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80 million tiny images: a large dataset for
non-parametric object and scene recognition

Antonio Torralba, Rob Fergus and William T. Freeman

Abstract—With the advent of the Internet, billions of images
are now freely available online and constitute a dense sampling
of the visual world. Using a variety of non-parametric methods,
we explore this world with the aid of a large dataset of 79,302,017
images collected from the Internet.

Motivated by psychophysical results showing the remarkable
tolerance of the human visual system to degradations in image
resolution, the images in the dataset are stored as 32 32
color images. Each image is loosely labeled with one of the
75,062 non-abstract nouns in English, as listed in the Wordnet
lexical database. Hence the image database gives a comprehgasi
coverage of all object categories and scenes. The semanti
information from Wordnet can be used in conjunction with
nearest-neighbor methods to perform object classi cation over
a range of semantic levels minimizing the effects of labeling
noise. For certain classes that are particularly prevalent in ¥
the dataset, such as people, we are able to demonstrate a
recognition performance comparable to class-speci c Viola-Jones
style detectors. We also demonstrate a range of other applicatisn »
of this very large dataset including automatic image colorization
and picture orientation determination.

Index Terms— Object recognition, tiny images, large datasets,
Internet images, nearest-neighbor methods.

. INTRODUCTION Fig. 1. 15t & 3 columns: Eight32 32 resolution color images. Despite

With overwhelming amounts of data, many problems can Ig’eir low resolution, it is still possible to recognize mosttbe objects and

\ved with h d f histi ,d lgorith scenes. These are samples from a large datase®®B2 32 images we
SO V_e without the nee. -or Sop 'St'cat.e algorithms. Orm_ collected from the web which spans all visual object clasg88 & 4t
ple in the textual domain is Google's “Did you mean?” tool @i columns: Collages showing tH& nearest neighbors within the dataset to each
corrects errors in search queries, not through a complesinar lngi in the a_dlacentrfowmn- INOtZ thbe' CO"SIStean_Iy betW'té_I;lebOFS

s HTH _ - and the query image, having re ated o jects In similar spal ngements.

of the query_ but by memorizing billions of query answer_ palrThe power of the approach comes from the copious amount of datser
and suggesting the one closest to the users query. In ther,paghan sophisticated matching methods.
we explore a visual analog to this tool by using a large datase

of 79 million images and nearest-neighbor matching schemes

When very many images are available, simple image indexingThe key question that we address in this paper is: How big
techniques can be used to retrieve images with object afangoes the image dataset need to be to robustly perform retmyni
ments to the query image. If we have a big enough databagging simple nearest-neighbor schemes? In fact, it is anttet
then we can nd, with high probability, images visually céos the size of the dataset required is at all practical sinceethee an
similar to a query image, containing similar scenes withilsim effectively in nite number of possible images the visualstm
objects arranged in similar spatial con gurations. If theaiges i can be confronted with. What gives us hope is that the visual
the retrieval set are partially labeled, then we can profat#e world is very regular in that real world pictures occupy orady
labels to the query image, so performing classi cation. relatively small portion of the space of possible images.

Nearest-neighbor methods have been used in a variety of comsyydying the space occupied by natural images is hard due to
puter vision problems, primarily for interest point matehi[S], the high dimensionality of the images. One way of simplifyin
[17], [27]. They have also been used for global image matghifhis task is by lowering the resolution of the images. When we
(e.g. estimation of human pose [36]), character recogmif8], ook at the images in Fig. 1, we can recognize the scene and its
and object recognition [S], [35]. A number of recent papeaséh constituent objects. Interestingly though, these pistirave only
used large datasets of images in conjunction with purely-nog> 32 color pixels (the entire image is just a vector 3672
parametric methods for computer vision and graphics apitios  dimensions with8 bits per dimension), yet at this resolution, the
[20], [39]. images already seem to contain most of the relevant inféomat

) i S needed to support reliable recognition.
The authors are with the Computer Science and Arti cial ligeince Lab . . . . . . .
(CSAIL) at the Massachusetts Institute of Technology. An important bene t of working with tiny images is that it

Email: f torralba,fergus, bil§@csail.mit.edu becomes practical to store and manipulate datasets orders o
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Fig. 2. a) Human performance on scene recognition as a funofieesolution. The green and black curves show the performanccolor and grayscale
images respectively. For col@2 32 images the performance only drops B% relative to full resolution, despite having 1/64th of thexgls. b) Car
detection task on the PASCAL 2006 test dataset. The colootsl show the performance of four human subjects classifyimg tersions of the test data.
The ROC curves of the best vision algorithms (running on fafialution images) are shown for comparison. All lie below teefgrmance of humans on
the tiny images, which rely on none of the high-resolutionsceeploited by the computer vision algorithms. ¢) Humans carecty recognize and segment
objects at very low resolutions, even when the objects itafsm can not be recognized (d).

magnitude bigger than those typically used in computeronisi that 32 32 color images contain enough information for scene

Correspondingly, we introduce, and make available to rebeas, recognition, object detection and segmentation (even when

a dataset 079 million unique32 32 color images gathered from objects occupy just a few pixels in the image). As we will see

the Internet. Each image is loosely labeled with one of 75,06n Fig. 2, a signi cant drop in performance is observed when

English nouns, so the dataset covers all visual objectetadhis the resolution drops below 32ixels. Note that this problem is

is in contrast to existing datasets which provide a spareeten distinct from studies investigating scene recognitiomgsvery

of object classes. short presentation times [11], [30], [33], [34]. Here, weear
The paper is divided in three parts. In Section 2 we invetgigainterested in characterizing the amount of informatiorilatée in

the limits of human recognition, establishing the minimasa- the image as a function of the image resolution (with no cairst

lution required for scene and object recognition. In Setdi®@ on presentation time).

and 4 we introduce our dataset 7 million images and explore  |n cognitive psychology, theist of the scene [30], [44] refers

some of its properties. In Section 5 we attempt scene anddbjgy a short summary of the scene (the scene category, and a

recognition using a variety of nearest-neighbor methode Wescription of a few objects that compose the scene). In atenp

measure performance at a number of semantic levels, obtginjision, the termgist is used to refer to a low dimensional

impressive results for certain object classes. representation of the entire image. Low dimensional glabalge
representation have been used to for scene recognition [RH]
Il. LOw DIMENSIONAL IMAGE REPRESENTATIONS [22], for providing context for object detection [38], [40fepth

. . estimation [41] and image retrieval for computer graphi28][
Non-parametric approaches must cover the input space, 4A%his section, we show that this low dimensional represibon

our sch.eme relies on the dataset?g)‘million images densely can rely on very low-resolution information and, therefocan

populating the manifold of natural images. We seek a comp%:é computed very ef ciently.

image representation in which the intrinsic dimensiogadit the

manifold is a low as possible, since that makes the manifold

easy to cover, while preserving the semantic content. One of

the simplest mechanisms to reduce the dimensionality of

image is by lowering its resolution. A second benet of

low resolution representation is that the images can bexetle

ef ciently and provide the storage savings essential foalie

with very large datasets. However, it is important that toe |

dimensional representation not loses important imagernmédion.

