
A Simpler Analysis of Burrows-Wheeler

Based Compression

Haim Kaplan

School of Computer Science, Tel Aviv University, Tel Aviv, Israel; email:
haimk@post.tau.ac.il

Shir Landau

School of Computer Science, Tel Aviv University, Tel Aviv, Israel; email:
landaush@post.tau.ac.il

Elad Verbin

School of Computer Science, Tel Aviv University, Tel Aviv, Israel; email:
eladv@post.tau.ac.il

Abstract

In this paper we present a new technique for worst-case analysis of compression
algorithms which are based on the Burrows-Wheeler Transform. We deal mainly
with the algorithm purposed by Burrows and Wheeler in their first paper on the
subject [6], called bw0. This algorithm consists of the following three essential steps:
1) Obtain the Burrows-Wheeler transform of the text, 2) Convert the transform into
a sequence of integers using the move-to-front algorithm, 3) Encode the integers
using Arithmetic code or any order-0 encoding (possibly with run-length encoding).

We achieve a strong upper bound on the worst-case compression ratio of this
algorithm. This bound is significantly better than bounds known to date and is
obtained via simple analytical techniques. Specifically, we show that for any input
string s, and µ > 1, the length of the compressed string is bounded by µ · |s|Hk(s)+
log(ζ(µ)) · |s| + gk where Hk is the k-th order empirical entropy, gk is a constant
depending only on k and on the size of the alphabet, and ζ(µ) = 1

1µ + 1
2µ + . . .

is the standard zeta function. As part of the analysis we prove a result on the
compressibility of integer sequences, which is of independent interest.

Finally, we apply our techniques to prove a worst-case bound on the compression
ratio of a compression algorithm based on the Burrows-Wheeler transform followed
by distance coding, for which worst-case guarantees have never been given. We prove
that the length of the compressed string is bounded by 1.7286 · |s|Hk(s) + gk. This
bound is better than the bound we give for bw0.

Preprint submitted to Elsevier Science 2 March 2006

Key words: Text Compression, Burrows-Wheeler Transform, Distance Coding,
Worst-Case Analysis

1 Introduction

In 1994, Burrows and Wheeler [6] introduced the Burrows-Wheeler Transform
(BWT), and two new lossless text-compression algorithms that are based on
this transform. Following [18], we refer to these algorithms as bw0 and bw0RL.
A well known implementation of these algorithms is bzip2 [23]. This program
typically shrinks an English text to about 20% of its original size while gzip
only shrinks to about 26% of the original size (see Table 1 and also [1] for
detailed results). In this paper we refine and tighten the analysis of bw0.
For this purpose we introduce new techniques and statistical measures. We
believe these techniques may be useful for the analysis of other compression
algorithms, and in predicting the performance of these algorithms in practice.

The algorithm bw0 compresses the input text s in three steps.

(1) Compute the Burrows-Wheeler Transform, ŝ, of s. We elaborate on this
stage shortly. 1

(2) Transform ŝ to a string of integers ṡ = mtf(ŝ) by using the move to front
algorithm. This algorithm maintains the symbols of the alphabet in a list
and encodes the next character by its index in the list (see Section 2).

(3) Encode the string ṡ of integers by using an order-0 encoder, to obtain
the final bit stream bw0(s) = order0(ṡ). An order-0 encoder assigns a
unique bit string to each integer independently of its context, such that
we can decode the concatenation of these bit strings. Common order-0
encoders are Huffman code or Arithmetic code.

The algorithm bw0RL performs an additional run-length encoding (RLE) pro-
cedure between steps 2 and 3. See [6,18] for more details on bw0 and bw0RL,
including the definition of run-length encoding which we omit here.

Next we define the Burrows-Wheeler Transform (bwt). Let n be the length of
s. We obtain ŝ as follows. Add a unique end-of-string symbol ‘$’ to s. Place all
the cyclic shifts of the string s$ in the rows of an (n + 1)× (n + 1) conceptual
matrix. One may notice that each row and each column in this matrix is a
permutation of s$. Sort the rows of this matrix in lexicographic order (‘$’

1 For compatibility with other definitions, we actually need to compute the bwt

of s in reversed order, that is from right to left. This does not change our results
and does not effect the compression ratio significantly (see [10] for a discussion on
this), so we ignore this point from now on.

2

is considered smaller than all other symbols). The permutation of s$ found
in the last column of this sorted matrix, with the symbol ‘$’ omitted, is the
Burrows-Wheeler Transform, ŝ. See an example in Figure 1. Although it may
not be obvious at first glance, bwt is an invertible transformation, given that
the location of ‘$’ prior to its omission is known to the inverting procedure. In
fact, efficient methods exist for computing and inverting ŝ in linear time (see
for example [19]).

Fig. 1. The Burrows-Wheeler transform for the string s = mississippi. The matrix
on the right has the rows sorted in lexicographic order. The string ŝ is the last column
of the matrix, i.e. ipssmpissii, and we need to store the index of the symbol ‘$’, i.e.
6, to be able to compute the original string.

The bwt is effective for compression since in ŝ characters with the same
context 2 appear consecutively. This is beneficial since if a reasonably small
context tends to predict a character in the input text s, then the string ŝ will
show local similarity – that is, symbols will tend to recur at close vicinity.

Therefore, if s is say a text in English, we would expect ŝ to be a string
with symbols recurring at close vicinity. As a result ṡ = mtf(ŝ) is an integer
string which we expect to contain many small numbers. (Note that by “integer
string” we mean a string over an integer alphabet). Furthermore, the frequen-
cies of the integers in ṡ are skewed, and so an order-0 encoding of ṡ is likely to
be short. This, of course, is an intuitive explanation as to why bw0 “should”
work on typical inputs. As we discuss next, our work is in a worst-case setting,
which means that we give upper bounds that hold for any input. These upper
bounds are relative to statistics which measure how “well-behaved” our input
string is. An interesting question which we try to address is which statistics
actually capture the compressibility of the input text.

2 The context of length k of a character is the string of length k preceding it.

3

Introductory Definitions. Let s be the string which we compress, and let
Σ denote the alphabet (set of symbols in S). Let n = |s|, and h = |Σ|. Let nσ

be the number of occurrences of the symbol σ in s. Let Σk denote the set of
strings of length k over Σ. For a compression algorithm a we denote by a(s)
the output of a on a string s. The zeroth order empirical entropy of the string
s is defined as

H0(s) =
h−1∑

i=0

ni

n
log

n

ni

.

