
Integrating ASP into ROS for Reasoning in Robots

Benjamin Andres1, David Rajaratnam2, Orkunt Sabuncu1, and Torsten Schaub1,3?

1 University of Potsdam
2 University of New South Wales

3 INRIA Rennes

Abstract. Knowledge representation and reasoning capacities are vital to cogni-
tive robotics because they provide higher level functionalities for reasoning about
actions, environments, goals, perception, etc. Although Answer Set Programming
(ASP) is well suited for modelling such functions, there was so far no seamless
way to use ASP in a robotic setting. We address this shortcoming and show how a
recently developed ASP system can be harnessed to provide appropriate reason-
ing capacities within a robotic system. To be more precise, we furnish a package
integrating the new version of the ASP solver clingo with the popular open-source
robotic middleware Robot Operating System (ROS). The resulting system, ROSo-
Clingo, provides a generic way by which an ASP program can be used to control
the behaviour of a robot and to respond to the results of the robot’s actions.

1 Introduction

Knowledge representation and reasoning capacities are vital to cognitive robotics be-
cause they provide higher level functionalities for reasoning about actions, environ-
ments, goals, perception, etc. While Answer Set Programming (ASP) is well suited for
modelling high level functionalities, there was so far no seamless way to use ASP in a
robotic setting. This is because ASP solvers were designed as one-shot problem solvers
and thus lacked any reactive capabilities. So, for instance, each time new information
arrived, the solving process had to be re-started from scratch.

In this paper, we address such shortcomings and show how a recently developed
(multi-shot) ASP system [1] can be harnessed to provide knowledge representation and
reasoning capabilities within a robotic system. We accomplish this by integrating a
multi-shot ASP approach, where online information can be incorporated into an op-
erative ASP solving process, into the popular open-source middleware ROS4 (Robot
Operating System; [2]).

To be more precise, we furnish a ROS package integrating the ASP solver clingo 4
with the popular open-source ROS robotic middleware. The resulting system, called
ROSoClingo, provides a generic method by which an ASP program can be used to con-
trol the behaviour of a robot and to respond to the results of the robot’s actions. In this
way, the ROSoClingo package plays the central role of fulfilling the need for high-level
knowledge representation and reasoning in cognitive robotics by making details of in-
tegrating a reasoning framework within a ROS based system transparent to developers.
? Affiliated with Simon Fraser University, Canada, and IIIS Griffith University, Australia.
4 http://www.ros.org



As we detail below, the robotics developer can encode high-level planning tasks in ASP
keeping only the interface requirements of the underlying behaviour nodes in mind and
avoiding implementation details of their functionality (motion planning for example).

One crucial added value of our integration of reactive ASP framework into ROS is
the facility of encoding adaptive behaviours directly in a declarative knowledge repre-
sentation formalism. Additionally, the robot programmer can handle execution failures
directly in the reasoning formalism. This paves the way for deducing new knowledge
about the environment or diagnostic reasoning in the light of execution failures. The
case study in Section 4 demonstrates these advantages of ROSoClingo.

Finally, it is worth mentioning a number of related approaches which utilize ASP
or other declarative formalisms in cognitive robotics. In the work of [3, 4] ASP is used
for representing knowledge via a natural language based human robot interface. Addi-
tionally, action language formalisms and ASP have been used to plan and coordinate
multiple robots for fulfilling an overall task [5, 6]. ASP has also been used to integrate
task and motion planning via external calls from action formalism to geometric reason-
ing modules [7]. However, all these implementations rely on one-shot ASP solvers and
thus lack any reactive capabilities. Hence, they could greatly benefit from the reactive
solving that comes from the usage of ROSoClingo.

In what follows, we provide the architecture and basic functionality of the ROSo-
Clingo system. We then outline the ASP encoding for an example mail delivery robot.
This example serves to highlight the features of the system but also serves as a guide
for how an ASP encoding could be written for other application domains. The opera-
tions of the mail delivery robot are illustrated via a case-study conducted within a 3D
simulation environment.5 The features of ROSoClingo are discussed with reference to
this case study and through comparisons to alternative approaches. Finally, it should be
mentioned that the ROSoClingo system is publicly available [13] and we are committed
to submitting the ROSoClingo package to the public ROS repository.

