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Abstract

A notion of convolution is presented in the context of formal power series together
with lifting constructions characterising algebras of such series, which usually are quan-
tales. A number of examples underpin the universality of these constructions, the most
prominent ones being separation logics, where convolution is separating conjunction in
an assertion quantale; interval logics, where convolution is the chop operation; and
stream interval functions, where convolution is used for analysing the trajectories of
dynamical or real-time systems. A Hoare logic is constructed in a generic fashion on
the power series quantale, which applies to each of these examples. In many cases,
commutative notions of convolution have natural interpretations as concurrency oper-
ations.

Keywords: formal power series, convolution, semigroups, quantales, formal semantics,
systems verification, concurrency, separation logics, interval logics, Hoare logics

1 Introduction

Algebraic approaches play a fundamental role in mathematics and computing. Algebraic
axioms for groups, rings, modules or lattices, for instance, capture certain features of con-
crete models in an abstract uniform fashion. Fundamental constructions, such as products,
quotients or adjunctions, can be presented and investigated in algebra in simple generic ways.

This article investigates the notion of convolution or Cauchy product from formal language
theory [12, 5] as such a fundamental notion, supporting the generic construction of various
models and calculi that are interesting to computing. This provides a unified structural view
on various computational models known from the computer science literature.
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Questions of summability and divergence aside, the operational content of convolution
is simple: an entity is separated in all possible ways into two parts, two functions are
simultaneously applied to these parts, their outputs are combined, and the sum over all
possible combinations is taken. Suppose two functions f and g from an algebra S (with
suitable multiplication ◦) into an algebra Q (with suitable multiplication � and suitable
summation Σ). Using the nomenclature of formal language theory, the convolution of f and
g for an element x ∈ S is defined as

(f ⊗ g)x =
∑
x=y◦z

f y � g z.

Hence x is first separated in all possible ways into parts y and z. The function f is then
applied to y and g to z. After that, the results of these applications are combined in Q. The
convolution is indeed the sum of all possible splittings of x.

In formal language theory, functions f : S → Q are also known as power series—more
precisely as formal or rational power series. This notion is slightly different from that com-
monly used in algebra, as are the notions of convolution or Cauchy product. In formal
language theory, moreover, power series usually map elements of the free monoid S = X∗

over the finite alphabet X—the set of words or strings over X—into a semiring (Q,+,�, 0).
Since every word can only be split into finitely many prefix/suffix pairs, the summation
occurring in convolution is finite and therefore well defined. A simple example of Q is the
boolean semiring with + as disjunction and � as conjunction. Power series then become
characteristic functions representing languages, telling us whether or not some word is in
some language, and convolution becomes language product. In more general settings, Q can
model probabilities or weights associated to words; a Handbook has been devoted to the
subject [12]. This example alone underpins the power of power series and convolution.

Complementing this body of work, we generalise the typeof power series, rebalancing
the assumptions on source algebras S and target algebras Q and thus shifting the focus to
other applications. Among those, we show that, for suitable algebras S and Q, convolution
becomes separating conjunction of separation logic (cf. [7]), or alternatively the chop operator
of interval temporal logics [25]. Both can in fact be combined, for instance within interval
logics, to provide new notions of concurrency for this setting. In addition, we use power
series to capture, in a generic manner, the algebraic properties of convolution for wide
classes of instances and show how Hoare-style compositional inference systems can be derived
uniformly for all of them.

More concretely, the main contributions of this article are as follows.

• Considering power series that map arbitrary partial semigroups into quantales, we
prove a generic lifting result showing that spaces of power series form quantales as
well.

• This lifting result is generalised by making the target quantale partial, by considering
bi-semigroups and bi-quantales with two multiplication operations, by mapping two
separate semigroups into a bi-quantale, and by setting up source semigroups suitable
for distinguishing between finite and infinite system behaviours.
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• We show that algebras of state and predicate transformers arise as instances of the
generic lifting theorem.

• Propositional Hoare calculi (without assignment axioms) are derived within the power
series quantale in a generic fashion; and we discuss some ramifications of deriving
concurrency rules in this setting.

• We provide a series of instances of the lifting result, showing how quantales of lan-
guages, binary relations, matrices and automata, sets of paths and traces as well as
interval functions and predicates arise from a non-commutative notion of convolution.

• In the commutative case, we present the assertion quantales of separation logic with
separation based on general resource monoids as well as multisets, sets with disjoint
union and heaplets. We also present a separation operation on finite vectors, which
leads to a notion of convolution-based parallelism for linear transformations.

• Both kinds of instances are combined into a new algebraic approach to stream interval
functions and predicates, which allow the logical analysis of trajectories of dynamic and
real time systems. This provides a convolution-based spatial concurrency operation in
addition to the conventional temporal chop operator.

• We illustrate how convolution as separating conjunction allows us to derive the frame
rule of separation logic by simple equational reasoning.

Our lifting results are generic in the following sense: after setting up a suitable par-
tial semigroup—words under concatenation, closed intervals under chop, multisets under
addition or resource monoids under resource aggregation—the space of all functions into a
quantale automatically forms a quantale with convolution as multiplication. When the target
quantale is formed by the booleans, power series can be identified with and predicates and
characteristic functions for sets, as their extensions. Multiplication in the booleans becomes
conjunction and convolution then reduces to

(f ⊗ g)x =
∑
x=y◦z

f y u g z.

If S is a set of resources and ◦ a (commutative) notion of resource aggregation, then con-
volution is separating conjunction. If S is a set of closed intervals and ◦ splits an interval
into two disjoint parts, then convolution is chop. In that sense, separating conjunction can
be seen as a language product over resources and chop as a language product over intervals.
Here and in all similar cases, our lifting result implies that the predicates of type S → B
form an assertion quantale; in the first case that of separation logic; in the second one that of
interval logics. But our results cover models beyond the booleans, for instance probabilistic
or weighted predicates or other kinds of functions. In general, the convolution has a strongly
spatial and concurrent flavour whenever the operations ◦ and � are commutative.
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Similarly, for all instances of this lifting, the construction of Hoare logics is generic because
it works for abitrary quantales [20]. Finally, due to the emphasis on functions instead of
sets, the approach is constructive so long as the underlying source and target algebras are.

The remainder of this article is organised as follows. Section 2 recalls the basic algebraic
structures needed. Section 3 introduces our approach to power series with partial semi-
groups as source algebras and quantales as target algebras; it also proves our basic lifting
result. Section 4 discusses the case of power series into the boolean quantale, when con-
volution becomes a possibly non-commutative notion of separating conjunction. Section 5
and 6 present non-commutative and commutative instances of our lifting lemma; Section 5
discussing, among others, the chop operation over intervals and Section 6 focusing on vari-
ants of separating conjunction. Section 7 shows how state and predicate transformers arise
in the power series setting. Section 8 presents a lifting result for power series into partial
quantales with an example. Section 9 generalises the lifting result to bi-semigroups and
bi-quantales and presents two examples. Section 10 generalises the result to power series
from two semigroups into a bi-quantale; Section 11 presents in particular the quantale of
stream interval functions, which is based on this generalisation. Section 12 further gener-
alises the approach to applications with finite and infinite behaviours. Section 13 shows that
the interchange laws of concurrent Kleene algebras fail in general power series quantales.
Based on this, Section 14 discusses how generic Hoare logics can be developed over power
series quantales. Section 15 shows how the approach can be used for deriving the frame
rule of separation logic, using convolution as the algebraic notion of separating conjunction.
Section 16 contains a conclusion.

2 Algebraic Preliminaries

In this section, we briefly recall the most important mathematical structures used in this
article: partial semigroups and monoids, their commutative variants, semigroups and dioid
as well as quantales. We also consider such structures with two operations of composition
or multiplication, that is, bi-semigroups, bi-monoids, bi-semirings and bi-quantales.

Semigroups. A partial semigroup is a structure (S, ·,⊥) such that (S, ·) is a semigroup
and x · ⊥ = ⊥ = ⊥ · x holds for all x ∈ S. It follows that ⊥ /∈ S, which is significant for
various definitions in this article. A partial monoid is a partial semigroup with multiplicative
unit 1. We often write (S, ·) for partial semigroups and (S, ·, 1) for partial monoids, leaving
⊥ implicit. A (partial) semigroup S is commutative if x·y = y ·x for all x, y ∈ S. Henceforth,
we use · for a general multiplication and ∗ for a commutative one.

An important property of semigroups is opposition duality. For every semigroup (S, ·),
the structure (S,�) with x� y = y · x for all x, y ∈ S forms a semigroup; the opposite of S.
Similarly, the opposite of a monoid is a monoid.

The definitions of semigroups and monoids generalise to n operations, but we are mainly
interested in the case n = 2. A partial bi-semigroup is a structure (S, ◦, •) such that (S, ◦)
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and (S, •) are partial semigroups. Partial bi-monoids (S, ◦, •, 1, 1′) can be obtained from
them as standard.

Semirings. A semiring is a structure (S,+, ·, 0) such that (S,+, 0) is a commutative
monoid, (S, ·) a semigroup, and the distributivity laws x · (y + z) = x · y + x · z and
(x + y) · z = x · z + y · z as well as the annihilation laws 0 · x = 0 and x · 0 = 0 hold.
A semiring is unital if the multiplicative reduct is a monoid (with unit 1). A dioid is an
additively idempotent semiring S, that is, x+x = x holds for all x ∈ S. The additive reduct
of a dioid thus forms a semilattice with order defined by x ≤ y ⇔ x+ y = y. Obviously, the
classes of semirings and dioids are closed under opposition duality.

A bi-semiring is a structure (S,+, ◦, •, 0) such that (S,+, ◦, 0) and (S,+, •, 0) are semir-
ings; a trioid is an additively idempotent bi-semiring. A bi-semiring or trioid is unital if the
underlying bi-semigroup is a bi-monoid.

Quantales. A quantale is a structure (Q,≤, ·) such that (Q,≤) is a complete lattice, (Q, ·)
is a semigroup and the distributivity axioms

x · (
∑
i∈I

yi) =
∑
i∈I

(x · yi), (
∑
i∈I

xi) · y =
∑
i∈I

(xi · y)

hold, where
∑
X denotes the supremum of a set X ⊆ Q. Similarly, we write

∏
X for the

infimum of X. The distributivity laws imply, in particular, the isotonicity laws

x ≤ y ⇒ z · x ≤ z · y, x ≤ y ⇒ x · z ≤ y · z.