(All logarithms in the paper are to the base 2. We define 0 log 0 = 0). For any
word w ∈ Σk, let ws denote the string consisting of the characters following
all occurrences of w in s. The value

Hk(s) =
1

n

∑

w∈Σk

|ws|H0(ws)

is called the k-th order empirical entropy of the string s. In [18] these terms,
as well as bwt, are discussed in greater depth.

We also use the zeta function, ζ(µ) = 1
1µ + 1

2µ + . . ., and the truncated zeta
function ζh(µ) = 1

1µ + . . . + 1
hµ . We denote by [h] the integers {0, . . . , h − 1}.

History and Motivation. Define the compression ratio of a compression
algorithm to be the average number of bits it produces per character in s.
It is well known that the zeroth order empirical entropy of a string s, H0(s),
is a lower bound on the compression ratio of any order-0 compressor [15,7].
Similarly, the k-th order empirical entropy of the string s, Hk(s) gives a lower
bound on the compression ratio of any encoder that is allowed to use only the
context of length k preceding character x in order to encode it. For this reason
the compression ratio of compression algorithms is traditionally compared to
Hk(s), for various values of k. Another widely used statistic is H∗

k(s), called
the modified k-th order empirical entropy of s. This statistic is slightly larger
than Hk, yet it still provides a lower bound on the bits-per-character ratio of
any encoder that is based on a context of k characters. We do not define H∗

k

here, as we present bounds only in terms of Hk. See [18] for more details on
H∗

k .

In 1999, Manzini [18] gave the first worst-case upper bounds on the compres-
sion ratio of several bwt-based algorithms. In particular, Manzini bounded
the total bit-length of the compressed text bw0(s) by the expression

8 · nHk(s) + (0.08 + Corder0) · n + log n + g′
k . (1)

for any k ≥ 0. Here Corder0 is a small constant, defined in Section 2, which
depends on the parameters of the Order-0 compressor which we are using, and
g′

k = hk(2h log h + 9) is a constant that depends only on k and h. Manzini
also proved an upper bound of 5 · nH∗

k(s) + g′′
k on the bit-length of bw0RL(s),

4

where g′′
k is another constant that depends only on k and h. Here, the use of

H∗
k allowed Manzini to achieve a result that lacks a term linear in n.

In 2004, Ferragina, Giancarlo, Manzini and Sciortino [10] introduced a bwt-
based compression booster. They show a compression algorithm such that the
bit-length of its output is bounded by

1 · nHk(s) + Corder0n + log n + g′′′
k . (2)

(This algorithm follows from a general compression boosting technique. For de-
tails see [10]). As mentioned above this result is optimal, up to the Corder0n+
log n + g′′′

k term. The upper bounds of this algorithm and its variants based
on the same techniques are theoretically strictly superior to those in [18] and
to those that we present here. However, implementations of the algorithm of
[10] by the authors and another implementation by Manzini [17], give the re-
sults summarized in Table 1. These empirical results surprisingly imply that
while the algorithm of [10] is optimal with respect to nHk in a worst-case set-
ting, its compression ratio in practice is comparable with that of algorithms
with weaker worst-case guarantees. This seems to indicate that achieving good
bounds with respect to Hk does not necessarily guarantee good compression
results in practice. This was the starting point of our research. We looked
for tight bounds on the length of the compressed text, possibly in terms of
statistics of the text that might be more appropriate than Hk.

We define a new statistic of a text s, which we call the local entropy of s,
and denote it by le(s). We also define l̂e = le(ŝ). That is the statistic
l̂e(s) is obtained by first applying the Burrows-Wheeler transform to s and
then computing the statistic le of the result. These statistics are theoretically
oriented and we find their importance to be two-fold. First they may highlight
potential weaknesses of existing compression algorithms and thereby mark
the way to invent better compression algorithms. Second, they may be useful
in understanding current algorithms and providing better worse-case upper
bounds for them.

Our Results. In this paper we tighten the analysis of bw0 and give a tradeoff
result that shows that for any constant µ > 1 and for any k, the length of the
compressed text is upper-bounded by the expression

µ · nHk(s) + (log ζ(µ) + Corder0) · n + log n + µgk . (3)

Here gk = 2k log h+hk ·h log h. In particular, for µ = 1.5 we obtain the bound
1.5 ·nHk(s)+(1.5+Corder0) ·n+log n+1.5gk. For µ = 4.45 we get the bound
4.45 · nHk(s) + (0.08 + Corder0) · n + log n + 4.45gk, thus surpassing Manzini’s
upper bound (1). Our proof is considerably simpler than Manzini’s proof of
(1).

5

File Name size gzip bzip2 bw0 [17] [10](HC) [10](RHC)

alice29.txt 152089 54181 43196 48915 47856 74576 79946

asyoulik.txt 125179 48819 39569 44961 42267 59924 61757

cp.html 24603 7965 7632 8726 8586 16342 16342

fields.c 11150 3122 3039 3435 3658 10235 10028

grammar.lsp 3721 1232 1283 1409 1369 2297 2297

lcet10.txt 426754 144562 107648 127745 116861 166043 177682

plrabn12.txt 481861 194551 145545 168311 154950 172471 183855

xargs.1 4227 1748 1762 1841 1864 2726 2726

Table 1
Results (in bytes) of running various compressors on the non-binary files from the
Canterbury Corpus [1]. The gzip results are taken from [1]. The column marked [17]
gives results from a preliminary implementation of the booster-based compression
algorithms of [10] by Manzini [17]. bw0 is our implementation (in C++) of the
bw0 algorithm, using Huffman encoding as the order-0 compressor. [10](HC) and
[10](RHC) are our implementations of the compression booster of [10]. Ferragina et
al. [10] suggest two methods to implement it: One using the algorithm HC, and one
using the algorithm RHC (the reader is referred to [10] for more details).

The technique which we use to obtain this bound is even more interesting than
the bound itself. We define a new natural statistic of a text which we call the
“Local Entropy” (le). This statistic was implicitly considered by Bentley et
al. [4], and by Manzini [18]. Using two observations on the behavior of le we
bypass some of the technical hurdles in the analysis of [18].

Our analysis actually proves a considerably stronger result: We show that the
size of the compressed text is bounded by

µ · le(ŝ) + (log ζ(µ) + Corder0) · n + log n . (4)

Empirically, this seems to give estimations which are quite close to the actual
compression, as seen in Table 2.

In order to get our upper bounds we prove in Section 3 a result on compression
of integer sequences, which may be of independent interest.

Here is an overview of the rest of the paper.

(1) We prove a result on compressibility of integer sequences in Section 3.
(2) We define the statistic l̂e in Section 2 and show its relation to Hk in

Section 4.
(3) We use the last two contributions to give a simple proof of the bound (3).

