
 
University of Strathclyde 

Department of Computer & Information Sciences 
 
 
 
 
 

 
 

 

Investigating and Improving Novice 
Programmers’ Mental Models of 

Programming Concepts 
 
 
 

by Linxiao Ma 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

A thesis presented in fulfilment of the requirements for the degree of 
Doctor of Philosophy 

 
 

2007 
 

 

 



 ii

 

 
 
 

 
 
 
 
 
 
 
 
 
 

‘The copyright of this thesis belongs to the author under the terms of the United 

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 

3.49.  Due acknowledgement must always be made of the use of any material 

contained in, or derived from, this thesis.’ 

 

 

@copyright 2007 

 

 



 iii

 

ABSTRACT 

 
Current programming education seems far from successful. A large proportion of 

programming students are failing programming courses all around the world. While 

lack of problem-solving ability is viewed as a possible cause of failure in 

programming learning, another potential cause is that students may hold non-viable 

mental models of key programming concepts which may lead to misconceptions and 

difficulties in solving programming problems. This thesis presents research that aims 

to investigate the viability of the mental models held by novice programmers, and to 

suggest and evaluate a constructivist-based teaching approach to improve these 

models.  

 

This thesis first presents the theoretical knowledge and related work in the field of 

constructivism, mental models of novice programmers, visualization in programming 

education, and cognitive conflict strategy. A study that aimed to investigate the 

viability of novice programmers’ mental models of fundamental programming 

concept (focusing on value assignment and reference assignment) is then presented. 

The results of this study revealed that many students were holding non-viable mental 

models of basic programming concepts such as variables, assignment and reference. 

In addition, this study found that the students with viable mental models performed 

significantly better in programming tasks than those with nonviable mental models. 

In order to improve novice programmers’ mental models, a constructivist-based 

teaching model that integrates a cognitive conflict strategy and program visualization 

is proposed. A series of studies were conducted to evaluate the effectiveness of the 

proposed learning model. The results indicate that the proposed learning model is 

effective to enhance students’ interests and engagement with the learning materials 

and help them to construct viable mental models. However, the visualization 

technique seems less effective for a relatively complex concept such as reference, 

when students lack necessary base knowledge to interpret the visualization.  



 iv

 

ACKNOWLEDGEMENTS 
 
I would like to express my sincere gratitude and appreciation to my supervisors, Dr. 

John D Ferguson, Dr. Marc Roper, and Dr. Murray Wood for their excellent 

supervision and invaluable encouragement of my research work. This dissertation 

would never have been completed without their remarkable enthusiasm, inspiration, 

and patience.  

 

I would also like to thank many other people who contributed to this dissertation. 

First of all, sincere thanks to Dr. John Wilson for his enthusiastic support and advice 

for my Ph.D. study. Special thanks go to my officemate, Mr. David C Elsweiler, who 

was always there when I needed help. In particular, he gave me a lot of invaluable 

advice on how to be a Ph.D. student. I would also like to gratefully and sincerely 

thank Dr. Douglas Kirk, Mr. Konstantinos Liaskos, and Mr. Inah Omoronyia who 

helped me prepare experiment materials and gave me invaluable suggestions and 

feedback on my research.  

 

I would like to give my deepest gratitude and love to my parents for their dedication 

and faith in me. I would also like to thank my girlfriend for the many years of love 

and support during my graduate study.  

 

 

 

 

 

 

 

 

 

 



 v

 

PUBLICATIONS 
 

• Ma, L., Ferguson, J. D., Roper, M., Wilson, J., and Wood, M., "A Collaborative 

Approach to Learning Programming: a hybrid learning model", 6th Annual 

Higher Education Academy Subject Network for Information and Computer 

Science Conference, York, UK, August 2005. pp. 75-80. 

 

• Ma, L., Ferguson, J.D., Roper, M., and Wood, M., "Investigating the Viability of 

Mental Models Held by Novice Programmers". 38th ACM Technical Symposium 

on Computer Science Education. Covington, Kentucky. 2007. 

 

• Ma, L., Ferguson, J.D., Roper, M., and Wood, M., "Improving the Viability of 

Mental Models Held by Novice Programmers”. Eleven Workshop on Pedagogies 

and Tools for the Teaching and Learning of Object Oriented Concepts. ECOOP 

Workshops 2007.  

 

• Ma, L., Ferguson, J.D., Roper, M., Ross, I., and Wood, M., "Using Cognitive 

Conflict and Program Visualization to Improve Mental Models Held by Novice 

Programmers". 39th ACM Technical Symposium on Computer Science Education. 

2007. 

 

 

 

 

 

 

 



 vi

 

CONTENTS 
ABSTRACT..................................................................................................................................III 

ACKNOWLEDGEMENTS..........................................................................................................IV 

PUBLICATIONS........................................................................................................................... V 

CONTENTS..................................................................................................................................VI 

CHAPTER 1 – INTRODUCTION ................................................................................................. 1 

1.1 RESEARCH QUESTIONS .......................................................................................................... 3 
1.2 RESEARCH HYPOTHESES ....................................................................................................... 3 
1.3 CONTRIBUTIONS .................................................................................................................... 3 
1.4 OUTLINE OF THE THESIS........................................................................................................ 4 
1.5 TIMELINE OF THE EMPIRICAL STUDIES ................................................................................. 6 

CHAPTER 2 - THEORETICAL KNOWLEDGE OF CONSTRUCTIVISM, MENTAL 

MODELS, AND COGNITIVE CONFLICT .................................................................................. 9 

2.1 CONSTRUCTIVISM.................................................................................................................. 9 
2.1.1 The Principles of Constructivism.................................................................................... 9 
2.1.2 Constructivism in Computer Science Education........................................................... 14 

2.2 MENTAL MODELS................................................................................................................ 15 
2.2.1 What are Mental Models? ............................................................................................ 15 
2.2.2 The Functions of Mental Models ................................................................................. 18 
2.2.3 The Characteristics of Mental Models.......................................................................... 18 

2.3 COGNITIVE CONFLICT ......................................................................................................... 20 
2.3.1 Piaget’s Equilibrium Theory ........................................................................................ 21 
2.3.2 Conceptual Change Model (CCM) ............................................................................... 23 
2.3.3 Cognitive Conflict Process Model................................................................................. 25 

2.4 SUMMARY............................................................................................................................ 27 

CHAPTER 3 --- RELATED WORK ON MENTAL MODEL STUDIES, VISUALIZATION, 

AND COGNITIVE CONFLICT ................................................................................................... 29 

3.1 INVESTIGATING THE MENTAL MODELS HELD BY NOVICE PROGRAMMERS ......................... 29 
3.1.1 Dehnadi and Bornat’s (2006) Study on the Consistency of the Mental Models Held 

by Beginning Students ......................................................................................................... 32 
3.1.2 Sasse’s (1997) Study of the Mental Models of the Prolog Programming Language. 36 
3.1.3 Bayman and Mayer’s (1983) Study of the Mental Models of BASIC Programs ........ 39 
3.1.4 Kahney’s (1983) Study of the Mental Models of Recursion .......................................... 41 
3.1.5 Kurland & Pea’s (1985) Study of the Mental Models of Recursion .............................. 44 



 vii

3.1.6 Yehezkel et al.’s (2005) Study of the Mental Models of Computer Architecture............ 47 
3.1.7 Summary of the Mental Model Elicitation Methods.................................................. 50 

3.2 VISUALIZATION USED IN PROGRAMMING EDUCATION ........................................................ 56 
3.2.1 Terminology of Software Visualization Systems ........................................................... 57 
3.2.2 Visualization Systems Developed for Programming Education .................................... 59 
3.2.3 Empirical Studies on the Effectiveness of Visualization Systems in Programming 

Education ............................................................................................................................. 69 
3.3 EMPIRICAL STUDIES ON THE EFFECTIVENESS OF THE COGNITIVE CONFLICT TEACHING 

STRATEGY ................................................................................................................................. 72 
3.4 SUMMARY............................................................................................................................ 77 

CHAPTER 4 – INVESTIGATING THE VIABILITY OF MENTAL MODELS HELD BY 

NOVICE PROGRAMMERS........................................................................................................ 79 

4.1 INTRODUCTION.................................................................................................................... 79 
4.2 RESEARCH AIMS.................................................................................................................. 80 
4.3 RESEARCH METHOD............................................................................................................ 80 

4.3.1 Participants .................................................................................................................. 80 
4.3.2 Test Questionnaire ....................................................................................................... 81 

4.4 RESULTS .............................................................................................................................. 83 
4.4.1 The Results of the Open-ended Question...................................................................... 83 
4.4.2 The Results of the Multi-choice Questions ................................................................... 89 
4.4.3 Comparison with the Assessment Results ..................................................................... 90 
4.4.4 Comparison with Previous Programming Experiences................................................. 92 

4.5 DISCUSSIONS........................................................................................................................ 93 
4.6 SUMMARY............................................................................................................................ 94 

CHAPTER 5 – A TEACHING MODEL INTEGRATING A COGNITIVE CONFLICT 

STRATEGY AND PROGRAM VISUALIZATION.................................................................... 96 

5.1 TEACHING MODEL .............................................................................................................. 96 
5.2 A COMPUTER-SUPPORTED LEARNING TOOL BASED ON THE PROPOSED LEARNING MODEL

................................................................................................................................................ 100 
5.3 SUMMARY.......................................................................................................................... 106 

CHAPTER 6 – EVALUATION OF THE PROPOSED TEACHING MODEL ........................ 107 

6.1 AN EVALUATION OF THE EFFECTIVENESS OF THE PROPOSED LEARNING MODEL FOR VALUE 

ASSIGNMENT ........................................................................................................................... 107 
6.1.1 Research Aim ............................................................................................................. 107 
6.1.2 Research Method........................................................................................................ 108 
6.1.3 Results........................................................................................................................ 108 
6.1.4 Discussion .................................................................................................................. 113 



 viii

6.2 AN EVALUATION OF THE EFFECTIVENESS OF THE PROPOSED LEARNING MODEL FOR 

REFERENCE ASSIGNMENT ....................................................................................................... 117 
6.2.1 Research Aim ............................................................................................................. 117 
6.2.2 Research Method........................................................................................................ 117 
6.2.3 Results........................................................................................................................ 125 
6.2.4 Discussion .................................................................................................................. 133 