A quantale is commutative and partial if the underlying semigroup is as well; unital if the
underlying semigroup is a monoid; and distributive if the infinite distributivity laws

x u (
∑
i∈I

yi) =
∑
i∈I

(x u yi), x+ (
∏
i∈I

yi) =
∏
i∈I

(x+ yi)

hold. A boolean quantale is a distributive quantale in which every element has a complement.
The boolean unital quantale B, where multiplication · coincides with meet, plays an

important role in this article.
A bi-quantale is a structure (Q,≤, ◦, •) such that (Q,≤, ◦) and (Q,≤, •) are quantales.

It is unital if the two underlying semigroups are monoids.
It is easy to see that every (unital) quantale is a (unital) dioid and every (unital) bi-

quantale a (unital) trioid. In particular, 0 =
∑
∅ =

∑
i∈∅ xi and annihilation laws as in

dioids follow from this as special cases of distributivity.

3 Power Series Quantales

Formal (or rational) power series [5] have been studied in formal language theory for decades.
For brevity, we call them power series in this article. In formal language theory, a power
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series is simply a function from the free monoid X∗ over a finite alphabet X into a suitable
algebra Q, usually a semiring or dioid (Q,+, ·, 0, 1).

Operations on f, g : X∗ → Q are defined as follows. Addition is lifted pointwise, that is,
(f + g)x = f x+ g x. Multiplication is given by the convolution or Cauchy product

(f · g)x =
∑
x=yz

f y · g z,

where yz denotes word concatenation and the sum in the convolution is finite since finite
words can only be split in finitely many ways into prefix/suffix pairs. Furthermore, the empty
power series O maps every word to 0, whereas the unit power series 1 maps the empty word
to 1 and all other words to 0.

We write QX∗
for the set of power series from X∗ to Q and, more generally, QS for the

class of functions of type S → Q. The following lifting result is well known.

Proposition 1. If (Q,+, ·, 0, 1) is a semiring (dioid), then so is (QX∗
,+, ·,O, 1).

This construction generalises from free monoids over finite alphabets to arbitrary partial
semigroups or monoids. The sums in convolutions then become infinite due to infinitely
many possible decompositions of elements. Here, due to potential divergence, these sums
may not exist. However, we usually consider target algebras in which addition is idempotent
and sums corresponds to suprema. The existence of arbitrary suprema can then be covered
by completeness assumptions.

We fix suitable algebraic structures S and Q. First, we merely assume that S is a set, but
for more powerful lifting results it is required to be a partial semigroup or partial monoid.

For a family of functions fi : S → Q and i ∈ I we define

(
∑
i∈I

fi)x =
∑
i∈I

fi x,

whenever the supremum in Q at the right-hand side exists. This comprises

(f + g)x = f x+ g x

as a special case. Since x ranges over S, the constant ⊥ is excluded as a value. Another
special case is

(
∑
i∈∅

fi)x = (
∑
∅)x =

∑
i∈∅

fi x = 0.

Hence, in particular,
∑

i∈∅ fi = λx. 0 and we write O for this function.
We define the convolution

(f · g)x =
∑
x=y·z

f y · g z,

where the multiplication symbol is overloaded to be used on S, Q and QS. Again, this
requires that the supremum in the right-hand side exists in Q. In the expression x = y · z,
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the constant ⊥ is again excluded as a value. Undefined splittings of x are thus excluded
from contributing to convolutions.

Finally, whenever S and Q are endowed with suitable units, we define 1 : S → Q as

1x =

{
1, if x = 1,

0, otherwise,

as for formal languages.
Theorem 1, the main result in this section, shows that quantale laws lift from the algebra

Q to the function space QS of power series under these definitions. On the way to this result
we recall that semilattice and lattice structures lift to function spaces, a fundamental result
of domain theory [1].

Lemma 1. Let S be a set. If (L,+, 0) is a semilattice with least element 0 then so is
(LS,+,O). If L is a complete lattice, then so is LS.

Proof. The semilattice lifting is covered by Proposition 1. As usual, LS is ordered by
f ≤ g ⇔ f + g = g, and O ≤ f for all f ∈ LS.

If arbitrary suprema exist in L, then completeness lifts to LS by definition of
∑

i∈I fi.
Finally, every complete join-semilattice is a complete lattice.

Infima, if they exist, are defined like suprema by pointwise lifting as

(
∏
i∈I

fi)x =
∏
i∈I

fi x,

thus (f u g)x = flx u g x. Lemma 1 can then be strengthened.

Lemma 2. Let S be a set. If (D,+,u, 0) is a (distributive) lattice with least element 0,
then so is (DS,+,u,O). Completeness and infinite distributivity laws between infima and
suprema lift from D to DS.

Proof. The join- and meet-semilattice laws for + and u follow from Lemma 1. We need to
verify absorption and distributivity. Let f, g, h : S → D and x ∈ S.

• (fu(f+g))x = f xu(f x+g x) = f x by absorption on D. The proof of f+(fug) = f
is lattice dual.

• The finite distributivity laws are special cases of the infinite ones below.

Completeness is covered by Lemma 1. For infinite distributivity,

(f u
∑
i∈I

gi)x = f x u
∑
i∈I

gi x =
∑
i∈I

f x u gi x =
∑
i∈I

(f u gi)x = (
∑
i∈I

f u gi)x.

The other distributivity law then follows from lattice duality.
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The final lifting result in this section deals with multiplicative structure as well. This
requires S to be a partial semigroup instead of a set.

Theorem 1. Let (S, ·) be a partial semigroup. If (Q,≤, ·) is a (distributive) quantale, then
so is (QS,≤, ·). In addition, commutativity in Q lifts to QS if S is commutative; unitality
in Q lifts to QS if S is a partial monoid.

Proof. Since Q is a quantale, all infinite suprema and infima exist; in particular those needed
for convolutions.

The lifting to complete (distributive) lattices is covered by Lemma 2. It therefore remains
to check the multiplicative monoid laws, distributivity of multiplication and annihilation. For
left distributivity, for instance,

(f ·
∑
i∈I

gi)x =
∑
x=y·z

f y ·
∑
i∈I

gi z =
∑
x=y·z,
i∈I

f y · gi z =
∑
i∈I

(f · gi)x.

The proof of right distributivity is opposition dual.
Left distributivity ensures associativity, the proof of which lifts as with rational power

series (Proposition 1). The restriction to partial semigroups is insignificant as, in x = y · z,
the constraint x ∈ S only rules out contributions of y · z = ⊥. The same holds for unitality
proofs.

Commutativity lifts from S and Q as follows:

(f · g)x =
∑
x=y·z

f y · g z =
∑
x=z·y

g z · f y = (g · f)x.

Once more the distributivity laws on QS imply the annihilation laws O · f = O and
f · O = O for all f : S → Q. When only finite sums are needed, Q can be assumed to be a
semiring or dioid instead of a quantale. The following corollary to Theorem 1 provides an
example.

Corollary 1. Let (S, ·) be a finite partial semigroup. If (Q,+, ·, 0) is a semiring, then so is
(QS,+, ·,O). In addition, idempotency in Q lifts to QS; commutativity in Q lifts to QS if S
is commutative; unitality in Q lifts to QS if S is a partial monoid.

As another specialisation, Proposition 1 is recovered easily when S is the free monoid
over a given alphabet and Q a semiring or dioid.

4 Power Series into the Boolean Quantale

In many applications, the target quantale Q is formed by the booleans B. Power series are
then of type S → B and can be interpreted as characteristic functions or predicates. In fact,
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BS is isomorphic to the power set of S, which, in turn is in one to one correspondence with
the set of all predicates over S, identifying predicates with their extensions.

In this context, Theorem 1 specialises to the powerset lifting of a partial semigroup or
monoid S. For each x ∈ S, the boolean value f x expresses whether or not x is in the set
corresponding to f . Powerset liftings have been studied widely in mathematics [15, 6]. They
have various applications in program semantics, for instance as power domains (cf. [1]).

Corollary 2. Let S be a partial (commutative) semigroup. Then BS forms a (commutative)
distributive quantale where BS ∼= 2S, ≤ corresponds to ⊆ and convolution · to the complex
product

X · Y = {x · y | x ∈ X ∧ y ∈ Y }

for all X, Y ⊆ S. If S has unit 1, then BS has unit {1}.

Various instances of Corollary 2 are discussed in Sections 5 and 6.
The quantale BS carries a natural logical structure with elements of BS corresponding to

predicates, suprema to existential quantification, infima to universal quantification and the
lattice order to implication. In particular, + corresponds to disjunction and u to conjunction.

More interesting is the logical interpretation of convolution

(f · g)x =
∑
x=y·z

f y · g z

in the boolean quantale BS. The expression x = y ·z denotes the decomposition or separation
of the semigroup element x into parts y and z. The composition f y · g z = f y u g z in B
models the conjunction of predicate f applied to y with predicate g applied to z. Finally,
the supremum

∑
models the existential quantification over these conjunctions with respect

to all possible decompositions of x.
The commutative case of Corollary 2 is immediately relevant to separation logic. In this

context, the partial commutative semigroup (S, ∗) is know as the resource semigroup [7]; it
provides an algebraic abstraction of the heap. Its powerset lifting BS captures the algebra
of resource predicates that form the assertions of an extended Hoare logic—the assertion
quantale of separation logic. In this assertion quantale, separating conjunction is precisely
convolution: the product x = y ∗ z on the resource semigroup S decomposes or separates
the resource or heap x into parts of heaplets y and z and the product f y ∗ g z = f y u g z
in B once more conjoins f y and g z; hence x = y ∗ z separates whereas f y ∗ g z = f y u g z
conjoins. The concrete case of the heap is considered in more detail in Example 12.

The power series approach thus yields a simple algebraic view on a lifting to func-
tion spaces in which the algebraic operation of convolution into the booleans allows vari-
ous interpretations, including that of a complex product, that of separating conjunction—
commutative or non-commutative—and that of separating conjunction as a complex product.
In the commutative setting it gives a simple account of the category-theoretical approach to
O’Hearn and Pym’s logic of bunched implication [27] in which convolution corresponds to
coends and the quantale lifting is embodied by Day’s construction [9].
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5 Non-Commutative Examples

After the conceptual development of the previous sections we now discuss a series of examples
which underpin the universality and relevance of the notion of convolution in computing.
All of them can be obtained as instances of Theorem 1 after setting up partial semigroups
or monoids appropriately. For all these structures, the lifting to the function space is then
generic and automatic. The booleans often form a particularly interesting target quantale.