This can be found in the end of Section 4.

6

File Name size H0(ṡ) LE(ŝ) (4) (3) (1)

alice29.txt 1216712 386367 144247 396813 766940 2328219

asyoulik.txt 1001432 357203 140928 367874 683171 2141646

cp.html 196824 67010 26358 69857.6 105033.2 295714

fields.c 89200 24763 8855 25713 43379 119210

grammar.lsp 29768 9767 3807 10234 16054 45134

lcet10.txt 3414032 805841 357527 1021440 1967240 5867291

plrabn12.txt 3854888 1337475 528855 1391310 2464440 8198976

xargs.1 33816 13417 5571 13858 22317 64673

Table 2
Results (in bits) of computing various statistics on the non-binary files from the
Canterbury Corpus [1]. H0(ṡ) gives the result of the algorithm bw0 assuming an
optimal order-0 compressor. The final three columns show the bounds given by the
Equations (4), (3), (1). The small difference between the column showing H0(ṡ)
and the column marked (4), shows that our bound (4) is quite tight in practice. It
should be noted that in order to get the bound of (4) we needed to minimize the
expression in (4) over µ. To get the bound of (3) and (1) we calculated their value
for all k and picked the best one. We note that the reason the figures are measured
in bits is because the theoretical bounds in the literature are customarily measured
in bits.

(4) We give a tighter upper bound for bw0 for the case that we are working
over an alphabet of size 2. This can be found in Section 5.

(5) We outline a further application of our techniques to prove a worst-case
bound on the compression of a different BWT-based compressor, which
runs BWT, then the so-called distance-coder (see [5,2]), and finally an
order-0 encoder. The upper bounds proved are strictly superior to those
proved for bw0. This can be found in Section 6. In Section 7 we prove a
lower bound that shows that our approach cannot give better results for
this compression algorithm.

Related Work. A lot of work has been devoted recently to develop com-
pressed text indices. A compressed text index of s is a compressed represen-
tation of s that allows fast pattern matching queries. Furthermore, it also
allows to decompress efficiently part of, or the entire string s. The size of the
representation is typically much smaller than that of the original text. A Com-
pressed Text Index is therefore simultaneously both a compression algorithm
and an indexing data structure. Early progress on Compressed Text Indexes
was made by Ferragina and Manzini in [20]. A recent result by Grossi, Gupta
and Vitter [13] presents a Compressed Text Index whose size is within additive
lower-order terms of the order-k entropy of the input text. This result uses
data structures for indexable dictionaries by Raman, Raman, and Rao [22].

7

For more on Compressed Text Indexing, see [14,20,11].

We leave open the question of how our techniques can be applied to the subject
of Compressed Text Indexing.

2 Preliminaries

Our analysis does not use the definitions of Hk and bwt directly. Instead, it
uses the following observation of Manzini [18], that Hk(s) is equal to a linear
combination of H0 of parts of ŝ, the Burrows Wheeler transform of s.

Proposition 1 ([18]) Let s̃ be the string obtained from ŝ by deleting the oc-
currences in ŝ of the first k characters of s. (Note that these characters can
appear in arbitrary positions of ŝ). There is a partition s̃ = s̃1 . . . s̃t, with
t ≤ hk, such that:

|s|Hk(s) =
t∑

i=1

|s̃i|H0(s̃i) . (5)

Now we define the move to front (mtf) transformation, which was introduced
in [4]. mtf encodes the character s[i] = σ with an integer equal to the number
of distinct symbols encountered since the previous occurrence of σ in s. More
precisely, the encoding maintains a list of the symbols ordered by recency
of occurrence. When the next symbol arrives, the encoder outputs its current
rank and moves it to the front of the list. Therefore, a string over the alphabet
Σ is transformed to a string over [h] (note that the length of the string does
not change). To completely determine the encoding we must specify the status
of the recency list at the beginning of the procedure. We denote by mtfπ

the algorithm in which the initial status of the recency list is given by the
permutation π of Σ.

mtf has the property that if the input string has high local similarity, that is
if symbols tend to recur at close vicinity, then the output string will consist
mainly of small integers. We define the local entropy of a string s as follows:

leπ(s) =
n∑

i=1

log(mtfπ(s)[i] + 1) .

That is, le is the sum of the logarithms of the move-to-front values plus 1 and
so it depends on the initial permutation of mtf’s recency list. For example,
for a string “aabb” and initial list where ‘a’ is before ‘b’, leπ(s) = 2 because
the mtf values of the second a and the second b are 0, and the mtf values of
the first a and the first b are 1. We also define leW (s) = maxπleπ(s). This

8

is the “worst-case” local entropy. 3 Analogously, mtfW is mtf with an initial
recency list that maximizes leπ(s). We will write le instead of leW or leπ

when the initial permutation of the recency list is not significant. (Note that
the difference between leπ1

(s) and leπ2
(s) is always O(h log h)). Similarly,

we write mtf instead of mtfW or mtfπ when the initial permutation of the
recency list is not significant. We define l̂eπ(s) = leπ(ŝ). The statistic le was
used implicity in [4,18].

Note that leπ(s) is the number of bits one needs to write the sequence of
integers mtfπ(s) in binary. Optimistically, this is the size we would like to
compress the text to. Of course, one cannot decode the integers in mtfπ(s)
from the concatenation of their binary representations as these representations
are of variable lengths.

The statistics H0(s) and Hk(s) are normalized in the sense that they represent
lower bounds on the bits-per-character rate attainable for compressing s, which
we call the compression ratio. However, for our purposes it is more convenient
to work with un-normalized statistics. Thus we define our new statistic le

to be un-normalized. We define the statistics nH0 and nHk to be the un-
normalized counterparts of the original statistics, i.e. (nH0)(s) = n · H0(s)
and (nHk)(s) = n · Hk(s).

Let f : Σ∗ → R
+ be an (un-normalized) statistic on strings, for example f

can be nHk or le.

Definition 2 A compression algorithm A is called (µ,C)-f -competitive if for
every string s it holds that |A(s)| ≤ µf(s) + Cn + o(n), where o(n) denotes a

function g(n) such that limn→∞
g(n)

n
= 0.

Throughout the paper we refer to an algorithm order0. By this we mean
any order-0 algorithm, which is assumed to be a (1, Corder0)-nH0-competitive
algorithm. For example, CHuffman = 1 and CArithmetic ≈ 10−2 for a specific
time-efficient implementation of Arithmetic code [24,21]. Furthermore, one can
implement arithmetic coding without any optimizations. This gives a compres-
sion algorithm for which the bit-length of the compressed text is bounded by
nH0(s) + O(log n). This algorithm is (1, 0)-nH0-competitive, and thus we can
use Corder0 = 0 in our equations. This implementation of arithmetic coding is
interesting theoretically, but is not time-efficient in practice.