6.3 A COMPARISON BETWEEN THE ORIGINAL STUDY AND THE PROPOSED TEACHING MODEL 

STUDY. .................................................................................................................................... 140 
6.3.1 Research Aim ............................................................................................................. 140 
6.3.2 Research Method........................................................................................................ 140 
6.3.3 Results........................................................................................................................ 141 
6.3.4 Discussion .................................................................................................................. 145 

6.4 SUMMARY.......................................................................................................................... 146 

CHAPTER 7 – CONCLUSION.................................................................................................. 148 

7.1 SUMMARY OF THE WORK .................................................................................................. 148 
7.2 RESEARCH CONCLUSIONS ................................................................................................. 149 
7.3 LIMITATIONS AND FUTURE WORK..................................................................................... 152 
7.4 CONCLUSION ..................................................................................................................... 154 

REFERENCE ............................................................................................................................. 156 

APPENDIX A – THE QUESTIONNAIRE FOR INVESTIGATING NOVICE 

PROGRAMMERS’ MENTAL MODELS.................................................................................. 170 

A-1: THE CLOSE-ENDED QUESTIONS FOR VALUE ASSIGNMENT.............................................. 171 
A-2: THE OPEN-ENDED QUESTION .......................................................................................... 177 
A-3: THE CLOSE-ENDED QUESTIONS FOR REFERENCE CONCEPT ........................................... 178 

APPENDIX B – THE QUESTIONNAIRE FOR INVESTIGATING THE EFFECTIVENESS 

OF THE PROPOSED LEARNING MODEL FOR VALUE ASSIGNMENT CONCEPT ....... 192 

B-1: QUESTIONNAIRE FOR PRE-TEST ...................................................................................... 192 
B-2: QUESTIONNAIRE FOR POST-TEST .................................................................................... 195 
B-3: QUALITATIVE QUESTIONNAIRE ....................................................................................... 199 

APPENDIX C - THE QUESTIONNAIRE FOR INVESTIGATING THE EFFECTIVENESS OF 

THE PROPOSED LEARNING MODEL FOR VALUE ASSIGNMENT CONCEPT ............. 201 

C-1: QUESTIONNAIRE FOR PRE-TEST...................................................................................... 201 
C-2: QUESTIONNAIRE FOR POST-TEST.................................................................................... 203 
C-3: THE QUESTION TO TRIGGER COGNITIVE CONFLICT....................................................... 205 
C-4: FEEDBACK QUESTIONNAIRE............................................................................................ 206 
C-5: THE EXTRA QUESTIONS FOR THE CC+VIZ GROUP.......................................................... 208 



 ix



 1

 

CHAPTER 1 – Introduction 
 
Current programming education seems far from successful. A 2001 ITiCSE working 

group (the ‘McCracken group’) conducted a multi-national, multi-institutional study 

to assess the programming ability of first-year programming students and found that 

most students performed much more poorly than expected - the average score was 

only 22.89 out of 110 points on the general evaluation criteria (McCracken et al., 

2001). This poor performance is undoubtedly a major contributor to the relatively 

high dropout rates, of around 30-50% (Denning & McGettrick, 2005), associated 

with Computer Science courses. Considering the rapidly increased influence of 

software technology that promotes the large demand for skilled programmers, 

significant concerns are being raised regarding programming education. 

 

While lack of problem-solving ability is viewed as the main cause of failure in 

programming learning (e.g. Barnes et al., 1997), previous studies (e.g. Bayman & 

Mayer, 1983) found students often hold non-viable mental models of key 

programming concepts which may cause misconceptions and difficulties in solving 

programming problems. Researchers and instructors (e.g. Lui et al, 2004) highlight 

that the development of viable mental models of key concepts is critical in order to 

learn to program.  

 

Object-oriented programming is currently the dominant programming paradigm used 

in industry. Many introductory programming courses are teaching programming 

starting with object-oriented techniques. However, several programming teachers 

and educators (e.g. Ben-Ari, 2001a) argue that it is impossible for students to 

properly understand and use object-oriented techniques without viable mental models 

of fundamental programming concepts such as variables and assignment.  

 

To improve students’ mental models it is proposed that an approach to teaching 

programming that emphasizes constructivism (Ben-Ari, 2001a) rather than 



 2

objectivism (Vrasidas, 2000) might be helpful. It is proposed that many students 

have deeply rooted, pre-existing ideas of how computing concepts such as 

assignment might operate. Constructivism theory argues that traditional approaches 

to teaching based on lectures and textbooks are too passive and do not do enough to 

challenge pre-existing ideas and to help students create viable mental models. Instead 

constructivism argues that students actively construct knowledge by combining the 

experiential world with existing cognitive structures (Ben-Ari, 2001a). One of the 

key teaching strategies in this approach is that of cognitive conflict which explicitly 

challenges existing ideas in order to encourage the learner to recognize errors in their 

understanding and to try to promote the improvement of non-viable mental models 

(Scott et al., 1992). 

 

However, it should be noted that cognitive conflict alone is unlikely to be sufficient 

to achieve a change in non-viable models. Students must be supported to create new 

viable models, and concepts must be presented in an order and fashion that allows 

the correct construction of inter-dependent models. This is not an easy task, 

especially for programming students. Programming concepts are invisible and 

untouchable. Students cannot ‘see’ what is happening ‘in’ a computer when a 

program is executed. This increases the difficulty of constructing viable mental 

models of programming concepts. To address this, Ben-Ari has proposed that 

program visualization has the potential to create a suitable learning environment 

(Ben-Ari, 2001b). Visualization techniques have been used for over 20 years and 

have, arguably, not been as successful as hoped for. A possible reason for this is that 

they have been used from a traditional, objectivist perspective, ignoring a student’s 

pre-existing models. It is therefore proposed that a potential way forward is to adopt 

an approach based on cognitive conflict to help students realize that there is a 

problem with their current understanding and to use a visualization-oriented learning 

environment to support them in correcting their non-viable models. 

 

This research aims to investigate the viability of mental models held by novice 

programmers, and to suggest and evaluate a constructivist-based teaching model that 

integrates a cognitive conflict strategy with program visualization to improve novice 



 3

programmers’ mental models. The following part of this chapter summarizes the 

research questions, research hypotheses and contributions of this Ph.D. project. The 

structure of this thesis is then introduced at the end of the chapter.    

 

1.1 Research Questions 

 
The following lists the research questions explored in this thesis: 

• What is the range and viability of mental models held by novice programmers? 

• Does the viability of the mental models held by novice programmers affect 

their performance in solving programming problems? 

• Is a cognitive conflict strategy able to improve the effectiveness and 

pedagogical benefits of program visualization techniques? 

• Is a constructivist-based learning model that integrates cognitive conflict and 

program visualization able to improve novice programmers’ mental models 

of basic programming concepts? 

 

1.2 Research Hypotheses  

 

The following are the research hypotheses of this project: 

• Novice programmers often hold non-viable mental models of basic 

programming concepts. Those who hold viable mental models will perform 

better in the programming tasks than those who hold non-viable mental 

models.  

• A constructivist-based teaching model that integrates a cognitive conflict 

strategy and a program visualization technique would be more effective in 

establishing mental models of programming concepts than the traditional, 

objectivist-based teaching models.  

 

1.3 Contributions 

 

The work presented in this thesis makes the following contributions: 



 4

• Up until now, there were few empirical studies specifically conducted to 

investigate novice programmers’ mental models of basic programming 

concepts. This thesis enriched the findings regarding the range and frequency 

of mental models held by novice programmers, focusing on the area of 

reference and value assignment.    

• There was no previous work investigating the relations between the viability 

of novice programmers’ mental models and their performance in solving 

programming problems. This research identified that students holding viable 

mental models performed better than those that held non-viable mental 

models.  

• This research proposes and evaluates a constructivist-based learning approach 

that integrates a cognitive conflict strategy and program visualization 

technique to improve novice programmers’ mental models. 

• Visualization techniques have been used in a large number of domains. 

However, they are not as effective as expected. Many researchers (e.g. Naps 

et al., 2003) have been searching for the reason for this ineffectiveness. This 

project investigates whether or not visualization techniques would be more 

effective in a constructivist-based learning environment. 

• An understanding of novice programmers’ mental models is very important 

for instructors to design effective learning materials and activities. This thesis 

proposes a practical way to elicit novice programmers’ mental models in an 

education context. 

• This thesis proposes a questionnaire to investigate novice programmers’ 

mental models of value and reference assignment concepts by collecting 

quantitative data and qualitative data. 

• This project proposes a computer-supported learning environment to support 

the proposed learning model. 

 

1.4 Outline of the Thesis 

 

The theoretical knowledge related to constructivism, mental models and the 

cognitive conflict strategy are presented in Chapter 2. The general principles of 



 5

constructivism and its application in computer science education are first discussed, 

followed by an introduction of the definition, functions and characteristics of mental 

models, which is an important concept related to constructivism. Finally, a 

constructivist-based teaching strategy, cognitive conflict, is presented with the 

descriptions of the important theory and models underlying this teaching strategy, 

including Piaget’s Equilibrium Theory (Piaget, 1977), Posner et al. (1982) and 

Hewson & Hewson (1984)’s Conceptual Change Model, and Lee & Kwon (2001)’s 

Cognitive Conflict Process Model.  

 

Chapter 3 presents a review of previous studies related to the investigations of 

mental models held by novice programmers, the visualizations used in programming 

education and an assessment of the effectiveness of the cognitive conflict strategy. 