This section considers only examples with a non-commutative notion of convolution; for
commutative examples see Section 6.

Example 1 (Formal Languages). Let (X∗, ·, ε) be the free monoid generated by the finite
alphabet X with ε denoting the empty word. Let Q form a distributive unital quantale.
Then QX∗

forms a distributive unital quantale as well by Theorem 1. More precisely, since
suprema in convolutions are always finite, one obtains the unital dioid (QX∗

,+, ·,O, 1) by
lifting from a dioid (Q,+, ·, 0, 1). This is the well known rational power series dioid of
formal language theory. For Q = B one obtains, by Corollary 2, the quantale BX

∗
of formal

languages over X.

Example 2 (Binary Relations). For a set A consider the partial semigroup (A×A, ·) with
· defined, for all a, b, c, d ∈ A, by

(a, b) · (c, d) =

{
(a, d), if b = c,

⊥, otherwise.

For Q = B, Theorem 1 (or its Corollary 2) ensures that (BA×A,≤, ·), which is isomorphic to
(2A×A,⊆, ·), is the quantale of binary relations under union, intersection, relational compo-
sition and the empty relation.

More specifically, with every power series f we associate a binary relation Rf defined by
(a, b) ∈ Rf ⇔ f (a, b) = 1. The empty relation ∅ obviously corresponds to the power series
defined by O (a, b) = 0 for all a, b ∈ A. Relational composition is given by convolution

(f · g) (a, b) =
∑
c∈A

f (a, c) · g (c, b).

It can then be checked that Rf ·g = Rf ·Rg = {(a, b) | ∃c.(a, c) ∈ Rf ∧ (c, b) ∈ Rg}.
The unit relation cannot be lifted from a unit in A × A because A × A has no unit.

Instead it can be defined on BA×A directly as

1 (a, b) =

{
1, if a = b,

0, otherwise.

The constructions for relations generalise, for instance, to probabilistic or fuzzy relations
where Q 6= B, but this is not explored any further. Instead we consider the case of matrices.

10



Example 3 (Matrices). Matrices are functions f : A1 × A2 → B, where A1 and A2 are
index sets and Q is a suitable coefficient algebra. For the sake of simplicity we restrict our
attention to square matrices with A1 = A2 = A. General non-square matrices require more
complex partiality conditions.

The development is similar to binary relations, but uses coefficient algebras beyond B. It
is easy to check that matrix addition is modelled by

(f + g) (i, j) = f (i, j) + g (i, j),

whereas matrix multiplication is given by convolution

(f · g) (i, j) =
∑
k∈A

f (i, k) · g (k, j),

under suitable restrictions to guarantee the existence of sums, such as finiteness of A or
idempotency of additionin Q. The zero and unit matrices are defined as in the relational
case.

1 (i, j) =

{
1, if i = j,

0, otherwise,
O (i, j) = 0.

Theorem 1 then shows that quantales are closed under matrix formation. It can easily be
adapted to showing that square matrices of finite dimension over a semiring form a semiring
or that matrices over a dioid form a dioid.

This example not only links matrices with power series, it also yields a simple explanation
of the well known relationship between binary relations and boolean matrices. If a relation
R ⊆ A×A is modelled as fR : A×A→ B defined by fR (a, b) = 1⇔ (a, b) ∈ R as indicated
above, then it is a boolean matrix.

Example 4 (Finite Automata). Suppose V is a set of state symbols, X an alphabet, i ∈ V
the initial state and F ⊆ V a set of final states. Conway [8] has shown that transition
relations δ of finite automata (V,X, δ, i, F ) can be modelled in terms of finite matrices of
type V × V → Rex(X) into the algebra of regular expressions Rex(X) over X, for instance
a Kleene algebra with constants from X. Consider the following automaton and transition
matrix as an example.

// 1

a, b



b // 2

a // 3

a+ b b 0
0 0 a
0 0 0


More generally, the full automaton, including its initial and final state information, is cap-
tured by the following triple. 1

0
0

 ,

a+ b b 0
0 0 a
0 0 0

 ,

0
0
1


11



It is well known that the algebra of regular expressions forms a dioid, hence Theorem 1
applies, showing that transition matrices over the dioid of regular expressions form a dioid,
as in Example 3. Other kinds of automata, such as probabilistic or weighted ones, can be
modelled along this line.

In fact, it has been shown that Kleene algebras are closed under matrix formation [24],
but the neccessary treatment of the Kleene star is beyond the scope of this article. In
addition, it is well known that regular languages need not be closed under general unions,
hence do not form quantales.

Example 5 (Trace Functions). Let V be a finite set of state symbols and X a finite set
of transition symbols, as in a finite automaton. A trace [13] is a finite word over (V ∪X)∗

in which state and transition symbols alternate, starting and ending with state symbols.
We write T (V,X) for the set of traces over V and X. It is endowed with a partial monoid
structure by defining, for p1α1q1, p2α2q2 ∈ T (V,X), the fusion product

p1α1q1 · p2α2q2 =

{
p1α1q1α2q2, if q1 = p2,

⊥, otherwise.

Then convolution becomes

(f · g) τ =
∑

τ=pα1r·rα2q

f pα1r · g rα2q

and Theorem 1 implies that the set QT (V,X) of trace functions into the distributive quantale
Q forms a distributive quantale. If Q is unital, then QT (V,X) becomes unital by defining

1x =

{
1, if x ∈ V,
0, otherwise.

For Q = B we obtain the well known quantale of sets of traces.
Trace functions BT (X,V ) have a natural interpretation as trace predicates. Convolution

(f · g) τ indicates the various ways in which property f holds on a prefix of trace τ whereas
property g holds conjunctively on the consecutive suffix, as for instance in temporal logics
over computation traces or paths.

Sets of traces generalise both languages and binary relations, which are obtained by
forgetting structure in the underlying partial monoid. Another special case is given by sets
of paths in a graph, which is obtained by forgetting state labels. The explicit construction
of the corresponding paths quantale is straightforward and therefore not shown.

Example 6 (Interval Functions). Let (P,≤) be a linear order and IP the set of all closed
intervals over P—the empty interval being open by definition. For an interval x, let xmin
and xmax represent respectively the minimum and maximum value in x.
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We impose a partial semigroup structure on IP be defining the fusion product on IP ,
similar to the case of binary relations, traces and matrices, as

x · y =

{
x ∪ y, if xmax = ymin,

⊥, otherwise.

An interval function is a function f : IP → Q into a suitable algebra. Whenever Q is
a (distributive) quantale, Theorem 1 applies and QIP forms a (distributive) quantale, too.
Convolution of interval functions is given by

(f · g)x =
∑
x=y·z

f y · g z.

Like in the case of relations, the unit interval function is not lifted from IP , but defined
directly as

1 [a, b] =

{
1, if a = b,

0, otherwise.

The quantale of interval functions then becomes unital.
Interval predicates are functions of type IP → B. Convolution of interval predicates is

known as the chop operation [25], where (f · g) [a, c] holds if it is possible to split interval
[a, c] into [a, b] and [b, c] such that f [a, b] and g [b, c] hold in conjunction.

a cf · g

gbfa c

The meaning of an interval predicate f x can be defined in various ways. For instance
f can hold somewhere (at some point) in x or (almost) everywhere (see [25, 30]), and it is
even possible to define and use non-deterministic evaluators [18] that enable calculations of
apparent states (see [11]).

Naive use of interval predicates may have undesired effects: If f x means that f holds at
each point in interval x, then (f · ¬f) is always false, since both f and ¬f would have to
hold in at least one fusion point, which is impossible. An alternative definition of interval
composition without fusion therefore seems desirable.

The duration calculus presents a solution in terms of an ‘almost everywhere’ operator,
such that a property holds almost everywhere in an interval if it is false in the interval for a set
of points of measure zero [30]. Others have defined ‘jump conditions’ leaving the possibility
of both f and ¬f holding at the fusion point open [21]. Here we model a third approach
[11], with chop formalised over non-overlapping intervals, in the power series setting.
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Example 7 (Intervals without Fusion). We define a composition of contiguous intervals that
avoids fusion. To this end we consider the set IP of intervals of the form (a, b), (a, b], [a, b)
and [a, b], for a, b ∈ P . We include the empty interval ∅, which is by definition equal to
(a, a), (a, a] and [a, a) for all a ∈ P . The interval x precedes the interval y, written x ≺ y, if
∀a ∈ x, b ∈ y. a < b. The composition of intervals is defined as

x · y =

{
x ∪ y, if x ∪ y ∈ IP and x ≺ y,

⊥, otherwise.

Convolution f ·g is then defined as usual. Theorem 1 ensures once more that QIP forms a
distributive quantale whenever Q does. The unit 1 : IP → Q, however, requires modification.
Defining

1x =

{
1, if x = ∅,
0, otherwise,

it is easy to check that (1 · f) x = f x = (f · 1)x for any interval x and the new definition
of interval composition. This makes the quantale QIP unital.

The examples in this section show that the generic lifting construction in Theorem 1
allows a uniform treatment of a variety of mathematical objects, including relations, formal
languages, matrices and sets of intervals. In each case, a (partial) composition on the un-
derlying objects needs to be defined, e.g., on words, ordered pairs, index pairs of matrices,
traces, paths or intervals. Lifting to the function space is then generic.

Such a generic lifting has been discussed previously for languages, relations, paths and
traces in the context of an Isabelle/HOL library with models of Kleene algebras [3, 2].
Theorem 1 has, in fact, already been implemented in Isabelle. Based on this, the existing
implementation of models of Kleene algebras can be unified and simplified considerably.

6 Commutative Examples

This section provides instances of Theorem 1 and Corollary 2 for the commutative case. As
discussed in Section 4, this situation typically arises when the composition of the underlying
semigroup (S, ∗) is used to split resources, heaps, states, etc, in a spatial fashion, which is in
contrast to the previous section where f ·g meant that there was a dependency between f and
g, which often carries a temporal meaning. One can often think of convolution instantiated
to such a spatial separation in terms of parallelism or concurrency.