In this section we study the minimal image resolution whith s

retains useful information about the visual world. In order

do this, we perform a series of human experiments on (i) sc

recognition and (ii) object recognition. Studies on facecpption

[1], [19] have shown that onlg6 16 pixels are needed for robust

face reCOgmtIQ.n' This remarkable performance is also donna 132 32 is very very small. For reference, typical thumbnail sizes: a

scene recognition task [31]. Google images130  100), Flikr (180 150), default Windows thumbnails
In this section we provide experimental evidence showingo 90).

n .
a?\. Scene recognition

We evaluate the scene recognition performance of humans as
the image resolution is decreased. We used a datadétsifenes
was taken from [12], [22], [32]. Each image was shown at one
of 5 possible resolutions8t, 162, 322, 64° and 256° pixels)
and the participant task was to assign the low-resoluti@tupe

}9 one of the 15 different scene categories (bedroom, saburb
ene” - . L : S .
industrial, kitchen, living room, coast, forest, highwayside city,



3000

mountain, open country, street, tall buildings, of ce, astdref. altavista

Fig. 2(a) shows human performance on this task when presente Total, U_']jiqueg _ ask
with grayscale and color imageof varying resolution. For & 2200 non-untorm images: cydral

79,302,017 flickr
google

picsearch

grayscale images, humans need aroéad 64 pixels. When the &

images are in color, humans need o8% 32 pixels. Below this 2| Total number of words:

Q c
resolution the performance rapidly decreases. Therefarmans % 75,062 2 webshots
need around 3000 dimensions of either color or grayscake tat 3 *>*° Voan # . 5
perform this task. In the next section we show tBat 32 color ‘E’ ela856'mages perword-i
images also preserve a great amount of local informationtiaaid 3 ' '
many objects can still be recognized even when they occugty ju
a few pixels. 500
B. Object recognition Nu?nber é???nagégoger ksgfl?/vord ° Reé(;)ll (imagzgorank) .

Recently, the PASCAL object recognition challenge evadat
a large number of algorithms in a detection task for seveb@ai Fig 3. statistics of the tiny images database. a) A histogoArmages
categories [10]. Fig. 2(b) shows the performances (ROCex)rof per keyword collected. Around %0 of keywords have very few images. b)
the best performing algorithms in the car classi cationktgise. Performance of the various engines (evaluated on handeldlgzbund truth).
is there a car present in the image?). These algorithms rmqtﬁgggt-le and Altavista are the best performing while Cydral &tidkr the
access to relatively high resolution images. We studiedathikty
of human participants to perform the same detection taskising
very low-resolution images. Human participants were shownecognition tasks. One important advantage of very low!tagm
color images from the test set scaled to h&2epixels on the images is that it becomes practical to work with millions of
smallest axis, preserving their aspect ratio. Fig. 2(b)xshsome images. In this section we will describe a dataset16? tiny
examples of tiny PASCAL images. Each participant classi etmages.
between200 and 400 images selected randomly. Fig. 2(b) shows Current experiments in object recognition typically u-10*
the performances of four human observers that particip@ied images spread over a few different classes; the largeskablai
the experiment. Although around %0of cars are missed, the dataset being one with 256 classes from the Caltech visionpgr
performance is still very good, signi cantly outperfornginthe [18]. Other elds, such as speech, routinely us® data points
computer vision algorithms using full resolution imagesisT for training, since they have found that large training setsvital
shows that even though the images are very small, they eontér achieving low errors rates in testing. As the visual wloi$
suf cient information for accurate recognition. far more complex than the aural one, it would seem naturaséo u

Fig. 2(c) shows some representat®?’ images segmented by very large set of training images. Motivated by this, andahiity
human subjects. It is important to note that taking objeats oof humans to recognize objects and scene82n 32 images,
of their context drastically reduces recognition rate..Fgd) we have collected a database of nearlf such images, made
shows crops of some of the smallest objects correctly reézedn possible by the minimal storage requirements for each image
when shown within the scene. Note that in isolation, the abje
cannot be identi ed since the resolution is so low. Hence thg collection procedure
recognition of these objects within the scene is almostr&ti
based on context. Clearly, sufcient information remainsr f
reliable segmentation. However, not all visual tasks casdbeed
using such low resolution images. The experiments in thitice
have studied only recognition tasks — the focus of this paites
results in this section suggest tig2 32 color images are the
minimum viable size at which to study the manifold of natur
images. Any further lowering in resolution results in a cgrop A
in recognition performance.

We use Wordnétto provide a comprehensive list of all classes
likely to have any kind of visual consistency. We do this by
extracting all non-abstract nouns from the database, 25¢i6
them in total. In contrast to existing object recognitiortad@ts
which use a sparse selection of classes, by collecting isnémge
azilll nouns, we have a dense coverage of all visual forms.
We selected 7 independent image search engines: Altavista,
sk, Flickr, Cydral, Google, Picsearch and Webshots (athere
outputs correlated with these). We automatically downl@éd
the images provided by each engine for all 75,846 non-atistra
IIl. A LARGE DATASET OF32 32IMAGES nouns. Running ove8 months, this method gathered 97,245,098

As discussed in the previous sectioB®, 32 colorimages con- images in total. Once intra-word duplicatesnd uniform images

tain the information needed to perform a number of challeggi (images with zero variance) are removed, this number isaediu
to 79,302,017 images from 75,062 words (arourtd &f the