2 ROSoClingo

In this section, we describe the general architecture and functionality of the ROSo-
Clingo system. With the help of the reactive ASP solver clingo (version 4), ROSoClingo
provides high-level knowledge representation and reasoning capabilities to ROS based
autonomous robots. Critically, clingo supports multi-shot reactive solving, where the
solver does not simply terminate after an initial answer set computation, but instead en-
ters a loop, incrementally incorporating new information into the solving process. For
more extensive background to both clingo 4 and ROS the interested reader is referred
to an extended version of this paper [8].

Figure 1 depicts the main components and workflow of the ROSoClingo system. It
consists of a three layered architecture. The first layer consists of the core ROSoClingo
component and the instantiation of a ROS actionlib API. In essence, this API simply
exposes the services provided by ROSoClingo for use by other processes (i.e., ROS
nodes) . The package also defines the message structure for communication between

5 http://gazebosim.org



 

Existing ROS
components move_base 

Other ROS
module 

Reasoning

layer 

Interface 
layer

 ROS topic base 
input/output 

ROSoClingo/in

ROSoClingo/out

 clingo

 ROSoClingo Actionlib Node

input feeder

 action extractor

 task plan

 event

 action

 Goal
Cancel

 Status
Result

Feedback

Other 
interface

move_base 
interface

ASP program

3

4

2

5

6

1

clingo control

Client
Node

Fig. 1. The general architecture and main work flow of ROSoClingo.

the core ROSoClingo node and the various nodes of the interface layer. In contrast
to the reasoning layer, the interface layer provides the data translations between what
is required by the ROSoClingo node and any ROS components for which it needs to
integrate. This architecture provides for a clean separation of duties, with the well-
defined abstract reasoning tasks handled by the core node and the integration details
handled by the interface nodes.

2.1 The ROSoClingo Core

The main ROSoClingo node is composed of a python module for the answer set solver
clingo controlled by clingoControl, an actionExtractor, and an inputFeeder.
Through its ROS actionlib API, it can receive goal and cancellation requests as well
as send result, feedback, and status information back to a client node (marked by 1 in
Figure 1). The ASP program, encoding the high-level task planning problem, is given
to the ROSoClingo node at system initialization (marked by 2). During initialization,
ROSoClingo grounds the base subprogram of the ASP encoding and sets the current
logical time point as well as the current horizon to 0. The logical time point identifies
which actions of a task plan are to be executed next, while the horizon identifies the
length of the task plan. The time point is incremented at the end of each cycle.

ROSoClingo’s workflow starts with a goal arriving at the inputFeeder (marked by
1). If clingo is already in the process of searching for a task plan, the solving procedure
is interrupted and the new goal is added to the solver. The goal request is transformed
into an ASP fact and transmitted to clingo (marked by 3). Then clingoControl is
called to resume the solving process with the additional goal.

Algorithm 1 presents the pseudo code representation of the clingoControl pro-
cedure. The clingo functions assignExternal as well as ground are explained in
more detail in Section 3. It instructs the clingo solver to asynchronously find a task plan
that satisfies all given goals. If clingo is able to find a valid task plan then the solution is
forwarded to the actionExtractor. If no task plan is found for the current horizon,



Algorithm 1: clingoControl
solveAsynchronous
if clingo returns satisfiable then

task plan← get answer set from clingo
actionExtractor(task plan)

if clingo returns unsatisfiable then
horizon← horizon + 1
assignExternal(Fun("horizon",[horizon-1]),False)
ground([("transition",[horizon])])
ground([("query",[horizon])])
assignExternal(Fun("horizon",[horizon]),True)
clingoControl

occurs(Robot,Action,T) Out Commanding the robot Robot to execute Action at time point T.
event(Source,Event,T) In Specifying an event Event from Source at time point T.
event(request,(ID,Request),T) In A special event, specifying a Request with id ID at time point T.
event(request,(ID,cancel),T) In A special event, canceling the request with id ID at time point T.

