
Cognitive Networks
Ryan W. Thomas, Luiz A. DaSilva, Allen B. MacKenzie

The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA
email: {rwthomas, ldasilva, mackenab}@vt.edu

Abstract— This paper presents a definition and framework for
a novel type of adaptive data network: the cognitive network.
In a cognitive network, the collection of elements that make
up the network observes network conditions and then, using
prior knowledge gained from previous interactions with the
network, plans, decides and acts on this information. Cognitive
networks are different from other “intelligent” communication
technologies because these actions are taken with respect to the
end-to-end goals of a data flow. In addition to the cognitive
aspects of the network, a specification language is needed to
translate the user’s end-to-end goals into a form understandable
by the cognitive process. The cognitive network also depends on a
Software Adaptable Network that has both an external interface
accessible to the cognitive network and network status sensors.
These devices are used to provide control and feedback. The
paper concludes by presenting a simple case study to illustrate
a cognitive network and its framework.

I. INTRODUCTION

Current data networking technology limits a network’s
ability to adapt, often resulting in sub-optimal performance.
Limited in state, scope and response mechanisms, the net-
work elements (consisting of nodes, protocol layers, policies
and behaviors) are unable to make intelligent adaptations.
Communication of network state information is stifled by
the layered protocol architecture, making individual elements
unaware of the network status experienced by other elements.
Any response that an element may make to network stimuli
can only be made inside of its limited scope. The adaptations
that are performed are typically reactive, taking place after a
problem has occurred. In this paper, we advance the idea of
cognitive networks, which have the promise to remove these
limitations by allowing networks to observe, act, learn and
optimize their performance.

This paper is divided into four parts. Section II defines what
a cognitive network is. It also examines what a successful
cognitive network should be able to do, listing a few possible
applications for the technology. Section III investigates the
cognitive process. The paper then discusses a framework for
implementing a cognitive network in section IV and investi-
gates a case study in section V.

II. WHAT IS A COGNITIVE NETWORK?

A. Background

In recent years, the words “cognitive” and “smart” have be-
come buzzwords that are applied to many different networking
and communications systems. At a minimum, in the current
literature we find mention of cognitive radios [12], [8], smart
radios [2], smart antennas [1], cognitive packets [5], smart

packets [20] and cognitive networks [11], [18]. There does not
seem to be a common, accepted definition of what these terms
mean when applied to a networking technology. The common
aspect in the terms mentioned above is the implication that the
technology has the ability to self-modify. We argue, however,
that a cognitive network goes beyond the use of self-modifying
technology.

Cognitive networks have been mentioned in forward-
looking papers before. Mitola makes brief mention of how his
cognitive radios could interact within the system-level scope of
a cognitive network [12]. Saracco refers to cognitive networks
in his investigation into the future of information technology
[19]. He postulates that the movement of network intelligence
from controlling resources to understanding user needs will
help “flatten” the network by moving network intelligence
further out towards the edges of the network. Mähönen et al.
discuss cognitive networks with respect to future mobile IP
networks, arguing that the context sensitivity of these networks
could have as interesting an application in the field as cognitive
radios [11]. None of these papers, however, express exactly
what a cognitive network is and how it should work.

A good model to use when examining cognitive networks
is cognitive radio. There is significant research interest in
this area, and although cognitive radio was well defined by
Joseph Mitola [13], [12], confusion often arises when the
terms Software Defined Radio (SDR) and cognitive radio
are used interchangeably. An SDR is simply a radio that
puts most of the Radio Frequency (RF) and Intermediate
Frequency (IF) functionality, including waveform synthesis,
into the digital (rather than the analog) domain, allowing
for great flexibility in the modes of radio operation (called
“personalities”) [12]. Cognitive radio, on the other hand, sits
above the SDR and is the “intelligence” that lets an SDR
determine which mode of operation and parameters to use.
Cognition here is used in association with a technology that
operates inside a complex environment (the congested radio
frequency spectrum), observes it, makes behavior choices, and
receives feedback from it, all the while learning – assembling
a data set that will help determine future behaviors based on
past and current feedback.

Cognitive networks are likely to employ cross-layer opti-
mizations and act simultaneously on parameters belonging to
multiple layers in the protocol stack. However, cognitive net-
works are more than cross-layer design. Cross-layer protocols
are surveyed in depth by Gong in [6]. Here, the protocols
are divided into two major classes: joint-layer optimization
designs and cross-layer adaptive designs. Joint-layer optimiza-

3521-4244-0013-9/05/$20.00 ©2005 IEEE

tions forge together two layers and then require some sort of
network information synchronization to be able to perform
their global optimization algorithms. Protocols in the cross-
layer adaptive classification communicate information between
two distinct network layers, which then adapt parameters in an
attempt to locally optimize performance. Regardless of which
class of cross-layer networking protocol is implemented, these
solutions typically focus on a single parameter to optimize
on. Furthermore, many cross-layer designs are so focused on
optimizing at the chosen layers that they may end up degrading
the overall system or connection performance [10]. In this
manner, cross-layer design would be more aptly associated
with a “cognitive layer” technology than a cognitive network-
ing technology, since cross-layer design does not exhibit the
breadth of options that should be available to a intelligent
network, nor the end-to-end scope necessary to be termed a
cognitive network.