2Experimental details: 6 participants classi ed 585 color gesa as be-
longing to one of the 15 scene categories from [12], [22],].[3thages 4Wordnet [13] is a lexical dictionary, meaning that it gives themantic
were presented at 5 possible resolution, (82, 322, 642 and 256). Each relations between words in addition to the information ulsugiven in a
image was shown at 5 possible sizes using bicubic interpolat reduce dictionary.
pixelation effects which impair recognition. Interpolatiovas applied to the ~ 5The tiny database is not just about objects. It is about ¢hiny that can
low-resolution image with 8 bits per pixel and color chanrelages were be indexed with Wordnet and this includes scene-level elssch as streets,
not repeated across conditions. 6 additional particippetéormed the same beaches, mountains, as well as category-level classes ardspexi ¢ objects
experiment but with gray scale images. such as US Presidents, astronomical objects and Abyssiaian ¢

3100% recognition rate can not be achieved in this dataset as thate At present we do not remove inter-word duplicates since ifiéng) them
perfect separation between the 15 categories. in our dataset is non-trivial.



keywords had no images). Storing this number of images &t quOZ ‘ : /’/ 1 = S T
resolution is impractical on the standard hardware useduin o%O:S e : : .
experiments so we down-sampled the image82o 32 as they & . : g :

were gathere The dataset ts onto a single hard disk, occupying3 | It
760Gb in total. The dataset may be downloaded frottp: R ‘
\\people.csail.mit.edu\torralba\tinyimages . Qoaf : : P L o -

Fig. 3(a) shows a histogram of the number of images per clasg e =700 : : 7
Around 10% of the query words are obscure so no images can bg e —;%%800000 ; 3 .
found on the Internet, but for the majority of words a reassea g : w=79,000000[| yal G0 L .
number of images are found. We place an upper limi3o60 & ,§ id sz 108 1 1? 101N 1P
images/word to keep the total collection time to a reasankgviel.

Although the gathered dataset is very large, it is not necégs ' ' '

representative of all natural images. Images on the Intdrage Fig- 4. Evaluation of the method for computing approximate esfar
. . . . neighbors. (a) Probability that an image from the set of ereatest neighbors

_thelr own biases (e.g. objects _tend to be center?d and _'al'ﬂlﬁ_ Sy , with N = 50, is inside the approximate set of nearest neighl&is

in the image). However, web images de ne an interestingalisuas a function oM . b) Number of approximate neighbor# () that need to

world for developing computer vision applications [14],5]1 be considered as a function of the desired number of exachbeig (\) in

[37] order to have a probability d@:8 of nding N exact neighbors. Each graph
' corresponds to a different dataset size, indicated by ther code.

B. Characterization of labeling noise

The images gathered by the engines are loosely Iabeledtri]r? probability of nding similar images will increase. Tlywal of

. . this section is to evaluate experimentally how fast thidptmlit
that the visual content is often unrelated to the query worg . P ntaty g y
.~increases as a function of dataset size. In turn, this tellsow big

(for example, see Fig. 13). In Fig. 3(b) we quantify this gsin - o
a hand-labeled portion of the datas#8 animal classes were the dataset needs to be to give a robust recognition perfuena

labeled in a binary fashion (belongs to class or not) and allrec
precision curve was plotted for each search engine. Therififf
performance of the various engines is visible, with Googid a AS @ rst step, we use the sum of squared differences (SSD)
Altavista performing the best and Cydral and Flickr the worst0 compare two images. We will de ne later other similarity
Various methods exist for cleaning up the data by removifgeasures that incorporate invariances to translationssealihg.
images visually unrelated to the query word. Berg and Forsyl he SSD between two imagés and | is:

[6] have shovyn a variety of effective methods for doing thighw D2,= X (1(xy:c)  1a(xy;c))? 1)
images of animals gathered from the web. Berg et al. [4] sklowe Xyic

how text and visual cues could be used to cluster faces oflpeop
from cluttered news feeds. Fergus et al. [14], [15] have shtwe
use of a variety of approaches for improving Internet imaggash
engines. Li et al. [25] show further approaches to decregdsibel

A. Distribution of neighbors as a function of dataset size

Each image is normalized to have zero mean and unit fiorm
Computing similarities among9 10 images is computationally
expensive. To improve speed, we index the images using gte r

. . 7 . . .
noise. However, due to the extreme size of our dataset, ibtis o principal components of th&d 10" images (9 s the maxi-

practical to employ these methods. In Section 5, we show tHaHm number of components per imag(z such that the entire index
reasonable recognition performances can be achievedtdehpi structure can be heId_ in memory). Tief prope_rty of the power
high labeling noise. spectrum of natural images means that the distance between t

images can be approximated using feV\g,principaI compongvis.
compute the approximate distarB&y=  $_; (vi(n) va(n))?,
wherev; (n) is then™ principal component coef cient for th&"
Despite32 32 being very low resolution, each image lives inmage, andC is the number of components used to approximate
a space oB072dimensions. This is a very large space — if eacthe distance. We de n&y as the set ol exact nearest neighbors
dimension has bits, there are a total af0"*® possible images. and$,, as the set ok approximate nearest neighbors. Fig. 4(a)
This is a huge number, especially if we consider that a humandhows the probability that an image, of indieXrom the setSy
a 100 years only gets to sae'! frames (at 30 frames/second).is also insideSy : P(i 2 Suji 2 Sy ). The plot corresponds to
However, natural images only correspond to a tiny fractibn ey = 50. Fig. 4(b) shows the number of approximate neighbors
this space (most of the images correspond to white noisd)it@ (M ) that need to be considered as a function of the desired numbe
natural to investigate the size of that fraction. A numbestoflies of exact neighborsN) in order to have a probability 08:8 of
[8], [23] have been devoted to characterize the space ofralatunding N exact neighbors. As the dataset becomes larger, we
images by studying the statistics of small image patcheweder, need to collect more approximate nearest neighbors in dudler
low-resolution scenes are quite different to patches etdthby have the same probability of including the rst exact nearest
randomly cropping small patches from images. neighbors. These plots were obtained from 200 images fochwhi
Given a similarity measure, the question that we want to @nswye computed the exact distances to all @ 10’ images.
is: how many images are needed to be able to nd a similar image For the experiments in this paper, we use the following pro-
to match any imput image®s we increase the size of the datasegedure. First, using exhaustive search we nd the close0Qb

IV. STATISTICS OF VERY LOW RESOLUTION IMAGES

"We store a version of the images that maintained the originmagatio 8Normalization of each image is performed by transforming the inatp
(the minimum dimension was set at 32 pixels) and a link to theimalg a vector concatenating the three color channels. The narat@in does not
thumbnail and high resolution URL. change image color, only the overall luminance.
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Fig. 6. Image matching using distance metiissg D warp and D spitt. After
transforming each neighbor by the optimal transformation; shaglasses
always results in a poor match. However, for the car exampke nthtched
image approximates the pose of the target car.
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c) d)

