
66 PERVASIVEcomputing Published by the IEEE CS and IEEE ComSoc ■ 1536-1268/04/$20.00 © 2004 IEEE

S E N S O R A N D A C T U A T O R N E T W O R K S

A Service Gateway for
Networked Sensor
Systems

A
n emerging area in ubiquitous com-
puting is networked sensor systems.1

The typical approach is to connect
sensor-actuator devices using clas-
sic network infrastructures at a low

level. A promising new approach is to integrate
them into high-level, ad hoc networking com-
munities. These networks can serve as infra-
structures to dynamically integrate sensors and
actuators into complex interactive systems while

providing convenient services
and interfaces to users.

A prominent scenario for
ubiquitous computing and ad
hoc networking is an in-house
environment using smart sen-
sor systems.2,3 Equipping house-
hold appliances with networked
sensor technology provides
device-dependent services. The

terminals to access these services can be devices
like mobile phones or PDAs. However, invoking
such services requires a negotiation between
servers and clients using middleware systems.4

Consider a small device, such as a light switch,
in an in-house environment. Remote, ad hoc con-
trol of this switch requires that a client discover
and a server publish its service. Both discovery
and publishing must comply with the same mid-
dleware standard.

To overcome the heterogeneity of typical ubiq-
uitous computing environments, most middle-

ware systems are platform independent. Unfor-
tunately, these systems make great demands on
the participating devices. Consider the Jini tech-
nology (www.sun.com/jini). The key requirement
of Jini’s platform independence is the use of Java
(http://java.sun.com).5 Because Java requires a
virtual machine (VM) with a huge memory foot-
print,6 only devices with significant resources can
join Jini communities. Other middleware ap-
proaches, such as UPnP (www.upnp.org), have
relatively high demands on participating devices.

Using middleware systems to connect networks
will soon be easier for many terminal devices. For
example, several mobile phones and PDAs already
have fast processors, as well as memories of 32
Mbytes, 64 Mbytes, or even 128 Mbytes. How-
ever, the situation is different for sensors. Ubiqui-
tous computing requires integrating networked
sensor technology into virtually any device, includ-
ing low-cost, battery-powered ones. To achieve
market success, these devices typically require
extremely small, inexpensive sensor-actuator mod-
ules (SAMs) containing low-performance micro-
controllers with only a few kilobytes of memory.
But for services in heterogeneous environments to
be convenient, they must join ad hoc networks
and support middleware systems such as Jini or
UPnP. Hence, these services must execute Java
VMs or parse and generate XML messages.

In some cases, it might be reasonable to imple-
ment devices that directly meet all the require-
ments for supporting middleware systems and for

Shaman, an extendable Java-based service gateway for networked
sensor systems, integrates small network-attached sensor-actuator
modules (SAMs) into heterogeneous, high-level networking communities.
The system unburdens its connected SAMs by transferring functionality
from the SAMs to the gateway.

Peter Schramm, Edwin Naroska,
Peter Resch, Jörg Platte,
and Holger Linde
University of Dortmund

Guido Stromberg and
Thomas Sturm
Infineon Technologies

joining ad hoc networking communities.
However, an absolute minimization of a
device’s size, price, and energy con-
sumption is often essential. Examples of
such cases include networked sensor sys-
tems. Techniques are necessary that inte-
grate extremely small network-attached
SAMs into complex environments for ad
hoc networking. One approach is to
break down the functionality of existing
protocols such as Jini to decrease their
resource demands.7,8 The significant
drawback of this approach is that the
modified protocols often have less func-
tionality and provide only limited com-
patibility to the original protocols. The
other approach is to use network prox-
ies to execute on machines with enough
resources, and then let limited devices
join networking communities by acting
as representatives, as the Jini architecture
specification suggests (www.sun.com/
software/jini/specs/devicearch1_2.pdf).
However, using simple static proxies,
which a system administrator must man-
ually execute and which then run per-
manently, is not efficient for ad hoc net-
working. Instead, a proxy should
automatically begin and shut down on
demand. Shaman, a Java-based service
gateway, meets these requirements.

The Shaman concept
Shaman (taken from a word that typ-

ically refers to a mediator between two
types of beings, humans and spirits) is
an extendable, scalable service gateway
that uses network proxies to integrate
extremely small networked SAMs into
heterogeneous ad hoc networking com-
munities. Thus, SAMs can provide and
use high-level Web services that comply
with common middleware standards
such as Jini. Figure 1 illustrates this for
the in-house scenario.

