2(logM)c/2
)

, (23)
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and by choosing 2d2 > c/2 + 2, we have

E
s∈RP

(‖Ht‖c) = O ((logM)c) . (24)

Thus the average-case query complexity of the claimed algorithm is O ((logM)c), which violates
the lower bound of Ω(

√

M/ logM).

The proof technique above can be extended to rule out algorithms with query complexity sub-
exponential in (‖Ht‖, logN) as well, by changing the promised set (i.e., the value of B used in
Lemma 2) and choosing a larger value of d in Lemma 3. Exponential functions of (‖Ht‖, logN)
cannot be ruled out, of course, since any Hamiltonian can be simulated by making O(N2) queries,
which is exponential in logN . On the other hand, if we insist that the query complexity of an
algorithm depends only on ‖Ht‖ (and not logN), then the proof above can be modified to rule out
algorithms whose time complexity is an arbitrary function of ‖Ht‖. For example, there exists no
Hamiltonian simulation algorithm that makes exp(exp(‖Ht‖)) queries.

Finally, we emphasize that even though the above proof involves average-case complexity and
distributions over inputs, Theorem 4 is a statement about the worst-case complexity of simulating
Hamiltonians.

5 Simulation complexity for structured Hamiltonians

As the previous section shows, we cannot hope for general Hamiltonian simulation algorithms that
scale polynomially in the spectral norm of the Hamiltonian. Although we do know algorithms that
scale like O(‖abs(H)t‖), Lemma 1 tells us that ‖abs(H)‖ could be exponentially larger than ‖H‖.
However, we can achieve better scaling for special classes of Hamiltonians. For example, we saw in
Section 2 that much stronger bounds hold for sparse Hamiltonians.

We can also improve the inequalities of Lemma 1 for certain classes of non-sparse Hamiltonians.
For example, consider the class of Hamiltonians whose graphs are trees (where the graph of a
matrix refers to the graph of its nonzero entries). Such Hamiltonians can be efficiently simulated
even when they are not sparse: in this case, Theorem 2 gives a simulation using O(‖Ht‖) steps of
a discrete-time quantum walk, because when the graph of H is a tree, ‖abs(H)‖ = ‖H‖.

Proposition 1. If the graph of a Hermitian matrix H is a tree, then there exists a unitary matrix

U such that UHU † = abs(H). In particular, ‖abs(H)‖ = ‖H‖.

Proof. The matrix U is diagonal. To define Uii, we arbitrarily fix some vertex as the root and con-
sider the unique path from the root to vertex i. Let the path contain the vertices i0, i1, . . . , ip−1, ip, i,
where i0 is the root and ip is the parent of i. For each nonzero entry of H, define αij := Hij/|Hij|.
Then let Uii := 1 if i is the root and Uii := αi0i1αi1i2 · · ·αip−1ipαipi otherwise.

Since U is diagonal, (UHU †)ij = UiiHijU
∗
jj. If i and j are not adjacent in the tree, then

(UHU †)ij = Hij = 0 as required. Otherwise, suppose without loss of generality that j is the parent
of i. Then UiiU

∗
jj = |αi0i1 |2|αi1i2 |2 · · · |αip−1ip |2αji = Hji/|Hij |, so (UHU †)ij = |Hij | as claimed.

Thus Theorem 2 gives a simulation using O(‖Ht‖) steps of a discrete-time quantum walk.
However, there is another simulation method for such Hamiltonians that uses only mcn(Ht)1+o(1)

steps [7, Theorem 4]. It seems from Lemma 1 that the former method might be inferior, but due
to Proposition 2 below it is, in fact, superior to the mcn(Ht)1+o(1) simulation (except with respect
to error scaling), since ‖Ht‖ ≤ 2mcn(Ht) when the graph of the Hamiltonian H is a tree.
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If H can be expressed as the sum of a small number of Hamiltonians, each of whose graph is
a forest, then H can be efficiently simulated when ‖H‖ is small. Recall that a graph is said to
have arboricity k if its adjacency matrix can be written as the sum of the adjacency matrices of k
forests, but not k − 1 forests.

Proposition 2. If the graph of a Hamiltonian H has arboricity k, then ‖abs(H)‖ ≤ 2kmcn(H).
Moreover, ‖abs(H)‖ ≤ 2k‖H‖ and ‖H‖ ≤ 2kmcn(H).