Probability for image duplicates
Probability for same category

Fig. 5. Exploring the dataset usimdssq (@) Cumulative probability that the
nearest neighbor has a correlation greater thaBach of the colored curves
shows the behavior for a different size of dataset. (b) Csession of gure
(a) plots the probability of nding a neighbor with correlab > 0:9 as a
function of dataset size. (c) Probability that two images @duplicates as a
function of pixel-wise correlation. (d) Probability thawd images belong to
the same category as a function of pixel-wise correlatiorpl{date images
are removed). Each curve represents a different human labeler

image$ per image. From Fig. 4(a) we know that more tha®430
of the exact neighbors will be part of this approximate nbiyh D Dehi
set. Then, within the set of 16,000 images, we compute thetexa ssd shift
distances to provide the nal rankings of neighbors.

Fig. 5 shows several plots measuring various propertiebi@s Fig. 7.  Sibling sets from 79,302,017 images, found with diseametrics
size of the dataset is increased. The plots use the norrdaliZ&sss andDshiii. Dshite provides better matches thahssq
correlation between images (note th&t2, = 2(1 ). In
Fig. 5(a), we show the probability that the nearest neightas ) ) -
a normalized correlation exceeding a certain value. EachecuAS the normalized correlation exceeds3, the probability of
corresponds to a different dataset size. Fig. 5(b) showsticae Pelonging to the same class grows rapidly. Hence a simple K-
section through Fig. 5(a) at the correlations and0:9, plotting N€arest-neighbor approach might be effective with our size
the probability of nding a neighbor as the number of imagedataset. We will explore this further in Section V.
in the dataset grows. ¢From Fig. 5(b) we see that a third of
the images in the dataset are expected to have a neighbor visthimage similarity metrics

correlatio.n> 0:8. _ . . We can improve recognition performance using better messur
Many images on the web appear multiple times. Fig. 5(¢¥ image similarity. We now introduce two additional sinmityt

shows the probability of the matched image being a duplicafgeasures between a pair of imagesand |, that incorporate

removed manually all the image pairs that were duplicates.

In Fig. 5(d) we explore how the plots shown in Fig. 5(a) & (b)
relate to recognition performance. Three human subjetis|éa
pairs of images as belonging to the same visual class or not D farp = Min (I(xyic) T [la(xyic))?

(pairs of images that correspond to duplicate images areved). Xyic

The plot shows the probability that two images are labeled as |n this expression, we minimize the similarity by transferm

belonging to the same class as a function of image similarity ing I, (horizontal mirror; translations and scaling up 10
pixel shifts) to give the minimum SSD. The transformation

9The exhaustive search currently take8 seconds per image using the parameters are optimized by gradient descent [28].

In order to incorporate invariance to small translations,
scaling and image mirror, we de ne the similarity measure:
X

principle components method. Undoubtedly, if ef cient dateustures such We allow for additional distortion in the images by shifting
as a kd-tree were used, the matching would be signi cantlyefasNister . L o . .
and Stewenius [29] used related methods to index over 1 milfitages in every pixel individually within a5 by 5 window to give

1sec. minimum SSD. This registration can be performed with
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Fig. 8. As we increase the size of the dataset, the qualithefetrieved set Fig. 9. This gure shows two examples. (a) Query image. (b)tFigof 80

increases dramatically. However, note that we need to isertize size of the neighbors found usin® spi.. (¢) Ground truth Wordnet branch describing the

dataset logarithmically in order to have an effect. Theseltesre obtained content of the query image at multiple semantic levels. (d) ®ed-formed

using D ghift @s a similarity measure between images. by accumulating branches from all 80 neighbors. The numberaah exode
denotes the accumulated votes. The red branch shows the widdke most
votes. Note that this branch substantially agrees with thedh for vise and
for person in the rst and second examples respectively.

more complex representations than pixels (e.g., Berg and
Malik [5]). In our case, the minimum can be found by
exhaustive evaluation of all shifts, only possible due ® th Fig. 1 shows examples of query images and sets of neighboring
low resolution of the images. images, from our dataset of 79,302,017 images, found Uu3ig.
X In the rest of the paper we will call the set of neighboring gas
D= _min (I11(xy;c) fa(x+ Dx;y+ Dy;0))®  asibling set Fig. 8 shows the effects of increasing the dataset
1Py 1 Wyie size on the quality of the sibling set. As we increase the efze
the dataset, the quality of the retrieved set increasesatieatly.
. - S Speci cally, note the change in performance when using only
\r/\vaipl_lr_lg[l p]arameters obtained after optimization Mfarp, around 10,000 images (a typical number used in image ratriev
2 2l research) compared &®®. Despite the simplicity of the similarity

Fig. 6 shows a pair of images being matched using the 3 metriggasures used in these experiments, due to the large siae of o
and shows the resulting neighbor images transformed by tHetaset, the retrieved images are very similar (hesibing9 to
optimal parameters that minimize each similarity measilitee the target image. We will now quantify this observation ir th
gure shows two candidate neighbors: one matching the targeext section.
semantic category and another one that corresponds to agwron
match. ForDwarp and Dghir We show the closest manipulated V. RECOGNITION
image to the targetDwarp l00ks for the best translation, scaling .
and horizontal mirror of the candidate neighbor in order mich A Wordnet voting scheme
the targetD gt further optimizes the warping provided warp We now attempt to use our dataset for object and scene
by allowing pixels to move independently in order to minimiz recognition. While an existing computer vision algorithrmutd
the distance with the target. Fig. 7 shows two examples bé adapted to work 082 32 images, we prefer to use a simple
qguery images and the retrieved sibling set, out of 79,302,0hearest-neighbor scheme based on one of the distance snetric
images, usind ssq and Dspir. Both measures provide very goodDssg Dwarp OF Dshiri. Instead of relying on the complexity of
matches, buD gy returns closer images at the semantic levethe matching scheme, we let the data to do the work for us:
This observation will be quanti ed in Section V. the hope is that there will always be images close to a given

In order to get better matches, we initialize with the
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Fig. 11. ROC curves for people detection (not localizationjnages drawn
randomly from the dataset of 79 million. The performance is &fiom of the
person's size in an image, the numbers indicating the fraatiothe image
occupied by the head.