The system also contains a mapping of
GUI modules so that users can use a
SAM’s service directly, either for admin-
istrative purposes or for direct-service use.

The following explains other key features
in our system.

Multiple service interfaces
The gateway system’s infrastructure

isn’t tied to one particular standard for
ad hoc networking. It can easily work
with nearly any standard using service
wrappers, special modules containing
standard-specific functionality. Thus, if
the gateway has the appropriate service
wrappers, a SAM can act as a Jini and
an UPnP server simultaneously. Hence,
clients can choose a compatible service
interface.

The current system supports the fol-
lowing types of service interfaces:

• A Jini interface for the integration of
SAMs into Jini communities. Thus,
SAMs can provide Jini services and be
clients of other Jini services, forming
interconnected sensor services.

• An interface using Java applets to pro-
vide SAMs with GUIs. This serves an
administrative purpose and, where
applicable, is for direct-service use by
a human.

• An HTML interface so that clients
that are not Java-enabled, or are too
restricted to execute the GUI module,
can access a SAM’s service.

Users can also configure the system to
send UPnP basic-device announcements
for each connected SAM. Hence, UPnP-
compliant systems can easily discover

SAMs. (The UPnP presentation pages
link to the system’s Java applet interface.
Using PDAs with systems such as Pocket
PC 2003, users only need to double click
on a discovered SAM to invoke the GUI.)

Smart-driver concept
To simplify deployment of new ser-

vices, we introduce an easy-to-use driver
concept. The driver is a downloadable
software component containing two
modules: the network proxy that acts on
behalf of the SAM and an optional GUI
module for manual control and admin-
istration of a SAM’s service. The driver
may be from any Web server that the
gateway can reach. However, as Figure
2 shows, the SAM itself may embed a
Web server that provides the driver.
Thus, unlike typical approaches, this
approach lets the SAM itself inject dri-

JANUARY–MARCH 2004 PERVASIVEcomputing 67

Service
network

User

Service
gateway

Figure 1. The gateway connects the
embedded world to the Internet.

Sensor-
actuator
module
(SAM)

Web
server

Proxy

Gateway host

Download

Private

Figure 2. The proxy acts on behalf of the
sensor-actuator module (SAM) and uses
the gateway host’s resources.

ver software into the system. Hence,
there is no need for manual software
installation.

The proxy’s main objective is to trans-
late client requests into SAM-specific
commands. The proxy can use a private,
highly optimized protocol to communi-
cate with its SAM. Thus, the proxy is a
SAM’s front end for providing and using
services in the network. Because SAMs
and proxies form distributed systems,
SAMs can easily outsource functional-
ity to their proxies to use the gateway
host’s resources. Therefore, a sensor

needs to provide only the raw data;
developers can implement all kinds of
data processing and everything that
makes the sensor smart in the proxy
using the object-oriented Java program-
ming language’s full functional range.

Furthermore, the proxy plays an
essential role for SAMs with restricted
energy resources, such as battery-driven
devices. Because the proxy is the actual
service provider, the SAM can enter
standby mode while the proxy stays
online. In many cases, it’s sufficient for
the SAM to wake up periodically to
update the proxy with new state infor-
mation. Therefore, the proxy can imme-
diately answer any service request even
if the SAM is in power-down mode.

One GUI, x interfaces
For cases requiring a GUI, a service

developer only need provide a single GUI
module based on Java Swing that auto-
matically maps to each kind of client
interface (Java applet, HTML, and Jini,
as appropriate). The advantage of our

one-GUI, x-interfaces concept is that it
minimizes design effort and automati-
cally gives the same look and feel to users
of different interfaces. Hence, users can
choose an appropriate interface type
based on the terminal device’s capabili-
ties. For example, even though most
PDAs lack Java VMs, the HTML inter-
face lets them still serve as terminals.

Plug-and-work capabilities
An important aspect for the gateway

is the ability to provide services without
any manual configuration efforts. We

achieve this using service attributes and
leasing techniques. When connecting to
the gateway, a SAM must describe its
service by submitting service attributes
within a special boot protocol. These
attributes contain all the information
the gateway needs to provide a service
on behalf of the SAM. Examples of ser-
vice attributes are service name, service
vendor, SAM version, and location
information. The boot protocol con-
tains a simple discovery mechanism
that lets a SAM find a gateway to
deploy its proxy.

Integrating SAMs into the gateway
system requires a certain amount of
resources from the gateway host. Allo-
cating these resources only on demand
is reasonable. The SAM must lease these
resources from the gateway by submit-
ting a desired leasing period within the
boot protocol. The gateway will repre-
sent a service on behalf of the SAM only
for this period of time. If the SAM
doesn’t send a proof of life to the gate-
way before the leasing period expires,

the gateway will shut down the corre-
sponding service, assuming the SAM is
no longer online.