Fig. 2. Keywords used for communicating between ROSoClingo and clingo.

the horizon is incremented by one time step. This is realized by assigning False to the
external atom that identifies the old horizon, followed by the grounding of the transi-
tion and query subprograms for the new horizon, and finally, the assignment of True to
the external atom that identifies this new horizon. Note that the keyword Fun represents
clingo’s data type for function terms, here applied to the external horizon atoms. Finally,
clingoControl is called again to find a task plan with the new horizon. If an interrupt
occurs, the solving process is stopped without clingo determining the (un-)satisfiability
of the current program and clingoControl ends.

The actionExtractor identifies actions to be executed during the current logi-
cal time point and transforms them into ROSoClingo output messages (marked by 4).
These messages are then transmitted via the /ROSoClingo/out topic6 (marked by
5). It is then the task of the interface layer nodes to transform them into goal requests
for the underlying actionlibs and to compose a response once the action is executed.
The response arrives at the inputFeeder component of the ROSoClingo node via the
/ROSoClingo/in topic (marked by 6). The details of how the ROSoClingo interface
layer interacts with existing ROS components are outlined in Section 2.2.

In contrast to goal requests, messages arriving at the inputFeeder component via
/ROSoClingo/out are transformed into event predicates and then incorporated
into the existing ASP program as external facts and processed by clingo. The keywords
of Figure 2 encode the protocol for this (internal) communication between ROSoClingo
and clingo. The second column indicates whether the keyword is an input (in) or part
of the output (out) of clingo. The (un)successful result of an action may generate new

6 Topics are a named publisher-subscriber communications mechanism for message passing be-
tween ROS nodes.



knowledge for the robot about the world (for example, the fact that a doorway is blocked
or a new object is sensed).

Once all actions of the current time point report a result the cycle is completed and
a new one is initiated, provided there are still actions left to be executed in the task plan.
If the task plan is completed ROSoClingo waits for new goal requests to be issued.

Finally, it is worthwhile noting that the ROSoClingo package is able to support
multiple goal requests at a time.

2.2 Integrating with Existing ROS Components

The core ROSoClingo node needs to issue commands to, and receive feedback from,
existing ROS components. The complexity of this interaction is handled by the nodes
at the interface layer (cf. Figure 1). Unlike the components of the reasoning layer it is,
unfortunately, not possible to define a single ROS interface to capture all interactions
that may need to take place. Firstly, there is a need for data type conversions between
the individual modules. Turning ROS messages into a suitable set of clingo statements
therefore requires data type conversions that are specific for each action or service type.

A second complicating issue is that the level of abstraction of a ROS action may
not be at the appropriate level required by the ASP program. For example, the pose
goal for moving a robot consists of a Cartesian coordinate and orientation. However,
reasoning about Cartesian coordinates may not be desirable when navigating between
named locations such as corridors, rooms and offices. Instead one would hope to reason
abstractly about these locations and the relationship between them; for example that the
robot should navigate from the kitchen to the bedroom via the hallway.

While it is not possible to provide a single generic interface to all ROS compo-
nents, it is however possible to outline a common pattern for such integration. For each
existing component that needs to be integrated with ROSoClingo there must be a corre-
sponding interface component. We therefore adopt a straightforward message type for
messages sent by ROSoClingo. This type consists of an assigned name for the robot
performing the action and the action to be executed. Note, the addition of robot names
allows for the coordination of multiple robots, or multiple robot components, within a
single ASP program and to identify the actions performed by each robot or component.

In a similar manner to the ROSoClingo output messages, the input messages also
consist of a straightforward message type. These messages allow for an interface node
to either respond with the success or failure of a ROSoClingo action, or alternatively to
signal the result of some external or sensory input.

In the scope of the work presented in this paper we implemented an interface to
the ROS move base actionlib, a standard ROS component for driving a robot. The
interface maps symbolic locations with specific coordinates in the environment, e.g.
kitchen to (12.40,34.56,0.00), and vice versa. The interface node then tracks the nav-
igation task and reports back to the ROSoClingo core the success or failure of its task.

3 ASP-based task planning in ROSoClingo

The methodology of ROSoClingo’s ASP-based approach to task planning is composed
of two main activities, viz. formalizing the dynamic domain and formalizing the task as



a planning problem in this domain. Each activity involves representing different types
of knowledge related to the problem.