We will often use the following inequality, derived from Jensen’s inequality:

3 leW is defined to make the presentation more elegant later on, but one could use
leπ(s) for some fixed permutation π, and the analysis will be the same.

9

Lemma 3 For any k ≥ 1, x1, . . . , xk > 0 and y1, . . . , yk > 0 it holds that:

k∑

i=1

yi log xi ≤
(

k∑

i=1

yi

)
· log

(∑k
i=1 xiyi∑k
i=1 yi

)
. (6)

In particular this inequality implies that if one wishes to maximize the sum of
logarithms of k elements under the constraint that the sum of these elements
is S, then one needs to pick all the elements to be equal to S/k.

3 Optimal Results on Compression With Respect To SL

In this section we look at a string s of length n over the alphabet [h]. We
define the sum of logarithms statistic: sl(s) =

∑n
i=1 log(s[i] + 1). Note that

le(s) = sl(mtf(s)). We show that in a strong sense the best sl-competitive
compression algorithm is an order-0 compressor. In the end of this section we
show how to get from this good le-competitive and l̂e-competitive compres-
sion algorithms.

The problem we deal with in this section is related to the problem of universal
encoding of integers. In the problem of universal encoding of integers [9,4] the
goal is to find a prefix-free encoding for integers, U : Z

+ → {0, 1}∗, such that
for every x ≥ 0, |U(x)| ≤ µ log(x+1)+C. A particularly nice solution for this
is the Fibonacci encoding [3,12], for which µ = logφ 2 and C = 1 + logφ

√
5 ≃

2.6723. An additional solution for this problem was proposed by Elias [9]. This
is an optimal solution, in the sense described in [16]. For more information on
universal encoding of integers see the (somewhat outdated) survey paper [16].

Clearly a universal encoding scheme with parameters µ and C gives an (µ,C)-
sl-competitive compressor. However, in this section we get a better compet-
itive ratio, taking advantage of the fact that out goal is to encode a long
sequence from [h], while allowing an o(n) additive term.

An optimal (µ,C)-SL-competitive algorithm. We show, using a tech-
nique based on Lemma 3, that the algorithm order0 is (µ, log ζ(µ)+Corder0)-
sl-competitive for any µ > 1. In fact, we prove a somewhat stronger theorem:

Theorem 4 For any constant µ > 0, the algorithm order0 is (µ, log ζh(µ)+
Corder0)-sl-competitive.

Proof. Let s be a string of length n over alphabet [h]. Clearly it suffices to
prove that for any constant µ > 0

nH0(s) ≤ µsl(s) + n log ζh(µ) . (7)

10

From the definition of H0 it follows that nH0(s) =
∑h−1

i=0 ni log n
ni

, and from

the definition of sl we get that sl(s) =
∑n

j=1 log(s[j]+1) =
∑h−1

i=0 ni log(i+1).
So, (7) is equivalent to

h−1∑

i=0

ni log
n

ni

≤ µ
h−1∑

i=0

ni log(i + 1) + n log ζh(µ) . (8)

Pushing the µ into the logarithm and moving terms around we get that (8) is
equivalent to

h−1∑

i=0

ni log
n

ni(i + 1)µ
≤ n log ζh(µ) . (9)

Defining pi = ni

n
, and dividing the two sides of the inequality by n we get that

(9) is equivalent to

h−1∑

i=0

pi log
1

pi(i + 1)µ
≤ log ζh(µ) .

Using Lemma 3 we obtain that

h−1∑

i=0

pi log
1

pi(i + 1)µ
=

∑

0≤i≤h−1
pi 6=0

pi log
1

pi(i + 1)µ
≤ log

∑

0≤i≤h−1
pi 6=0

pi

1

pi(i + 1)µ

 =

= log

∑

0≤i≤h−1
pi 6=0

1

(i + 1)µ

 ≤ log ζh(µ) .

2

In particular we get the following corollary.

Corollary 5 For any constant µ > 1, the algorithm order0 is (µ, log ζ(µ)+
Corder0)-sl-competitive.

A lower bound for SL-Competitive compression. In Theorem 4 shows
that for any µ > 0 there exists a (µ, log ζh(µ) + Corder0)-sl-competitive algo-
rithm. We now show that for any fixed values of µ and h there is no algorithm
with better competitive ratio. Note that the lower bounds that we get in this
section do not include the constant Corder0.

Theorem 6 Let µ > 0 be some constant. For any C < log ζh(µ) there is no
(µ,C)-sl-competitive algorithm

Proof. We show that for any algorithm a, µ > 0, ǫ > 0, and any function f
such that limn→∞ f(n) = 0, there exists a string s such that

|a(s)| > µsl(s) + |s| (log ζh(µ) − ǫ + f(|s|)) . (10)

11

We achieve that by giving a family of strings S(n) for each n such that if n is
large enough there must be a string in S(n) that satisfies (10). We prove this
by a counting argument.

Let αi = n· 1
ζh(µ)·(i+1)µ for i ∈ [h]. Assume for now that αi is an integer for every

i ∈ [h]. We will later show how to get rid of this assumption. Let S(n) be the
set of strings where integer i appears αi times. Let L(n) =

∑h−1
i=0 log(i + 1) ·αi

and N(n) = n!
α0!·...·αh−1!

. Note that for each s ∈ S(n), |s| = n, sl(s) = L(n),

and |S(n)| = N(n).

Using standard information-theoretic arguments, our algorithm a must com-
press at least one of the strings in S(n) to at least log N(n) bits. Thus, it
suffices to prove that for n large enough,

log N(n) > µL(n) + n (log ζh(µ) − ǫ + f(n)) . (11)

We now show a lower bound on log N(n) − µL(n) which gives (11). Using

Stirling’s approximation n! = (1 + o(1))
√

2πn
(

n
e

)n
, so for n large enough,

(1/2)
√

2πn
(

n
e

)n ≤ n! ≤ (3/2)
√

2πn
(

n
e

)n
. We obtain that

log N(n) ≥ log
(1/2)

√
2πn (n/e)n

(3/2)h
∏h−1

i=0

√
2παi (αi/e)

αi
=

= log
(1/2)

√
2πn

(3/2)h
∏h−1

i=0

√
2παi

+ n log n −
h−1∑

i=0

αi log αi ≥

≥ −O(1) − h log(2πn) +
h−1∑

i=0

αi log(n/αi) ≥

≥ −O(log n) +
h−1∑

i=0

αi log(n/αi) , (12)

and therefore

log N(n) − µL(n) = log N(n) − µ
h−1∑

i=0

log(i + 1) · αi ≥

≥ −O(log n) +
h−1∑

i=0

αi log(n/αi) − µ
h−1∑

i=0

log(i + 1) · αi =

= −O(log n) +
h−1∑

i=0

αi log
n

αi(i + 1)µ
=

= −O(log n) +
h−1∑

i=0

αi log ζh(µ) =

= −O(log n) + n log ζh(µ) , (13)

12

which for large enough n gives (11). (The next to last equality follows by
substituting αi = n · 1

ζh(µ)·(i+1)µ).