separately. Instead, using the Wordnet hierarchy, we can
perform classication at a variety of different semantic
levels. So instead of just trying to recognize the noun
“yellow n tuna”, we may also perform recognition at the
level of “tuna” or “sh” or “animal”. This is in contrast to
current approaches to recognition that only consider desjng
manually imposed, semantic meaning of an object or scene.
If classi cation is performed at some intermediate sen@anti
level, for example using the noun “person”, we need not only
consider images gathered from the Internet using “person”.
Using the Wordnet hierarchy tree, we can also draw on
all images belonging to nouns whose hypernyms include
“person” (for example, “arithmetician”). Hence, we can

Fig. 10. Some examples of test images belonging to the “persaste of the massively increase thg number of images in our training
Wordnet tree, organized according to body size. Each paiwstthe query set at higher semantic levels. Near the top of the tree,
image and the 25 closest neighbors ou78fmillion images usind st With however, the nouns are so generic (eg “object") that the

32 32 images. Note that the sibling sets contain people in similaepp

with similar clothing to the query images. child images recruited in this manner have little visual

consistency, so despite their extra numbers may be of little

use in classi catiof'.

query image with some semantic connection to it. The goal of Our classi cation scheme uses the Wordnet tree in the follow

this section is to show that the performance achieved caohmatng way. Given a query image, the neighbors are found usingeso

that of sophisticated algorithms which use much smallénitig ~ Similarity measure. Each neighbor in turn votes for its lofan

sets. within the Wordnet tree. In this manner votes are accumdlate
An additional factor in our dataset is the labeling noisec@pe across a range of semantic levels and the effects of theirigpel

with this we propose a voting scheme based around the Wordneise are averaged out over many neighbors. Classi catiay m

semantic hierarchy. be performed by assigning the query image the label with the
Wordnet [13] provides semantic relationships between thgost votes at the desired height (i.e. semantic level) withe

75,062 nouns for which we have collected images. For siritylic tree, the number of votes acting as a measure of con dence in

we reduce the initial graph-structured relationships leefmwords the decision.

to a tree-structured one by taking the most common meaning ofin Fig. 9(a) we show a query image of a vise from our test

each word. The result is a large semantic tree whose nodssgstorset. In Fig. 9(b) we show the rst 16 images from tHe = 80

of the 75,062 nouns and their hypernyms, with all the leaedisgp nearest neighbors usingshix over the79 million images. Note

nouns®. Fig. 9(c) shows the unique branch of this tree belongiri§at many of the neighbors, despite not being vices, are $amde

to the nouns “vise” and “chemist”. The Wordnet tree providesf device or instrument. In Fig. 9(c) we show the Wordnet bran

two bene ts:
. . ~ The use of Wordnet tree in this manner implicitly assumes thaiasgic
Recognition of a test image can be performed at multiplghd visual consistency are tightly correlated. While this fmige the case

semantic levels. Given the large number of classes in ofar certain nouns (for example, “poodle” and “dachshundt)isi not clear

i ; P ow true this is in general. To explore this issue, we comséd a poster
dataset (75,062) and their highly specic nature, it is no@onsisting of 75,062 tiles. Each title is the arithmetic ager of the rst 50

practical or desirable to try and classify each of the clsissgages belonging to a given noun. The titles are arrangedmitre poster
according to their semantic meaning, using the Wordnet tréestalate the 2-
109Note that not all nouns are leaf nodes since many of the 75,0668snare D space. As the distance between two tiles relates to theiasgc similarity,
hypernyms of other nouns. E.g. “yellow n tuna” and “sh” arevb nouns. the relationship between semantic and visual worlds mayyebsijudged by
The former is a leaf node, while the latter is in intermediatdensince “sh”  the viewer. The poster may be viewed http:\\people.csail.mit.
is a hypernym of “yellow n tuna”. edul\torralba\tinyimages



100 100 and size of the body in the image, which varies considerably i
8o} - - 8ol - - the examples.
_5 _5 To classify an image as containing people or not, we use
2 60 —— 2 6o the scheme introduced in Section V-A, collecting votes from
g == Dyarp g the 80 nearest neighbors. Note that the Wordnet tree allavs u
0. 401 | ==Dshit A 40 —_ make use of hundreds of other words that are also related to
sl 20 790,000 “person” (e.g. artist, politician, kid, taxi driver, etcJo evaluate
— e performance, we used two different sets of test images. The
05 56 0 % — = T00 consisted of a random sampling of images from the dataset. Th
Recall Recall second consisted of images returned by Altavista using tieeyq
a) Person detection “person”.
100 100 1) Evaluation using randomly drawn imaged:125 images
sl - sol were randomly drawn from the dataset of 79 million (Fig. 10
S S shows 6 of them, along some of their sibling set). For evanat
‘@ 60} ‘D 60} - - purposes, any people within the 1125 images were manually
o o segmentetf.
o 40 Q 40 Fig. 11 shows the classi cation performance as the size of
ol ol the person in the image varies. When the person is large in
the image, the performance is signi cantly better than wiiten
0 : 0 ‘ is small. This occurs for two reasons: rst, when the perssn i

50 100 0 50 100
Recall Recall

b) Person detection (head size > 20%)

large, the picture become more constrained, and hence gndin
good matches becomes easier. Second, the weak labelsaasdoci
with each image in our dataset typically refer to the largdgect
Fig. 12, (a) Recall o . e d o (ocalization) in the image.
1g. . a, ecall-precision curves for people detectioot (ocalization H el _ : -
in images drawn randomly from the dataset of 79 million. (b) As (@@ but . F.Ig. 12 shows precision reca“.curves as a function of heze s
for the subset of test images where the person's head occupkagh of the ~ Similarly measure and dataset size. As expected, the peafore
image. The left column compares the three different similarityrice using is superior when the person is large in the image and the
all 79 millions images. The black line indicates chance-lgwetformance. fyll 79 million images are used. ThBgpni Similarity measure
The graphs on the right compare performance udngi: as a function of terf bottD dD s
dataset size. outpertorms boliD ssq and Dwarp.
2) Evaluation using Altavista image®ur approach can also
_ ' be used to improve the quality of Internet image search esgin
for “vise”. In Fig. 9(d) we show the accumulated votes frome thwe gathered 1018 images from Altavista image search usiag th
neighbors at different levels in the tree, each image voiiith  keyword “person”. Each image was classi ed using the apginoa
unit weight. For clarity, we only show parts of the tree withelst described in Section V-A. The set of 1018 images was then
three votes (the full Wordnet tree has; 815 non-leaf nodes). re-ordered according to the condence of each classi gatio
The nodes shown in red illustrate the branch with the mostsjot Fig. 13(a) shows the initial Altavista ranking while Fig. (b3
which matches the majority of levels in the query image bhanghows the re-ordered set, showing a signi cant improvenient
(Fig. 9(c)), demonstrating how precise classi cations barmade quality.
despite signi cant labeling noise and spurious siblings. ~ To quantify the improvement in performance, the Altavista
Other work making use of Wordnet includes Hoogs and Collingages were manually annotated with bounding boxes aromyd a
[21] who use it to assist with image segmentation. While ngfeople present. Out of the 1018 images, 544 contained people
using Wordnet explicitly, Barnard et al. [2] and Carbonedtcal. and of these, 173 images contained people occupying more tha