The basic principles of this methodology are similar to the general guidelines of
representing dynamic domains and solving planning problems in ASP (either it is a
direct ASP encoding [9] or an implementation of an action language via ASP [10]).
However, since ROSoClingo relies upon the multi-shot solving capacities of the clingo 4
ASP system [1], the resulting encoding should meet the requirements of the incremental
setting, where the whole program is structured as parametrizable subprograms. Multi-
shot ASP solving is concerned with grounding and the integration of subprograms into
the solving process, and is fully controllable from the procedural side, viz. the scripting
language Python in our case. In explaining this process, we first concentrate on the
methodology of representing various types of knowledge and later explain the way this
knowledge is partitioned into subprograms.

For illustrating the methodology, consider the ASP encoding of a simplified mail
delivery scenario, offering a well-known exemplary illustration of action formalisms in
robotics [11, 12]: A robot is given the task of picking up and delivering mail packages
between offices. Whenever a mail delivery request is received, the robot has to navigate
to the office requesting the delivery, pick up the mail package, and then navigate and
deliver the item at the destination office. In addition, cancellation requests may hap-
pen. If the robot has already picked up the package, it must then return the package to
the originating office. Additionally, some of the pathways in the environment may be
blocked for some time.

We formalize the dynamic domain by representing the following types of knowl-
edge. Due to space constraints, we provide only representative ASP snippets. One can
find the full encoding at [13].

Static knowledge. Time-independent parts of the domain constitute the static knowl-
edge. In view of Section 4, we assume a world instance from the Willow Garage office
map and encode this map related information as static knowledge. The following is a
snippet from the logic program declaring nodes of waypoints, which are composed of
offices, corridors, and open areas, and connections among waypoints.
corridor(c1). corridor(c2). open(open1). office(o4).
connection(c3,o4). connection(c1,open1). connection(c1,c2).

connection(X,Y) :- connection(Y,X). waypoint(X) :- corridor(X).
waypoint(X) :- open(X). waypoint(X) :- office(X).

In contrast to static knowledge, dynamic knowledge is time-dependent. In the fol-
lowing program snippets we use the parameter t to represent a time point. It is also
used as an argument when declaring clingo 4’s parameterizable subprograms (such
as #program transition(t)). ROSoClingo’s control module incrementally grounds
and integrates such programs with increasing integer values for t. For instance, the call
ground([("transition",[42])]) grounds the transition subprogram for planning
horizon 42.

In order to specify a state of a dynamic domain, fluents (i.e., properties that change
over time) are used. A state associated with a time point t is characterized by the fluents
captured by atoms of the form holds(F,t) where F is an instance of a fluent. Figure 3



flu
en

ts

at(W) the robot is at waypoint W
holding(O,P) the robot is holding the package (O,P)
received(request(O,P)) the robot has received a delivery or cancellation

request for a package (O,P)received(cancel(O,P))
blocked(W,W’) the path between waypoints W and W’ is blocked

ac
tio

ns go(W) go to the waypoint W
pickup(O,P) pickup the package (O,P)
deliver(O,P) deliver the package (O,P)

ev
en

ts

request(O,P) occurs on a request to delivering a package from office
O to P

cancel(O,P) occurs whenever the request to delivering a package
from office O to office P is cancelled

info(blocked(W,W’)) occurs whenever a path between W and W’ is blocked
or unblockedinfo(unblocked(W,W’))

value(failure) occurs whenever an execution fails

Fig. 3. Fluents, actions, and events used to formalize the domain

lists not only the fluents, but also the actions and exogenous events of the domain. While
actions are performed by the robot, events may occur in the dynamic domain without
the control of the robot. Actions and events occur within a state of the world and lead to
some resulting state. We use the meta-predicates occurs(A,t) and event(E,t) for
stating the occurrence of action A and event E respectively at time point t. We use the
following choice rule to allow any action (extensions of action predicate includes all
actions of the domain) to occur at time point t. The upper bound 1 concisely expresses
that no concurrent task plans are permitted.

{ occurs(A,t) : action(A) } 1.

Within the fluents, actions, or events of the domain, we identify each mail package
delivery with the pair (O,P) consisting of its origin O and destination P. Although this
leads to a simpler encoding, it does limit us to a single delivery from O to P at a time.