B. Requirements

A cognitive network should provide, over an extended
period of time, better end-to-end performance than a non-
cognitive network. Cognition could be used to improve re-
source management, Quality of Service (QoS), security, access
control, or many other network goals. Cognitive networks are
only limited by the adaptability of the underlying network
elements and the flexibility of the cognitive framework. In
this manner, cognitive networks are not limited to only wire-
less networks. Ad-hoc networks, infrastructure-mode wireless
networks, fully wired networks and heterogeneous networks
are also candidates for cognitive network design.

Cognitive networks should use network metrics and patterns
as input to the decision making process and then provide
output in the form of a set of actions that can implemented
in modifiable network elements. Ideally, a cognitive network
should be forward-looking, rather than reactive, and attempt to
adjust to problems before they occur. Finally, the architecture
of a cognitive network should be extensible and flexible,
supporting future improvements and elements.

Implementing a cognitive network requires a system that is
more complex in terms of overhead, architecture and opera-
tion. For cognitive networks to be justifiable, the performance
improvement must outweigh these additional complexities.
For certain environments, such as static wired networks with
predictable behavior, it may not make sense to convert to cog-
nitive behaviors. Other environments, such as heterogeneous
wireless networks, may be ideal candidates for cognition.

C. Definition

We suggest the following definition of a cognitive network:

A cognitive network has a cognitive process that can
perceive current network conditions, and then plan,
decide and act on those conditions. The network can
learn from these adaptations and use them to make
future decisions, all while taking into account end-
to-end goals.

This definition mimics standard models of cognition and
learning. The network and end-to-end aspects of the definition,
however, are critical to differentiating a cognitive network
from other cognitive communication technologies. Without
this scope, the system is perhaps a cognitive radio or layer,
but not a cognitive network. Here, end-to-end denotes all the
network elements involved in the transmission of a data flow.
For a unicast transmission, this might include the subnets,
routers, switches, virtual connections, encryption schemes,
mediums, interfaces, or waveforms, to mention just a few.
The end-to-end goals are what gives a cognitive network its
network-wide scope, separating it from other technologies,
which have only a local, single element scope.

In order to fit this definition, a cognitive network must
have elements in a Software Adaptable Network (SAN) to
modify. Similar to a cognitive radio, which depends on an SDR
to modify aspects of radio operation (e.g. time, frequency,
bandwidth, code, spatiality, waveform), a SAN depends on a
network that has one or more tunable elements. Practically,
this means that a network may be able to modify one or
several layers of the network stack in its member nodes. A
simple example of a SAN could be a wireless network with
directional antennas (antennas with the ability to scan their
receive or transmit strength to various points of rotation). This
network would meet the definition for basic functionality of a
SAN, since it contains a modifiable medium access scheme.
However, it could only be called a cognitive network if the
behavior modifying the antenna direction is cognisant of how
those choices affect end-to-end goals. If it is only aware of
how it affects link-level goals, it is simply a smart antenna or
less.

D. Examples and Applications

Examples of potential cognitive network applications in-
clude:

Heterogeneity. For networks that employ a wide variety of
protocols and physical layer interfaces, a cognitive network
can provide a mechanism for creating order in chaos. Since a
cognitive network views and learns from the observed network
status, it can de-conflict individual nodes and optimize the
connections – from top level objectives such as creating
efficient homogeneous clusters to lower-level goals such as
reducing the total amount of energy expended.

QoS. In a more general sense, cognitive networks can
be used to manage the QoS for a connection. Utilizing the
feedback about observed network conditions, the cognitive
network can identify bottlenecks, estimate guarantees, change
prioritization and optimize behaviors to provide the desired
end-to-end QoS.

Security. Cognitive networks could also be used for security
purposes such as access control, tunneling, trust management
or intrusion detection. By analyzing feedback from the various
layers of the network, a cognitive network can find patterns
and risks and then react by changing such security mechanisms
as rule sets, protocols, encryption and group membership. Such
cognition may also aid in trust and reputation mechanisms.

353

III. THE COGNITIVE PROCESS

The central mechanism of the cognitive network is the
cognitive process. This is the process that does the actual
learning and decides on the appropriate response to observed
network behavior. How the cognitive process operates depends
heavily on whether it is implemented in a centralized or
decentralized fashion and on the amount of network state
known to the process.

A. Scope

As defined in section II-C, a cognitive network operates
in light of end-to-end goals. This means that the scope of
the cognitive network is operating above the goals of the
individual network elements. Instead, it operates within the
scope of a data flow, which may include many network
elements. Many flows may traverse a single network element,
which means that the cognitive network needs to be able to
prioritize these flows. By interacting with the SAN, the cogni-
tive network tries to maintain a set of end-to-end goals (such
as routing optimizations, connectivity, trust management, etc.)
by modifying the elements of the SAN. The cognitive elements
associated with each flow are allowed to act selfishly and
independently (in the context of the entire network) to achieve
local goals.

For some network applications however, the individual
elements may not be so selfish or independent. For instance,
in homogeneous user environments such as military, law
enforcement or corporate networks, the nodes are as concerned
with the overall goals of the network as they are with their
own goals. This raises the scope of a flow beyond its own
requirements and is in contrast to a commercial ISP WAN
(or some other network made up of unrelated users) in which
the nodes are likely to behave in selfish, local-optimization
modes of operation. In attempting to accommodate network-
wide goals, however, more state information will need to be
communicated, leading to higher overhead and complexity.