[7] learn models using both textual and visual cues. 20% of the image.
. Using this scheme we now address the task of classﬁylng,:ig 14 shows the precision-recall curves for the people de-
images of people. tection task. Fig. 14(a) shows the performance for all At

_ images while Fig. 14(b) shows the performance on the subset
B. Person detection where people occupy at least%0of the image. Note that the

In this experiment, our goal is to label an image as contginiiaw Altavista performance is the same irrespective of theqes'
a person or not, a task with many applications on the web agige (in both plots, by % recall the precision is at the level
elsewhere. A standard approach would be to use a face dete®fochance). This illustrates the difference between inugxan
but this has the drawback that the face has to be large enougfintage using non visual versus visual cues. Fig. 14 also shows
be detected, and must generally be facing the camera. Wisigeet the results obtained when running a frontal face detéttane
limitations could be overcome by running multiple detest@ach run the face detector on the original high-resolution insage
tuned to different view (e.g. pro le faces, head and shotdde Note that the performance of our approach workingaan 32
torso), we adopt a different approach. images is comparable to that of the dedicated face detecior o
As many images on the web contain pictures of people, a large
fraction (23%) of the 79 million images in our dataset have people '°The images and segmentations are availablehtfr:/labelme.
in them. Thus for this class we are able to reliably nd a h'}ghltcesgig_';'terglu’ browselabelMe/static_web_tinyimages_
consistent set of neighbors, as shown in Fig. 10. Note that MO 131he detector is the OpenCV implementation of the Viola and Sone
of the neighbors match not just the category but also thetilmta boosted cascade [26], [43].



a) Altavista ranking b) Sorted by the tiny images

Fig. 13. (a) The rst 100 images returned by Altavista whemngsihe query “person” (out of 1018 total). (b) The rst 100 inesgafter re-ordering using
our Wordnet voting scheme with the 79,000,000 tiny imagess Plerformance improvement is quanti ed in Fig. 14.

C. Person localization
c c While the previous section was concerned with an object
-% :% detection task, we now address the more challenging problem
S 2 of object localization. Even though the tiny image datases ot
a 40 S 4 been labeled with the location of objects in the images, we ca
Tiny images ranking i i Qi
. V3 tetector (high-res) i — 7 use the V\_/eakly labeled (i.e. only_a smgle global label is/joted
——— VJ detector (32x32) for each image) dataset to localize objects.
. Altavista ranking . Much the recent work in object recognition uses explicit
e 20 4 6 80 100 0 20 4 60 8 106 models that labels regions (or pixels) of images as being ob-
Recall Recall . oS
a) b) ject/background. In contrast, we use the tiny image dattset

localize without learning an explicit object model. It isportant
Fig. 14. Evaluation of the results from Fig 13, comparing tleefgrmance to emphasize th‘."‘t this _operatl?n IS per_formed .WIthOUt thedne
of the initial Altavista ranking with the re-ordered imagesing the Wordnet OF Manual labeling of images: all the information comesniro
voting scheme and also a Viola & Jones-style frontal faceatete(a) shows the loose text label associated with each image.
e e e ek 13 e S e et 2oy The [de@ IS 10 extract muliple putative ciops of the high
of the images. resolution query image (Fig. 15a-c). For each crop, we eesiz
it to 32 32 pixels and query the tiny image database to obtain
it's siblings set (Fig. 15.d). When a crop contains a persea,
expect the sibling set to also contain people. Hence, thet mos
high resolution images. For comparison, Fig. 14 also shdws tprototypical crops should get have a higher number of votes
results obtained when running the face detector on lowluso for the person class. To reduce the number of crops that need
images (we downsampled each image so that the smallestaisto be evaluated, we rst segment the image using normalized
32 pixels, we then upsampled the images again to the origirwaits [9], producing around 10 segments (segmentation fenper
resolution using bicubic interpolation. The upsampling@ion on the high resolution image). Then, all possible combameti
was to allow the detector to have enough resolution to be tableof contiguous segments are considered, giving a set of ipeitat
scan the image.). The performances of the OpenCV face deteatrops for evaluation. Fig. 15 shows an example of this proced
drop dramatically with low-resolution images. Fig. 16 shows the best scoring bounding box for images fraen th
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Fig. 15. Localization of people in images. (a) input image,Nbymalized- 1
cuts segmentation, (c) three examples of candidate cropshé¢d$ nearest
neighbors of each crop in (c), accompanied by the number osvimethe ¢ 0.8
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c) d)

@ :I Fig. 17. Classifying between pictures of scenes and objéajsExamples

of images classi ed as scenes. The red bounding box denotkssi cation

E] error. (b) The set of images having the fewest “location” go{e) ROC curve
evaluation on test set of 1125 randomly drawn tiny images, a€wth85 are
scenes. (d) Corresponding precision-recall curve.

L]

D| D :| images. With the dataset of 1125 randomly drawn tiny images,
of which 185 are scenes, we evaluate the performance at scene

D |:| IEI versus object classi cation, the results being shown in. Hig.

IDI @ We can also perform classi cation at a ner semantic leveil. |
Fig. 18, we attempt to classify the 1125 randomly drawn insage

(containing objects as well as scenes) into “city”, “rivet'eld”

Fig. 16. Localization examples. Images from the 1016 Altavssit overlaid “ S . .
with the crop that gave the highest “person” score. See taxtiétails. and “mountain” by counting the votes at the correspondlr_}geno
of the Wordnet tree. Scene classi cation for the 32x32 insage

performs surprisingly well, exploiting the large, weaklgbkled
1018 image Altavista test set. database.