A crucial role in modeling exogenous events is played by clingo’s external directives
[1]. An #external directive allows for, as yet, undefined atoms. To signal external
events to the solver, ROSoClingo relies upon clingo’s library function assignExternal
that allows for manipulating the truth values of external atoms. For instance, the fol-
lowing rules show how the goal request (based on the signature given in Figure 2) is
declared as an external atom and projected into exogenous event request(O,P).

#external event(request,(ID,bring(O,P)),t) :- office(O;P), id(ID).
event(request(O,P),t) :- event(request,(ID,bring(O,P)),t).

Recall that the first element of the occurs(Robot,Action,T) atom (Figure 2)
allows for reasoning with concurrent task plans for multi-robot scenarios or for robots
with multiple actuators. However, we use occurs(A,t) in our case study, since we
generate non-concurrent task plans for a single robot. The following rule adds the actu-
ator name.

occurs(mailbot,A,t) :- occurs(A,t).



Static causal laws. This type of knowledge defines static relations among fluents. They
play a role in representing indirect effects of actions. The following rule represents
that blocked is symmetric and shows how one true blocked fluent can cause another
blocked fluent to be true in a state.
holds(blocked(W,W’),t) :- holds(blocked(W’,W),t).

Dynamic causal laws. Direct effects of actions and events are specified by dynamic
causal laws. An action or event occurrence at time t can make its effect fluent hold at
t. Additionally, the occurrence may cancel the perpetuation of fluents. To this end, we
use atoms of the form abnormal(F,t) to express that fluent F must not persist to time
point t. In robotics, however, action execution failures may occur. Whenever an under-
lying ROS node fails to perform an action, ROSoClingo triggers the value(failure)
event to signal the execution failure to the encoding. We use atom executes(A,t) to
decouple the occurrence of action A from its effects taking place.
executes(A,t) :- occurs(A,t), not event(value(failure),t).

This provides us with a concise way of blocking imaginary action effects and thus
avoids inconsistencies between the actual world state and the robot’s world view. Below
are dynamic causal laws for action go(W) and event cancel(O,P).
holds(at(W),t) :- executes(go(W),t).
abnormal(at(W’),t) :- executes(go(W),t), holds(at(W’),t-1).
holds(received(cancel(O,P)),t) :- event(cancel(O,P),t).
abnormal(received(request(O,P)),t) :- event(cancel(O,P),t).

In addition, ASP’s default reasoning capabilities, together with explicit executes and
occurs statements, pave the way for reasoning with execution failures. For instance,
the following rule enables the robot to conclude that the connection to a waypoint is
blocked whenever the attempt to navigate to that waypoint fails. (See the third scenario
in Section 4 for an illustration.)
holds(blocked(W’,W),t) :- occurs(go(W),t), not executes(go(W),t),

holds(at(W’),t-1).

Action preconditions. Action preconditions provide the executability conditions of an
action in a state. We use atom poss(A,t) to state that action A is possible at t. Below
are preconditions of action go(W). The integrity constraint makes sure that only actions
take place whose preconditions are satisfied.
poss(go(W),t) :- holds(at(W’),t-1), connection(W’,W),

not holds(blocked(W’,W),t-1).
:- occurs(A,t), not poss(A,t).

Inertia. The following rule is a concise representation of the frame axiom.
holds(F,t) :- holds(F,t-1), not abnormal(F,t).

This completes the formalization of the dynamic domain. Next, we formalize the
robot’s task as a planning problem.
Initial situation. The following rules represent the initial situation by stating the initial
position of the robot.
init(at(open3)).
holds(F,0) :- init(F).



Goal condition. The following snippet expresses the goal condition. This is the case
whenever the robot has no pending delivery request and is not holding any package.
goal(t) :- not holds(received(request(_,_)),t),

not holds(holding(_,_),t).
#external horizon(t).
:- not goal(t), horizon(t).

The integrity constraint makes the program unsatisfiable whenever the goal is not reached
at the planning horizon. Clearly, this constraint must be removed whenever the horizon
is incremented and a new instance with an incremented horizon is added. To this end,
we take advantage of the external atom horizon(t) whose truth value can be con-
trolled from ROSoClingo as shown in Algorithm 1. The manipulation of truth values of
externals provides an easy mechanism to activate or deactivate ground rules on demand.