Now we address the fact that for every i ∈ [h], αi is not necessarily an integer.

Define for i ∈ {1, . . . h−1}, α′
i =

⌊
n · 1

ζh(µ)·(i+1)µ

⌋
, and push the excess into α′

0,

i.e. define α′
0 = n −∑h−1

i=0 α′
i. Inequality (12) still holds because the rounding

makes αi and α′
i differ by at most ±h, which contributes only an additional

−O(log n) factor to (12). Inequality (13) continues to hold because by rounding
in this specific way we have actually decreased the sum of logarithms, so
sl(s) ≤ L(n). 2

By setting a large enough alphabet in the proof of Thm. 6, we get the following
corollaries:

Corollary 7 For any µ > 1 and C such that C < log ζ(µ), there is no (µ,C)-
sl-competitive algorithm

Proof. Suppose in contradiction that there exist µ > 1, ǫ > 0, and a com-
pression algorithm a such that a is (µ, log ζ(µ) − ǫ)-sl-competitive. Since

ζh(µ)
h→∞−−−→ ζ(µ), we can choose h to be an integer such that log ζh(µ) >

log ζ(µ) − ǫ
2
. Thus a is (µ, log ζh(µ) − ǫ

2
)-sl-competitive. This is a contradic-

tion to Thm. 6. 2

Similarly,

Corollary 8 For any C ∈ R, there is no (1, C)-sl-competitive algorithm.

Analogous Results With Respect To L̂E. From Thm. 4 we get

Corollary 9 For any constant µ > 0, the algorithm bw0 is (µ, log ζh(µ) +
Corder0)-l̂e-competitive

and of course,

Corollary 10 For any constant µ > 1, the algorithm bw0 is (µ, log ζ(µ) +
Corder0)-l̂e-competitive.

On the other hand, it is not clear whether the result of Thm. 6 can be used
to get the following conjecture:

Conjecture 11 For any µ > 0 and C < log ζh(µ), there is no (µ,C)-l̂e-
competitive algorithm.

This conjecture would follow from Thm. 6 if the transformations mtfπ and
bwt, viewed as functions from Σn to Σn, were invertible. (Recall that the
function bwt(s) is the outcome of running the Burrows-Wheeler transform

13

on s$ and then deleting the symbol ‘$’ from the result). But, while mtfπ is
invertible, bwt is not. 4 This means that potentially, the image of the trans-
formation bwt could be a small fraction of Σn that has better compressibility
properties with respect to le.

4 The Entropy Hierarchy

In this section we show that the statistics nHk and l̂e form a hierarchy, which
allows us to percolate upper bounds down and lower bounds up. Specifically,
we show that for each k,

l̂e(s) ≤ nHk(s) + O(1) (14)

where the O(1) term depends on k and h (recall that h is the size of the
alphabet). The known entropy hierarchy is

. . . ≤ nHk(s) ≤ . . . ≤ nH2(s) ≤ nH1(s) ≤ nH0(s) . (15)

Which in addition to (14) gives us:

l̂e(s) . . . / . . . ≤ nHk(s) ≤ . . . ≤ nH2(s) ≤ nH1(s) ≤ nH0(s) . (16)

(O(1) additive terms are hidden in the last formula).

Thus any (µ,C)-l̂e-competitive algorithm is also (µ,C)-nHk-competitive. To
establish this hierarchy we need to prove two properties of leW : that it is at
most nH0 + o(n), and that it is convex (in a sense which we will define).

Some Properties of LE. Some of the following claims can be found,
explicitly or implicitly, in [18,4]. Specifying them here in this form would help
to understand the rest of the analysis. We give references where appropriate.

Define mtfignorefirst(s) to be a string which is identical to mtfπ(s) except
that we omit the integers representing the first occurrence of each symbol (so
mtfignorefirst(s) is of length less than n). Note that in this case when we per-
form the move-to-front transformation the initial status of the mtf recency list

4 Take for example the string s’=“bac” over the alphabet Σ = {a, b, c}. String s′ is
not equal to bwt(s) for any string s. To see this, suppose in contradiction that there
is such s. In the table of lexicographically-sorted cyclically-shifted suffixes of s, the
leftmost column is “$abc” while the rightmost column is s′ with the character ‘$’
inserted somewhere. It can be easily seen that no matter where the ‘$’ is inserted,
some row must have the same symbol in both the first and last columns, which is
impossible since ŝ is a permutation of s.

14

is not significant. Similarly, define leignorefirst(s) =
∑

i log(mtfignorefirst(s)[i]+
1).

The following is a theorem of Bentley et al. [4]:

Theorem 12 ([4]) leignorefirst(s) ≤ nH0(s).

Proof. We look separately at the contributions of each of the h different
symbols to. The contribution of σ to leignorefirst(s) is 5

Aσ =
∑

i:s[i]=σ

log(mtfignorefirst(s)[i] + 1) .

It is easy to see that

∑

i:s[i]=σ

(mtfignorefirst(s)[i] + 1) ≤ n .

Let nσ be the number of occurrences of σ in s. Then using Lemma 3 we get

Aσ ≤ nσ log

∑
i:s[i]=σ(mtfignorefirst(s)[i] + 1)

nσ

≤ nσ log
n

nσ

.

Summing for all σ we obtain that

leignorefirst(s) =
∑

σ

Aσ ≤
∑

σ

nσ log
n

nσ

= nH0(s) ,

as needed. 2

Manzini [18] gave the following corollary of this Theorem.

Lemma 13 ([18], Lemma 5.4) leW (s) ≤ nH0(s) + h log h.

Proof. leW (s) is equal to leignorefirst(s) plus the contribution of the first
occurrence of each symbol. The number of such contributions is at most h,
and each such contribution is bounded by log h, and so we get leW (s) ≤
leignorefirst(s) + h log h ≤ nH0(s) + h log h. 2

In addition, we need the following lemma about leW .

Lemma 14 For a string s of length n and a string s′ obtained by deleting
exactly one character from s, we have that leW (s) ≤ leW (s′) + 2 log h.