An interesting question is how much of a performance
difference there is between these two scopes of operation.
The performance difference between following selfish, local
goals and the acting in a communal, network-wide mode of
operation is called the price of anarchy in [17]. This term
is defined to be the difference in performance between a
network run by an all-knowing benevolent dictator (that can
specify the “correct solution” for the connections to be at
their optimum at any given time) and one governed purely
by selfish anarchy. The answer to this question will guide the
development of cognitive networks by indicating the required
complexity and amount of state information needed to meet
the goals of the cognitive network. If it turns out that the
performance is significantly poorer when acting selfishly than
acting communally, the cognitive network may need to provide
more centralized guidance or an appropriate incentive structure
to the network elements than simply a end-to-end goal. It is
possible that the answer to this question will depend on the
kinds of optimizations the cognitive network is trying to make.

B. State

The effect of a cognitive network’s decisions on the network
performance depends on the amount of network state informa-
tion available to it. In order for a cognitive network to make
a decision based on end-to-end goals, the system must have
knowledge of the current state and the current network goals.
If a cognitive network has knowledge of the entire network’s
state, cognitive decisions should be more “correct” than those
made in ignorance. For a large, complicated system such a
computer network, it is unlikely that the cognitive network
would know the total system state. There is often a very high
cost to communicate this information beyond those network
elements requiring it, meaning a cognitive network will have
to work with less than a full picture of the network status.

There are two possible modes of operation for the cognitive
network and the state distribution. The first is a centralized
mode of operation, in which a central server or entity tracks
all end-to-end goals and network status data. The other mode
is distributed, in which nodes in the network share this infor-
mation and no central authority exists to manage the gathering
and dissemination of this data. The trade-offs between each of
these modes of operation have been examined in other contexts
and the usual problems associated with them are valid here too.
From the possibility of a single-point of failure problem in the
centralized mode to overhead issues in the distributed mode,
system designers will need to determine which mode offers
the best trade off for their cognitive design. Beyond purely
centralized or distributed, hybrid mechanisms may also be
possible. An example of this could be a network that transmits
end-to-end goals in a distributed fashion but uses a central
repository to store network status updates.

Additional problems that a cognitive network will have to
solve include: Where does this network state information come
from? How do the network elements distribute the network
state information amongst each other? If the network state is
reported by the members of the network, how do we enforce
truthful reporting?

C. The Feedback Loop

A unifying aspect of any learning model is the feedback
loop. In order to learn, a feedback loop is created in which
past interactions with the environment guide current and
future interactions. Figure 1 illustrates a simple example of
a feedback loop first put forward by Col John Boyd, USAF
(ret). Commonly called the “OODA” loop [3], standing for
Observe, Orient, Decide and Act, the model was originally
used to help military officers understand the thought processes
of their adversaries. However, this loop has been adopted
outside of the military, in applications ranging from business
management to artificial intelligence. It is remarkably similar
to the model Mitola uses to describe the cognition process
in cognitive radios. The loop consists of four self-explanatory
components, which guide a decision maker through the process
of choosing an appropriate action based on input from the
environment. The loop is missing a few important components,
however. One is an overarching goal, which should feed

354

Observe

Orient

Decide

Act

Environment

Fig. 1. The OODA Loop

in from outside the loop and guide the “orientation” and
“decision” components by providing a context in which to
make a decision. Another missing component is a learning
module, which prevents mistakes from previous iterations from
being made on future iterations.

Feedback loops such as the OODA loop work because
although the environment in which the decisions are being
made may be highly complex, it is not totally random. There
is a structure to the complex system that may not be apparent
from outside analysis but an attempt to approximate it can be
made through iterative cycles of a test-response feedback loop.
By simplifying the environment to a black box model, it may
be possible to determine some of this structure, particularly if
the system is reasonably stationary within the time frame of
interest for the adaptations. In a cognitive network, network
elements and their interactions are the “black box.” The SAN
modifications that the cognitive network implements act as
inputs to the box, while behavior observed in the network are
the outputs.

The problem with simple cross-layer protocols (such as
the “cognitive layers” mentioned before) is that they do not
model the entire end-to-end connection as the black box,
but instead they examine a specific subset of the network.
This can produce unforeseen responses at other elements of
the network that are not a part of the cross-layer protocol.
These responses are outside of the adaptive mechanism or the
optimization algorithm used by the cognitive layer. Ideally, a
cognitive network would be able to optimize the connection
by changing many of the flexible options available to it in the
network. Assuming that there is some underlying structure to
the response of the network, some form of machine learning
algorithm could be used to analyze the network response and
choose the correct set of inputs to optimize the system.

D. Cognition

Cognitive processes fall under the title of “machine learn-
ing” and have been an active research area since the 1960s.
Machine learning is broadly defined in [21] as any algorithm
that “improves its performance through experience gained
over a period of time without complete information about the
environment in which it operates.” Underneath this definition,
many different kinds of artificial intelligence, decision making
and adaptive algorithms can be placed, giving cognitive net-
works a wide scope of possible mechanisms to use in learning.