D. Scene recognition E. Automatic image annotation

Many web images correspond to full scenes, not individual Here we examine the classi cation performance at a variety
objects. In this section we use our dataset to classify imagésemantic levels across many different classes, not gsple.
between the two; that is to decide that an image is a scelRer evaluation we use the test set of 1125 randomly drawn tiny
and not a picture of an object. Many nodes in the Wordnet trémages, with each image being fully segmented and annotated
refer to scenes and one of the most generic is “location”jngav with the objects and regions that compose each image. To give
children that include “landscape”, “workplace”, “city” dnso a distinctive test set, we only use images for which the targe
on. Using the Wordnet voting scheme of Section V-A, we coumtbject is absent or occupies at le@8% of the image pixels.
the number of votes accumulated at the “location” node of tHdsing the voting tree described in Section V-A, we classi ed
Wordnet tree to classify a given query. Hopefully, scenegesa them usingK =80 neighbors at a variety of semantic levels. To
will have a high count, with the reverse being true for objecimplify the presentation of results, we collapsed the \WWetdree
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VI. OTHER APPLICATIONS

In this section we discuss other applications, beyond meieog
tion, that rely on a dense sampling of the manifold of natural
images. We present two applications: (i) image colorizatid
" false Alam rate fase damrate.  gray scale images; (ii) detecting image orientation.
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The goal of image colorization is to recover the missing colo
information from a gray scale image. This task is generailyed
9 [9°) 05 1 . . . . .
false alarm rate fasealarmrate Py having a user specify colors that the different imageaegi
will have and then using a diffusion process to propagatedhar
Fig. 18. Scene classi cation at a ner semantic level than. Big using the t0 the rest of the image. Given a gray scale query image, we
randomly drawn 1125 image test set. Note that the classi odtmountain”  propose to use the sibling set to de ne a distribution of fales

vs all classes present in the test set (which includes margsikan objects),  q1nrg for jt, with no human labeling. The assumption is that
not “mountain” vs “eld”, “city”, “river” only. Each quadram shows some

examples of high scoring images for that particular scenegoagealong with ir_na_ges in a neighborhood contain similar objects arranged i
an ROC curve (red = 7,900 image training set; yellow = 790,008ges; blue similar locations, thus the colors should be exchangeatleng

= 79,000,000 images). the images in the sibling set. Clearly, this will only work erh
L . L the neighborhood .of the query image js densely populatet;ene
Organism 0.75 Person 0.87 | Insect0.82 | large amounts of images will be required.
/L\(rjté;a“cér?ggl 1 - Al%‘lima:l_l 0.75 1 - E:;i%;% . Fig. 21 shows the various stages of our approach. We start
0% Foodora. 1 ©09f 5‘;:2:2%08(7)9 ® %% Carags | { with a gray scale image (rst row). We search in the tiny image
g | Geological s i L Mountain 0.86 /- | Fowero70 | @ database for similar images using only gray _sc_ale inforomati
S odl B@é;‘g}'%’;?m @ | Riverdss | - 7| (second row). Then, for each of the retrieved siblings, werrdo
Q Drug0.75; .7 D ‘ load the original high resolution color image (third row)h&
& | ; .j/‘i ] ] 1 idea is to use the colors from the sibling images to colorfe t
g 07 o . E { gray scale input image. One possible approach is to compute
< _ i | the arithmetic average of the color sibling images (as shown
osl | —LD;sd | | | in the fourth_ row). The color_channels & b (from t_he_ Lai_o
oo T transformed image) for each pixel from the average siblingge
L . w===Dghift | L | L J . . . .. . e
Lo are copied to the input image, so colorizing it. When theisgd
32;03 18.1105 : 8_1107 %_5103 I 8_11051 8.1107 3351)03 18‘1105 18_1107 are very similar to one another, the average appears shatp an

# of images # of images # of images the colorized image is compelling ( fth row). Alternativel we

can copy the color channels from individual siblings to e

Fig. 19. Classication at multiple semantic levels using 1li2:idomly multiple plausible colorizations of the Inpl_Jt mage (Sbrtbw).
drawn tiny images. Each plot shows a different manually de sedhantic The user can then select the best one. While simple, our appro

level, increasing in selectivity from left to right. The wes represent the has its limitations: by directly copying the color infornt

average (across words at that level) ROC curve area as émnofi number ; ; :
of images in the dataset (reDssq blue=D ghir). Words within each of the across, the edges in the input image are not respected. lthbeu

semantic levels are shown in each subplot, accompanied by @@ ®rve POSSible to improve the qual'ity of the results by using a meéth
area when using the full dataset. The red dot shows the esgpperformance such as Levin et al. [24] which would take color cues from the

if all images in Google image search were used (billion), extrapolating sibling images and propagate within the input image in areedg
linearly. aware manner.

The last column of gure 21 illustrates the sensibility ofigh
approach to the manifold of natural images. In this examipie,
input is a picture upside-down. As this is not a typical pietu
orientation, the image is slightly outside of the manifofdypical

by hand (which had9 levels) down to3 levels corresponding to
one very high level (“organism”, “artifact”), an intermexde level

gg; rss;)tr; ( :ﬁhlcﬁrd %Zg?f)ll) and a level typical of exisg natural images and the retrieved sibling set is not consiste

In Fig. 19 we show the average ROC curve area (across Woréag{%/more. The average sibling image is not as sharp as the one

. ained when the picture was in the correct orientatione Th

at that level) at each of the three semantic levelfggandD shix P . . . .