Proof. We begin by considering the case of a star graph. A star graph is a tree on n vertices with
one vertex having degree n − 1 and the others having degree 1 (i.e., the complete bipartite graph
K1,n−1). We show that if S is a Hamiltonian whose graph is a star,

mcn(S) = ‖S‖ = ‖abs(S)‖. (25)

By permuting the vertices, the first vertex can be chosen to be the one with maximum degree.
Now the first column of the matrix S completely determines the Hamiltonian. Let the first column
be w. The matrix S has first column w and first row w†. It is easy to see that mcn(S) = ‖w‖. S
has exactly two nonzero eigenvalues, ±‖w‖, corresponding to the eigenvectors ‖w‖e1 ±w, where e1
is the first column of the identity matrix. Since ‖S‖ is the maximum eigenvalue, ‖S‖ = mcn(S).

Moreover, since abs(S) is a Hamiltonian whose graph is a star, we have ‖abs(S)‖ = mcn(abs(S)).
For any matrix H, mcn(abs(H)) = mcn(H), since the norms of the columns depend only on the
magnitude of each entry. This proves the desired result, mcn(S) = ‖S‖ = ‖abs(S)‖. These results
also hold for a disjoint union of star graphs (a forest of stars), since the above norms all have the
property that ν(A1 ⊕ . . . ⊕An) = max(ν(A1), . . . , ν(An)).

To show the result for graphs of arboricity k, we begin by showing how a rooted tree can be
decomposed into the sum of two forests of stars. The first forest contains all the edges in which the
parent vertex is at a even distance from the root. The second forest contains the rest of the edges.
This decomposes a rooted tree into two forests of stars, and similarly decomposes a forest into two
forests of stars. Since the Hamiltonian has arboricity k, it can be decomposed into k forests, which
can be decomposed into 2k forests of stars.

Thus H =
∑2k

l=0 Sl, where each of the Sl is a Hermitian matrix whose graph is a forest of stars.
Moreover, the matrices Sl have no overlapping edges, i.e., if (Sl)ij 6= 0 for some l, then (Sl)ij = 0
for all other l. Therefore, for all i, j, l, Hij ≥ (Sl)ij, which implies mcn(H) ≥ mcn(Sl) for all l. This
gives

mcn(H) ≥ 1

2k

∑

l

mcn(Sl) =
1

2k

∑

l

‖Sl‖. (26)

Using the triangle inequality, we find

‖abs(H)‖ ≤
∑

l

‖abs(Sl)‖ =
∑

l

‖Sl‖. (27)

Combining (26) and (27) gives the main result. Using Lemma 1 and the main result gives
‖abs(H)‖ ≤ 2k‖H‖ and ‖H‖ ≤ 2kmcn(H).

6 Open questions

Although we have ruled out the possibility of a generic Hamiltonian simulation algorithm using only
poly(‖Ht‖, logN) operations, we can nevertheless hope that some nontrivial classes of Hamiltonians
can be simulated in poly(‖Ht‖, logN) steps even though ‖H‖ ≪ ‖abs(H)‖.
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One approach is to consider changing the basis in which the Hamiltonian is simulated. Clearly, if
unitary transformations U and U † can be performed efficiently, then H can be simulated efficiently
if and only if UHU † can. There must exist bases in which UHU † is sparse (such as the basis in which
it is diagonal), which may lead to efficient simulations of H. Some trivial classes of Hamiltonians
can be simulated in this way, such as Hamiltonians that are tensor products of small factors. For
example, the Hamiltonian R⊗n, where R :=

(

1 1
1 −1

)

/
√
2 is the Hadamard matrix, has ‖R⊗n‖ = 1

and ‖R⊗n‖1 = ‖abs(R⊗n)‖ = 2n/2, yet the evolution according to R⊗n is easy to simulate. A
similar simulation for a case where the Hamiltonian is not a tensor product was used in Ref. [9].

An alternative method is to investigate ways of decomposing a Hamiltonian as a sum of Hamil-
tonians that can be efficiently simulated. For example, we can simulate Hamiltonians whose graphs
have polynomial arboricity by decomposing them into stars (although we saw in Proposition 2
that such Hamiltonians can already by simulated efficiently by the method of Ref. [7] since they
satisfy ‖abs(H)‖ = poly(‖H‖)). More generally, other graph decompositions could give rise to new
efficient simulations.

Another interesting problem is to find classes of Hamiltonians that can be simulated in sublinear
time. These correspond to quantum systems whose time evolution can be fast-forwarded. Some
Hamiltonians may even be simulated in constant time, if e−iHτ = I after some constant time τ (for
example, the case R⊗n mentioned above has τ = 2π).
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Appendix: Proofs of lemmas

In this appendix, we prove Lemmas 2, 3, and 4.

Lemma 2. Suppose we are given black-box access to a string s ∈ {−1,+1}M , where s is chosen

uniformly at random from the set of strings with
∑

i si ∈ {−B,+B}. Then determining
∑

i si has
average-case quantum query complexity Θ(M/B).

Proof. We show the lower bound by first showing the same lower bound for the worst-case problem
using the quantum adversary method [2] and then reducing the worst-case problem to the average-
case problem.