In the following paragraphs, a brief discussion of possible
mechanisms for machine learning is given. There are many
other possibilities for implementing machine learning, includ-
ing combinations or hybridization of the following strategies;
the choice of machine learning algorithm depends on what
the the network goals are and how these problems are set
up. Complex cognitive networks may have several cognition
processes operating, each using mechanisms appropriate for
the problem being solved.

When discussing machine learning and artificial intelli-
gence, the area of neural networks is often cited as a successful
mechanism for implementing learning. Neural networks use
a bottom-up method of learning, simulating the biological
neurons and pathways that the brain is thought to use. A series
of these artificial neurons analyze different aspects of known
inputs with some amount of unknown corruption. Pattern
recognition is a common and straightforward application of
cognitive networks. If network responses are modeled as a
noisy pattern, a neural network could be used to categorize
the pattern into predetermined responses.

Genetic algorithms are usually used in optimizing over very
large solution spaces where exhaustively searching would be
too costly. By imitating the process of evolution (selection,
recombination and mutation), genetic algorithms are able to
explore these large solution spaces for local optima. Genetic
algorithms have many applications, but work best for central-
ized problems where the environment is well known. For this
reason, if most of the current network state is known, genetic
algorithms could be used to determine optimal behaviors.

Recently, artificial intelligence has focused on expert sys-
tems [16]. Expert systems are often used to make decisions in a
very narrow field of knowledge (a common application is med-
ical diagnosis) and imitate the “intuition” that a professional in
the field would have in finding a solution by asking a series of
questions (typically with only “yes,” “no,” and “no response”
answers). Expert systems can be useful in determining how to
prioritize goals and solve problems that have a limited number
of possible inputs.

Kalman filters [4] are not usually considered a machine
learning algorithm, but do fit the definition of machine learning
given above. They contain an adaptive algorithm for feedback
control. Usually found in systems that contain significant
amounts of system noise, the Kalman filter is a recursive
filter used to estimate the actual and future state of the system
based on noisy Gaussian measurements. The ability to act as a

355

Elements
Configurable Network

Application/User/Resource

Network

API

Network

Status

Sensors

Software Adaptive Network

Cognitive Process

Cognition Layer

End−to−end Goals

Specification Language

Fig. 2. The Cognitive Framework

dynamic filter means a Kalman filter can be useful for tracking
and maintaining a particular performance metric in a changing
or noisy system.

Learning automata [15] are a simple method of intelligently
learning a process to an unknown feedback system. Typical
applications for learning automata include problems where
there are many dynamic elements interacting with a complex
system, such as intelligent vehicles [22], cross-layer optimiza-
tion problems [7] or routing problems [15]. If the problem is
distributed and requires very little state information, learning
automata can be a good approach.

Regardless of what implementation is chosen, the process
needs to be able to learn or converge to a solution faster than
the network status changes, and then re-learn and re-converge
to new solutions when the status changes again. The issue of
convergence is of particular importance in environments that
change frequently, such as mobile wireless networks.

IV. A COGNITIVE NETWORK FRAMEWORK

Regardless of what the scope of a cognitive network is, how
decentralized it is or how much state information is available,
some aspects of the network have to be known. A network
node makes use of a communication medium and as such
requires at least two entities synchronized in certain operating
modes to communicate effectively. Furthermore, the cognitive
network has to know what its goals are and how to interact
with the underlying SAN. This information requires a software
framework to be in place, tying the user needs, cognition and
underlying network together. Figure 2 illustrates the nominal
architecture put forth in this section to build the cognitive
network.

A. User / Application / Resource Requirements

The top level component of the cognitive network includes
the end-to-end goals, which are put forth by the network
users, applications or resources. These requirements drive the
cognitive behaviors by identifying, prioritizing and weighting
the requirements to the user of the cognitive network.

As mentioned in section II-C, these end-to-end goals are
what sets a cognitive network apart from other cognitive
communication mechanisms. Changing or modifying a net-
work element can create performance optimization local to the
particular element being modified, but still cause a negative
effect on the performance elsewhere in the network or node.
For instance, a particular wireless MAC protocol may optimize
for power consumption, creating higher hop count routes
that use short links. However, this mode of operation might
result in additional end-to-end delay (due to the additional
processing, queueing and transmission delay that goes along
with higher hop count routes) which in turn could affect
the transport layer, leading to more retransmissions. As a
result, the overall power consumption for the node might be
higher than without the original optimization. Alternatively, if
the protocol does achieve lower power consumption, it may
increase the jitter of the connection beyond what is feasible for
a voice application. The possibilities of interaction are endless.
Only if the users of the network reveal their requirements can
a cognitive network know if it is operating “successfully.”

Like most engineering problems, there is likely to be an
engineering trade-off for every goal optimized on. In the
optimization space, the cognitive network will not be able
to optimize all metrics indefinitely. In most systems, a point
is reached in which one metric cannot be optimized without
affecting another. At this point, the cognitive network will need
to know the metric priorities and the minimum and maximum
required performance of each of these metrics.

B. Cognitive Process

The cognitive process consists of three components: the
specification language, cognition layer, and network input.
These components follow the feedback loop discussed in
section III-C, providing the actual intelligence of the cognitive
layer, and allow it to interface with the SAN and the network
users.

Cognitive Specification Language: To connect the require-
ments of the top-level users of the network to the cognitive
layer, an interface layer must be developed. This information
need not be globally known (unless the cognitive network is
operating with a system-wide scope, in which case global
knowledge might be required), but must be communicated
between the source of the requirements and the local cognitive
process.