Scalability
For fault tolerance, multiple gateways

are necessary. Using gateways is easy
because they provide a kind of native
load balancing. A SAM connects to the
first gateway that responds to its dis-
covery requests. In most cases, this is the
gateway with the lowest load and the
shortest network latency. However,
using multiple gateways doesn’t neces-
sarily add costs; existing Java-enabled
appliances can serve as gateway hosts.
Consider a Java-enabled TV box or the
frequently cited Java refrigerator that
can act as gateways for in-house sensors.

The Shaman alarm system
scenario

We now present a scenario that
demonstrates how to apply Shaman
technology to a hotel that needs a smart
and reliable fire alarm system. We chose
this scenario because it exemplifies the
system’s features and addresses some
important aspects of ubiquitous com-
puting and sensor networks, including

• Energy efficiency. Most sensors in
ubiquitous computing environments
have restricted energy resources. Some
are even battery powered.

• Fault tolerance. Failures of single com-
ponents are inevitable in complex sys-
tems. However, their detection and
correction is essential.

• Sensor fusion. Letting sensors query
one another to increase flexibility and
avoid dispensable hardware costs is
reasonable.

• Configurability. Providing convenient
tools to configure complex environ-
ments and store configurations is
essential.

• Human-machine interfaces. Humans
play the central role in almost all ubiq-

68 PERVASIVEcomputing www.computer.org/pervasive

The proxy’s main objective is to translate client

requests into SAM-specific commands. The

proxy can use a private, highly optimized

protocol to communicate with its SAM.

S E N S O R A N D A C T U AT O R N E T W O R K S

uitous computing scenarios, especially
those involving human safety.

For all our examples, we use Jini tech-
nology as our reference for smart ser-
vices and ad hoc networking. The
Shaman gateway system is the enabler
that brings the embedded world and Jini
together. We begin with the deployment
of the Shaman alarm system in the hotel
building. To provide fault tolerance, we
abandon any notion of centralized con-
trol, preferring instead a distributed
alarm system. For the same reason, we
deploy multiple gateways—enough to
provide all wireless sensors with a gate-
way within range. Furthermore, we
deploy wireless Shaman-enabled tem-
perature sensors, as well as smoke and
gas detectors in each hotel room and in
the basement. Each floor has alarm bells
and fire extinguishers. In the hotel
rooms, we do without dedicated alarm
signaling devices, because existing appli-
ances such as TVs, hi-fi systems, and
room lighting can serve as alarm trans-
mitters that either are Shaman enabled
or come with native Jini support.

Handling configuration problems
Compliant with Shaman technology,

all deployed SAMs send discovery mes-
sages and deliver their proxies to the dis-
covered gateways. The gateways regis-
ter Jini services for each SAM. But there
are cases when an administrator must
configure services after a SAM has been
attached to the network. (For example,
a smoke detector’s developer can’t know
the name of the room in which it’s
deployed, so an administrator must
manually set this location.) Administra-
tors can configure these services using
their PDAs to access each SAM’s applet-
based administration interface. The
administrators set information such as
service name and service location—for
example, “smoke detector, room 112.”
Because most SAMs have no flash mem-

ory, each proxy uses a Jini-based storage
service to save its configuration under a
unique hardware ID. On the next
startup—for example, after restoring a
drained battery—the proxy automati-
cally fetches the correct data without
manual configuration. After configura-
tion, the system is on duty and perform-
ing fine.

Temperature monitoring
In the mean time, let’s check the tem-

perature sensor in the cellar. Internally, it
obtains a voltage value from a thermo-
couple, and its only task is to periodi-
cally transmit this voltage value to its
proxy. The proxy must then calculate a
temperature from the voltage value.
Because most parts of a sensor’s service
are implemented in the proxy, it is easily
extendable. Hence, the proxy can switch
from Fahrenheit to Celsius, for example.
In standard mode, the temperature sen-
sor has a low duty cycle; it measures new
temperature values every 5 minutes.
Because the sensor is battery driven, it
must save energy. Hence, it enters
standby modes between measurements.
In the classic approach, no one could poll
a stand-alone sensor while it’s offline. In
the proxy approach, however, the tem-
perature service is always available, even
when the sensor is in standby mode.