We have mentioned that clingo programs are structured into parametrizable sub-
programs. ROSoClingo relies on three subprograms, viz. base, transition(t), and
query(t). The formalized knowledge is partitioned into these subprograms as fol-
lows: base contains the time-independent knowledge (static knowledge and initial sit-
uation), transition(t) contains the time-dependent knowledge (static and dynamic
causal laws, action preconditions, and inertia), and finally query(t) contains the time-
dependent volatile knowledge (goal condition). (See the full encoding at [13].)

4 Case Study

We now demonstrate the application of our ROSoClingo package in the mail delivery
setting described in the previous section (Section 3). A robot is given the task of picking
up and delivering mail packages between offices. Whenever a mail delivery request is
received, the robot has to navigate to the office requesting the delivery, pick up the mail
package, and then navigate and deliver the item at the destination office.

While the mailbot task is intrinsically dynamic in nature, a secondary source of
dynamism is the external environment itself. Obstacles and obstructions are a natural
part of a typical office environment, and it is in such cases that the need for high-
level reasoning becomes apparent. Our scenario not only highlights the operations of a
mail delivery robot in responding to new requests but also shows how such a robot can
respond to a changing physical environment.

The office scenario is provided in simulation by the Gazebo 3D simulator using an
openly accessible world model available for the Willow Garage7 offices. The robot is a
TurtleBot equipped with a Microsoft Kinect 3D scanner, which is a cost-effective and
well supported robot suitable for small delivery tasks.

From the office environment a partial map has been generated using standard map-
ping software [14]. This static map is then used as the basis for navigation and robot
localization. Furthermore, from this map a topological graph has been constructed to
identify individual offices and waypoints that serve as a graph representation for logical
reasoning and planning. While this graph has been hand-coded, topological graphs can
also be generated through the use of automated techniques [15].

7 http://www.willowgarage.com



(a) O9O14

C3 C4 C6
C2

Open Area 

(b)

Fig. 4. (a) An office environment for a mail delivery robot, and (b) scenario showing delivery
from O9 to O14, with a blockage dynamically appearing in the corridor between C3 and C4.

O9O14

C3 C4
C6

C2

Open Area 

(a)
O11

O7

C3 C4
C6

C2

Open Area 

O2 O3

C4

(b)

Fig. 5. (a) Scenario showing an obstruction being cleared allowing re-planning for a shorter path
through C4 and C3, and (b) scenario showing adaptive behaviour where changes in the physical
environment can affect the order in which tasks are performed.

As previously outlined, ROSoClingo provides a simple mechanism for integration
with other ROS components, including basic navigation. We further allow for external
messages that can be sent to the robot informing it of paths that have been blocked and
cleared. In an office environment this can correspond to public announcements, such as
work being undertaken in a particular area. Such external messages can also be viewed
in the context of the robot receiving additional sensor data.

Finally, as our robot was not equipped with a robot manipulator, item pickup and
delivery functionality was simulated by a ROSoClingo interface that simply responds
successfully to pickup and deliver action requests.

Scenarios. We consider three scenarios to highlight the behaviour of the mail-delivery
robot when it detects and is informed of paths that have been blocked and cleared. In
all three scenarios,8 the robot is initially in the open area shown in Figure 4.

In the first scenario, the robot is told that the corridor is blocked between points C3
and C4. It is then told to pick up an item from office O9 and deliver it to office O14. As
ROSoClingo is able to plan at an abstract level it is able to know that it can move to O9
along the optimal route (i.e., via C6) but must return through the open area and travel
via the corridor point C2 in order to reach its destination O14. This path is indicated by
the solid blue line in Figure 4(b).

8 The videos of these scenarios are available at http://goo.gl/g8S5Ky .



The second scenario (Figure 5(a)) extends that of the first. From O9 the robot knows
that the path between C3 and C4 is blocked so it starts to take the long way around as
before. However, by the time it reaches C6 it has been informed that the blockage has
been cleared. This triggers re-planning at the ROSoClingo level and the robot is turned
around and the shorter path taken through C4 and C3 to the destination O14.