This process is similar to the Radio Knowledge Represen-
tation Language (RKRL) proposed by Mitola for cognitive
radio [13] or QoS specification languages. There are already
several different QoS specification paradigms in existence [9]
and the concept of these languages – mapping requirements
to underlying mechanisms – is the same here, except that

356

the mechanisms are adaptive to the network capabilities as
opposed to a fixed set of mechanisms.

Unlike RKRL or a QoS specification language, a Cognitive
Specification Language (CSL) must be able to adapt to new
network elements, applications and goals, some of which may
not even be imagined yet. For this reason, an extensible
format such as eXtensible Markup Language (XML) may
be appropriate. Other requirements may include support for
distributed or centralized operation including the sharing of
data between multiple cognition layers. This language should
not actually perform the cognitive process (this is done by the
cognition layer) but an application may be needed to translate
the requirements (as generated by the top level users) into
CSL.

Cognition Layer: The cognitive aspect of the network could
be either centralized or distributed. Depending on whether the
network is operating in local or communal mode, distributed
or centralized may be a more natural fit. It is a reasonable
assumption, however, that most networks will have the cogni-
tive behavior handled at each node, providing an argument to
decentralize the operation. Possible algorithms for this layer
were discussed in section III-D.

Network Status Sensors: While the CSL provides end-to-
end goals as input to the cognition layer, the network status
sensors provide feedback from the network to the cognition
layer. They also allow the cognition layer to observe patterns,
trends, and thresholds in the network for possible action.
The network status sensors may only report data from the
connection that the cognitive network is managing, or they
may distribute their information to the entire network. As
discussed in section III-B, the status these sensors collect can
be communicated in either a distributed or centralized form.
Such sensors can be co-located with (or be a specific function
of) general purpose network nodes.

C. Software Adaptable Network

The SAN is really a separate research area, just as the design
of the SDR is separate from the development of the cognitive
radio. However, the cognitive network needs to be aware of
the interface that the SAN provides to the network elements
it can control. This is similar to an Application Programming
Interface (API) or an Interface Description Language (IDL).
The SAN also consists of Modifiable Network Elements,
which act as points of control for the cognitive network.

Network API: The actual software for the SAN and its
interface will likely sit as some sort of middleware between
the user or application and the network elements, including
the network stack. Using multi-platform glue such as Common
Object Request Broker Architecture (CORBA), the API will
bridge this gap. Just like the other aspects of the framework,
the API should be flexible and extensible. Continuing our anal-
ogy with SDRs, an existing system that is possibly analogous
to this is the Software Communications Architecture (SCA)
used in the Joint Tactical Radio System (JTRS) .

Another responsibility of the API (and the SAN) is to
notify the cognitive network of what the operating states of

the network elements are. Many modifications to the network
stack require that both ends of the link be synchronized and
operating in the same mode. The communication required to
synchronize these states is the responsibility of the SAN and
could be accomplished either in or out of channel. Either
method is a significant hurdle to overcome. If, for instance, two
cognitive network processes switch to different transmission
frequencies, or different byte orders in the packet headers,
or even incompatible retransmission strategies, communication
between the two nodes could break down.

Thus at a minimum, the cognitive network needs to know
what modifications have been made by each of the devices in
its communication channel that could impede communication
if not synchronized. Since it is possible that different networks
may have different modifications available to them, the system
used to gather and distribute this information must be robust
and extensible.

Modifiable Network Elements: The actual components of
the SAN are the modifiable network elements. These elements
can include any object or element used in a network, although
it is unlikely that all elements in a SAN would be modifiable.
Each element should have public and private interfaces to
the API, allowing it to be manipulated by the SAN and the
cognitive network.

V. CASE STUDY

In order to illustrate some of the concepts discussed in this
paper, we have developed a simple case study. This study
consists of a distributed cognition layer made up of learning
automata. Each node in the network is equipped with a
directional reception antenna and omnidirectional transmission
antenna. The omnidirectional antenna has a variable power
source that can vary the amount of power transmitted. The
end-to-end goal is to maximize the connection time for unicast
and multicast communication between a source node and one
or more destination nodes. In section V-A, this problem will
be mapped onto the cognitive network architecture discussed
previously. In section V-B, the simulation used to model this
problem is discussed. Finally, results and conclusions from
this simulation are presented in section V-C.

A. Architecture

User/Application/Resource Layer: For many applications,
such as voice and video, having a long-lasting end-to-end
connection is an important consideration. The stability and
lifetime of a connection is a limiting factor. Many factors
may affect the expected lifetime of a network connection in
a wireless network. For instance, traffic congestion can cause
timeouts in upper layer protocols, interference can cause loss
of connection at the physical layer, and mobility can cause
unexpected disconnections in traffic routing. However, for
mobile and portable devices, one of the biggest factors in the
lifetime of a connection is the utilization of the available power
capacity contained in the batteries of the network devices.

For this study, it is assumed that the wireless network is
made up of a collection of network elements with varying

357

power capacity limitations. Some elements may be battery
powered, with limited power capacity, while others may be less
mobile, wired into the electrical system with almost limitless
power. The lifetime of a data flow, however, is limited by the
rate at which the energy is being consumed and the power
capacity of the nodes in the network. By minimizing the total
utilization of the flow, the lifetime of devices being used to
carry the connection can be maximized.