Self-diagnostic capabilities
The system also has self-diagnostic

capabilities. Imagine that all sensors
use the Jini-based storage service just
mentioned to log their measured val-
ues. Let’s say that a diagnostic routine
in the proxy of one of the temperature
sensors detects that the measured val-
ues haven’t changed for a while. To see
if something went wrong, the proxy
consults another temperature sensor
nearby using the Jini lookup mecha-
nisms. Comparing the two sensors’
temperature curves and noticing sig-
nificant differences, the proxy con-

cludes that a malfunction might have
occurred. So, it automatically sends a
remote event to the administrator to
replace the faulty sensor.

In another case, failure diagnostics is
easier. This time, one of the smoke detec-
tors fails completely. As soon as its leas-
ing period expires, its proxy automati-
cally shuts down, and its service is
deregistered. In addition, the system fires
an event to call the administrator for
replacement. If a gateway fails com-
pletely, the connected SAMs recognize
the failure as soon as they try to renew
their leases. Because the gateway doesn’t
confirm the lease renewal, the SAMs try
to find other gateways to connect to.

Full-scale alarm procedures
Suddenly a smoke detector on the

13th floor detects smoke and sounds off.
The SAM immediately informs its proxy,
which then uses Jini technology to con-
tact the proxy of a temperature sensor
in the same room. Detecting a significant
temperature rise, the proxy decides to
raise an alarm at the “danger” severity
level because it assumes a fire has bro-
ken out. The proxy uses Jini technology
again to fetch all services that implement
a special alarm interface. These devices
can react to an alarm by various means.
Using this interface, the proxy informs
all devices about the alarm, the severity
level, what has happened, and where. Of
course, the Shaman-enabled fire extin-
guishers in each room and alarm bells
on each floor implement the alarm inter-
face. But the Jini- or Shaman-enabled
TVs, hi-fi systems, and other appliances
also implement the interface. Hence, all
appliances in the hotel aid the evacua-
tion of the building. The lights in every
occupied room automatically turn on.
While the alarm bells sound, all devices
with displays such as TVs show the mes-
sage “Danger! Fire Alarm!” and show
escape routes, and the hi-fi systems play
alarm sounds.

JANUARY–MARCH 2004 PERVASIVEcomputing 69

Architecture and
implementation

Here we describe the architecture and
some implementation details of our gate-
way system. (See the “Alternative Net-
work Sensor Approaches” sidebar for a
comparison of our system with some
other frameworks.) Figure 3 shows the
general structure. Figure 4 shows a sin-
gle gateway service that negotiates com-
munication between a SAM and three
types of clients. We implemented the sys-
tem using Java because it supports many
standards (such as Jini) for distributed
computing and ad hoc networking.
Besides platform independence, Java
programs can load and instantiate code
during runtime. This is very important

for dynamic downloading and instanti-
ation of driver classes.

When we say “the gateway,” we mean
the host platform on which one or more
gateway services execute. Each gateway
service is a process (running in its own
Java VM) that belongs to one SAM and
can handle multiple clients. (Although it
increases demands on resources, deploy-
ing gateway services in separate VMs is
advantageous because defective gateway
services can’t compromise the entire sys-
tem. Furthermore, resources can easily
be allocated and deallocated on de-
mand.) Hence, each SAM is associated
with its own gateway service.

The gateway system’s core is the ser-
vice manager, which lists all currently

connected SAMs in an internal registry.
To advertise its service, a SAM must con-
nect to the service manager using the
boot protocol. Following the leasing
concept, the service manager boots gate-
way services on demand and shuts them
down when they are no longer needed.

Gateway service
The gateway service’s inner compo-

nents are as follows. To overcome the
problem of a SAM not being able to han-
dle multiple client connections, the gate-
way service stores client requests in a
request queue. The system sequentially
passes these requests to a SAM proxy.
The SAM proxy is part of the gateway
service, whereas the GUI module is

70 PERVASIVEcomputing www.computer.org/pervasive

H ere we discuss some other approaches for handling networked

sensor systems. In addition to our approach, other projects

deal with the integration of limited devices into ubiquitous computing

environments. Some projects prefer gateways and use network proxies,

as we do. Others focus on direct network connections and the associ-

ated problems, such as routing, resource allocation, and energy

consumption.

Jini Surrogate Architecture
A framework that provides dynamic, plug-and-work lifecycle

management for Jini-based network proxies is Sun’s Jini Surrogate

Architecture (http://surrogate.jini.org). Although it integrates non-

Jini devices into Jini communities, this architecture has substantial

disadvantages regarding typical environments for ubiquitous com-

puting. First, programmers who want to let small servers join a Jini

network must write complete network surrogates. Thus, to provide

convenient services, they must implement full-featured Jini servers

with adequate client, user, and session support that fit into the sur-

rogate framework. Second, this architecture is restricted to Jini net-

works. This is a drawback for heterogeneous environments contain-

ing clients that comply with different standards of ad hoc networks.