Firstly, a collection of previous studies that were specifically conducted to 

investigate novice programmers’ mental model are analyzed, with special emphasis 

on the mental model elicitation methods used in these studies. This chapter then 

presents the state of the art of visualization when used in programming education, 

explaining the terminology currently associated with visualization systems, 

introducing a survey of visualization systems specifically developed for 

programming education purposes, and describing empirical studies of the 

effectiveness of visualization used in programming education. Finally, this chapter 

presents a review of empirical studies on the effectiveness of the cognitive conflict 

teaching strategy.  

 

An investigation of the viability of the mental models held by novice programmers is 

described in Chapter 4. This study aimed to identify the range and frequency of the 

mental models held by novice programmers in the areas of value and reference 

assignment. In addition, the relationship between novice programmers’ mental 

models and their performance in course tests and their final examination was also 

investigated.  This chapter presents the research aims, methods, results and findings 

of this study.  

 



 6

The findings from the mental models investigation reveal that novice programmers 

often hold non-viable mental models, and those with non-viable mental models 

performed significantly worse than those with viable mental models. These findings 

highlight the importance of helping novice programmers construct viable mental 

models of key programming concept. Chapter 5 proposes a constructivist-based 

learning model integrating cognitive conflict strategy and program visualization to 

improve novice programmers’ mental models. In addition, chapter 5 also presents a 

computer-based learning environment developed by the author to support the 

proposed learning model. 

 

Chapter 6 presents three studies that were conducted to evaluate the effectiveness of 

the proposed learning model for improving the mental models held by the students 

on an introductory programming course. The first study focused on a relatively 

simple programming concept, value assignment, while the second study investigated 

a relatively complex programming concept, reference assignment. The third study, 

conducted at end of the course, investigated students’ mental models of both 

concepts again after a period of time. The results obtained from this study were 

compared with the results from the first mental model study (chapter 4) conducted in 

the previous year in order to compare and investigate whether or not the students 

who experienced the proposed teaching model in this year, performed better than 

those who did not experience this model in the previous year. In addition, this test is 

used to investigate the long-term effects of the proposed teaching model.   

 

Finally, Chapter 7 summarizes the achievements and limitations of this thesis, and 

suggests future work that could follow this research.  

 

1.5 Timeline of the Empirical Studies 

 

As Table 1-1 shows, a series of empirical studies were carried out to investigate 

novice programmers’ mental models and to evaluate the effectiveness of the 

proposed learning model for improving novice programmers’ mental models. At the 



 7

end of the academic year of 2005-2006, a mental model test was conducted to study 

first year programming students’ mental models of assignment and reference 

concepts. In the fifth week of the academic year of 2006-2007, a study was carried 

out to investigate the effectiveness of the proposed learning model for the value 

assignment concept. In the twelfth week of this year, another study was carried out to 

investigate the effectiveness of the proposed learning model for the reference 

assignment concept. At end of this year, the first mental model test that took place in 

the academic year of 2005-2006 was repeated in order to form a comparison between 

the performance of the students who experienced the proposed learning model in the 

academic year 2006-2007 and those who did not experience the proposed learning 

model in the previous year.  

 



 8

 
Table 1-1: The Timeline of the Empirical Studies 

2005 – 2006 
Academic Year 

1st semester 

Week 1 Week 5 Week 12 

2nd semester 

Week 1 Week 5 Week 10 

2006 – 2007 
Academic Year 

1st semester 

Week 1 Week 5 Week 12 

2nd semester 

Week 1 Week 5 Week 10 

(1st Mental Model Test) 

(Evaluate the proposed 
learning model for Value 

Assignment) 

(2nd Mental Model Test)(Evaluate the proposed 
learning model for 

Reference Assignment)



 9

 

CHAPTER 2 - Theoretical Knowledge of 

Constructivism, Mental Models, and Cognitive 

Conflict 
 

A number of educational theories are widely recognized as providing a model for 

educational practice. Objectivism describes a world that is made up of objects. Learning 

is seen as a process to create corresponding representations of these objects in the 

minds of learners (Lakoff, 1987). Cognitivism focuses on how human memory works 

to promote learning. It considers learning as “involving the acquisition or 

reorganization of the cognitive structures through which humans process and store 

information” (Good & Brophy, 1990). Constructivism emphasizes that students 

actively construct knowledge by combining the experiential world with existing 

cognitive structures (Ben-Ari, 2001a). 

 

Over recent decades, constructivism has emerged as the key theory for relating prior 

experience to educational processes, particularly in the context of computer science 

education (Ben-Ari, 2001a). This chapter presents theoretical knowledge of 

constructivism along with an introduction of two important concepts, mental models 

and cognitive conflict, related to constructivism. Firstly, the general principles of 

constructivism and its application in computer science education are discussed in 

section 2.1, followed by a theoretical introduction of mental models in section 2.2, 

covering their definition, functions, and characteristics. Lastly, cognitive conflict and 

the main theory and models underlying this teaching strategy are discussed in section 

2.3. 

 

2.1 Constructivism 
 
2.1.1 The Principles of Constructivism  

 

Constructivism claims that knowledge does not exist independently of the learners. 

Students actively construct knowledge by combining the experiential world with 



 10

existing cognitive structures, rather than passively absorbing knowledge from 

lectures or textbooks (Ben-Ari, 2001a). Ben-Ari (2001a) points out that “Teaching 

techniques derived from the theory of constructivism are supposed to be more 

successful than traditional techniques, because they explicitly address the inevitable 

process of knowledge construction”. Currently, constructivism has become the 

dominant theory of learning (Ben-Ari, 2001). The term ‘constructivism’ has become 

fashionable. Many ‘constructivist’ types of theories are currently being discussed in 

education domains (Proulx, 2006). As Ernest (1995) claimed, "there are as many 

varieties of constructivism as there are researchers". Therefore, Von Glasersfeld 

(1984) presents a version of constructivism that emphasizes its radical nature. He 

points out: 

“A few years ago when the term constructivism became fashionable 

and was adopted by people who had no intention of changing their 

epistemological orientation, I introduced the term trivial 

constructivism. My intent was to distinguish this fashion from the 

‘radical’ movement that broke with the tradition of cognitive 

representation” (von Glasersfeld, 1992). 

 

This section, which is structured based on the radical version of constructivism, 

discusses the basic principles of constructivism through a comparison with the basic 

principles of objectivism.  

 

Inaccessible Ontological Reality  

Objectivism, which is at the opposite end of the continuum from constructivism, 

acknowledges that there is a real world where humans are living. This real world 

consists of entities that are categorized and structured based on their properties and 

relations. Because this world is structured correctly and completely, it allows humans 

to model this real world in their minds (Lakoff, 1987). When humans interact with 

this world, they can achieve the information related to the properties and relations of 

the entities in this world, and can build a model in their minds that truly reflects those 

entities and their relations. Therefore, this world, as an ontological reality, is 

accessible to human reason.  



 11

 

As with objectivism, constructivism does not reject the existence of a real world. 

However, it views the world as inaccessible to human reason. Humans have no way 

to know what the objective, universal reality might be. Instead, they construct their 

own reality based on their own experience (Jonassen, 1991). In other words, they 

only have access to their own world of experience. Everything of the world that a 

person could know is based on their own personal experience and then would always 

be subjective (Proulx, 2006). As von Glasersfeld explained: 

“It is argued that from the experiencer’s point of view, ontological 

reality is like a ‘black box,’ in that he has no way of discovering 

what ‘is’ and how it might be structured. Here it should be stressed 

that radical constructivism does not deny the existence of a world, 

but it does deny the possibility of rationally describing such a ‘real’ 

world. The cognizing organism would have no way of determining 

or deciding whether or not its constructs in any sense reflect the 

structure of a ‘real’ world, even if it could come up with structures 

that are not dependent on its concepts of space and time.” (von 

Glasersfeld, 1979) 

 

According to constructivism, the world can never be known in a single way 

(Vrasidas, 2000). “The physical world sets certain boundaries within which multiple 

perspectives can be negotiated and constructed.” (Vrasidas, 2000). Humans build 

their own realities based on their own experience. It is impossible that two people 

have an identical ‘reality’. As Jonassen (1991) mentioned, “We all conceive of the 

external reality somewhat differently, based on our unique set of experiences with the 

world and our beliefs about them”. In other words, the reality is specific to 

individuals (Vrasidas, 2000).  

 

In a nutshell, objectivism views the mind as a mirror of reality while constructivism 

believes that the world is a product of humans’ minds (Jonassen, 1991). 

 

 



 12

No True Knowledge 

Objectivism claims that knowledge exists externally and independently of the mind 

of individuals (Hannafin, 97). Knowledge has been viewed by objectivists as a kind 

of entity which can be transferred ‘inside’ humans’ minds (Bednar et al., 1991). On 

the other hand, constructivism claims that there is no ‘objective’ knowledge existing 

externally in the world. Knowledge is personally constructed by individuals based on 

their own experience. In this case, knowledge is actually subjective and affected by 

individuals’ own subjective view of things (Proulx, 2006). 

 

Objectivists believe in the existence of ‘true’ and ‘absolute’ knowledge that is static 

and fixed (Proulx, 2006). According to objectivism, the ‘true’ knowledge has to 

match with the objective reality. The meaning of ‘match’ used here is that there is a 

direct ‘mapping’ relation between the object in the real world and the object in 

humans’ minds. These two objects can be viewed as exactly the same as each other 

(Proulx, 2006). In other words, knowledge is actually an image of reality.  

 

Constructivism rejects the existence of ‘true’ and ‘absolute’ knowledge. As von 

Glasersfeld (1989) claims, “Knowledge cannot and need not be 'true’ in the sense 

that it matches ontological reality; it only has to be ‘viable’ in the sense that it fits 

within the experimental constraints that limits the cognizing organism’s possibilities 

of acting and thinking”. The term ‘Truth’ in objectivism is replaced by ‘Viability’ in 

constructivism (Dougiamas, 1998), and the term ‘Match’ in objectivism is replaced 

by ‘Fit’ in constructivism. ‘Viability’ means that the knowledge is capable of 

supporting humans to accomplish a task or achieve a goal (von Glasersfeld, 1998), 

while ‘Fit’ means that the knowledge is compatible with the experiential world 

(Proulx, 2006). 