5 Note that for the sake of convenience, in the following equations we are disregard-
ing the fact that some elements of mtfignorefirst(s) are in a shifted position relative
to the characters of s that they represent because the representations of the first
appearances of symbols are omitted.

15

Note 1 For our purposes in this paper it suffices to prove the bound leW (s) ≤
leW (s′)+h log h, which is easier. We give a proof of the stronger bound because
we find the proof interesting by itself.

Proof. Let x be the character we remove from s to get s′. Let π be a worst-case
permutation for s, i.e. leπ(s) = leW (s). It is enough to show that leπ(s) ≤
leπ(s′) + 2 log h because from this it follows that

leW (s) = leπ(s) ≤ leπ(s′) + 2 log h ≤ leW (s′) + 2 log h ,

as needed.

Step 1: Observe that mtfπ(s) has one additional element compared to mtfπ(s′).
This is the element that corresponds to x. One element can contribute at most
log h to leπ(s)−leπ(s′). In step 2, we bound the difference in the contribution
of all the other elements to leπ(s) and leπ(s′).

Step 2: Observe that the only elements that might differ in mtfπ(s) and
mtfπ(s′) are the elements that correspond to the first occurrence after x of
every symbol. The element that corresponds to the next occurrence of x in s
may change. However, it can only decrease, so we disregard it.

Denote s = . . . x . . . a1 . . . a2 . . . ai . . . am . . . where a1 . . . am are the first oc-
currences after x of all symbols except for the symbol x itself. Let yi be the
value in mtfπ(s) that corresponds to ai, and y′

i be the value in mtfπ(s′) that
corresponds to ai. Observe that

(1) m ≤ h − 1 .
(2) In s, all characters x, a1, . . . , ai−1 appear between ai and its previous

occurrence.
(3) All symbols that occur between ai and its previous occurrence in s′ also

occur between ai and its previous occurrence in s.
(4) All symbols except x that occur between ai and its previous occurrence

in s also occur between ai and its previous occurrence in s′.
(5) From item 3 and item 4 it follows that y′

i ≤ yi ≤ y′
i + 1.

(6) From item 2 it follows that yi ≥ i.

From these observations it follows that the part of the difference leπ(s) −
leπ(s′) that we have not accounted for in step 1 is upper-bounded by

m∑

i=1

(log(yi + 1) − log(y′
i + 1)) ≤

m∑

i=1

log
i + 1

i
= log(m + 1) ≤ log h .

Combined with the log h upper bound from step 1, the statement follows. 2

We would now like to prove that leW is a convex statistic. The intuition behind
this is that the mtfπ encoding has a locality property in the sense that if you

16

stop it in the middle and start again from this point using a different recency
list then you make little profit if any.

Lemma 15 (LEW is a convex statistic, implicitly stated in [18]) Let s =
s1 . . . st. Then leW (s) ≤ ∑

i leW (si)

Proof. From the definition of leW we get that leW (s) =
∑n

j=1 log(mtfπ1
(s)[j]+

1) for a worst-case permutation π1. Let us look at the recency list πi that we
use when the leW (s) calculation reaches sub-string si. Each of the summands
of
∑

i leW (si) is calculated with a worst-case permutation, which must be at
least as bad as πi, and the lemma follows. 2

The Hierarchy Result.

Theorem 16 For any k ≥ 0 and any string s,

|s|Hk(s) ≥ l̂eW (s) − 2k log h − hk · h log h

Proof. Let s̃ be the string obtained from ŝ by deleting the occurrences in
ŝ of the first k characters of s. By Proposition 1 there is a partition of s̃,
s̃ = s̃1 . . . s̃t, such that t ≤ hk and

|s|Hk(s) =
t∑

i=1

|s̃i|H0(s̃i) . (17)

Observe that using the convexity of leW (Lemma 15) and using the relation
of leW to nH0 (Lemma 13) we have

leW (s̃) ≤
t∑

i=1

|s̃i|H0(s̃i) + th log h . (18)

Using Lemma 14 we get

leW (ŝ) − 2k log h ≤ leW (s̃) . (19)

From (17), (18) and (19) we get

leW (ŝ) − 2k log h − th log h ≤ |s|Hk(s) ,

and using t ≤ hk the theorem follows. 2

Main Results. Using Theorem 4 together with Theorem 16 gives the main
result of our paper:

Theorem 17 For any k ≥ 0 and for any constant µ > 1, the algorithm bw0

is (µ, log ζ(µ) + Corder0)-nHk-competitive

17

Proof. Corollary 10 gives that for any string s, |bw0(s)| ≤ µl̂e(s)+(log ζ(µ)+
Corder0 + o(1)) |s|. Using this together with Theorem 16 gives that for any
string s, |bw0(s)| ≤ µHk(s) + (log ζ(µ) + Corder0 + o(1)) |s|, which gives the
theorem. 2

Similarly, using Corollary 9 gives

Theorem 18 For any k ≥ 0 and for any constant µ > 0, the algorithm bw0

is (µ, log ζh(µ) + Corder0)-nHk-competitive on strings from an alphabet of size
h.

5 An Upper Bound and a Conjecture about BW0

Let us prove an upper-bound on the performance of bw0 in a specific setting.
This bound is tighter than the upper bound of Theorem 17.

Theorem 19 bw0 is (2, Corder0)-nH0-competitive for texts over an alphabet
of size 2.

Proof. Let s be a string of length n over the alphabet Σ = {a, b}. Let na be
the number of times the symbol ‘a’ appears in s, and let pa = na

n
. Suppose

w.l.o.g. that pa ≤ 1
2
. We consider the following cases. In each case we prove

that
H0(mtf(ŝ)) ≤ 2H0(s) . (20)

Case 1: pa = 0. Here (20) is trivial.
Case 2: 0 < pa ≤ 1

4
. The number of ‘a’s in ŝ is equal to na. Notice that for

every ‘a’ in ŝ there can be at most two ‘1’s in mtf(ŝ). Therefore the number
of ‘1’s in mtf(ŝ) is at most 2na ≤ n

2
. From the monotonicity of the entropy

function 6 it follows that

H0(mtf(ŝ)) ≤ −2pa log(2pa) − (1 − 2pa) log(1 − 2pa) ,

while on the other hand,

H0(s) = −pa log pa − (1 − pa) log(1 − pa) ,

and therefore,

H0(mtf(ŝ)) − 2H0(s) ≤ −2pa log(2pa) − (1 − 2pa) log(1 − 2pa)+

+ 2pa log pa + 2(1 − pa) log(1 − pa) =

= −2pa − (1 − 2pa) log(1 − 2pa) + 2(1 − pa) log(1 − pa) .