OSGi-compliant gateway solutions
The Open Services Gateway Initiative (OSGi) has specified a frame-

work for general-purpose service deployment.1 OSGi-compliant

gateways serve as bridges between local/home area networks and

the Internet. The OSGi Service Platform is an execution environment

for remotely deployed services. Users can add new service applica-

tions using installation packages known as bundles. However, an

OSGi-compliant system is not self-contained, because an external

instance called a gateway operator must install these bundles.

ProSyst describes an OSGi compliant end-to-end solution.2 The

system includes basic services for smart-home environments and

packages to integrate other protocol standards such as UPnP or

Jini. Thus, users can access UPnP-compliant devices through the

OSGi framework. However, the OSGi framework doesn’t aim to

unburden small devices in local network environments and thus

covers another domain, as we do with our approach. Never-

theless, it is possible to combine both technologies—that is, to

deploy our gateway system as a bundle in an OSGi framework.

Routing optimization approaches
There has been considerable work in the field of sensor networks,

where one major focus is on optimizing routing algorithms to

decrease network congestion and power consumption.3,4 Our

system assumes that a lower network layer instance has already

solved the routing problem.

Resource allocation in sensor networks
Because processing sensor data often requires significant com-

putational resources, researchers have also addressed the alloca-

tion of these resources in the network. Some architectures exploit

the sensor modules’ processing power,4–7 while others use dedi-

cated high-performance hardware nodes to collect and process

data received from sensors.8,9 The second type of architecture

resembles our approach in that both concern dedicated nodes

Alternative Network Sensor Approaches

S E N S O R A N D A C T U AT O R N E T W O R K S

exported by the gateway’s Web server
for client download. The service wrap-
per communicates with one or more
clients and preprocesses their requests.
Then it hands the requests over to the
request queue. Besides the option to
implement multiple service interfaces in
one wrapper, it’s possible to install more
than one service wrapper at the same time
to simultaneously support multiple stan-
dards of distributed computing.

Client interfaces
So far, our service wrapper provides

the Jini, applet, and HTML interfaces,
and the basic UPnP announcer. The key
element of the Jini interface (see client
type A in Figure 4) is a Jini service object
that the gateway automatically provides.

JANUARY–MARCH 2004 PERVASIVEcomputing 71

Client

Gateway service 1

Gateway service 2

Gateway service N

Client

Gateway host

Client

Client

Service manager

Client

SAM registry

SAM 1

SAM 2

SAM N

that assist the sensors. Lim’s work, in particular, addresses similar

problems.9 However, unlike our technique, these architectures don’t

solve the problem of dynamically integrating (resource) limited sen-

sors into the network during runtime and making them available to

high-level ad hoc services. We expect future sensor networks to be

heterogeneous and highly dynamic, frequently installing new mod-

ules and removing defective hardware. Consequently, the network

must seamlessly integrate sensor types that the system doesn’t

know in advance. Moreover, to enhance usability, these networks

must connect to modern ad hoc network infrastructures. Finally,

such approaches don’t efficiently provide user interfaces on de-

mand for users or administrators. In contrast, Shaman provides

a convenient, easily implemented solution to all these problems.

Network proxies with user interface adaptation
Many other projects also use network proxies but focus primar-

ily on adapting information presentation and user interfaces to

client needs and abilities.10–12 The major difference in our ap-

proach is that we focus on both the client and the server.

REFERENCES

1. D. Marples and P. Kriens, “The Open Services Gateway Initiative: An
Introductory Overview,” IEEE Comm., vol. 39, no. 12, Dec. 2001, pp.
110–114.

2. D. Valetchev and I. Frankow, “Service Gateway Architecture for a Smart
Home,” IEEE Comm. Magazine, vol. 40, no. 5, Apr. 2002, pp. 126–132.

3. J.A. Stankovic et al., “Real-Time Communication and Coordination in

Embedded Sensor Networks,” Proc. IEEE, vol. 91, no. 7, July 2003, pp.
1002–1022.

4. Y. He et al., “A Programmable Routing Framework for Autonomic Sensor
Networks,” Proc. 5th Ann. Int’l Workshop Active Middleware Services: Auto-
nomic Computing Workshop (AMS 03), IEEE CS Press, 2003, pp. 60–68.