 

Learning is an Active Process 

According to objectivism, humans can study the external world by identifying its 

structure and entities along with their properties and relations, which can be 

represented through abstract symbols and theoretical models (Vrasidas, 2000). 

Objectivists believe that humans’ mind are like a computer, which is able to process 



 13

abstract symbols in a computer-like style. These symbols are assigned with meaning 

when an external and independent reality is ‘mapped’ onto them through the 

interaction between the humans and the world (Bednar et al., 1991). In other words, 

“Knowledge and learning are achieved when the abstract symbols that the learner 

came to know correspond to the one and only real world” (Vrasidas, 2000). 

According to objectivism, the outcome of learning is one and only one correct 

understanding of a topic. The goal of instruction is to transfer the objective 

knowledge into the learners’ head in an effective and efficient way (Bednar et al., 

1991; Vrasidas, 2000). Therefore, learning is actually a passive process of 

accumulating knowledge, and a learner is actually a passive ‘receiver’ of objective 

knowledge.  

 

On the other hand, constructivism believes that learning is an active, recursive and 

elaborative process (Proulx, 2006). Learners actively construct knowledge by 

combining the experiential word with existing cognitive structures, rather than 

passively, linearly acquiring and accumulating knowledge from lectures or textbooks 

(Ben-Ari, 2001a). According to constructivism, learners are not empty glasses that 

are waiting to be filled by teachers with the objective knowledge from an external 

world. Instead, they actually perceive and interpret their own reality based on their 

prior knowledge and experience. For constructivists, prior knowledge and experience 

play a central role in the learning process. Learning does not start from nothing. 

Instead, learners interpret and adapt new experience in relation to their previous 

understandings (Proulx, 2006). This reveals how important it is to take learners’ prior 

knowledge into account when designing and implementing the teaching. (Ben-Ari, 

2001a).  Proulex (2006) claims that: 

“In a sense, constructivism asserts that our previous 

experiences serve as lenses through which we read the world. 

So to speak, this means that everything we encounter is 

‘judged’ in relation to what we already know.” 

 

 

 



 14

2.1.2 Constructivism in Computer Science Education  

 
Even though constructivism has been widely studied in science education, much less 

work has been done in computer science education (Ben-Ari, 2001a). Ben-Ari 

(2001a), one of the most influential researchers on constructivism in computer 

science education, reveals that “a (beginning) computer science student has no 

effective model of a computer”. 

 

Ben-Ari defined an effective model as a cognitive structure based on which learners 

can make viable constructions of knowledge by combining sensory experiences such 

as reading, listening to lectures and working with a computer. The computer world is 

a human-made world. “Since computer science deals with artifacts—programming 

languages and software, the creator of the artifact employed a very detailed model 

and the learner must construct a similar, though not necessarily identical, model” 

(Ben-Ari, 2001a). As Lui et al. (2004) have highlighted, “Computer programming is 

all fabricated that finds few parallels in the physical world”. The experience gained 

in every day life may not help learners construct viable mental models of computer 

artifacts. Hence learners often misuse their prior knowledge or adopt intuitive models, 

which have been viewed as doomed to be non-viable by Ben-Ari (2001a), to solve 

computer-related problems.  

 

Ben-Ari (2001a) emphasizes that the models of computer artifacts have to be 

explicitly taught and discussed. As mentioned above, students often go to a computer 

science course, such as a programming course, without the ‘effective’ mental models 

that are required for them to construct an appropriate understanding of learning 

materials. Instead, they often hold intuitive, non-viable mental models. Instructors 

cannot expect students to be capable of constructing viable mental models by 

themselves through listening to lectures or reading textbooks. If they do, students 

may construct inappropriate mental models based on the misuse of their prior 

knowledge and intuitive models.  In this case, instructors have to explicitly help 

students build viable mental models at an early stage in order to avoid haphazard 

construction of mental models by students themselves. In addition, Ben-Ari (2001a) 

highlights the issue about how detailed a model should be. Obviously, it is 



 15

unreasonable to teach beginning students a computer model in terms of electronic 

properties of semiconductors. The extent and fidelity of a model should be designed 

to be suitable for the current level of the students. 

 

In addition, Ben-Ari (2001a) also argues that computer science courses should not 

start with abstraction. This issue is obviously very important as current introductory 

programming courses often use an object-first teaching paradigm (Bruce, 2004), i.e. 

starting by introducing abstract concepts, such as class and object. Unlike 

professional programmers who use abstractions generally based on a good 

understanding of the underlying models (Ben-Ari, 2001a), beginning students do not 

have these underlying models such as memory models. Without these underlying 

models, beginning students are not able to construct appropriate understanding of 

abstract object oriented programming concepts. In this case, Ben-Ari (2001a) 

suggests that instructors have to design their courses carefully to ensure the 

underlying models are explained properly first.   

 

2.2 Mental Models 

 

Constructivism emphasizes the importance of mental models in computer science 

education (Ben-Ari, 2001a). Learning to program involves the construction of viable 

mental models of basic programming concepts (Bayman & Mayer, 1983). This 

section presents an introduction to mental models, covering their definition, 

functions, and characteristics.  

 

2.2.1 What are Mental Models? 

 

Craik (1943) first proposed the idea that humans represent the world they are 

interacting with through mental models, which can be constructed from perception, 

imagination, or the comprehension of discourse. He postulated that the mind 

constructs ‘small-scale models’ of reality, which can be used to anticipate events, to 

reason, and to underlie explanation.  

 



 16

The concept of mental models seemed not attract too much attention until 40 years 

later. In 1983, an important year in the history of mental model research, two 

influential books were published. Both of them are named as ‘Mental Model’ but 

hold very different meanings. Actually, these two books established the two key 

directions in mental model research.  

 

The first ‘Mental Model’ book (Johnson-Laird, 1983) presents Johnson-Laird’s 

theory of mental models, which has been viewed as one of the most influential 

theories formulated in cognitive psychology (Sasse, 1997). This theory views mental 

models as working memory constructs that support immediate logical reasoning 

(Gentner, 2002). Johnson-Laird (1983) argues that humans’ reasoning activities are 

not only based on the logical inference rules but also involve constructing mental 

models to represent semantic content. A viable mental model must hold a similar 

structure to the phenomenon it models. The structural similarity is a necessary 

condition for the person who holds this model to produce appropriate inferences 

about the phenomenon. However, a mental model does not have to be as complex as 

the phenomena it represents, but rather it can be much simpler. Actually, the 

additional information beyond a certain level does not make the model more useful 

(Sasse, 1997). 

 

The second ‘Mental Model’ book, edited by Gentner & Stevens (1983), includes a 

collection of papers that studies mental model in a different direction from Johnson-

Laird’s, which “…seeks to characterizing the knowledge and processes that support 

understanding and reasoning in knowledge-rich domains” (Gentner, 2002). Unlike 

Johnson-Laird who views a mental model as a working model to support human 

reasoning, researchers in this direction view a mental model as a model stored in the 

long-term memory and used to support humans to generate predications about what 

should happen in various situations (Collins & Gentner, 1987). For example, when a 

person holds a model of how a heavy object moves when it is thrown up into the sky, 

the existing model can help the person predict that a basketball will fall down from 

the highest point when it is thrown into the sky.  

 



 17

Although the two research directions of mental models mentioned above have very 

different focuses, it is valuable to bring them together (Gentner, 2002). Previous 

research (Schwartz and Blank, 1996) shows that the long-term mental model may 

influence the construction of the short-term working model. 

 

While the Johnson-Laird’s theory presented in the first book explains human thought 

in general, the papers collected in the second book focus on the mental models of a 

variety of specific domains, such as natural phenomena and devices. Sasse (1997) 

suggests that these papers present some evidence that mental models and the 

mechanisms by which they are constructed may differ in terms of task or problem 

domain. One of these papers, written by Norman (1983), focuses on the mental 

models of computer systems. It is also one of the earliest works exploring humans’ 

mental models of computer systems.  

 

Norman (1983) suggests that a user constructs the mental models of computer 

systems through interacting with the target systems, and constantly refines the 

models throughout the interactions. He argues that the following concepts have to be 

considered when investigating humans’ mental models of computer systems: 

• Target System – the system with which a user is interacting, such as hardware 

devices and software. 

• Conceptual Model – invented by teachers, designers, scientists, and engineers to 

provide an accurate, consistent, and complete representation of the target system. 

• Mental Model – a user’s internal model of the target system, which is 

formulated as a result of interaction with the target system. 

• System Image – the implementation of the conceptual model, which consists of 

the aspects of the target system with which the users can interact. 

• Scientist’s Conceptualization of the Mental Model – a researcher’s 

understandings of the user’s mental model.  

 

A user is expected to construct a viable mental model of the target system. The 

conceptual models, placed between the target system and the user’s mental model, 

are devised as tools for the understanding or teaching of the target system. In order to 



 18

ensure the mental model constructed by the user is viable, the conceptual models, 

implemented and presented to the user though the system image, have to be accurate 

and consistent with the target system.  

 

2.2.2 The Functions of Mental Models 

 

Norman (1983) proposes three functional factors of mental models: 

! Belief system - mental models can reflect the holders’ beliefs about the target 

system. 

! Observability --- there is a correspondence between the parameters/states of the 

mental model and the target system that the person can observe. 

! Predictive power - the purpose of a mental model is to support people to 

understand and anticipate the behaviors of a target system.  