6 This is the reason that we need 2 cases. The entropy function H(p) = −p log p−
(1−p) log(1−p) is monotonically increasing only in the range p ∈ (0, 1

2], so we need
to treat the case where pa ∈ (1

4 , 1
2] separately.

18

Calculating derivative with respect to pa, one can see that this function is
monotonically decreasing. Thus, proving that this expression tends to 0 when
pa tends to 0 (from above) is enough. This fact can be easily verified.
Case 3: 1

4
≤ pa ≤ 1

2
. In this case H0(s) ≥ 1

2
so H0(mtf(ŝ) ≤ 1 ≤ 2H0(s).

Therefore (20) also holds in this case.

In either case we get the following:

|bw0(s)| ≤ nH0(mtf(ŝ)) + Corder0n ≤ 2nH0(s) + Corder0n ,

so the algorithm bw0 is (2, Corder0)-nH0-competitive over an alphabet of size
2. 2

We believe that this upper bound is true for larger alphabets as well. Specifi-
cally, we leave the following conjecture as an open problem.

Conjecture 20 bw0 is (2, Corder0)-nHk-competitive.

6 A (1.7286, Corder0)-nHk-competitive Algorithm

In this section we analyze the bwt with distance coding compression algo-
rithm, bwdc. This algorithm was invented but not published by Binder (see
[5,2]), and is described in a paper of Deorowicz [8]. The distance coding proce-
dure, dc, will be described shortly. The algorithm bwdc compresses the text
by running the Burrows-Wheeler Transform, then the distance-coding proce-
dure, and then an Order-0 compressor. It also adds to the compressed string
auxiliary information consisting of the positions of the first and last occurrence
of each character. In this section we prove that bwdc is (1.7286, Corder0)-nHk-
competitive.

First we define the dist transformation: dist encodes the character s[i] =
σ with an integer equal to the number of characters encountered since the
previous occurrence of the symbol σ. Therefore, dist is the same as mtf,
except that instead of counting the number of distinct symbols between two
consecutive occurrences of σ, it counts the number of characters. In dist we
disregard the first occurrence of each symbol.

The transformation dc converts a text (which would be in our case the
Burrows-Wheeler transform of the original text) to a sequence of integers by
applying dist to s and disregarding all zeroes. 7 It follows that dc produces

7 This is a simplified version of [8]. Our upper bound applies to the original version
as well, as it just adds a few more optimizations that may produce an even shorter
compressed string.

19

one integer per block of consecutive occurrences of the same character σ. This
integer is the distance to the previous block of consecutive occurrences of σ.
It is not hard to see that from dc(s) and the auxiliary information we can
recover s. A formal proof of this fact can be found in Appendix A.

As a tool for our analysis, we define a new statistic of texts, ld. The ld

statistic is similar to le, except that it counts all characters between two
successive occurrences of a symbol, instead of disregarding repeating symbols.
Specifically,

ld(s) =
∑

i

log(dist(s)[i] + 1) .

For example, the ld value of the string “abbbab” is log 4 + log 2 = 3. From
the definition of ld and dc, it is easy to see that

sl(dc(s)) = ld(s) . (21)

Now we wish to prove that bwdc is (1.7286, Corder0)-nHk-competitive. We
repeat the work of Sections 3 and 4 using ld instead of le and get the desired
result. We omit the proofs of the following Lemma and Theorem and only give
an overview, because the proofs are identical or almost-identical to the proofs
of the original statements.

We first prove, along the lines of Corollary 5, that for any constant µ > 1
and any integer string s all of whose elements are at least 1, the algorithm
order0 is (µ, log(ζ(µ) − 1) + Corder0)-sl-competitive. The term −1 appears
here as the summation that used to give the term ζ(µ) now starts at i = 1
instead of i = 0. From this together with (21) we get the following Lemma.

Lemma 21 The algorithm dc+order0 is (µ, log(ζ(µ) − 1) + Corder0)-ld-
competitive.

We now prove analogously to Lemma 13 that ld(s) ≤ nH0(s). Furthermore,
as in Lemma 14, if s is of length n and s′ is produced by deleting exactly one
character from s then ld(s) ≤ ld(s′) + 2 log n. Now we prove along the lines
of Lemma 15 that if s = s1 . . . st then ld(s) ≤ ∑

i ld(si) + (t − 1)h log n. All
of this together gives the following Theorem.

Theorem 22 If a is a (µ,C)-ld-competitive algorithm, then bwt+a is a
(µ,C)-nHk-competitive algorithm for any k ≥ 0.

From Thm. 22 together with Lemma 21 we get:

Theorem 23 For any k ≥ 0 and for any constant µ > 1, the algorithm bwdc

is (µ, log(ζ(µ) − 1) + Corder0)-nHk-competitive for any k ≥ 0

Let µ0 ≈ 1.7286 be the real number such that ζ(µ0) = 2. Substituting µ = µ0

20

in the statement of Theorem 23 gives:

Corollary 24 For any k ≥ 0, the algorithm bwdc is (µ0, Corder0)-nHk-competitive.

7 A Lower Bound With Respect To LD

We now prove that using the approach of Section 6 one cannot get a (1, 0)-
nHk-competitive algorithm. Specifically, we show:

Theorem 25 For any µ < µ0, there is no (µ, 0)-ld-competitive algorithm.
This holds even if the alphabet size is 2.

This means that another approach must be taken to get a (µ, 0)-nHk-competitive
algorithm for µ < 1.7286.

Proof. Suppose in contradiction that there is a compression algorithm A

which works on the alphabet Σ1 = {a, b} and is (µ, 0)-ld-competitive where
µ < µ0. Since

ζh(µ)
h→∞−−−→ ζ(µ) > 2 ,

we can choose an integer h such that ζh(µ) > 2. We construct a compression
algorithm B which works over the alphabet Σ2 = {1, 2, . . . , h} and is (µ, 0)-
sl-competitive. We then argue that there cannot be a (µ, 0)-sl-competitive
algorithm, thereby getting a contradiction.

Given a string s2 of length n2 over alphabet Σ2, algorithm B translates it to
a string s1 of length n1 ≤ hn2 over Σ1. The string s1 starts with s2[0] ‘a’s,
followed by s2[1] ‘b’s, followed by s2[2] ‘a’s, and so on. Then algorithm B uses
algorithm A to compress s1 and returns the result, that is B(s2) = A(s1).
Clearly one can recover s2 from B(s2) since the transformation from s2 to s1

is invertible.