In particular we instantiate Theorem 1 to four kinds of resource monoids based on mul-
tisets under multiset union, sets under disjoint union, partial functions under union and
vectors. Notions of separating conjunction as convolution arises in all these examples in a
natural way. In the disjoint union and vector examples, the relationship between convolu-
tion, separation and concurrency becomes most apparent. Previously, this observation of
separating conjunction as a notion of concurrency with a strongly spatial meaning has been
one of the motivations for concurrent separation logic [7] and concurrent Kleene algebra [20].
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As a preparation we show how multisets with multiset union and sets with disjoint union
arise in the power series setting.

Example 8 (Multisets). Let S be a set and let f : S → N assign a multiplicity to elements of
S. Consider the max/min-plus algebra over N [16], which forms a commutative distributive
quantale. Define, rather artificially, a partial semigroup on S by stipulating

x ∗ y =

{
x, if x = y,

⊥, otherwise.

Then NS is the set of multisets over the set S which, by Theorem 1, forms a commutative
distributive quantale under the operations

(f ] g)x = (f ∗ g)x =
∑
x=x∗x

f x+ g x = f x+ g x,

(
∑
i∈I

fi)x = max
i∈I

(fi x), (
∏
i∈I

fi)x = min
i∈I

(fi x).

The “convolution” ] is the usual multiset addition. For example,

a2b5c ] ab3d2 = a3b8cd2,

a2b5c+ ab3d2 = a2b5cd2,

a2b5c u ab3d2 = ab3.

Example 9 (Powersets). Under the same conditions as in Example 8, suppose that f : S →
B is the characteristic function which determines the subsets of S. Then BS ∼= 2S reduces
to the complete distributive lattice of powersets of S; the ring of sets over S. In particular,
f ] g = max(f, g). This lifting implements the powerset functor.

Theorem 1 shows that the function space QS from a partial commutative semigroup
S into a commutative quantale Q forms a commutative quantale. In addition, we have
seen in Section 4, that, in that case, BS may yield the quantale of resource predicates in
which convolution is separating conjunction. We now discuss four special cases of separating
conjunction.

Example 10 (Separating Conjunction on Multisets). The free commutative monoid (X∗, ∗, 0)
generated by the alphabet X is isomorphic to the set of all multisets over X with ∗ being mul-
tiset addition ]. By Theorem 1, QX∗

forms a commutative quantale if Q does; distributivity
and unitality lift as usual.

Convolution (f ∗g)x =
∑

x=y∗z f y∗g z separates the multiset or resource x in all possible
ways and then applies the functions f and g to the result, depending on the interpretation
of multiplication in Q. For Q = B, BX

∗
forms the resource predicate quantale over multisets.

Convolution f ∗ g is separating conjunction as a complex product on sets of multisets based
on multiset addition as a separator:

(f ∗ g)x =
∑
x=y]z

f y u g z.
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In many contexts, multisets form a paradigmatic data type for resources.

Example 11 (Separating Conjunction on Sets). The free commutative idempotent monoid
(X∗, ∗, 0) generated by the alphabet X is isomorphic to 2X with ∗ being union. More
interesting in our context is the consideration of disjoint union, which is defined as

x⊕ y =

{
x ∪ y, if x ∩ y = 0,

⊥, otherwise.

Then (X∗,⊕, 0,⊥) forms a partial commutative monoid and, by Theorem 1, QX∗
forms a

commutative quantale. Convolution (f ∗ g)x now separates the set x into disjoint subsets
and then applies the functions f and g to these subsets, depending on the interpretation of
∗ in the target quantale. For target quantale B we obtain the resource predicate quantale
BX

∗
on power sets based on disjoint union as a separator:

(f ∗ g)x =
∑
x=y⊕z

f y u g z.

This kind of separating conjunction is particularly appropriate for (indexed) families.

Example 12 (Separating Conjunction on Heaplets). Let (S, ∗, 0) be the partial commutative
monoid of partial functions η : A → B with empty function 0 : A → B and composition
defined by

η1 ∗ η2 =

{
η1 ∪ η2, if dom(η1) ∩ dom(η2) = ∅,
⊥, otherwise.

The functions η are sometimes called heaplets and used to model a memory heap. As usual,
by Theorem 1, QS forms a commutative distributive unital quantale whenever Q does. In
particular, BS forms an algebra of heap assertions with convolution as separating conjunction
over the heap.

Example 13 (Separating Conjunction on Vectors). Consider a set S of vectors x of fixed di-
mension |x| = n. We turn this into a partial commutative semigroup by defining composition
as

(x ∗ y)i =


xi, if yi = 0,

yi, if xi = 0,

⊥, otherwise.

Also let x = ⊥ if xi = ⊥ for some 1 ≤ i ≤ n. It is obvious from this definition that the zero
vector 0 is a unit with respect to ∗. For example,5

0
7

 ∗
0

4
0

 =

5
4
7

 5
0
7

 ∗
0

4
4

 = ⊥
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Then Theorem 1 implies that QS forms a commutative distributive unital quantale when-
ever Q does, and BS forms an assertion algebra with a vector-based notion of separating
conjunction.

The notion of separation on vectors, which splits vectors into disjoint blocks, lends itself
to transforming such vectors in parallel fashion. This is further elaborated in Example 14.

In separation logic, a magic wand operation is often used. It is the upper adjoint of
separating conjunction. In the quantale setting, this adjoint exists because separating con-
junction distributes over arbitrary suprema by definition.

Additional notions of resource monoids and liftings to assertion algebras have been stud-
ied within the Views framework [10]. Whether their generic soundness results for Hoare
logics can be reconstructed in the power series setting is left for future work.

7 Transformers and Bi-Quantales

The powerset lifting discussed in Section 3 suggests that state and predicate transformers
could be modelled as power series as well. This section sketches how this can be achieved.
A detailed analysis and the consideration of particular classes of predicate transformers is
left for future work.

A state transformer fR : A → 2B is often associated with a relation R ⊆ A × B by
defining

fR a = {b | (a, b) ∈ R}.

State transformers are turned into predicate transformers f̂R : 2B → 2A by the Kleisli lifting

f̂R Y = {x | fR x ⊆ Y }.

The following results are well known [4].

Proposition 2. The state transformers in (2B)A and the predicate transformers in (2A)2
B

form complete distributive lattices.

Proof. 2B ∼= BB forms a complete distributive lattice by Lemma 2 because B forms a complete
distributive lattice. The same argument applies to 2A. It therefore follows that (2B)A and
(2A)2

B
are again complete distributive lattices by Lemma 2.

Predicate transformers of type 2A → 2A form a monoid with respect to function com-
position. It is also well known that the subalgebra of completely additive predicate trans-
formers, which satisfy f (

∑
i∈I Xi) =

∑
i∈I(f Xi), forms a distributive unital quantale in

which the identity function is the multiplicative unit. However, the operation of infimum
in this algebra is not the one that is lifted pointwise; instead it is induced by the operation
of supremum [4]. A dual result holds for completely multiplicative predicate transformers,
which satisfy f (

∏
i∈I Xi) =

∏
i∈I(f Xi). In this case, the monoidal part of the quantale

lifting is not obtained with the power series lifting technique either.
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The cases of resource monoids, where assertion algebras contain a notion of separating
conjunction, are more interesting.

Let S be a partial monoid. A monoid transformer is a function of type S → 2S. A monoid
predicate transformer is a function of type 2S → 2S. Examples are resource transformers
and resource predicate transformers, in which case S is a resource monoid. Such transformers
have been studied in the context of abstract separation logic [7]. The following results follow
immediately in our setting.

Proposition 3. Let S be a partial monoid. Then the monoid transformers in (2S)S and the
monoid predicate transformers in (2S)2

S
form distributive unital quantales. In both cases,

commutativity lifts from S.

Proof. 2S forms a distributive unital quantale according to Corollary 2. It is commutative
whenever S is. Hence (2S)S forms a distributive unital quantale by Theorem 1. Commuta-
tivity lifts again from S.

Similarly, (2S)2
S

is a distributive unital quantale by Theorem 1 because 2S is and the
multiplicative reduct of 2S is a monoid. Commutativity lifts again from S.

Proposition 3 can be combined with the previous observation about predicate transformer
quantales.

Theorem 2. Let S be a partial (commutative) monoid. Then ((2S)2
S
,⊆, ·, ◦, id , 1) forms

weak a unital bi-quantale with (commutative) convolution · and function composition ◦ as
well as the unit function id and unit power series 1.

In this context, weak means that the left distributivity law f ◦
∑

i∈I gi =
∑

i∈I f ◦ gi
need not hold in the space of predicate transformers. It holds, however, when predicate
transformers are completely additive.

8 Partial Power Series Quantales

This section generalises Theorem 1 to situations in which the target algebras Q are assumed
to be partial quantales in the sense that their semigroup retracts are partial. In this case,
partiality of composition shows up not only in the splitting x = y · z, but also in the product
f y · g z in convolutions. It turns out that the quantale structure of the target algebra is
preserved at the level of the function space, but the loss of totality in f y · g z causes the
function space to be partial as well. Previous proofs must therefore be reconsidered.

As an example we consider linear transformations of vectors implemented by matrices,
in which vectors that are separated as in Example 13 can be transformed in concurrent
fashion by matrices which can be separated into non-zero blocks along the diagonal. This is
a particular manifestation of the correspondence between separation and concurrency in the
context of convolution.
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Proposition 4. Let (S, ·) be a partial semigroup. If (Q,≤, ·) is a (distributive) partial
quantale, then so is (QS,≤, ·). In addition, commutativity lifts from S and Q to QS and
unitality lifts if S is a partial monoid.

Proof. By Theorem 1, the (commutative) monoidal and distributivity laws need to be
checked.

Suppose (f · (g · h))x is defined. Then

(f · (g · h))x =
∑

x=x1·(x2·x3)

f x1 · (g x2 · hx3).

Thus x1 · (x2 · x3) is defined and equal to (x1 · x2) · x3 and f x1 · (g x2 · hx3) is defined and
equal to (f x1 · g x2) · hx3. Hence∑

x=x1·(x2·x3)

f x1 · (g x2 · hx3) =
∑

x=(x1·x2)·x3

(f x1 · g x2) · hx3 = ((f · g) · h)x.