Furthermore, for this particular case study, there are no
additional requirements or limitations set by the top layer. If
another goal was to be set, such as a “fair” utilization of all
nodes in the network or minimizing the power consumption of
the path, a prioritization scheme would have to be developed
to accomplish this multi-objective optimization. To assist in
prioritizing the utility of different combinations, performance
bounds may need to be set on each of the goals.

Cognitive Specification Language: The Cognitive Specifi-
cation Language translates the end-to-end goals to a form
understandable by the cognitive process. For the goal of
maximizing flow lifetime, the specification layer translates
these goals in terms of the modifiable network elements. In
this case, it is relates the goal of connection lifetime to the total
power utilization of the chosen route. More complex cognitive
specification layers could also relate this goal to other possible
factors, such as traffic rate, signal-to-noise ratio, or mobility.
This would depend on the cognition layer’s ability to process
these additional goals and having modifiable network elements
that are able to support them. If user mobility is not something
that can be controlled by the software adaptable network,
the cognitive network cannot specify a goal to the cognition
layer that requires mobility to be modified. Similarly, if the
cognition layer is not capable of optimizing multiple goals,
specifying objectives for both power utilization and signal-to-
noise ratio would not be possible.

In this simple case, the network flow lifetime goal is speci-
fied to the cognition layer by a fitness function that describes
the total power utilization. With the goal of minimizing the
power utilization of the multicast route, the fitness function
returns higher values for power combinations that lead to lower
utilization. We define a multicast route as a tree T . The tree is
anchored at a source node s that transmits to destination nodes
D (where |D| can range from 1 to |N|−1). We assign a cost
function to each edge of the tree that is the utilization ratio
of the power expended to power capacity of the transmitting
(source) node of that edge:

u(t) =
p(t)
c(t)

(1)

Here p(t) is the power set for transmission from node t and
c(t) is the available power capacity for node t. c(t) is a
function of node t’s battery capacity in coulombs, the average
duty cycle of a transmission, and the potential drop across the
battery. We then additionally define maximum and minimum
costs for an edge as

umax(t) =
pmax(t)

c(t)
(2)

umin(t) =
pmin(t)

c(t)
(3)

where pmax(t) is an upper limit on the power transmitted from
node t and pmin(t) is a lower limit on power transmitted from
t. For a given multicast tree T the fitness function β → [0,1]
maps the route’s power utilization to the end-to-end goal of
maximizing connection lifetime by defining β as

β =

{
0 D � T

1− ∑t∈T u(t)−∑t∈T umin(t)
∑t∈T umax(t)−∑t∈T umin(t) D ⊆ T

(4)

The fitness function is 0 if the tree is broken due to interference
or having inadequate power to reach all all branches. The
function then increases as the average utilization decreases,
until it is maximized with a value of 1 in the case that the
link cost is umin for each node in the tree.

Cognition Layer : In [23], the heuristic approach to di-
rectional antenna multicast, Directional Reception Incremental
Protocol (DRIP) was introduced. It was shown to be remark-
ably close to the optimal min-power solution. However, DRIP
is designed to work in the absence of inter-node interference.
Wood and DaSilva identified that heuristic solutions have
good performance in optimal environments, but have trouble
when the real-world problem of interference is introduced. The
heuristic works by assigning a cost to each link related to the
interference-free power required to reach a particular node.
However, once the tree is built, interference will creep into
the system and require more power than initially calculated.
This problem can be somewhat mitigated by estimating the
interference and augmenting the required link power. However,
this estimate is difficult to accurately calculate since the
actual amount of in-system interference each node receives
is a function of the power output of neighboring nodes, the
distance to the neighbors, and whether the neighbors reside
in the directional beam of the receiving node. This case study
uses a modified DRIP algorithm that attempts to make a best
estimate of the required power making an estimate of the
expected amount of in-system interference. However, if this
estimate is too high, more power (and battery utilization) will
be used than necessary, and if it is too low, connections (and
the multicast tree) will be broken because of interference.

The cognition process is the layer that solves the mis-
estimation problem and simultaneously minimizes the power
used. By interacting with the environment, it “learns” to opti-
mize the network by adapting the power output of all interior
tree nodes to a lower power utilization ratio while maintaining
a fully connected multicast tree. To solve the connection
lifetime problem, the cognition layer is implemented as a
network of learning automata. An automaton is a learning
model that has an action space (either discrete or continuous),
a probability vector that maps a selection probability to every
action, and a feedback function. Each automaton in this

358

example is created as an Finite Action Learning Automata
(FALA). Specifically, the automata are deigned as Learning
Reward-Inaction automata (denoted LR-I). LR-I automata and
their behavior are discussed in detail in [14], [15], [21]. An
LR-I automaton is so named because the probability vector of
the automaton is only reinforced when the automaton performs
an action that receives positive feedback. If the feedback is 0,
no updating occurs.