Finally the third scenario shows how dynamic changes to the physical environment
can affect the order in which tasks are performed. In this scenario (Figure 5(b)) the
robot is first given a task to deliver an item from the office O7 to O11. While in the
vicinity of C6 the robot is given a second task to take an item from O2 to O3. Since it
reasons that it is already close to O7 the robot continues on with its first delivery task.
However, as it progresses past C4 the robot detects that the path between C4 and C5 is
blocked. Consequently, the robot has to turn around and take the longer route through
the open area. But now offices O2 and O3 are closer to the robot than O7 and O11. This
causes a change in the robot’s task priorities and it swaps the order of tasks, performing
the second delivery task first before continuing on with the original.

Discussion. The three mail-delivery scenarios outlined here showcase the adaptive be-
haviour of the ROSoClingo system. The robot is able to respond dynamically to new
mail delivery requests while at the same time adapting intelligently to changes in the
physical environment. Furthermore, an important property of ROSoClingo is that it im-
plicitly performs a form of execution monitoring [16, 17].

Execution monitoring is handled implicitly by ROSoClingo because it makes no as-
sumptions about the successful execution of actions. Rather, the ROSoClingo interface
nodes handle the task of monitoring for the successful completion of actions. This infor-
mation is then reported back to the reasoner and any failures are handled appropriately.

In fact, because execution monitoring is incorporated directly into the ASP reasoner,
ROSoClingo can provide for much finer control than is allowed for by traditional sys-
tems such as [16]. In particular because execution monitors are specifically designed to
deal with anomalous situations, such as action failures, they typically ignore external
events that do not result in the failure of the current plan. At first glance, this may seem
reasonable. However, in practice it can result in unintuitive and sub-optimal behaviour.
For example, in the second mail delivery scenario (Figure 5(a)) the robot replans on
the announcement that a blockage has been cleared. Importantly, this re-planning is not
triggered as a result of a failure of the current plan, but instead as a recognition of the
existence of a better plan. In contrast, because the longer plan is still valid, a tradi-
tional execution monitoring based robot would ignore the positive information that the
blockage has been cleared and the robot would simply follow the longer route.

Because of ROSoClingo’s ability to immediately adapt to new information it bears
some resemblance to the Teleo-Reactive programming paradigm of [18]. This goal di-
rected approach to reactive systems is based on guarded action rules which are being
constantly monitored and triggered based on the satisfaction of rule conditions. How-
ever, while Teleo-Reactive systems can provide for highly dynamic behaviour, they
typically do not incorporate the complex planning and reasoning functionality of tra-
ditional action languages. Hence, in the same way that action language formalisms are



rarely applied to highly reactive problem domains, these reactive approaches are rarely
applied in problems that require complex reasoning and planning.

However, in constrast to the dichotomy suggested by the difference between these
two approaches, many practical real-world cognitive robotic problems do require both
highly reactive behaviour and complex action planning. This is highlighted by our mail
delivery scenarios where the robot has to undertake its mail deliver tasks while still
operating in a dynamically changing physical environment. The successful application
of ROSoClingo to this task shows that it can be seen as a step towards bridging these
two approaches. A robot that incorporates complex reasoning and planning can at the
same time adapt to a highly dynamic external environment.

5 Conclusion

We have developed a ROS package integrating clingo 4, an ASP solver featuring reac-
tive reasoning, and the robotics middleware ROS. The resulting system, called ROSo-
Clingo, fulfils the need for high-level knowledge representation and reasoning in cogni-
tive robotics by providing a highly expressive and capable reasoning framework. ROSo-
Clingo also makes details of integrating the ASP solver transparent for the developer,
as it removes the need to deal with the mechanics of communicating between the solver
and external (ROS) components.

Using reactive ASP and ROSoClingo, one can control the behaviour of a robot
within a single framework in a fully declarative manner. This is particularly important
when contrasted against Golog [11] based approaches where the developer must take
care of the implementation (usually in Prolog) details of the control knowledge, and the
underlying action formalism separately. We illustrated the usage of ROSoClingo via a
three-fold case-study conducted with a ROS-based simulation of a robot delivering mail
packages in the Willow Garage office environment using the Gazebo 3D simulator. We
showed that ASP based robot control via ROSoClingo establishes a principled way of
achieving adaptive behaviour in a highly dynamic environment.