The situation where ((f · g) · h)x is defined is opposition dual. Hence QS forms a partial
semigroup.

Suppose that (f ·
∑

i∈I gi)x is defined. Then

(f ·
∑
i∈I

gi)x =
∑
x=y·z

f y · (
∑
i∈I

gi) z =
∑
x=y·z

∑
i∈I

(f y · gi z) =
∑
i∈I

(f · gi)x.

The proof can be reversed if the (f · gi) x are defined. The proof of right distributivity is
opposition dual. This shows that QS forms a partial distributive quantale.

Suppose (f · g)x is defined and S and Q are both commutative. Then

(f · g)x =
∑
x=y·z

f y · g z =
∑
x=z·y

g z · f y = (g · f)x.

This lifts commutativity.
Finally, assume that S is a monoid and Q is unital and define the power series 1 as usual.

Suppose that (1 · f)x is defined. Then

(1 · f)x =
∑
x=y·z

1 y · f z = 1 · f x = f x.

Moreover, f · 1 = f follows from opposition duality. This lifts unitality.

Example 14 (Linear Transformations of Vectors). Consider again the partial semigroup
(S, ∗) on n-dimensional vectors from Example 13. It is easy to check that S actually forms a
partial commutative dioid with respect to ∗ as multiplication and standard vector addition.
Distributivity x ∗ (y+ z) = (x ∗ y) + (x ∗ z) follows immediately from the definition: the case
of xi = 0 holds trivially, the case of (y + z)i = 0 requires that yi = zi = 0.
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Proposition 4 then implies as a special case that the functions of type S → S form a
commutative dioid; they form a trioid with the other multiplication being function composi-
tion. The sum in the convolution is obviously finite since there are only finitely many ways
of splitting a vector of finite dimension. In addition, the functions f and g in a convolution
are not only applied to separate parts y and z of vector x, but they must map to separate
parts f y and g z of the resulting vector as well.

Unitality cannot be lifted as in Proposition 4 because the units of + and ∗ coincide. It
is easy to check that the unit with respect of ∗ on SS is defined as

e x =

{
0, if x = 0,

⊥, otherwise.

For further illustration consider the linear transformations on n-dimensional vectors given
by multiplying n-dimensional vectors with an n × n matrix and adding an n-dimensional
vector.

As a simple example of a term contributing to a convolution consider(
a1 b1
c1 d1

)(
x
0

)
∗
(
a2 b2
c2 d2

)(
0
y

)
=

(
a1x
c1y

)
∗
(
b2y
d2y

)
= ⊥,

whereas (
a1 b1
0 d1

)(
x
0

)
∗
(
a2 0
c2 d2

)(
0
y

)
=

(
a1x
0

)
∗
(

0
d2y

)
=

(
a1x
d2y

)
.

This shows that matrices contributing to convolutions must essentially consist of two non-
trivial blocks along the diagonal modulo (synchronised) permutations of rows and columns.
That is, they are of the form (

M1 O
O M2,

)
where O represents zero matrices of appropriate dimension. Each pair of vectors resulting
from a decomposition can be rearranged such that the first vector consists of an upper block
of non-zero coefficients and a lower block of zeros, whereas the second vector consists of an
upper zero and a lower non-zero block, and such that the two non-zero blocks do not overlap.
One must be able to decompose matrices and vectors of the linear transformation into the
same blocks to make convolutions non-trivial.

The transformations implemented by the above block matrix on rearranged vectors, and
more generally all linear transformations, can clearly be executed independently or in parallel
by the matrices M1 and M2 parts of a vector if the convolution is non-trivial. In this sense
the convolution ∗ on linear transformations is a notion of concurrent composition.

9 Power Series over Bi-Semigroups

Our main lifting result (Theorem 1) shows that the quantale structure Q is preserved at the
level of the function space QS provided that S is a partial semigroup. This can easily be
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adapted from partial semigroups S to partial n-semigroups and n-quantales with n operations
of composition which may or may not be commutative. Here we restrict our attention to
bi-semigroups and bi-quantales and we discuss several examples.

Proposition 5. Let (S, ◦, •) be a partial bi-semigroup. If (Q,≤, ◦, •) is a (distributive unital)
bi-quantale, then so is (QS,≤, ◦, •).

It is obvious that properties such as commutativity and unitality lift as before.

Example 15 (Functions over Two-Dimensional Intervals). Closed two-dimensional intervals
over a linear order can be defined in a straightforward way. For intervals x and y, we write
x× y for the box consisting of points with x-coordinates in x and y-coordinates in y.

x× y = {(a, b) | a ∈ x ∧ b ∈ y}
x×⊥ = ⊥
⊥× y = ⊥

We define the horizontal composition of two-dimensional intervals as

(x1 × y1) ◦ (x2 × y2) =

{
(x1 · x2)× y1, if y1 = y2,

⊥, otherwise.

and their vertical composition as

(x1 × y1) • (x2 × y2) =

{
x1 × (y1 · y2), if x1 = x2,

⊥, otherwise.

Whenever the target algebra forms a bi-quantale, Proposition 5 applies and the function
space forms a bi-quantale as well. In particular, horizontal and vertical convolution are
given by

(f ◦ g) (x× y) =
∑

x=x1·x2

f (x1 × y) ◦ g (x2 × y),

(f • g) (x× y) =
∑

y=y1·y2

f (x× y1) • g (x× y2).

The situation easily generalises to n-dimensional intervals with n convolutions which may or
may not be commutative.

Example 16 (Series-Parallel Pomset Languages). Let (S, ·, ∗, 1) be a bi-monoid with non-
commutative composition ·, commutative composition ∗ and shared unit 1. Furthermore, let
(Q,≤, ·, ∗, 1) be a bi-quantale with non-commutative composition ·, commutative composi-
tion ∗ and shared unit 1. Then QS forms a bi-quantale according to Proposition 5 with a
non-commutative convolution given by · and a commutative convolution given by ∗. For BS

and S being freely generated from a finite alphabet X, we obtain the series-parallel pomset
languages or partial word languages over X, which have been studied by Grabowski, Gischer
and others [17, 14]. They form a standard model of true concurrency.
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Example 17 (Square Matrices with Parallel Composition). We define a partial commutative
composition ∗ on square matrices as a generalisation of vector case, splitting matrices into
blocks along the diagonal.

(f ∗ g) (i, j) =


f (i, j), if ∀k. g (i, k) = 0 ∧ g (k, j) = 0,

g (i, j), if ∀k. f (i, k) = 0 ∧ g (k, j) = 0,

⊥, otherwise.

Associativity and commutativity of this operation is easy to check; (infinite) distributivity
holds as well. It follows that square matrices into suitable coefficient algebras form partial
bi-quantales.

Examples 16 and 17 thus show other situations where a commutative convolution gives
rise to a notion of parallel or concurrent composition.

10 Two-Dimensional Power Series Bi-Quantales

We now extend the power series approach to two dimensions; an extension to n dimensions
can be obtained along the same lines. We consider two separate partial semigroups or
monoids (S1, ◦) and (S2, •). In many cases, S2 is assumed to be commutative. This differs
from Section 9 in that two different semigroups algebras are lifted to a bi-quantale, whereas
in Section 9 a bi-semigroup is lifted to a bi-quantale.

We consider functions F : S1 → S2 → Q from the partial semigroups S1 and S2 into an
algebra Q, usually a bi-quantale. Note that A→ B → C stands for A→ (B → C), and we
write (CB)A for the class of functions of that type.

The main construction is as follows. Theorem 1 can be applied to semigroup S1 and
target algebra QS2 to lift to (QS2)S1 . Alternatively, S2 and QS1 can be lifted to (QS1)S2 . The
algebras QS1 and QS2 can be obtained by lifting as well; they can be considered as partial
evaluations of a power series F : S1 → S2 → Q to power series F y : S1 → Q and F x : S2 → Q
where

F y = λx. F x y, F x = λy. F x y

This construction can be iterated n times for power series F : S1 → · · · → Sn → Q.
It is well known that the function spaces obtained are isomorphic: in general (CA)B ∼=

(CB)A ∼= CA×B ∼= CB×A under the Curry-Howard isomorphism. A categorical framework
is provided by the setting of symmetric monoidal closed categories [23], which we do not
explore further in this article. Instead we move freely between isomorphic function spaces.

By analogy to the one-dimensional case of power series we define operations on the
function space QS1×S2 which lift the corresponding operations on Q. Ultimately our aim is
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to show that bi-quantale axioms lift from Q to QS1×S2 . We define

(
∑
i∈I

Fi)x y =
∑
i∈I

(Fi x y),

(
∏
i∈I

Fi)x y =
∏
i∈I

(Fi x y),

(F ◦G)x y =
∑

x=x1◦x2

F x1 y ◦Gx2 y,

(F •G)x y =
∑

y=y1•y2

F x y1 •Gxy2.

As in the one dimensional case, O =
∑

i∈∅ Fi. The convolution F ◦ G acts on the first
parameter whereas F •G acts on the second one;

∑
i∈I Fi and

∏
i∈I Fi are defined by pointwise

lifting on both arguments.
We now show how two-dimensional lifting results can be obtained in a modular fashion

from one-dimensional ones with Theorem 1. By currying consider the functions F y : S1 → Q
and F x : S2 → Q. For these we can reuse the definitions of suprema, infima and convolution
from the one dimensional case in Section 3. Suprema, for instance, are given by

(
∑
i∈I

F y
i )x =

∑
i∈I

(F y
i x), (

∑
i∈I

F x
i ) y =

∑
i∈I

(F x
i y).

The equations for infima are lattice dual. Convolutions are given by

(F y ◦Gy)x =
∑

x=x1◦x2

F Y x1 ◦Gy x2, (F x •Gx) y =
∑

y=y1•y2

F x y1 •Gx y2.

The relationship between operations of different dimensions is captured by the following
lemma.

Lemma 3. The maps ϕ1 : QS1×S2 → QS2 and ϕ2 : QS1×S2 → QS1 defined by

ϕ1 = λX. (X)y, ϕ2 = λX. (X)x

are homomorphisms.