. . . . rocedure does not provide plausible colorizations. Thpsns
as the number of images in the dataset is varied. Note that i . . . "

S . . the door to automatically predict what is the correct ormion
the classi cation performance increases as the number agés . . : .
. o T of a picture as discussed in the next section.
increases; (iiD shirt outperformsD g4 (iii) the performance drops
off as the classes become more speci c. o ) .
By way of illustrating the quality of the recognition achezy B- Detecting image orientation

by using the 79 million weakly labeled images, we show in Although it is easy for us to tell when a picture it is upside
Fig. 20, for categories at three semantic levels, the imagdswn, currently there is no satisfactory way of doing thusoau
that were more con dently assigned to each class. Note thaatically. We present a simple approach using our largeseéata
despite the simplicity of the matching procedure presehig@, of tiny images. We argue is that when an image has the wrong
the recognition performance achieves reasonable levels &r orientation, it becomes harder to nd good neighbors since i
relatively ne levels of categorization. starts to move away from the manifold de ned by the set of
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Fig. 20. Test images assigned to words at each semantic levelirifages are ordered by voting con dence. The number indictite total number of
positive examples in the test set out of the 1148 images. Ttw oblthe bounding box indicates if the image was correctlyignesd (black) or not (red).
The middle row shows the ROC curves for three dataset sizels<(ré,900 image training set; yellow = 790,000 images; blue £0®000 images). The
bottom row shows the corresponding precision-recall gsaph

Gray scale
input

Gray level
32x32 siblings

High resolution
color siblings

Avage color

Avage
colorization

Proposed
colorizations

Fig. 21. Automatic image colorization. From top to bottom, retv, gray scale input image, second r@&g, 32 gray scale siblings, third row, corresponding
high resolution color siblings, fourth row, average of thaor siblings, fth row, input image with color from the avega, sixth row, candidate colorizations
by taking the color information from four different siblings



13

correctly oriented (i.e., camera parallel to the horizom)inatural
images. Thus the correct orientation may be found by selgcti
the image orientation that maximizes the typicality of thege.
Fig. 22 shows three examples of images being evaluated at fo
possible orientations. The number on top of each image is
average correlatiorl( Dwarp =2) to the 50 closest neighbors. The
red boundary denotes the preferred orientation, namelyottee

0.70 0.64 0.66 0.64

with the highest average correlation. Fig. 23 shows a qtadivié 0.86 0.76 0.79 0.77
evaluation using the test set of 1125 images randomly drawn
from the tiny images (as introduced in Section V-B.1) being
classi ed into one of four possible orientations. Many ineagn - 053

this test set are ambiguous in terms of orientation, makivegnt
hard to classify correctly (see Fig. 23(a)). Thus, if onlypgh
images that are classi ed with high con dence are considere
the performance is much improved (see Fig. 23(b)).

Our procedure differs dramatically from that of Vailaya et
al. [42] who vector-quantize image patches using a prée-buil o ) ] o
codebook and model the fesuling representaion usingyetic 1% 2%, Autamat mage arentaton determinatn, For etino tce
models to predict image orientation. Instead, our non4P&LEC  of each image is the average correlatidn ( Dwarp=2) to the 50 closest
approach relies entirely on a large dataset to give us anratecu neighbors. The red boundary denotes the preferred orientaffhe last

measure of the distance from the manifold of natural images. &xample is an error.

VII. CONCLUSIONS

This paper makes ve important contributions:
1) Compelling psychophysical experiments showing Bt
32 is the minimum color image resolution at which object 100 100

and scene recognition can reliably be performed.

2) The compilation of a dataset of 79 milli@2 32 color »80 1 80
images, each with a weak text label and link to the original & >
high-resolution image, which is available for download. _260 _560 '

3) The characterization of the manifold 82 32 images, 540 B40]
showing that Internet sized datasets0®-10°) yield a & 3
reasonable density over the manifold of natural images, at 20}- 201~
least from a categorization perspective. 0 0

0 90 180 -90
Rehtive orientation

4) The demonstration that simple non-parametric methats, i 0 90 180 -90
conjunction with the tiny image dataset, can give reasanabl Rehtive orientation
performance on object recognition tasks. For classes which a) b)
are richly represented, such as people, the performance is
comparable to leading class-speci ¢ detectors.

5) The novel application of the tiny image dataset to a variet
of other problems in computer vision, such as image
colorization and orientation determination.

Although the paper explores many topics, it has one key theme
that of using non-parametric methods in conjunction withyve
large collections of images to tackle object and scene mtiog.
Previous usage of non-parametric approaches in recogriawe
been con ned to more limited domains (e.g. pose recognition
[36]) compared with the more general problems tackled is thi
paper, the limiting factor being the need for very large antsu

of training data. The results obtained using our tiny imageset Fig- 23. (a) Distribution of assigned orientations, refatio the correct one,
i e set of 1125 randomly drawn images from the tiny image das@b

. : ) i
_are an encouraging sign that the dat_a requirements may n(_)tS b of the images were assigned the correct orientation. Moshefetrors
insurmountable. Indeed, search engines such as Googl& inggrespond to selecting an upside down version of the rigiagie orientation.

another 1-2 orders of magnitude more images, which could ye(b) Distribution of assigned image orientations for &% of the test set with
a signi cant improvement in performance. highest con dence. In_ this por;ion o_f the test set, 8b.0f the_z images are
While the Internet offers a plentiful supply of visual dataa;&gned the_correct image orientation. (c) Examples of‘ thﬂn}a@;es with
p pply highest classi cation con dence. (d) Examples of the 16 inmgéth lowest

there are drawbacks to using it as a source. First, the highssication con dence. Images with a red boundary are ®srdNote that
noise level in image labellings make it dif cult to directlyain many of these images have no distinct orientation so are hawassify
models without some method for ignoring the numerous astlie °ect-

Although the Wordnet scheme we propose gives some bene't,

the results of all our experiments would undoubtedly be much

c) d)



improved if there were less labeling noise. Second, the é@madq17]
themselves have peculiar statistics, different to otherses of
images (e.g. television or the view through our own eyesgims
of both their content and their class-distribution. For repée, [19]
many images contain centered views of objects. Also, theze a

a disproportionate number of images containing people en 0]
Internet. Although this facilitates person detection, snatasses 21]
are not well represented in our tiny image dataset. It would
therefore be interesting to explore large collections ofgms [22]
from alternative sources, such as video.

The technical methods used in this paper are simple and mgrg)
complex ones are likely to improve performance in a number of
areas. Better similarity metrics might give a signi cantirase
in the effective size of the dataset. Machine learning tepies
could be effective in reducing labeling noise, which in twould [25]
improve performance. Also, ef cient search methods woulkeg
real-time recognition performance. [26]

In summary, all methods in object recognition have two com-
ponents: the model and the data. The vast majority of theteffo [27]
recent years has gone into the modeling part — seeking tdageve
suitable parametric representations for recognition. dntiast, 28
this paper moves in the opposite direction, exploring ho& th
data itself can help to solve them problem. We feel the resnlt
this paper warrant further exploration in this direction.

(18]

[24]

(30]
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