It is not hard to see that ld(s1) ≤ sl(s2) (the inequality here is from the fact
that the first and last characters of s2 have no impact on ld(s1)). Thus,

|B(s2)| = |A(s1)| ≤ µld(s1) + o(n1) ≤ µsl(s2) + o(n2) , (22)

where we could say that the o(n1) term is also o(n2) because h only depends
on µ, and is independent of n1 and n2. From (22) follows that B is (µ, 0)-sl-
competitive. We now argue that a (µ, 0)-sl-competitive algorithm does not
exist.

One can show in a similar fashion to Thm. 6 that there is no constant C <
log(ζh(µ) − 1) such that there exists a (µ,C)-sl-competitive algorithm that
works over alphabet {1, 2, . . . , h}. The term −1 appears here as the summation

21

that used to give the term ζ(µ) now starts at i = 1 instead of i = 0. Since h
was chosen such that ζh(µ) > 2, algorithm B which is (µ, 0)-sl-competitive
does not exist, and the Theorem follows. 2

A conjectured lower bound with respect to LD. Actually, we would
have liked to prove the following lower bound which is somewhat stronger than
Thm. 25. We leave this as an open problem.

Conjecture 26 Let µ > 1 be some constant. Then there is no constant C <
log(ζ(µ) − 1) such that there exists a (µ,C)-ld-competitive algorithm.

While Theorem 25 holds even for binary alphabet, it might be the case that
this conjecture only holds for asymptotically large alphabet, so for any µ > µ0

and for any fixed alphabet size h there might be a constant Ch(µ) < log(ζ(µ)−
1) such that there is a (µ,Ch(µ))-ld-competitive algorithm. If this is the case,
it is interesting whether the algorithm dc+order0 achieves the optimal ratio
for each alphabet size.

8 Conclusions and Further Research

We leave the following idea for further research: In this paper we prove that the
algorithm bw0 is (µ, log ζ(µ))-l̂e-competitive. On the other hand, Ferragina et
al. [10] show an algorithm which is (1, 0)-nHk-competitive. A natural question
to ask is whether there is an algorithm that achieves both ratios. Of course,
one can just perform both algorithms and use the shorter result. But the
question is whether a direct simple algorithm with such performance exists.
We are also curious as to whether the insights gained in this work can be used
to produce a better BWT-based compression algorithm.

9 Acknowledgments

We would like to thank Nir Markus for his work on the implementations. We
also thank Gadi Landau and Adi Avidor for helpful discussions and useful
references. We thank Giovanni Manzini for sharing with us a preliminary im-
plementation of compression booster. The third author would like to thank
Roberto Grossi for some insightful discussions.

22

References

[1] The canterbury corpus. http://corpus.canterbury.ac.nz.

[2] Jürgen Abel. Web page about Distance Coding. http://www.data-
compression.info/Algorithms/DC/.

[3] A. Apostolico and A. S. Fraenkel. Robust transmission of unbounded strings
using fibonacci representations. IEEE Transactions on Information Theory,
33(2):238–245, 1987.

[4] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A locally adaptive
data compression scheme. Communications of the ACM, 29(4):320–330, 1986.

[5] E. Binder. Distance coder. Usenet group comp.compression and private
communications, 2000.

[6] M. Burrows and D. J. Wheeler. A block sorting lossless data compression
algorithm. Technical Report 124, Digital Equipment Corporation, Palo Alto,
California, 1994.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Second Edition, chapter 16.3, pages 385–392. MIT Press and
McGraw-Hill, 2001.

[8] S. Deorowicz. Second step algorithms in the burrowswheeler compression
algorithm. Software - Practice and Experience, 32(2):99–111, 2002.

[9] P. Elias. Universal codeword sets and representation of the integers. IEEE
Trans. on Information Theory, 21(2):194–203, 1975.

[10] P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual
compression in optimal linear time. Journal of the ACM, 52:688–713, 2005.

[11] P. Ferragina, G. Manzini, V. Mākinen, and G. Navarro. An alphabet friendly
FM-index. In Proc. 11th Symposium on String Processing and Information
Retrieval (SPIRE ’04), pages 150–160, 2004.

[12] A. S. Fraenkel and S. T. Klein. Robust universal complete codes for transmission
and compression. Discrete Applied Mathematics, 64(1):31–55, 1996.

[13] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text
indexes. In SODA ’03: Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 841–850, 2003.

[14] R. Grossi, A. Gupta, and J. S. Vitter. When indexing equals compression:
experiments with compressing suffix arrays and applications. In SODA
’04: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 636–645, 2004. Journal version to appear in ACM
Transactions on Algorithms (special issue of ACM-SIAM SODA), 2005.

[15] D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

23

[16] D. A. Lelewer and D. S. Hirschberg. Data compression. ACM Computing
Surveys, 19(3):261–296, 1987.

[17] G. Manzini. Personal communication.

[18] G. Manzini. An analysis of the burrows-wheeler transform. Journal of the
ACM, 48(3):407–430, 2001.

[19] G. Manzini and P. Ferragina. Engineering a lightweight suffix array construction
algorithm. Algorithmica, 40:33–50, 2004.

[20] G. Manzini and P. Ferragina. Indexing compressed text. Journal of the ACM,
52:552–581, 2005.

[21] A. Moffat, R. M. Neal, and I. H. Witten. Arithmetic coding revisited. ACM
Trans. Inf. Syst., 16(3):256–294, 1998.

[22] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In SODA ’02: Proceedings
of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages
233–242, 2002.

[23] J. Seward. bzip2, a program and library for data compression.
http://www.bzip.org/.

[24] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data
compression. Communications of the ACM, 30(6):520–540, 1987.

A DC is an Invertible Transformation

We prove that dc is an invertible transformation. In this section we consider
a version of dc that is different from the one discussed in Section 6 in that
for each character s[i] = σ we write the distance to the next occurrence of σ,
instead of the distance to the previous occurrence of σ. This is symmetric, of
course, and it simplifies the presentation.

The key to the algorithm is to know, at each step of the decoding process,
the location of the next occurrence of each of the symbols. In the beginning
of the process we obviously have this information, because this is part of the
auxiliary information that we saved. Now, suppose that s[i] = a is the first
character we have not read yet, and s[j] = b 6= a is the second character we
have not read yet (it is possible that j − i > 1). Then, obviously, for every
i ≤ k < j, s[k] = a. Therefore, the first element of s′ that we have not read
yet corresponds to the distance between j − 1 and the first appearance of a in
s after location j. We can continue decoding like this until we get to the end
of the string. Special care must be taken with the final appearance of each
symbol, because it is not coded in s′.

24

The decoding algorithm can be implemented using a heap to run in time
O(n log h).

25