(a) (
∑

i∈I Fi)
y = (

∑
i∈I F

y
i ) and (

∑
i∈I Fi)

x = (
∑

i∈I F
x
i ),

(b) (
∏

i∈I Fi)
y = (

∏
i∈I F

y
i ) and (

∏
i∈I Fi)

x = (
∏

i∈I F
x
i ),

(c) (F ◦G)y = (F y ◦Gy) and (F •G)x = (F x •Gx).

Proof. We only provide proofs for the first conjunct of (a) and for (c). The remaining proofs
are similar. For addition we calculate

(
∑
i∈I

Fi)
y x = (

∑
i∈I

Fi)x y =
∑
i∈I

(Fi x y) =
∑
i∈I

(F y
i x) = (

∑
i∈I

F y
i )x.
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For composition ◦,

(F ◦G)y x = (F ◦G)x y

=
∑

x=x1◦x2

(F x1 y) ◦ (Gx2 y)

=
∑

x=x1◦x2

(F y x1) ◦ (Gy x2)

= (F y ◦Gy)x.

If (S1, ◦, 1◦) and (S2, •, 1•) are partial monoids and the bi-quantale Q has units 1y and
1x with respect to ◦ and • (overloading notation), we define units on QS1×S2 as

1◦ = λx, y.

{
1◦, if x = 1◦,

0, otherwise,
1• = λx, y.

{
1•, if y = 1•,

0, otherwise.

The following result links these binary units with the unary units (1y)◦ : S1 → Q and
(1x)• : S2 → Q, as defined in Section 3.

Lemma 4.

(a) (1◦)y = (1y)◦,

(b) (1•)x = (1x)•.

Proof. For (a),

(1◦)
y x = 1◦ x y =

{
1◦, if x = 1◦,

0, otherwise.
= (1y)◦ x.

The proof of (b) is similar.

By Lemmas 3 and 4, a lifting from Q can be decomposed into a lifting to QS2 and, if the
lifted property is preserved, a function application in (QS2)S1 . Alternatively one can lift to
QS1 and then use function application in (QS1)S2 . In the above constructions, there are two
kinds of liftings: pointwise liftings from Q to QS1 or QS2 and lifting by convolution for QS1

and QS2 .

Proposition 6. Let (S1, ◦) be a partial semigroup and S2 a set. If (Q,≤, ◦) is a (distributive)
quantale, then so is (QS1×S2 ,≤, ◦). Unitality and commutativity lift from S1 and Q to QS1×S2.

Proof. If S1 is a partial semigroup and Q a (distributive) quantale, then QS1 is a (distribu-
tive) quantale by Theorem 1, and by λ-abstraction for F = λy. F y x and the homomorphic
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properties of (.)y in Lemma 3. For example,

((F ◦G) ◦H)x y = ((F ◦G) ◦H)y x

= ((F y ◦Gy) ◦Hy)x

= (F y ◦ (Gy ◦Hy))x

= (F ◦ (G ◦H))y x

= (F ◦ (G ◦H)) x y.

If the quantale Q is unital, then so is QS1 , again by Theorem 1. As previously, this follows
by λ-abstraction and the homomorphic properties of (.)y by Lemmas 3 and 4. For instance,

(1◦ ◦ F )x y = (1◦ ◦ F )y x = (1y◦ ◦ F y)x = F y x = F x y.

If S1 and Q are both commutative, then

(F ◦G)x y = (F ◦G)y x = (F y ◦Gy)x = (Gy ◦ F y)x = (G ◦ F )y x = (G ◦ F )x y

with the homomorphism properties of (.)y and commutativity on QS1 due to Theorem 1.

The next statement is immediate since QS1×S2 and QS2×S1 are isomorphic.

Corollary 3. Let S1 be a set and (S2, •) a partial semigroup. If (Q,≤, •) is a (distributive)
quantale, then so is (QS1×S2 ,≤, •). Unitality and commutativity lift from S2 and Q to QS1×S2.

Proposition 6 and Corollary 3 can therefore be combined into the following lifting theorem
for two-dimensional power series.

Theorem 3. Let (S1, ◦) and (S2, •) be partial semigroups. If (Q,≤, ◦, •) is a (distributive)
bi-quantale, then so is (QS1×S2 ,≤, ◦, •). It is unital whenever Q is unital and S1 and S2 are
partial monoids. A convolution on QS1×S2 is commutative if the corresponding composition
on Si and Q are commutative.

Remember that a unital bi-quantale may have different units for its two compositions.
As already mentioned, the construction of the bi-quantale of two-dimensional power series

generalises immediately to n underlying partial semigroups (Si, ◦i), n-dimensional power
series F : S1 → · · · → Sn → Q and convolutions

(F ◦i G) . . . xi . . . =
∑

xi=y◦iz

(F . . . y . . . ) ◦i (G . . . z . . . ).

We do not pursue this generalisation in this article; the lifting arguments apply without
modification.
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11 Examples

As examples of two-dimensional bi-quantales we present two interval based models that
distinguish between time and space dimensions. The monoidal operators may be used to
separate these two dimensions independently; time is separated using chop, space using sepa-
rating conjunction as a notion of concurrent composition. The consideration of such algebras
with both kinds of separation was the starting point of this article. In the second example
of vector stream interval functions, spatial or concurrent splitting is of course commutative,
whereas temporal splitting is not.

Example 18 (Stream Interval Functions). Let (S1, ·) be the partial semigroup (IP , ·) of
closed intervals IP under interval function as in Example 6 and let S2 be the set of all
functions of type P → A for an arbitrary set A. It follows from Proposition 6 that QIP×AP

forms a distributive quantale, whenever Q is a distributive quantale. A unit can be adjoined
to QIP×AP

along the lines of Example 6, but with a second parameter.
As a typical interpretation, consider P = R with the standard order on reals as a model

of time and let functions f : R → A model the temporal behaviour or trajectories of some
system. For instance, f could be the solution of a differential equation. In that case, F x f
evaluates the behaviour of system f in the interval x. Such kinds of functions have been
called stream interval functions [11]. The convolution

(F ·G)x f =
∑
x=y·z

(F y f) · (Gz f)

splits the interval x into all possible prefix/suffix pairs y and z, applies F to the behaviour
of f on interval y and G to the behaviour of f on interval z and then combines these results.
There are different ways in which the application of stream interval functions can be realised.
Moreover, the situation generalised to arbitrary finitely bounded intervals without fusion.

As in the case of interval functions, our prime example of stream interval functions are
stream interval predicates, where Q = B. Then convolution becomes a generalised version of
chop or non-commutative separating conjunction:

(F ·G)x f =
∑
x=y·z

(F y f) u (Gz f).

A predicate F could, for instance, test the values of a function f over an interval x—at all
points of x, at some points of x, at almost all points of x, at no points of x and so on. It
could, for instance, test, whether the trajectory of system f evolves within given boundaries,
that is a flight path is within a given corridor or that a train moves according to a given
time schedule.

More concretely, let P = A = R and that f t = t3 as shown below. Note that the diagram
is not drawn to scale.
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−5

10

−10

5

t

f

Let
F x f = ∀t ∈ x. f t ≥ 0, G x f = ∀t ∈ x. f t < 0.

Then F [0, 10] f = 1 and G [−7,−1] f = 1, but F [−2,−1] f = 0 and G [−7, 0] f = 0.

Stream interval predicates have been used to reason about real-time systems [11], but
their interpretation in terms of power series is new. It is worth noting that P may be instan-
tiated to other partial orders (e.g., Z), allowing one to model both discrete and continuous
systems.

Using Theorem 3, one may further develop this approach with rules for system-level
reasoning by decomposing systems along a time and space dimension. To the best of our
knowledge, our treatment is the first to offer both decompositions and to add a natural
notion of concurrency to interval logics. Exploration of these rules in concrete models as
well as their application towards verification of example systems is left as future work. Here
we present one single example which is based on vectors of functions.

Example 19 (Vector Stream Interval Functions). Let f from the previous example now be
a vector or product of functions fi such that f : P → An, or more concretely f : R → An.
One can then split f(t) as in Example 13 with respect to the commutative operation ∗ on
An. For functions f, g : P → An we define

(f ∗ g) p = f p ∗ g p

by pointwise lifting. This turns (S2, ∗) = ((An)P , ∗) into a partial commutative semigroup,
whereas (S1, ·) is again the partial semigroup (IP , ·). According to Theorem 3, QS1×S2 forms
a distributive bi-quantale with commutative convolution ∗ whenever Q does.

The stream interval predicates in the case of Q = B yield once more an interesting special
case. Now a vector of functions, for instance the solution to a system of differential equations,
is applied to arguments ranging over an interval and the stream interval predicates evaluate
the behaviour modelled by this vector of functions on the interval.

The convolution
(F ·G)x f =

∑
x=y·z

(F y f) u (Gz f)
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can be seen as a horizontal composition. It evaluates the full vector of functions to splittings
of the interval x, using F for the prefix part of the splitting and G for its suffix part. In the
context of interval logics this corresponds to a chop operation, which has a temporal flavour.

The convolution or separating conjunction

(F ∗G)x f =
∑
f=g∗h

(F x g) u (Gxh)

can be seen as a vertical composition. It evaluates the conjunction of F and G, which is
obtained by separating the vector f into all possible parts g and h, over the full interval
x. Applied to vectors this adds an algebraic notion of concurrent composition to interval
calculi; it clearly has a spatial flavour.

The two types of convolution may be distinguished using diagrams such as the ones
below, where time occupies the x-axis and space the y-axis.

H

(F ·H) ∗ (G ·K)

F

K K

F

G

H

G

(F ∗G) · (H ∗K)

The left diagram depicts (F ∗ G) · (H ∗ K), where the convolution first splits the stream
interval function along the x-axis (time dimension) to give us formulae F ∗ G and H ∗ K.
Each of these is then split along the y-axis (space dimension). On the other hand the right
diagram depicts (F ·H) ∗ (G ·K), where the space dimension is split first to give F ·H and
G ·K, followed by a split along the time dimension.

The examples in Section 6 suggest that other notions of spatial separation, for instance
those based on disjoint unions for families of functions, or more specific notions such as
separating conjunction on heaps, can be used instead of vector separation. Theorem 3 is
modular in this regard. We therefore do not present these examples in detail.