 

In addition, Gentner (2002) claims that mental models can facilitate learning. She 

used Kieras & Bovair (1984) and Gentner & Schumacher (1986)’s findings to 

explain this function of mental models. Kieras & Bovair found that the subjects who 

held a mental model of a simulated device can operate this device more accurately 

and be able to diagnose malfunctions better than those who merely grasp how to 

operate it procedurally. Gentner & Schumacher (1986) suggest that the subjects who 

had a causal mental model of the operation of the first device were able to transfer an 

operating procedure from one device to another. 

 

2.2.3 The Characteristics of Mental Models 

 

Researchers (e.g. Norman (1983)) have identified some characteristics of mental 

models through observing humans’ interaction with systems. The following briefly 

describes those characteristics: 

1. Mental models are incomplete and simplified (Norman, 1983). Due to the 

limitations of background knowledge and expertise, the users cannot construct a 

complete mental model that covers all the details of the target system. Mental 

models are not expected to be as complex as the target system. An incomplete 



 19

and simplified mental model is appropriate if it can support its holder in 

accomplishing a task. That means mental models need not be technically 

accurate, but they have to be functional (Norman, 1983).  

2. Mental models are unstable over time (Norman, 1983). Mental models are not 

static but rather keep evolving as their holders interact with the target system. On 

the other hand, the holders of the mental models can forget some details of the 

mental models over time, especially when they have not interacted with the 

target system for a period.  

3. There are time delays involving in mental model changing (Doyle et al., 2001). 

When a mental model is changed old information is replaced by new information. 

However, the old information is not removed immediately from memory but 

rather persists in memory alongside the new information.  

4. Mental models have vague boundaries (Norman, 1983). The mental models of 

target systems that have relations or similar properties can be mixed up. Doyle et 

al. (2001) explains this characteristic of mental models as being caused by the 

structure of human memory, in which information is interconnected in a 

complex network of association.  

5. People are capable of holding two or more inconsistent models within the same 

domain, and the inconsistencies may never come to the users’ attention (Gentner, 

2002). People can use different models in different contexts. As Gentner (2002) 

mentioned, people, especially novices, “often use locally coherent but globally 

inconsistent accounts, often quite closely tied to the details of the particular 

example”. The inconsistencies may be a result of the cue-dependent nature of 

human memory recall. The cue-dependent nature refers to the fact that people 

need an appropriate reminder or ‘cue’ to locate a particular piece of information 

in memory (Doyle et al., 2001). The choosing of mental models may depend on 

what external cues have occurred in the particular problem.  

6. Mental modes are ‘unscientific’ and often contain ‘superstitions’ (Norman, 

1983). People often maintain superstitious behaviour patterns, even when they 

know they are unneeded. For example, some users often first return to the home 

directory when they want to shut down or to log out a computer. These users 

explain that they know it is unnecessary but they feel more confident and 



 20

comfortable to behave in this way. Norman explains this as the kind of 

behaviours that cost little in physical effort and save mental effort.  

7. Mental models are parsimonious (Norman, 1983). People will often rather do 

extra physical operations than mental planning that could help them save 

physical effort. This implies that people tend to avoid complexity in mental 

models, and prefer to use physical effort to replace mental effort.  

 

It is interesting to investigate the characteristics of people’s mental models. The 

uncovering of those characteristics could help researchers understand people’s 

behaviours when they are interacting with the world. 

    

2.3 Cognitive Conflict  
 

One of the key teaching strategies based on constructivism is the cognitive conflict 

strategy. This was developed based on the assumption that students’ prior knowledge 

and existing conceptions affects how they learn new knowledge and construct new 

conceptions. Cognitive conflict is a state in which the student perceives the 

discrepancy between his or her cognitive structure and external environments or 

between the components of his or her cognitive structure (Lee & Kwon, 2001).  

 

Students’ existing conceptions have been found often to conflict with the scientific 

ones, and these unscientific conceptions held by students would prevent them from 

accepting the scientific ones presented in classes (Hewson & Hewson, 1984). When 

a student is taught a scientific conception, he or she might retain and continue to use 

their existing, unscientific conception to interpret the new information presented by 

teachers. They are likely to give the new information meanings that differ from or 

conflict with the scientific one. It is possible that the student does not realize that 

their understanding is inconsistent with the meanings presented by teachers. On the 

teacher’s side, they also lack awareness of the inappropriate understandings held by 

students (Nussbaum & Novick, 1982).   

 



 21

In this case, learning is not simply a case of appending knowledge to students’ 

existing knowledge, but rather it involves changing the students’ existing, unscienfic 

conceptions. Traditional instruction has been viewed as ineffective to accomplish 

that (Eryilmaz, 2002). Students use their existing conceptions to understand and 

function in their world. These existing conceptions are resistant to change. It is not 

easy for students to discard their ideas and adopt a new conception (Davis, 2001). 

Students often cannot even realize that their existing conception is inconsistent with 

the taught, scientific conception (Hewson & Hewson, 1984). Therefore, it is 

important that the teaching should first be able to help students to realize that their 

existing conceptions are unscientific, and then help them to construct scientific ones. 

 

 As Maier (2004) mentioned, “…the way to resolve or prevent misconceptions is to 

have the learner confront the misconception directly with an experience that causes 

disequilibration followed by sound accommodation”. The cognitive conflict teaching 

strategy follows this way that explicitly challenges students’ existing ideas in order 

to encourage the students to recognize problems in their understanding and to 

motivate them to construct appropriate understandings (Scott et al., 1992). Generally, 

the cognitive conflict teaching strategy involves: 1) investigating students’ prior 

knowledge and existing conceptions; 2) challenging students with contradictory 

information; 3) evaluating the conceptual change between students’ prior ideas or 

beliefs and current ones (Limón, 2001).  

 

This section presents the main theory and models that provide theoretical support to 

the cognitive conflict teaching strategy, including Piaget’s Equilibrium Theory 

(Piaget, 1977), Posner et al. (1982) and Hewson & Hewson’s (1984) Conceptual 

Change Model, and Lee & Kwon’s (2001) Cognitive Conflict Process Model.  

 

2.3.1 Piaget’s Equilibrium Theory 

 

Piaget, one of the most influential theorists in human cognitive development, has 

been viewed as the main pioneer of constructivism (Proulx, J. 2006). Piagetian 

Theory has significantly influenced the development of constructivism. The 



 22

equilibrium theory is an important part of Piagetian Theory, which promoted the 

development of the cognitive conflict teaching strategy. This section presents the 

equilibrium theory.  

 

Piagetian theory suggests that human intellectual development is driven by the two 

“most general” biological functions of organization and adaptation (Piaget, 1952). 

Organization is a function to form cognitive structure, termed a ‘scheme’ by Piaget 

(1977). It is an innate ability that allows humans to systematize the behaviours and 

thoughts into coherent structures. Adaptation is a function to adapt a person to the 

environments with which the person is interacting, which encompasses two 

“inseparable, synergistic and entwined” processes, assimilation and accommodation 

(Piaget, 1977).  

 

Assimilation is a process that integrates new knowledge into a person’s existing 

scheme. This process takes place when a person tries to use their existing schemes to 

make sense of the world. What the person is trying to do is to match the new 

experience with their existing schemes. The assimilation process tends to adapt the 

experience or information experienced by the person to the existing schemes, rather 

than making changes to the existing schemes. On the other hand, another process of 

adaptation, accommodation, tends to adapt the existing schemes or directly create a 

new scheme to fit the new experience or information. (Piaget, 1977).  

 

Assimilation and accommodation are important for the equilibration process. Piaget 

claimed that intellectual advances need to pass through “multiple non-balance and 

reequilibrations” (Piaget, 1977). There is a biological drive to chase an optimal state 

of cognitive balance between a person’s cognitive structures and the environment 

with which the person is interacting. An equilibration process covers the stages of 

disequilibrium and reequilibration. Firstly, cognitive equilibrium is at a lower 

developmental level; then cognitive disequilibrium is triggered by confronting 

puzzling, contradictory, and discrepant information; and then, cognitive 

reequilibration is achieved at a higher developmental level as the result of 

reconceptualization. When a person interacts with the environment, if their existing 



 23

cognitive structure works well to explain the new experience, the person is in the 

state of equilibration. When the existing cognitive structure fails to make sense of 

new experience and information, disequilibrium motives the person to chase 

reequilibration by accommodating the existing cognitive structure. The person will 

go up to a higher developmental level of state of equilibration after the 

accommodation process. There is no absolute end to the process of equilibration. As 

Piaget (1977) claimed, “no balanced structure can be said to remain in a final state 

even if it is found to conserve its special characteristics without modifications”. 

 

Although Piagetian Theory was built based on the observation on children, the 

Equilibrium theory actually reveals the general process of intelligence development 

of human beings, no matter whether children or adults.  It would be interesting to 

investigate whether or not a learning model that is developed based on the 

equilibrium theory can benefit adults. 

 

2.3.2 Conceptual Change Model (CCM) 

 

Another one of the most widely accepted and influential theories underlying 

cognitive conflict teaching strategies is the Conceptual Change Model (CCM) 

proposed by Posner et al. (1982) and Hewson & Hewson (1984).  

 

The conceptual change model suggests that a necessary condition of conceptual 

change is that the students have to be dissatisfied with the conceptions they are 

currently holding. It is less likely for a student who is satisfied with their current 

conception to accept a new conception that conflicts with the current one.   

 

In addition, the conceptual change model also suggests that a new conception has to 

satisfy three conditions before the students can accept it.  

 

Firstly, the new conception has to be intelligible. That means “…the person 

considering it has to know what it means, has to be able to construct a coherent 

representation of it, and has to see that it is internally consistent, without necessarily 



 24

believing it to be true” (Hewson & Hewson, 1984). An ‘intelligible’ conception does 

not have to be viewed as true by the students. In the traditional teaching model, 

teachers generally focus on how to make a new conception to be intelligible to 

students.  

 

Secondly, the new conception has to be plausible. That means the person must 

“…believe it to be potentially true, to be consistent with his or her world view” 

(Hewson & Hewson, 1984). A ‘plausible’ conception has to be ‘intelligible’ first. 