5. T. Liu and M. Martonosi, “Impala: A Middleware System for Managing
Autonomic, Parallel Sensor Systems,” Proc. 9th ACM SIGPLAN Symp.
Principles and Practice of Parallel Programming (PPOPP 03), ACM Press,
2003, pp. 107–118.

6. P. Levis and D. Culler, “Mate: A Tiny Virtual Machine for Sensor Networks,”
Proc. Int’l Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS 02), ACM Press, 2002, pp. 85-95.

7. R. Barr et al. “On the Need for System-Level Support for Ad Hoc and
Sensor Networks,” Operating Systems Rev., vol. 36, no. 2, pp. 1–5.

8. L. Subramanian and R. Katz, “An Architecture for Building Self-Config-
urable Systems,” Proc. IEEE/ACM Workshop Mobile and Ad Hoc Network-
ing and Computing (MobiHOC 00), IEEE Press, 2000, pp. 63–73.

9. A. Lim, “Support for Reliability in Self-Organizing Sensor Networks,”
Proc. 5th Int’l Conf. Information Fusion, IEEE Press, 2002, vol. 2, pp.
973–980.

10. P. Maniatis et al., “The Mobile People Architecture,” Mobile Computing
and Comm. Rev., vol. 3, no. 3, July 1999, pp. 36–42.

11. S. Ross et al., “A Composable Framework for Secure Multi-Modal Ac-
cess to Internet Services from Post-PC Devices,” Mobile Networks and
Applications, vol. 7, no. 5, Oct. 2002, pp. 389–406.

12. T.D. Hodes and R.H. Katz. “Composeable Ad Hoc Location-Based Ser-
vices for Heterogeneous Mobile Clients,” ACM Wireless Networks J., vol.
5, no. 5, Oct. 1999, pp. 411–427.

Figure 3. The gateway host running several gateway services, and the service manager.

The applet interface (client type B in
Figure 4) is intended solely for use with
a corresponding GUI object. Similar to
the Jini service object, the applet code is
automatically provided by the gateway.
Once the applet is running, it downloads
the GUI object from the gateway and
instantiates it. Then it opens a remote-
method-invocation (RMI) connection to
send requests to the service wrapper.

In addition to the applet interface, the
wrapper provides an HTML interface to
control services (client type C in Figure
4). The corresponding HTML code
doesn’t require manual implementation.
Instead, the system extracts this code from
the Java applet’s code dynamically. We
achieved this using CreamTec’s Swing-to-
HTML converter, WebCream (www.
creamtec.com/webcream). WebCream
can execute a Java applet in a container
application on a server similar to a Java
servlet. A special renderer class maps all
Swing functionality to HTML. Hence,
the HTML interface uses exactly the
same application code as the applet
interface but uses HTML instead of
Swing for visualization. Because the
applet executes on the gateway rather
than on the client, and the client has to

handle only HTML code, this approach
unburdens resource-restricted clients.

Each gateway service contains a com-
ponent called a basic UPnP announcer,
which publishes a SAM service as a
UPnP basic device. Such a device has no
methods but provides the URL for a pre-
sentation Web page. Because we use the
presentation page to give users a service’s
Java applet, they can easily invoke ser-
vices without knowing the discovery
Web page’s address.

Implementing a new service
Deploying a completely new service

requires implementing the following
components:

• SAM. The SAM must communicate
using a gateway-compatible boot pro-
tocol. Moreover, it must implement
the server part of the private commu-
nication protocol between itself and
the SAM proxy.

• SAM proxy. This standard Java class
implements the client part of the private
communication protocol. It must also
implement the appropriate interfaces
to fit into the gateway framework. Fig-
ure 5 gives an example of a SAM proxy.

• GUI module (optional). The GUI mod-
ule is a Java Swing class that implements
the user GUI. Note that the GUI pre-
sentation automatically maps to the dif-
ferent service interfaces used by stand-
alone Jini applications, Java applets,
and HTML-based clients. Thus, the
service developer needs to provide only
a single GUI implementation.

Experiments
Our experimental setup included the

gateway host, some SAMs, and various
clients of all supported types. For the
gateway host, we used a standard PC
with a HotSpot VM from the Java 2
Standard Edition. We executed the SAMs
in native code on DIL/NetPCs. Commu-
nication with the gateway used a UDP/IP
(user datagram protocol, Internet proto-
col) Ethernet connection. As terminal
devices, we used Bluetooth-enabled
Compaq iPaqs and the NSICom CrEme
Personal Java VM. Our example appli-
cations included the remote light switch
and the control software for the alarm
system (see Figure 6) mentioned earlier.