12 Power Series over Futuristic Monoids

This section adapts the power series approach to a case which is appropriate, for instance,
for languages with finite and infinite words and for intervals which may be semi-infinite in
the sense that they have no upper bounds. Such approaches are, for instance, appropriate
for total correctness reasoning, where termination cannot be assumed or for reactive (con-
current) systems. We model these cases abstractly with monoids which, due to lack of better
nomenclature, we call futuristic.

Formally, a partial semigroup (S, ·) is futuristic if S = Su ∪ Sb, Su ∩ Sb = ∅ and x · y is
undefined whenever x ∈ Su. Thus, Su and Sb correspond to the unbounded and bounded
elements of S, respectively. For Sb, we require that if x · y ∈ Sb, then x ∈ Sb.
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In that case, for f, g : X → Y , we define

(f · g)x =
∑
x=y·z

(f y) · (g z) +

{
f x, if x ∈ Su,
0, if x ∈ Sb.

Lemma 5. Let (S, ·) be a futuristic partial semigroup. If Q is a (distributive) quantale, then
QS is a (distributive) quantale with O : S → Q not necessarily a right annihilator and left
distributivity holding only for non-empty suprema.

Proof. We need to verify the laws involving ‘·’ with our new multiplication. It suffices to
consider the cases where x ∈ Su; the others are covered by Theorem 1. For left distributivity
we calculate, for I 6= ∅,

(f ·
∑
i∈I

gi)x = f x+
∑
x=y·z

f y ·
∑
i∈I

(gi z)

= (
∑
i∈I

f x) +
∑
i∈I

∑
x=y·z

(f y · gi z)

=
∑
i∈I

(f x+
∑
x=y·z

(f y · gi z))

= (
∑
i∈I

(f · gi))x.

For I = ∅, however (f · O)x = f x if x ∈ Su, hence in this case left distributivity fails.
For right distributivity, which is no longer opposition dual, we calculate

((
∑
i∈I

fi) · g)x = (
∑
i∈I

fi x) +
∑
x=y·z

(
∑
i∈I

fi y) · g z

= (
∑
i∈I

fi x) +
∑
i∈I

∑
x=y·z

(fi y · g z)

=
∑
i∈I

(fi x+
∑
x=y·z

(fi y · g z))

= (
∑
i∈I

(fi · g))x.

Left annihilation is as usual a special case of right distributivity. We calculate explicitly

(O · f)x = Ox+
∑
x=y·z

O y · f z = 0 + 0 = 0
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Finally, for associativity, we calculate

(f · (g · h))x = f x+
∑
x=y·z

f y · (g z +
∑
z=u·v

g u · h v)

= f x+ (
∑
x=y·z

f y · g z) +
∑
x=y·z

f y · (
∑
z=u·v

g u · h v)

= (f · g)x+
∑

x=y·u·v

f y · g u · h v

= (f · g)x+
∑
x=w·v

(
∑
w=y·u

f y · g u) · h v

= (f · g)x+
∑
x=w·v

(f · g)w · h v

= ((f · g) · h)x.

The last but first step uses the fact that w ∈ Sb

Proposition 7. Let (S1, ◦) be a futuristic partial semigroup and S2 a set. If (Q,≤, ◦) is a
(distributive) quantale, then (QS1×S2 ,≤, ◦) is a (distributive) quantale with O not necessarily
a right annihilator and left distributivity holding only for non-empty suprema. Unitality lifts
from Q to QS1×S2 with unit 1◦ if S1 is a partial monoid.

The proof adapts that of Proposition 6 to Lemma 5. A treatment of historistic intervals
is dual, that is, left annihilation fails. Proposition 7 can be extended further into an analogue
of Theorem 3. We do not explicitly display this statement.

Example 20 (Formal Languages with Infinite Words). Let X be a finite alphabet. Let X∗,
as previously, denote the set of finite words over X and Xω the set of all infinite words,
which are sequences of type N→ X. Let X∞ = X∗ ∪Xω. Then X∗ ∩Xω = ∅ by definition.
Every language L ⊆ X∞ may contain finite as well as infinite words and we write fin(L) and
inf(L) for the sets of all finite and infinite words in L.

In this context it is natural to disallow the concatenation of an infinite word with another
word, hence X∞ is endowed with a futuristic partial monoid structure. In addition, the
product of L1, L2 ⊆ X∞ is commonly defined as

L1 · L2 = inf(L1) ∪ {vw | v ∈ fin(L2) ∧ w ∈ L2}.

This is captured by the futuristic product with Y = B. It then follows from Lemma 5 that
X∞ forms a distributive quantale in which L · ∅ = ∅ need not hold and left distributivity
holds only for non-empty suprema. In fact, the absence of right annihilation can be verified
with the singleton stream L = {aaa . . . }.

Models with finite/infinite paths and traces can be built in a similar fashion.
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Example 21 (Functions and Predicates over Futuristic Intervals). Let (P,≤) be a linear
order without right endpoint. Let IfP stand for the set of all non-empty closed intervals over
X and let I iX denote the set of all futuristic intervals [a,∞] = {b | b ≥ a}. This does not
mean that we add an explicit element∞ to X; ∞ is merely part of our naming conventions.
Then IX = IfX ∪ I iX and IfX ∩ I iX = ∅. The fusion product of intervals can now be redefined
as

x · y =


x, if x ∈ I iX ,
[xmin, ymax], if x ∈ IfX and xmax = ymin,

⊥, otherwise,

where ymax = ∞ is included as an option. It then follows from Lemma 5 that QIP forms a
distributive quantale in which O is not necessarily a right annihilator. In fact, f ◦O = O can
be falsified with any interval x = [a,∞] and interval predicate f = λx. a ∈ x.

An example of closed and open intervals without fusion can be obtained along the same
lines. Examples of bi-quantales based on stream functions over futuristic intervals with a
notion of separating conjunction can be obtained in a straightforward way.

13 Interchange Laws

Algebras in which a spatial or concurrent separation operation interact with a temporal or
sequential one have already been studied, for instance, in the context of concurrent Kleene
algebra [20]. In addition to the trioid or bi-quantale laws, these algebras provide interesting
interaction laws between the two compositions, which in this context are interpreted as
concurrent and sequential composition. Such laws are, obviously, of general interest.

More concretely, the following interchange laws hold in concurrent Kleene algebras:

(x ∗ y) · z ≤ x ∗ (y · z),

x · (y ∗ z) ≤ (x · y) ∗ z,
(w · x) ∗ (y · z) ≤ (w · y) ∗ (x · z).

We call the first two laws small interchange laws and the last one weak interchange law.
These laws hold in models of concurrency including shuffle languages and certain classes of
partially ordered multisets [14]. It has been shown that one of the small interchange laws is
equivalent to a separation logic style frame rule in a certain encoding of Hoare logics [19].
The weak interchange law, in turn, is equivalent to one of the standard concurrency rules
for Hoare logic, which is similar to those considered in Owicki and Gries’ logic [28] or in
concurrent separation logic [7]. This relationship is considered further in Section 14.

The close relationship between power series and separation logic and the similarity be-
tween two-dimensional power series and concurrent Kleene algebras make it worth consider-
ing the interchange laws in this setting. However we obtain mainly negative results.

To start with a positive result, we establish interchange laws between other kinds of
operations.
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Lemma 6. In every quantale, the following interchange laws hold:

(w u x) · (y u z) ≤ (w · y) u (x · z), (w u x) ∗ (y u z) = (w ∗ y) u (x ∗ z).

It turns out, however, that the small and weak interchange laws between sequential and
concurrent composition do not hold in general. This is established by the counterexamples
which support the following lemma.

Proposition 8. There are F,G,H,K : S1 → S2 → B such that the following holds.

(a) F ·G 6≤ F ∗G,

(b) (F ∗G) ·H 6≤ F ∗ (G ·H),

(c) F · (G ∗H) 6≤ (F ·G) ∗H,

(d) (F ∗G) · (H ∗K) 6≤ (F ·H) ∗ (G ·K).

Proof. First, note that ≤ can be interpreted as ⇒ for stream interval predicates, and re-
call that parallel composition of predicates is separating conjunction when f is a vector of
functions.

(a) To refute F ·G ≤ F ∗G, let x = [−10, 10], f = (f1, f2) with

f1 t =

{
1, t ≤ 0,

0, t > 0,
f2 t =

{
0, t ≥ 0,

1, t < 0,

and
F x f = ∀t ∈ x. f1 t = 1, G x f = ∀t ∈ x. f2 t = 1.

Then (F ·G)x f = 1, splitting interval x at t = 0, whereas (F ∗G)x f = 0 since neither
F nor G holds on the entire interval x. This may be visualised using the diagrams
below, where dashed lines represent that the corresponding function has value 0, and
solid lines represent a value 1. For the right diagram, there is not possible way for the
vectors f1 and f2 to go through F and G.

f2

f1

F G
F

G

−10 100 −10 10

(b) To refute (F ∗G) ·H ≤ F ∗ (G ·H), let x = [−10, 10], f1 as in (a) and f2 = λt. 0, where

F f x = ∀t ∈ x. f1 t = 1,

G f x = ∀t ∈ x. f2 t = 0,

H f x = ∀t ∈ x. f1 t = 0 ∨ f2 t = 0.

This makes the left hand side 1 and the right hand side 0. This is visualised by the
diagram below—neither f1 nor f2 may go through F .
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H

f2

F
f1

G

−10 100 −10 10

F

HG

(c) H · (G ∗ F ) ≤ (H ·G) ∗ F can be refuted by function

f ′1 t =

{
0, t ≤ 0,

1, t > 0,

and f2 as in (b), exploiting opposition duality between the two interchange laws and
realising that f ′1 is the “time reverse” of f1.

(d) To refute (F ∗G) · (H ∗K) ≤ (F ·H) ∗ (G ·K), consider f = (f1, f2, f3) where

f1 t = 0, f2 t =

{
0, t ≤ 0,

1, t > 0,
f3 t = 1

and

F f x = ∀t ∈ x. f1 t = 0,

G f x = ∀t ∈ x. f2 t < f3 t,

H f x = ∀t ∈ x. f1 t < f2 t,

K f x = ∀t ∈ x. f3 t = 1.

For x = [−10, 10], the diagram on the left below shows that the left hand side (F ∗G) ·
(H ∗K) holds. However, in the diagram on the right, which represents (F ·H)∗(G ·K),
there is no possible combination of horizontal and vertical splits that satisfy f . In
particular, f1 must go through F , and similarly f3 must go through K. We have a
choice of placing f2 above the horizontal line (through F and H), or below (through
G and K), however, neither choice is appropriate.