This work on ROSoClingo opens up a number of avenues for future research. Here
we concentrated on the use of ROSoClingo for high-level task planning. However clingo
is a general reasoning tool with applications that extend to other areas of knowledge rep-
resentation and reasoning such as diagnosis and hypothesis formation. Consequently,
an important area for future research would be to consider the use of ROSoClingo in
these contexts, such as a robot that makes and reasons about the causes of observations
in its environment. Another line of future research is to utilize clingo’s optimization
statements to find optimal task plans when costs of actions are not uniform [19].
Acknowledgments. This work was funded by ARC (DP150103034) and DFG (550/9).

References

1. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: Preliminary
report. In Leuschel, M., Schrijvers, T., eds.: Technical Communications of the Thirtieth
International Conference on Logic Programming (ICLP’14). Theory and Practice of Logic
Programming, Online Supplement. (2014) http://arxiv.org/abs/1405.3694v1.



2. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R.,
Ng, A.: ROS: an open-source robot operating system. In: ICRA Workshop on OSS. (2009)

3. Chen, X., Jiang, J., Ji, J., Jin, G., Wang, F.: Integrating NLP with reasoning about actions for
autonomous agents communicating with humans. In: Proceedings of the IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT’09), IEEE (2009) 137–140

4. Chen, X., Ji, J., Jiang, J., Jin, G., Wang, F., Xie, J.: Developing high-level cognitive functions
for service robots. In van der Hoek, W., Kaminka, G., Lespérance, Y., Luck, M., Sen, S., eds.:
Proceedings of the Ninth International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’10), IFAAMAS (2010) 989–996

5. Aker, E., Erdogan, A., Erdem, E., Patoglu, V.: Causal reasoning for planning and coordina-
tion of multiple housekeeping robots. In Delgrande, J., Faber, W., eds.: Proceedings of the
Eleventh International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’11). Springer (2011) 311–316

6. Erdem, E., Aker, E., Patoglu, V.: Answer set programming for collaborative housekeeping
robotics: representation, reasoning, and execution. Intelligent Service Robotics 5(4) (2012)
275–291

7. Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., Uras, T.: Combining high-level causal
reasoning with low-level geometric reasoning and motion planning for robotic manipula-
tion. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA’11), IEEE (2011) 4575–4581

8. Andres, B., Rajaratnam, D., Sabuncu, O., Schaub, T.: Integrating ASP into ROS for reason-
ing in robots: Extended version. Unpublished draft (2015) Available at [13].

9. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent
Agents: The Answer-Set Programming Approach. Cambridge University Press (2014)

10. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In Minker, J., ed.: Logic-
Based Artificial Intelligence. Kluwer Academic (2000) 257–279

11. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic program-
ming language for dynamic domains. Journal of Logic Programming 31(1-3) (1997) 59–83

12. Thielscher, M.: Logic-based agents and the frame problem: A case for progression. In
Hendricks, V., ed.: First-Order Logic Revisited: Proceedings of the Conference 75 Years of
First Order Logic (FOL75). (2004) 323–336

13. Potassco website. http://potassco.sourceforge.net
14. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-

blackwellized particle filters. IEEE Transactions on Robotics 23(1) (2007) 34–46
15. Thrun, S., Bücken, A.: Integrating grid-based and topological maps for mobile robot navi-

gation. In Clancey, W., Weld, D., eds.: Proceedings of the Thirteenth National Conference
on Artificial Intelligence (AAAI’96), AAAI/MIT Press (1996) 944–950

16. De Giacomo, G., Reiter, R., Soutchanski, M.: Execution monitoring of high-level robot
programs. In Cohn, A., Schubert, L., Shapiro, S., eds.: Proceedings of the Sixth International
Conference on Principles of Knowledge Representation and Reasoning (KR’98), Morgan
Kaufmann (1998) 453–465

17. Pettersson, O.: Execution monitoring in robotics: A survey. Robotics and Autonomous
Systems 53(2) (2005) 73–88

18. Nilsson, N.: Teleo-reactive programs for agent control. Journal of Artificial Intelligence
Research 1 (1994) 139–158

19. Khandelwal, P., Yang, F., Leonetti, M., Lifschitz, V., Stone, P.: Planning in action language
BC while learning action costs for mobile robots. In: International Conference on Automated
Planning and Scheduling (ICAPS). (2014)