Because we decided to encapsulate each
gateway service in a separate VM, mem-
ory demands were high (about 3 Mbytes

72 PERVASIVEcomputing www.computer.org/pervasive

Gateway service N

Gateway host

RMI

Private

Service manager

Start/shutdown

Start/shutdown

Download

Boot/acknowledge
SAM registry

SAM proxy

Jini client

Jini service object

RMI

Internet browser

Client type A

Internet browser

GUI HTML
representation

Client type C

Client type B

Applet

Applet

GUI (downloaded)

RMI service
wrapper and
basic UPnP
announcer

Request queue

Event

Web server for service N

Remote method
invocation (RMI)

code base
Applet

Jini
service
object

GUI Download

Web
server

SAM

RMI

GUI (downloaded)

Swing-to-HTML renderer HTTP

Figure 4. A gateway service connecting a SAM to three different types of clients.

S E N S O R A N D A C T U AT O R N E T W O R K S

per gateway service). The service manager
consumed about 8 Mbytes. Although
these memory requirements are no prob-
lem for a standard PC, they are targets for
future improvements. On the other hand,
we achieved our SAM implementation in
native C code using less than 10 Kbytes
of memory footprint (not including the
size of the UDP/IP protocol stack). There-
fore, this implementation is suitable for
microcontroller-based embedded servers,
which common SAMs use. The code sizes
of the SAM proxies were 3.5 Kbytes and
10 Kbytes. The first proxy used a private
protocol with simple byte sequences as
messages; the second implemented a ser-
ial protocol for ASCII data. The code for
the GUIs consumed about 3.5 Kbytes.

To give an idea of a SAM proxy’s typ-
ical code size, we can compare it to the
size of a stand-alone Jini application per-
forming tasks similar to those the proxy

JANUARY–MARCH 2004 PERVASIVEcomputing 73

Figure 5. A code example for a SAM
proxy that connects to a light switch.
(This code serves only to give an idea of
an implementation effort and code size; it
doesn’t contain any exception handling.)

public class SAMProxy implements SAMProxyInt, Runnable {
int lightIntensity = 0, ServerPort = –1;
InetAddress SAMAddress = null;

//The following method initializes SAM proxy, taking the port number from the service manager
and starting a thread to receive data from the SAM.

public void initialize(int ServerPort) {
this.ServerPort = ServerPort;
Thread thread = new Thread(this);
thread.start();

}

//This thread waits for incoming user datagram protocol (UDP) packets from the SAM and, for
each packet received, updates the light intensity’s local value.

public void run() {
byte[] inbuf = new byte[1024], data = new byte[1024];
DatagramSocket socket = new DatagramSocket(ServerPort);
DatagramPacket packet = new DatagramPacket(inbuf, inbuf.length);
while (true) {

socket.receive(packet);
lightIntensity =

Integer.parseInt(new String(inbuf, 0, 1, packet.getLength()));
SAMAddress = packet.getAddress();

}
}

//This method hands a command to the SAM. The methodName string identifies the command,
whose parameters are handed over within a vector object. This method then interprets
methodName and sends a corresponding command to the SAM via UDP. At last, this method
packs the actual light intensity into a vector object and hands it back as a result parameter.

public Vector invoke(String methodName, Vector parameterList, int clientID) {
byte[] inbuf = new byte[1024], data = new byte[1024];
if (methodName.equals(new String(“setLightIntensity”))) {

Object o = parameterList.elementAt(0);
lightIntensity = ((Integer)o).intValue();
String s = lightIntensity;
byte[] outbuf = s.getBytes();
DatagramPacket packet =

new DatagramPacket(outbuf, outbuf.length, SAMAddress, 7788);
DatagramSocket socket = new DatagramSocket();
socket.send(packet);

}

Vector resultList = new Vector();
resultList.addElement(new Integer(lightIntensity));
return resultList;

}
}

Figure 6. The Java applet to control the
exemplary alarm system.

performs with a gateway service. This
includes all Jini internals (such as lookup
and join) and other features (such as
request queuing and event handling).

The proxy code consumed 3.5 Kbytes,
and the stand-alone application con-
sumed 18 Kbytes. Thus, the savings in
code size was about 80 percent.