G
K

H

f2

f3

H

G

F

K

F
f1

−10 0 10 −10 10

Imposing addition algebraic restrictions, which would allow the derivation of interchange
laws, is left for future work. A promising candidate is the consideration of locality assump-
tions, as in separation logic [7], which are briefly explained in the following section, or the
inclusion of dependency relations [20] in the definition of the semigroup operations.
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14 Hoare Logics from Power Series Quantales

One benefit of algebras is that they support the development of verification systems. It is well
known, for instance, that quantales can be endowed with Hoare logics [20], more precisely
propositional Hoare logics, in which data flow rules such as assignment rules are missing.
This section illustrates how this leads to propositional Hoare logics over power series.

But before that we briefly recall how notions of iteration arise in the quantale setting,
since these are needed for while rules in Hoare logic.

Since quantales are complete lattices, least and greatest fixpoints of isotone functions ex-
ist. Moreover, due to their infinite distributivity laws, functions such as λα. x+α, λα. x ·α
and λα. α · x are continuous and the first one is even co-continuous in distributive quan-
tales. This means that in particular the least fixpoints built by using combinations of these
functions can be obtained by iteration from 0 to the first limit ordinal.

More specifically, the function ϕ = λα. 1+x ·α is continuous, hence has the least fixpoint
µϕ = x∗ =

∑
i∈N ϕ

i(0) =
∑

i∈N x
i. This notion of finite iteration is needed for deriving a

while-rule for a finite loop in a partial correctness setting.
More generally, the unfold and induction rules

1 + x · x∗ = x∗, z + x · y ≤ y ⇒ x∗ · z ≤ y,

1 + x∗ · x = x∗, z + y · x ≤ y ⇒ z · x∗ ≤ y

can be used for reasoning about the star. In a total correctness setting, a notion of possibly
infinite iteration is preferable, which corresponds to the greatest fixpoint of ϕ. Infinite
iteration is also useful for futuristic monoids Section 12, for example, when reasoning about
reactive systems, and Hoare rules for these can be developed. However, because these follow
a similar pattern to finite iteration, we leave their full treatment as future work.

Equipped with the star in the power series quantale we can now follow [20] in setting up
a propositional Hoare logic. The development is slightly non-standard, in that there is no
distinction between assertions and programs at the level of algebra. It follows the lines of a
previous approach by Tarlecki [29].

For a quantale Q and elements x, y, z ∈ Q, we define validity of a Hoare triple Tarlecki-
style as

` {x}y{z} ⇔ x · y ≤ z.

In Tarlecki’s original article, this encoding has been used for a relational semantics where
not only the program, but also its pre- and postconditions are modelled as relations. It is
equally suitable for trace or language based extensions of Hoare logic to concurrency, such
as the rely-guarantee method [22].

The proof of the following proposition is then straightforward and generic for quantales.

Proposition 9 ([20]). Let Q be a unital quantale with unit 1. The following rules of propo-
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sitional Hoare logic are derivable, for all w,w1, w2, x, x1, x2, y, y1, y2, z, z1, z2 ∈ Q.

` {x}1{x} x1 ≤ x2 ` {x2}y{z2} z2 ≤ z1
` {x1}y{z1}

` {x}y1{z} ` {x}y2{z}
` {x}y1 + y2{z}

` {w}x1{z} ` {z}x2{y}
` {w}x1 · x2{y}

` {x}y{x}
` {x}y∗{x}

We can strengthen the choice and star rule as follows.

` {x · w1}y1{z} ` {x · w2}y2{z}
` {x}w1 · y1 + w2 · y2{z}

` {x · w1}y{x}
` {x}(w1 · y)∗ · w2{x · w2}

The proof of the first one is essentially that of the choice rule. For the second one suppose
x · w1 · y ≤ x. Then x · (w1 · y)∗ ≤ x by star induction and x · (w1 · y)∗ · w2 ≤ x · w2 by
isotonicity. If w1 and w2 are, in some sense, complemented, then this yields the standard
conditional rule and while rule of Hoare logic.

Instantiating Proposition 9 to power series quantales automatically yields Hoare calculi
for virtually all the examples discussed in this article. The instantiation to the binary
relations quantale reproduces Tarlecki’s original soundness result. Other instances yield,
in a generic way, Hoare logics over computationally meaningful semantics based on finite
words (traces in the sense of concurrency theory), paths in graphs (sequences of events
in concurrency theory), paths in the sense of automata theory, or pomsets. We also obtain
generic propositional Hoare logics for reasoning about interval and stream interval predicates
in algebraic variants of interval logics.

In addition, Proposition 9 covers commutative quantales, where the Tarlecki-style encod-
ing of the validity of Hoare triples might make less sense.

The rules covered by Proposition 9, however, are entirely sequential. For applications
involving concurrency, such as the vector stream interval functions in Example 19, additional
rules are desirable. In concurrent Kleene algebra, Owicki-Gries-style concurrency rules and
frame rules in the style of separation logic can be derived. The same derivation, however,
is ruled out in the quantale context, because the concurrency rule obtained is equivalent to
the weak interchange law and the frame rule to one of the small interchange laws, both of
which have been refuted in Proposition 8.

Instead we can use the interchange laws provided by Lemma 6.

Lemma 7. In quantale Q the following concurrency rule is derivable, for all x1, x2, y1, y2,
z1, z2 ∈ Q.

` {x1}y1{z1} ` {x2}y2{z2}
` {x1 u x2}y1 u y2{z1 u z2}

Proof. Suppose x1 · y1 ≤ z1 and x2 · y2 ≤ z2. Then

(x1 u x2) · (y1 u y2) ≤ (x1 · y1) u (x2 · y2) ≤ z1 u z2
by weak interchange (Lemma 6) and the assumptions.

35



Once more this rule is available automatically in all examples discussed in this article.
As an alternative to conjunction-based notions of concurrency, it might still be possible

to derive concurrency and frame rules under additional syntactic restrictions, for instance,
those capturing the synchronisation between sequential and concurrent compositions, or in
particular models. An investigation is left for future work.

15 The Frame Rule in a Power Series Context

Section 6 shows that the assertion quantales which underlie separation logic—implementing
the boolean operations together with a notion of separation logic on predicates over a resource
monoid—can be modelled in the power series setting. Predicate transformers, which yield
another way of deriving Hoare logics over assertion algebras, can be modelled in that setting
as well (Section 7).

In this section we sketch how a combination of these results allows us to derive the frame
rule of separation logic by equational reasoning. Convolution plays a central part in the
proof. Previously, algebraic proofs of the frame rule have been given in a state transformer
context [7] as well as in the context of concurrent Kleene algebra [20].

It is well known that in the predicate transformer setting, validity of Hoare triples can
be encoded as

` {p}R{q} ⇔ p ≤ f̂R q,

which is essentially an adjunction, using the notation of Section 7, but writing p, q, . . . for
predicates, which are elements of the assertion quantale of separation logic. It is also well
known that the rules of Hoare logic can be derived in this setting, assuming that predicate
transformers are isotone. A result of separation logic states that the frame rule can be
derived whenever the predicate transformer f under consideration is local, that is, it satisfies

f ∗ id ≤ f.

Intuitively, locality means that the effect of a transformer can always be localised on part of
the state. For a detailed discussion see [7].

Before deriving the frame rule we use properties of power series and convolution to prove
a point-wise analogue of locality which simplfies the proof.

Lemma 8. f is local if and only if (f p) ∗ q ≤ f (p ∗ q).

Proof. Let (f p) ∗ q ≤ f (p ∗ q). Then (f p) ∗ (id q) = (f p) ∗ q ≤ f (p ∗ q) and therefore

(f ∗ id) r =
∑
r=p∗q

(f p) ∗ (id q) ≤
∑
r=p∗q

f (p ∗ q) = f r.

Let f be local. Then

(f ∗ id) r =
∑
r=p∗q

(f p) ∗ q ≤ f r = f (p ∗ q),

whence (f p) ∗ q ≤ f (p ∗ q).
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Lemma 9. Let f̂R be a local predicate transformer associated to program R. Then the
following frame rule holds.

` {p}R{q}
` {p ∗ r}R{q ∗ r}

Proof. Let ` {p}R{q}, that is, p ≤ f̂R q. Then p ∗ r ≤ (f̂R q) ∗ r ≤ f̂R (q ∗ r) by Lemma 8
and therefore ` {p ∗ r}R{q ∗ r}.

A deeper investigation of Hoare logics, inference rules for separation logic, and extensions
to concurrency in this setting is left for future work.

16 Conclusion

The aim of this article is to demonstrate that convolution is a versatile and interesting
construction in mathematics and computer science. Used in the context of power series and
integrated into lifting results, it yields a powerful tool for setting up various mathematical
structures and computational models and calculi endowed with generic algebraic properties.

Beyond the language models known from formal language theory, these include assertion
quantales of separation logic (which can be lifted from an underlying resource monoid),
assertion quantales of interval logics (which can be lifted from an underlying semigroup of
intervals) and stream interval functions (which have applications in the analysis of dynamic
and real-time systems). For all these examples, the power series approach provides a simple
new approach. For the latter two, new kinds of concurrency operations are provided.

In addition, the modelling framework based on power series has been combined with a
verification approach by deriving, in generic fashion, propositional Hoare logics for virtually
all the examples considered. In particular, state, predicate or resource transformers, which
can be used for constructing these logics, arise as instances of power series.

This article focused mainly on the proof of concept of the relevance of convolution. Many
of the modelling examples and verification approaches featured require further investigation.
This includes in particular the derivation of more comprehensive sets of Hoare-style infer-
ence rules for concurrency verification, separation logic and interval temporal logics, and
more detailed case studies with separation, inverval and stream interval algebras, and with
concurrent systems with infinite behaviours.

For all these case studies, the formalisation of the power series approach and the imple-
mentation of modelling tools plays and important role. In fact, the basic lifting lemma and a
detailed predicate transformer approach based on power series have already been formalised
within the Isabelle/HOL proof assistant [26]. The development of a power series based veri-
fication tool for separation logic, and even concurrent separation logic, will be the next step
in the tool chain.
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