The person has to know what the new conception is before he or she goes to believe 

it to be true. In the traditional teaching model, teachers generally assume that 

students could automatically view a conception as plausible when they are taught the 

meaning of the conception. However, the fact is that students are often not able to 

reconcile the conception with their ideas about the world in general.  

 

Lastly, the new conception has to be fruitful. That means “…there has to be some 

good reason before a person will incorporate a new conception, particularly if it is 

at the expense of an existing conception” (Hewson & Hewson, 1984). A new 

conception might be viewed as fruitful if it can solve a previously unsolved problem 

or provide a more reasonable explanation or prediction of a phenomenon.  

 

Apart from the conditions for conceptual change, the conceptual change model also 

emphasizes the notion of conceptual ecology. Conceptual ecology comprises all 

kinds of knowledge and beliefs that a student possesses, including the student’s prior 

knowledge and existing conceptions, relationships among various concepts, new 

knowledge about alternative conceptions, and epistemological beliefs (Davis, 2001). 

According to Hewson & Hewson (1984), the most important constituents of a 

student’s conceptual ecology are the epistemological commitments to 

generalizability, internal consistency and parsimony.  

 

Hewson & Hewson (1984) provided an explanation of how cognitive conflicts 

promote learning based on the conceptual change model. Firstly, both the student’s 

existing conception and the new conception have to be intelligible to the student. 



 25

There is no conflict if the student does not understand the conceptions. When both 

conceptions are intelligible, the student is able to compare them and achieve 

cognitive conflict. There are two ways to resolve the conflict. The first way is to limit 

the extent of internal consistency that results in the compartmentalization of their 

knowledge. In this case, both conceptions would be plausible within their own 

knowledge subsets. The second way is to accept the plausible conception and reject 

the other.  

 

The conceptual change model had become one of the most important theoretical 

models of conceptual change since it was proposed. However, some criticisms were 

made of this model. The main criticism is that this model only focuses on the 

cognitive components of learning, but ignores the affective components such as 

motivation, values, and interests, and social components of learning (Davis, 2001).  

 

2.3.3 Cognitive Conflict Process Model 

 

Lee & Kwon (2001) proposed the Cognitive Conflict Process Model that can be used 

to anticipate how students might experience cognitive conflict. This model covers 

three stages (Figure 2-1): Preliminary Stage, Conflict Stage, and Resolution Stage. 

 



 26

 
Figure 2-1: Cognitive Conflict Process Model (Lee & Kwon, 2001) 

 

At the preliminary stage, the student who has belief in their existing conception 

accepts an anomalous situation (e.g. the experimental results) as genuine. The 

student would not be at the state of cognitive conflict as they do not consider the 

anomalous situation as a deception. The preliminary stage is the stage prior to the 

cognitive conflict process. 

 

The cognitive conflict process occurs when a student experiences three activities: 

! Recognizes an anomalous situation; 

Belief in preconception

Belief in the genuineness of anomalous situation 

Anomalous situation

Recognition of 
anomalous 
situation

Interest or 
Anxiety 

Interest or 
Anxiety 

Yes

Yes

Response 
behaviour

End 

Undecide

Decide

No 

No

Resolution 
Stage 

Conflict 
Stage  

Preliminary 
Stage 



 27

! Expresses interest or anxiety about resolving the cognitive conflict; 

! Engages in cognitive reappraisal of the situation. 

A student first recognizes that the anomalous situation is inconsistent with their 

conceptions, and then the student would be interested in or anxious about this 

situation. After this or simultaneous with this, the student reappraises the cognitive 

conflict situation and decides to resolve or dismiss it.  

 

At the resolution stage, the cognitive conflict is resolved. It results in the production 

of a variety of external response behaviours. Lee & Kwon (2001) suggest that a 

external response behaviour would be one of those behaviours proposed by Chinn 

and Brewer (1998): ignoring, rejection, uncertainty, exclusion, abeyance, 

reinterpretation, peripheral theory change and theory change, and those proposed by 

Chann, Burtis and Bereiter (1997): sub-assimilation, direct assimilation, surface-

constructive, implicit knowledge building and explicit knowledge building. 

 

In the cognitive conflict process model, there are four psychological components of 

cognitive conflict: recognition of anomalous situation, interest, anxiety and cognitive 

reappraisal. These components lead to either constructive or destructive outcomes of 

cognitive conflict.  If a student does recognize the anomalous situation, experiences 

strong interest and/or appropriates anxiety, and reappraises the cognitive conflict 

situation properly, the outcome of cognitive conflict is constructive. On the other 

hand, if a student does not recognize the anomalous situation, the response behaviour 

of this student is just ignoring the anomalous situation; if a student recognizes the 

anomalous situation but experiences inappropriate anxiety (e.g. being frustrated or 

being threatened), the outcome of cognitive conflict could be destructive.  

 

2.4 Summary  
 
This chapter presents the theoretical knowledge that provides the underlying support 

for this research. The general principles of constructivism have first been introduced 

and compared with the general principles of objectivism, followed by an introduction 

to constructivism specifically applied to computer science education. Two concepts 

related to constructivism, mental models and cognitive conflict are then described. 



 28

Firstly, the definition, functions, and characteristics of mental models are introduced, 

followed by a description of the cognitive conflict teaching strategy and then the 

main theory and models underlying this teaching strategy are discussed, covering 

Piaget’s Equilibrium Theory, the Conceptual Change Model, and the Cognitive 

Conflict Process Model.  

 

The next chapter presents the previous work conducted by other researchers that is 

related to this research.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 29

 

CHAPTER 3 --- Related Work on Mental Model 

Studies, Visualization, and Cognitive Conflict 

 

Chapter 2 introduces theoretical knowledge of constructivism, mental models and 

cognitive conflict. This chapter presents previous studies related to the investigations 

of mental models held by novice programmers, visualizations used in programming 

education and the assessment of the effectiveness of the cognitive conflict strategy. 

Firstly, six previous studies that investigated the mental models held by novice 

programmers are discussed in section 3.1, with special emphasis on the mental model 

elicitation methods used in these studies. A survey of visualization systems that were 

specifically developed for programming education and previous empirical studies of 

the effectiveness of visualization used in programming education are then presented 

in section 3.2. Lastly, section 3.3 describes previous empirical studies on the 

effectiveness of the cognitive conflict strategy.  

 

3.1 Investigating the Mental Models Held by Novice Programmers 

 

It is important to study students’ mental models when designing teaching material. 

Gentner (2002) explains the importance of mental models investigation as: 1) “the 

errors that a learner makes can help reveal what the learning processes must be”; 2) 

“if typical incorrect models are understood, then instructors and designers can 

create materials that minimize the chances of triggering errors”.   

 

Although a large number of studies have been conducted to investigate people’s 

mental models of natural phenomena and interactive devices in cognitive science and 

Human-Computer Interaction domains, not many studies have been carried out to 

investigate novice programmers’ mental models of programming languages and 

basic programming concepts. This section surveys previous studies that were 

specifically conducted to investigate the mental models held by novice programmers.  

 



 30

Six previous studies (Table 3-1) are presented in this section. For each study, the 

research goal, method employed, and findings achieved are described. In addition, 

there is a discussion on the strengths and weaknesses of the mental model elicitation 

method employed in the study, with special emphasis on the suitability of the method 

in the educational context.     

 

One of goals of this thesis is to suggest an effective and practical ‘method’ or 

‘technique’ for instructors to investigate the mental models of basic programming 

concepts held by their students. In order to integrate a mental model elicitation 

method into the ‘real’ teaching process, this method has to be easier to implement 

and less time-consuming than the methods employed in the research context. 

Generally, there are a large number of students in an introductory programming class. 

In practice, the instructors, especially those college lecturers who often need to do 

their own research work, cannot afford a time-consuming method that is suitable for 

studying a small population of students.  This is one possible reason why only a few 

of the mental model studies were integrated into the ‘real’ teaching process even 

though many researchers have proposed that the understanding of students’ pre-

existing mental models are crucial for preparing suitable teaching materials (e.g. 

Gentner, 2002). In this case, ‘time cost’ is an important criterion to evaluate whether 

or not a mental model elicitation method is suitable to be integrated into a teaching 

process. The following stages are involved in a mental model study: 

! Preparation Stage: prepare the materials and mental model elicitation activities; 

! Implementation Stage: conduct the mental model elicitation activities; 

! Data Collection Stage: collect the data from the mental model elicitation 

activities; 

! Data Analysis Stage: analyze the acquired data. 

The evaluation of the suitability of a mental model elicitation method needs to 

consider the time cost for each stage. 



 31

No. Researchers Studied 
Concept(s) 

Programming 
Language 

Elicitation 
Activity 

Elicitation 
Techniques 

Participants 

1 Dehnadi & Bornat 
(2006) 

Assignment; 
Sequence 

Java Close-ended 
Prediction 

Questionnaire 61 participants took part in this 
study. Over 30 participants 
were from an adult education 
course; the others were from a 
first year programming course 

2 Sasse (1997) Object, Variables, 
Rule 

Prolog Open-ended  
Prediction + 
Verbal data 

Interview 18 participants who had 
received 5 weeks’ instruction 
and practice 

3 Bayman & Mayer 
(1983) 

Variable, 
Assignment, 
Input/Output, 
Control Flow 

BASIC Explanation Questionnaire 30 college undergraduates who 
had no prior experience with 
computer, or programming 

4 Kahney (1983) Recursion SOLO Close-ended  
Prediction; 
Explanation 

Questionnaire 
 

30 novice programmers and 9 
expert programmers  

5 Kurland & Pea 
(1985) 

Recursion LOGO Explanation Interview 7 children, 11 years old or 12 
years old, who had learnt Logo 
programming over 50 hours 

6 Yehezkel et al. 
(2005) 

Computer 
Archtecture 

Assembly 
Language 

Explanation Interview 11 tenth-grade students who 
had received a one-year, 90-
hour course in computer 
architecture and assembly 
language programming 

Table 3-1: Related work on the investigation of novice programmers’ mental models 



 32

3.1.1 Dehnadi and Bornat’s (2006) Study on the Consistency of the 

Mental Models Held by Beginning Students  

 

Goal of the study 

 

This study aimed to investigate the relationship between the consistency of mental 

models and programming aptitude. 