O
ur results show that with ser-
vice gateways, small servers
with very little processing
power and memory can par-

ticipate in complex networking environ-
ments. Our experiments also prove that
using service gateways can be convenient
and efficient for heterogeneous comput-
ing environments. Now that our first pro-
totype implementation has proven tech-
nically feasible, we hope to improve and
extend the system. First, we plan to add
additional service wrappers to support
more protocol standards for ad hoc net-
working—for example, full implementa-
tion of UPnP. Second, we will implement
SAMs based on proprietary hardware
platforms. Finally, we plan to optimize
the implementation of the gateway itself
in terms of resource consumption and
throughput.

REFERENCES
1. M. Weiser, “The Computer for the Twenty-

First Century,” Scientific Amer., Sept. 1991,
pp. 94–104.

2. B. Brummit et al., “Easy Living: Technolo-
gies for Intelligent Environments,” Proc.
Symp. Handheld and Ubiquitous Comput-
ing (HUC 00), Springer, 2000, pp. 25–27.

3. W.S. Conner, L. Krishnamurty, and R.
Want, “Making Every Day Life Easier
Using Dense Sensor Networks,” Proc. Ubi-
comp 2001, Springer, 2001, pp. 49–55.

4. S. Helal, “Standards for Service Discovery
and Delivery,” IEEE Pervasive Computing,
vol. 1, no. 3, July–Sept. 2002, pp. 95–100.

5. M. Barr, “Java Technology Overview,”
Proc. Embedded Systems Conf. San Fran-
cisco, CMP Media LLC, 2002, parts 1 and
2, nos. 308 and 348.

6. M. Laukkanen, “Java on Handheld Devices:
Comparing J2me Cdc to Java 1.1 and Java
2,” CiteSeer, NEC Research Inst., 2001;
http://citeseer.nj.nec.com/473890.html.

7. P. Huang et al., “Jini for Ubiquitous Devices,”
CiteSeer, NEC Research Inst., 2002; http://
citeseer.nj.nec.com/537253.html.

8. V. Lenders, P. Huang, and M. Muheim,
“Hybrid Jini for Limited Devices,” Proc.
IEEE Int’l Conf. Wireless LANs and Home
Networks (ICWLHN 01), World Scientific
Publishing, 2001, pp. 27-34.

74 PERVASIVEcomputing www.computer.org/pervasive

the AUTHORS

Peter Schramm is a doctoral candidate at the Computer Engineering Institute of
the University of Dortmund, Germany. His research interests include ubiquitous
computing and middleware systems. He received a diploma in electrical engineer-
ing from the University of Dortmund. Contact him at the Computer Eng. Inst., Univ.
of Dortmund, Otto-Hahn-Str. 4, D-44221 Dortmund, Germany; peter.schramm@
uni-dortmund.de.

Edwin Naroska is an assistant professor at the Computer Engineering Institute of
the University of Dortmund. His research interests include design and verification of
VLSI circuits and design of hardware and software for embedded systems. He re-
ceived a PhD in electrical engineering from the University of Dortmund. Contact
him at edwin.naroska@uni-dortmund.de.

Peter Resch is an electrical engineer at the Computer Engineering Institute of the
University of Dortmund. His research interests include microprocessor design and
the design of mobile and ubiquitous devices and their applications. He received a
graduate engineering degree from the Dortmund University of Applied Sciences.
Contact him at peter.resch@uni-dortmund.de.

Jörg Platte is a doctoral candidate at the Computer Engineering Institute of the
University of Dortmund. His research interests include embedded systems, and
security and privacy in ubiquitous computing environments. He received a PhD
in electrical engineering from the University of Dortmund. Contact him at joerg.
platte@uni-dortmund.de.

Holger Linde is a doctoral candidate at the Graduate School of Production Eng-
ineering and Logistics, Dortmund. His research interests include embedded and
ubiquitous computing, particularly localization methodologies. He received a
diploma in electrical engineering from the University of Dortmund. Contact him
at holger.linde@uni-dortmund.de.

Guido Stromberg is a research staff expert at Infineon Technologies, Corporate
Research. His research interests include signal processing, coding theory, embedded
systems, and mobile networking. He received a PhD in electrical engineering from
the University of Dortmund. Contact him at guido.stromberg@infineon.com.

Thomas Sturm is a professor of mathematics at the University of the Federal Armed
Forces, Munich. His research interests include numerical algorithms and system
architectures for ambient intelligence, stochastic algorithms, decoding methods for
communications, and nonlinear optimization theory. He received a doctorate in
mathematics from the University of Technology in Munich, and a doctorate in elec-
trical engineering from the University of the Federal Armed Forces, Munich. Contact
him at thomas.sturm@unibw-muenchen.de.

S E N S O R A N D A C T U AT O R N E T W O R K S

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