For the worst-case lower bound, we use the notation of Theorem 2 of Ref. [2]. We require two
sets of inputs X and Y that have different outputs. Let X be the set of all strings for which
∑

i si = −B, and Y be the set for which
∑

i si = +B. We define a relation between the sets as
follows. Let an element x ∈ X be related to an element of y ∈ Y if and only if y can be reached
from x by changing exactly B/2 −1s to +1s in the string x. Note that a string in X has exactly
(M/2 +B/2) −1s and (M/2−B/2) +1s.

Using these sets X and Y , and the relation defined above, it is easy to see that

m = m′ =

(

M/2 +B/2

B

)

and l = l′ =

(

M/2 +B/2− 1

B − 1

)

, (28)

so
m

l
=

m′

l′
=

1

2

(

M

B
+ 1

)

. (29)
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The adversary method now provides a lower bound of Ω
(

√

mm′/ll′
)

= Ω(M/B) for the worst-case

query complexity of this problem.
The worst-case query complexity can now be reduced to the average-case query complexity

under the uniform distribution over all input strings satisfying the promise. To do this, we first
apply a uniformly random permutation to the input string, and then with probability 1

2 multiply
all the entries by −1 (and leave them unchanged with probability 1

2). The resulting distribution is
now uniform over all input strings satisfying the promise. If the string is not multiplied by −1, then
the output of the permuted string is the same as the input string. If all the entries are multiplied
by −1, then the output of the modified string is the opposite of that of the original input.

The lower bound is tight due to a matching upper bound provided by the algorithm for approx-
imate quantum counting [5]. To distinguish the two types of inputs, we can approximately count
the number of +1s to accuracy ǫ = B/2M , which requires O(M/B) queries.

Lemma 3. Let Hs ∈ R
N×N be a symmetric circulant matrix of size N = 2M + 1 with the first

M + 1 entries of the first row given by 0 followed by a string s ∈ S. If s is chosen uniformly at

random from S, denoted s ∈R S, then for any d > 0,

Pr
s∈RS

(

‖Hs‖ ≥ 4d
√

M logM
)

≤ 4 + o(1)

M2d2−1
. (30)

Proof. The eigenvalues of Hs are λr = 2
∑M

j=1 sj cos
2πjr
N , where r ∈ {0, 1, . . . , N − 1}. We wish to

bound the probability that λr is large, so as to bound the probability of ‖Hs‖ = maxr |λr| being
large. This is achieved by applying Hoeffding’s inequality [16, Theorem 2].

Theorem 5 (Hoeffding’s inequality). If X1,X2, . . . ,XM are independent and aj ≤ Xj ≤ bj for all

1 ≤ j ≤ M , then for any t > 0, we have

Pr (X − E (X) ≥ Mt) ≤ exp

(

−2M2t2
∑M

j=1(bj − aj)2

)

(31)

where X =
∑M

j=1Xj .

If we take Xj = 2sj cos
2πjr
N , then X = λr = 2

∑M
j=1 sj cos

2πjr
N , each Xj is between −2 and +2,

and E (X) =
∑M

j=1 E (Xj) = 0. By choosing t = 4d
√

logM/M , we get

Pr
(

λr ≥ 4d
√

M logM
)

≤ exp

(

−2M2(16d2 logM/M)
∑M

j=1 4
2

)

=
1

M2d2
. (32)

Since a similar inequality holds when Xj is replaced by −Xj , we get

Pr
(

|λr| ≥ 4d
√

M logM
)

≤ 2

M2d2
. (33)

Finally, since ‖Hs‖ = maxr |λr|, a union bound gives

Pr
(

‖Hs‖ ≥ 4d
√

M logM
)

≤ 2N

M2d2
, (34)

which implies the desired result.
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Lemma 4. If s ∈R S, then the probability that s satisfies the promise is

Pr
s∈RS

(s ∈ P) = Θ(1/M). (35)

Proof. Of the 2M strings of length M , those with sum −
√
M logM or +

√
M logM have either

1
2(M +

√
M logM) +1s or 1

2(M +
√
M logM) −1s. Thus the total number of such strings is

2

(

M
M+

√
M logM
2

)

. (36)

We can asymptotically approximate this expression using a well-known approximation for the
binomial coefficients (see for example equations 4.5 and 4.10 of Ref. [19]), which states that

(

n

k

)

∼ 2n exp
(

−2(k − n/2)2/n
)

√

πn/2
(37)

provided |k − n/2| = o(n2/3). Applying this to (36), we get

2

(

M
M+

√
M logM
2

)

= Θ
(

2M exp(− logM/2)/
√
M
)

= Θ(2M/M), (38)

which proves the claim.
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