 

Methods  

 

Dehnadi and Bornat (2006) devised a questionnaire (Appendix A-1) to investigate 

the mental models that students used when thinking about assignment statements. 

This questionnaire includes twelve questions. Each question presented a small 

sequence of assignment statements. Students were asked to predict the values held by 

the variables after the execution of the program. Figure 3-1 shows a typical question.  

 

Figure 3-1: A typical question in Dehnadi and Bornat’ questionnaire 
 

A collection of mental models (table 3-2) that a student might use to answer the 

questions was also proposed by Dehnadi and Bornat, using their teaching experience 

from introductory programming courses. For the question in figure 3-1, the model 

Mv2 is marked as the appropriate model while all the others are inappropriate. Apart 

from the mental models listed in table 1, Dehnadi and Bornat also proposed a 

simultaneous mental model that the statements are executed simultaneously rather 

than sequentially.  

 

 

 

Read the following statements and tick the box next to the correct answer in 
the next column.    
  

int  a = 10; 
   int  b = 20; 
   a = b; 



 33

Model 
No. Model Descriptions 

Mv1 Value moves from right to left (a <- b; b <-0) 

Mv2 Value copied from right to left (a <- b; b unchanged) ‘Appropriate’ model 

Mv3 Value moves from left to right (a ->b; a <-0) 

Mv4 Value copied from left to right (a ->b; a unchanged) 

Mv5 Right-hand value added to left (a <- a+b; b unchanged) 

Mv6 Right-hand value extracted and added to left (a<- a+b; b <-0) 

Mv7 Left-hand value added to right ( a+b ->b; a unchanged) 

Mv8 Left-hand value extracted and added to right (a+b->b; a<-0) 

Mv9 Nothing happens (a, b unchanged) 

Mv10 A test of equality 

Mv11 Variables swap values 

Table 3-2:  Mental models for value assignment question (Dehnadi & Bornat, 2006) 
 

Dehnadi and Bornat administered two tests: the first test was conducted before the 

participants had received any programming teaching (week 0); the second test was 

conducted to the same participants after the topics had been taught (week 3). 61 

participants were involved in the tests. About 30 of them came from an adult 

education course. They had no particular pattern of age, gender or education 

background. Dehnadi & Bornat (2006) believed that these participants had no 

previous contact with programming. The rest come from the first year programming 

course.   

 

Findings 

 

The result of this test divided participants into three distinct groups:  

• Consistent group: in which the participants used the same model for all, or 

almost all, of questions. 

• Inconsistent group: in which the participants used different models for different 

questions. 

• Blank group:  in which the participants refused to answer all or almost all of the 

questions. 



 34

 

Most of the participants (21 out of 27) in the consistent group (based on the first 

administration of Dehnadi’s test) scored a pass mark of 50 or above in the end-of-

course exam, while most of those (26 out of 34) in the inconsistent group and blank 

group scored below 50.  The analysis of the correlation between the first and second 

administration of Dehnadi’s test showed that there were 13 participants who 

transferred from the inconsistent group to the consistent group, but no one moved in 

the opposite direction.  

 

Dehnadi and Bornat speculated that the three groups were distinguished by their 

different attitude to meaninglessness.  The consistent group was thought to accept the 

fact that “the machine will blindly follow its meaningless rules and come to some 

meaningless conclusion”.  On the other hand, the inconsistent group was thought as 

seeking meaning where it was not. The blank group was thought as realizing the 

meaninglessness, but refusing to deal with it.  

 

Dehnadi and Bornat believed that they had found a test to “predict success or failure 

even before students have had any contact with any programming language with 

very high accuracy”. They thought it was extremely difficult to teach programming 

to the inconsistent and blank groups, while it was much easier to teach programming 

to the consistent group. They made the controversial statement that “programming 

teaching is useless for those who are bound to fail (i.e. the inconsistent group) and 

pointless for those who are certain to succeed (i.e. the consistent group)”.  

 

Discussion of the Mental Model Elicitation Method used 

 

This study investigated the participants’ mental models of assignment and 

assignment sequence concepts by asking them to predict the result of program 

execution. There is a collection of pre-defined mental models that the participants 

might use to make the prediction. This method to elicit students’ mental models of 

programming concepts is easy to implement and places minimal time constraints on 

the data collection and analysis. At the implementation stage of this study, the mental 



 35

models elicitation activity, i.e. asking participants to predict the program execution, 

was guided by the structured questionnaire. Instructors did not need to be heavily 

involved in this activity. Compared to other techniques such as interviews, the use of 

questionnaires are also able to simplify the process of data collection. This study 

used quantitative data. There was no verbal data involved in the data analysis 

processes.  In this case, the work load of researchers during the data analysis stage is 

relatively low, especially when the data collection and analysis processes can be 

automated using technologies such as online questionnaires. In addition, the use of 

quantitative data allows instructors to analyze the distributions of mental models held 

by a larger number of students. It may also help instructors design more effective 

teaching materials if they know what inappropriate mental models are popular in 

their classes.  

 

Moreover, Dehnadi and Bornat’s questionnaire, which uses multiple questions for a 

single programming concept, allows instructors to investigate the consistency of 

students’ mental models. The consistency of mental models is an important criterion 

for the viability of mental models. According to Gentner (2002), people often hold 

inconsistent mental models. They may apply different mental models when 

confronted with the same problem. Obviously, a mental model is non-viable if the 

holder of it cannot use it consistently. In this thesis, a viable model is defined as 

meeting two conditions: 1) It has to match with the model of how a programming 

concept actually works (appropriate); 2) it ‘always’ has to match with the actual 

model (consistent). In addition, the use of multiple questions can reduce the 

possibility of achieving inaccurate results. It is possible that students make an 

incorrect answer to the question due to carelessness. The use of multiple questions 

can help solve this problem because it is less likely that students are repeatedly 

careless in the same pattern.  

 

On the other hand, the limitation of the mental model elicitation method used in this 

study is also obvious. This method required instructors to have a collection of pre-

defined mental models, covering the mental models held by most of the students. In 

this case, instructors have to identify those models by surveying previous studies, or 

must define them by themselves based on their teaching experience. In addition, the 



 36

teaching experience of the instructors is often not sufficient to enable them to 

identify all (or most) of the mental models. In this case, additional methods are 

required to ensure the coverage of all of the mental models, or at least the typical 

mental models held by the students in the studies.  

 

In addition, the mental model elicitation method used in this study may produce 

inaccurate results when an answer option could map to two or more mental models. 

It is difficult to identify which mental model the participant is holding when they 

choose this answer option. Collecting additional verbal data may solve this problem 

and obtain more accurate results. Besides, as mentioned above, the inaccurate results 

may be caused by participants’ carelessness when choosing an answer option. In this 

study, multiple questions were used to tackle this problem.   

 

3.1.2 Sasse’s (1997) Study of the Mental Models of the Prolog 

Programming Language 

 

Goal of the study 

 

This study aimed to elicit students’ mental models of the Prolog programming 

language. 

 

Methods  

 

18 participants were involved in this study. They had received 5 weeks’ instruction 

and practice with the Prolog programming language, and had also written a small 

application using Prolog.  

 

During this study, the participants were presented with a short Prolog program that 

consists of a knowledge base and one rule. Afterwards, they were asked to complete 

three sets of tasks (Table 3-3): 

! Predict the result of program execution (tasks 1 --- 6) --- the participants were 

first asked to type in a number of Prolog queries, and then predict what the 

results of the queries were. If the result of the actual program execution was 



 37

different from the participants’ prediction, they were asked to explain the 

possible reason.  

! Construct Prolog queries (tasks 7 – 10) – the participants were asked to 

construct queries to solve the given problems. If the queries did not return the 

expected results, the participants needed to explain the possible reason. 

! Write new rules (task 11- 12) --- the participants were asked to write two new 

rules to meet the given requirements. The first rule (task 11) was analogous to an 

existing one while the second one was new and therefore a learning transfer task.  

Predictions Could you please predict, after looking at the program listing, 

which answer the system will return when you type in the 

following queries: 

1 p(o,o) person(annie, female). 

2 p(V,o) person(X,female). 

3 p(o,V) parent(jenny, X). 

4 p(o,o) parent(sophie, rupert). 

5 p(o,o) parent(carol, rosie) 

6 p(o,V) parent (rosie, Y). 

7 Conjunction (TT) What query would you have to enter to get a list of all 

daughters in the database?  

8 Test rule Please examine the father rule. Which query, using that rule, 

would give you a list of all fathers and their children? 

9 Place holder What query would you have used to get the system to list for 

you only the names of the father, without returning the names 

of the children? 

10 Repetition Why does the system return some names more than once in 

response to your query? 

11 Analogous rule Based on the father-rule, write a rule that defines mother. 

12 New rule (TT) Write a rule that defines either brother or sister. 

Table 3-3: Sasse’s (1997) Prolog Tasks 
 

Findings 

 



 38

The results show that most of participants could make the correct prediction to the 

first set of tasks, while half of the participants could construct a correct query to test 

a given rule. Regarding the third set of tasks that require participants to construct 

new rules, most of participants were able to construct an analogous rule, but none of 

them could complete the learning transfer task successfully. The verbal data 

collected from participants showed that most participants lacked an appropriate 

mental model of objects, variables, and how instantiation works. They could not 

properly explain what objects and variables were and what they could be used for. 