As mentioned before, an LR-I automaton works by updating
the probability that it will select actions in the future based on
feedback from current and previous actions. In this case, each
automata in the tree is given 10 possible power levels to choose
from. These actions are represented in elements of the action
vector α̂. The probability of choosing any particular action in
α̂ is contained in the probability vector p̂. These two vectors
are related to one another through their indices. Initially, the
probability vector is uniformly distributed, meaning that each
element of p̂ is set to |p̂|−1. The probabilities change as the
automata get feedback from the system. If the action chosen at
instance k is αi and it receives feedback β(k), the probability
vector p̂ is updated in the next time increment as:

p j(k +1) =
{

pi(k)+λβ(k)(1− pi(k)) j = i
p j(k)−λβ(k)(p j(k)) ∀ j �= i

(5)

where λ is the learning parameter and i denotes the action
choice selected. Equation 5 shows that the probability of
choosing a particular action increases when β > 1 but does not
change when β = 0. It can be easily shown through induction
that 0 ≤ p j(k) ≤ 1 and ∑|p̂|

j=1 p j(k) = 1 for every value of k.
The automaton calculates β using the function defined by the
Cognitive Specification Language.

When the FALA loop through the choice-action-feedback
cycle, they generate a Markov process in the probability vector
p̂. The state space for this process can be given by

Sr =

{
p̂|p̂ = [p1, p2, . . . , pr]T ; 0 ≤ pi ≤ 1∀ i,

|p̂|
∑
i=1

pi = 1

}
(6)

The interior of this state space, S0
r is the set of all possible valid

p̂ in Sr, and is the search space of the FALA. This is because
when a FALA operates, it is trying to solve the optimization
problem

max
p̂

E[β(k)|p̂(k) = p̂] (7)

which, assuming small enough learning parameter λ, is at a
local maxima when p̂ is a unit vector with one component of
value one and all others of value 0.

In this example, the automata learn by repeatedly selecting
power levels to transmit at from the action space and the
determining the feedback from the β function provided to it by
the cognitive specification language. The process is repeated
until the system converges and stabilizes to a local utilization
minima.

Network API: The network API allows the cognition layer
to interface with the network. For this study, the cognition
layer needs to control the output power from the transmitting

nodes. The API should provide the cognition limits on the
possible power settings, and provide a hook for setting the
power output requested by the cognition process. Additionally,
the API should provide a mechanism for the cognition layer
to share information between nodes. In order to calculate the
fitness function, members of the multicast tree have to share
their utilization ratios with each other. Since child nodes have
to communicate with parent nodes as well as parent nodes
communicating with child nodes, the API should provide some
basic form of bi-directional communication mechanism that
goes beyond the directional multicast discussed here.

Network Status Sensors: Network status sensor read in-
formation from the network and provide it to the cognition
layer. For the case study, the status sensors are very simple,
measuring the power output and capacity at each node, as well
as the connectivity of the network.

Modifiable Network Elements: The only modifiable network
element for this study is the power output of the transmitter.
Although other elements, such as the beam direction, may be
modifiable, they are not controllable by the cognitive network.

B. Simulation

The network was simulated using Matlab. A 10 unit by 10
unit map was created, and 10 ad-hoc nodes were placed in the
map using a uniform distribution for the x and y coordinates.
The receive beamwidth was set to 45 degrees wide, and we
assumed that 70% of the power was received in the main lobe.
These nodes are each given one LR-I automata to control
the transmission power, varying it among 10 power levels
uniformly distributed from 10% to 110% of the power estimate
provided by the DRIP heuristic. Unless otherwise specified, all
results refer to a learning parameter λ of 0.10.

The simulation models the heterogeneity of the battery
capacity by assigning random battery capacities to each node.
There is a 30% chance that a node will be powered by
a generated power source instead of a battery. The power
capacities are uniformly distributed from 300 to 1000 units of
power. The signal-to-noise ratio threshold for communication
to occur was set to a value of 1, meaning that signals received
with a power level greater than the noise and interference will
be correctly received. Out-of-system noise was set to 0.1 units.
It was experimentally determined that setting the in-system
interference estimate to 0.45 units of power gave the highest
probability of successfully connecting the tree.

The number of receivers was varied from 1 to 9, with 100
runs performed for each receiver set size. For each simulation
run, the average utilization ratio for the tree was measured,
as well as the single-node maximum utilization, the fitness
function value and the iterations to convergence. A simulation
was determined to have converged when all vectors p̂ had an
element greater than 1− ε. For this simulation ε was set to
10−4.

It should be noted that this simple case study simulation
ignores unknown secondary effects that could work against
the network goals. A more complex example might have
more network status sensors. This would allow other variables

359

Number of Receivers
1 3 5 7 9

0.05 74% 74% 72% 71% 71%
λ 0.10 70% 69% 69% 66% 70%

0.15 71% 66% 66% 66% 64%

TABLE I

MEAN PERCENT IMPROVEMENT IN POWER UTILIZATION (100 TRIALS)

that effect the connection lifetime to be determined, possibly
changing either the function β provided by the CSL or the
value that β gives the cognition process.

C. Results

In order to determine the optimality of the cognitive net-
work solution, the cognitive network performance is compared
against the non-cognitive heuristic DRIP solution.

Because of its reliance on estimating the out-of-system
noise, the heuristic solution does not always determine a
workable solution. Across all receiver sets, the heuristic finds
a working solution only 86% of the time. In contrast, the
cognitive network finds a solution 97% of the time, an 11%
improvement.

In terms of average power utilization, the cognitive network
out-performs the heuristic. Removing the cases where the
heuristic does not find a solution and the where the source
node has an infinitely large power source (the solution to
this is trivial and both methods achieve average utilization
of 0), the cognitive network performs at least 64% better than
the heuristic. Table I shows the average improvement for the
cognitive network over the non-cognitive network.

Since the multicast tree is like a multi-ended chain, should
the connection fail between any two links in the chain, the
tree will fail to reach all recipients. The lifetime of the tree
is proportional to the most utilized link, since it will fail
first. Although the cognition layer does not specifically try
and determine the routing system containing the node with
the minimal maximum utilization, the cognitive network does
have an advantage over the heuristic in this aspect also. In
fact, the single node maximum utilization ratio of the cognitive
network is, on average, 70% lower than that of the heuristic.

VI. CONCLUSION

This paper has presented, defined and described a new
form of adaptive network technology, the cognitive network.
Although the term “cognitive” is associated with many com-
munications technologies, we have defined a cognitive network
to be a unique, adaptive networking technology that operates
in light of the end-to-end goals of a data flow. This paper
described the software framework required to implement a
cognitive network, and introduced the idea of a SAN, an
underlying network technology that has modifiable network
elements. By presenting a case study, this paper illustrated both
the architecture and potential of a cognitive network. Cognitive
networks are a future networking technology that will allow
data networks operating in complex, heterogeneous, noisy and

dynamic environments to reclaim stability by learning and
adapting their behaviors to meet top-level end-to-end goals.

REFERENCES

[1] Angeliki Alexiou and Martin Haardt. Smart antenna technologies for
future wireless systems: trends and challenges. IEEE Communications
Magazine, 42(9):90–97, 2004.

[2] Robert Berezdivin, Robert Breinig, and Randy Topp. Next-generation
wireless communications concepts and technologies. IEEE Communi-
cations Magazine, 40(3):108–116, 2002.

[3] John Boyd. A discourse on winning and losing: Patterns of conflict.
1986.

[4] Eli Brookner. Tracking and Kalman Filtering Made Easy. Wiley-
Interscience, 1998.

[5] Erol Gelenbe, Ricardo Lent, and Zhiguang Xu. Design and performance
of cognitive packet networks. Performance Evaluation, 46(2-3):155–
176, 2001.

[6] Michelle Gong. Improving the Capacity in Wireless Ad Hoc Networks
through Multiple Channel Operation: Design Principles and Protocols.
PhD thesis, Virginia Polyechnic Institute and State University, 2005.

[7] M. A. Haleem and R. Chandramouli. Adaptive downlink scheduling and
rate selection: A cross-layer design. IEEE Journal on Selected Areas in
Communications, 23(6):1287–1297, 2005.

[8] Simon Haykin. Cognitive radio: Brain-empowered wireless communica-
tion. IEEE Journal on Selected Areas in Communication, 23(2):201–220,
February 2005.

[9] Jingwen Jin and K. Nahrstedt. QoS specification languages for
distributed multimedia applications: A survey and taxonomy. IEEE
Multimedia, 11(3):74–87, 2004.

[10] Vikas Kawadia and P. R. Kumar. A cautionary perspective on cross-layer
design. IEEE Wireless Communications, 12(1):3–11, 2005.

[11] Petri Mähönen, Janne Riihijärvi, Marina Petrova, and Zach Shelby. Hop-
by-hop toward future mobile broadband IP. IEEE Communications
Magazine, 42(3):138–146, 2004.

[12] Joseph Mitola. Cognitive Radio: An Integrated Agent Architecture for
Software Defined Radio. PhD thesis, Royal Institute of Technology
(KTH), 2000.

[13] Joseph Mitola and G. Q. Maguire. Cognitive radio: making software
radios more personal. IEEE Personal Communications, 6(4):13–18,
1999.

[14] Kaddour Najim and Alexander S. Poznyak. Learning Automata: Theory
and Applications. Pergamon, 1994.

[15] Kumpati S. Narendra and Mandayam A.L. Thathachar. Learning
Automata: An Introduction. Prentice Hall, 1989.

[16] Nils J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan
Kauffman Publishers, 1998.

[17] Christos H. Papadimitriou. Algorithms, games, and the Internet. In
Proceedings of STOC 2001, 2001.

[18] Chris Ramming. Cognitive networks. In DARPATech, 2004.
[19] Roberto Saracco. Forecasting the future of information technology: How

to make research investment more cost-effective. IEEE Communications
Magazine, 41(12):38–45, December 2003.

[20] Beverly Schwartz, Alden W. Jackson, W. Timothy Strayer, Wenyi Zhou,
R. Dennis Rockwell, and Craig Partridge. Smart packets for active
networks. In OPENARCH ’99, pages 90–97, 1999.

[21] M. A. L. Thathachar and P. S. Sastry. Networks of Learning Automata.
Kluwer Academic Publishers, 2004.

[22] Cem Unsal. Intelligent Navigation of Autonomous Vehicles in an
Automated Highway System: Learning Methods and Interacting Vehicles
Approach. PhD thesis, Virginia Polyechnic Institute and State University,
January 1997.

[23] Kerry Wood and Luiz A. DaSilva. Optimal max-min lifetime routing
of multicasts in ad-hoc networks with directional antennas. In 2nd
International Conference on Broadband Networks (BROADNETS 05),
October 2005.

360