Many participants associated the names of objects and variables with their semantic 

meaning. They believed that the computer program was able to extract the semantic 

information from the names of objects and variables. Sasse also found that some 

participants who lacked appropriate mental models could still perform well in the 

programming tasks. She explains this phenomena as that most of the participants 

wrote their programs by trial and error, with the help of immediate corrections from 

the investigator. This allowed the participants to pass these tasks even when their 

mental models were problematic.  

 

Discussion of the Mental Model Elicitation Method Used 

 

In this study, Sasse studied the participants’ mental models by asking them to predict 

the behaviours of the program (the first set of tasks) and testing their performance 

when solving programming problems (the second and third sets of tasks). Unlike 

Dehnadi and Bornat’s test that allowed participants to predict program execution 

based on a collection of pre-defined mental models, this study did not pre-define any 

potential mental models that the participants might have used. In Dehnadi and 

Bornat’s test, a participant’s mental model was identified based on their choice of an 

answer that was mapped to one of the pre-defined mental models. In this study, there 

was no pre-defined mental model. Participants’ mental models were determined by 

the verbal data provided by them. The prediction tasks and problem solving tasks in 

this study were actually used to lead participants to provide verbal data. When a 

participant made an incorrect prediction, they were asked to explain their thoughts. 

Sasse explained that the verbal data related to errors, e.g. why the error happened and 



 39

what the participant expected to happen, and contained rich information about the 

mental models used by the participant.   

 

Because the mental model elicitation method used in this study did not require the 

researchers to have a collection of pre-defined mental models, and the researchers 

did not have to design experiment materials based on those pre-defined mental 

models either, the time cost of the preparation stage in this study was less than that in 

Dehandi and Bornat’s test. However, this study also employed the interview 

technique. The researchers had to be highly involved to guide the interview and 

collect the data. In addition, the use of verbal data in this study increased the 

workload of the researchers on data analysis.  

 

In Dehnadi & Bornat’s study, the close-ended questions were used to elicit students’ 

mental models. As mentioned above, the results produced may not be accurate when 

an answer option could map to two or more mental models or when the participants 

were careless. This study identified participants’ inappropriate mental models by 

collecting and analyzing their verbal data. The use of verbal data could avoid those 

problems. However, the accuracy of the results depends on the quality of the verbal 

data provided by participants. People often lack the ability to describe their thoughts. 

They may provide too little or irrelevant information. In this case, the accuracy of the 

results would be relatively low.    

 

3.1.3 Bayman and Mayer’s (1983) Study of the Mental Models of BASIC 

Programs 

 

Goal of the study 

 

This study aimed to elicit students’ mental models of the BASIC programming 

language. 

 

Methods  

 



 40

30 college undergraduates who had no prior experience with computers or 

programming participated in the study. This study was conducted after the 

participants had successfully completed a self-instruction, self paced course of 

BASIC programming language.  

 

In this study, nine statements (Table 3-4) were presented to the participants who 

were asked to explain the execution of each of the statements (i.e. the steps that the 

computer would carry out for each statement) in plain English.  

 

No. Statement 

1 INPUT A 
2 30 READ A 
3 IF A<B GOTO 99 
4 LET A = B+1 
5 20 DATA 80, 90, 

99 
6 60 GOTO 30 
7 PRINT C 
8 LET D=0 
9 PRINT “C” 

Table 3-4: The BASIC statements used in Bayman and Mayer’s (1983) study 
 

Findings 

 

The verbal data collected from the participants shows that they often held 

inappropriate mental models of variables, data storage, and assignment. When the 

participants were asked to explain the INPUT statement, READ DATA statement, 

and LET statement, they did not know where the data came from, and how the data 

was stored in memory. Some participants lacked an appropriate model of variables. 

They viewed the statement of INPUT A as that the letter ‘A’ was input and stored in 

memory or they could not understand the difference between the statement PRINT C 

and PRINT “C”. Some participants used inappropriate mental models of assignment. 

They treated the equals sign ‘=’ as equality rather than assignment. For example, 

they explained the statement LET A = B+1 or LET D = 0 as that the equation is 

stored in memory.  

 



 41

Discussion of the used Mental Model Elicitation Method  

 

In this study participants were asked to describe their thoughts of the program 

execution by using plain English. The mental model of a participant was identified 

from their verbal data. This method is actually based on the assumption that students 

have to mentally simulate the program execution process using a mental model when 

they try to explain the program execution. It assumes that an understanding of their 

mental model can be extracted from the participants’ verbal description. The use of 

verbal data increases the time cost at the data analysis stage. However, the use of the 

questionnaire technique reduced the workload of experimenters at the 

implementation and data collection stages. In addition, compared to Dehnadi and 

Bornat’s test, the experimenters in this study did not have to identify a collection of 

mental models that could be held by the participants.  

 

3.1.4 Kahney’s (1983) Study of the Mental Models of Recursion 
 

Goal of the study 

 

This study aimed to elicit and compare novice and expert programmers’ mental 

models of the recursion concept.  

 

Methods   

 

Recursion is defined as “a process that is capable of triggering new instantiations of 

itself, with control passing forward to successive instantiations and back from 

terminated ones” (Kahney, 1983). The mental model corresponding to the definition 

of recursion is called the ‘Copies’ model, i.e. the appropriate model of recursion. On 

the other hand, students are often identified as holding another model of recursion – 

the ‘Looping’ model. Kahney (1983) defined this model as that the recursive 

procedure is viewed “as a single object instead of series of new instantiations, 

having the following features: 1) an ‘entry point’, the constituents of which are the 

procedure’s name and a parameter slot; 2) an ‘action part’, which is designed to add 



 42

information to the database; 3) a ‘propagation-mechanism’ for generating 

successive database nodes back to the ‘front part’, or ‘entry point’ of the procedure”.  

 

In Kahney’s study, a questionnaire was designed to investigate which model, the 

‘Copies’ model or the ‘Looping’ model, the participants were holding. This 

questionnaire is based on the problem shown in Figure 3-2. 

 

 

 

 

 

 
Figure 3-2: The problem need to be solved in Kahney’s (1983) study 

 

The questionnaire also gives two solutions to the problem written using SOLO – a 

LOGO-like programming language, called Solution-1, and Solution-2 (Figure 3-3). 

The participants were asked to predict which program could solve the problem. In 

addition, they were also required to explain why the program could (or could not) 

work.  

 

Solution-1 Solution-2 

TO INFECT /X/ 
1 NOTE /X/ HAS FLU 
2 CHECK /X/ KISSES? 
2A If Present: INFECT *; 
EXIT 
2B If Absent: EXIT 
DONE 

TO INFECT /X/ 
1 CHECK /X/ KISSES? 
1A If Present: INFECT *; 
EXIT 
1B If Absent: EXIT 
2 NOTE /X/ HAS FLU 
DONE 

Figure 3-3: The programs used in Kahney’s (1983) study 
 

Both Solution-1 and Solution-2 can solve the task but by different procedures. The 

Solution-1 is an example of tail recursion with the active flow of control, i.e. control 

is passed forward to new instantiations (Gotschi et al., 2003), while the Solution-2 is 

an example of embedded recursion with the passive flow of control, i.e. control flows 

back from terminated instantiations (Gotschi et al., 2003). The ‘Looping’ model is 

There is a database containing a collection of names of people who kiss 

each other, and the problem needs a computer program to infer: “if 

somebody ‘x’ has ‘flu’ then whoever ‘x’ kisses also has ‘flu’, and whoever 

is infected spreads the infection to the person he or she kisses, and so on”.  



 43

actually an appropriate model of tail recursion (Kurland & Pea, 1983), but it is not an 

appropriate model of embedded recursion. A viable mental model of recursion has to 

be adequate for both tail recursion and embedded recursion. In this case, the 

‘Looping’ model is not a viable mental model of recursion. Because the Solution-1 is 

an example of tail recursion and the Solution-2 is an example of embedded recursion, 

the participants who held the ‘Looping’ model would think that the Solution-1 is 

correct but the Solution-2 is incorrect. The ‘Copies’ model is the viable model of 

recursion. The participants who held the ‘Copies’ model would think that both 

Solution-1 and Solution-2 are correct.   

 

39 participants completed the questionnaire, including 30 novice programmers and 9 

expert programmers.  

 

Findings 

 

The results show that a much higher percentage of expert participants held a viable 

mental model of recursion. 8 out of 9 expert participants selected both Solution-1 and 

Solution-2. The comments from them indicated that they had a ‘Copies’ model of 

recursion. The figure for novice participants who held viable mental models was very 

low. Only 3 out of 30 novice participants selected both Solution-1 and Solution-2. 

However, 2 of these claimed that they doubted their understanding of both Solution-1 

and Solution-2. In addition, 4 novice participants selected Solution-1 and rejected 

Solution-2. The evidence is strong that these participants held the ‘Looping’ model. 

Apart from the ‘Copies’ model and ‘Looping’ model, the verbal data revealed that 

some participants held other mental models of recursion. For example, some 

participants held an Odd Model that viewed ‘flow of control’ statements, such as 

EXIT and Continue, as the stopping rules for recursion.  



 44

Discussion of the Used Mental Model Elicitation Method 

 

This study asked participants to predict the behaviours of two given computer 

programs. These two programs were designed based on two known mental models of 

recursion. The researchers could identify which one of these known mental models 

was held by the participant based on their judgement of whether or nor the given 

computer programs could solve the given problem. This mental model elicitation 

approach therefore would only produce quantitative data. It could save researchers 

time on data analysis. However, in this case the quantitative data seems insufficient 

to elicit all the participants’ mental models. As mentioned above, this quantitative 

data is only related to the two known mental models, ‘Copies’ model and ‘Looping’ 

model. It could not identify other mental models that might be held by many 

participants. In addition, it is possible that there may be some unknown mental 

models that map to the same answer option as the ‘Copies’ model or ‘Looping’ 

model and this increases the possibility of producing inaccurate results. Furthermore, 

this quantitative data could not reveal the detailed information of the participant’s 

mental models. In this case, as was done in this study, additional qualitative data was 

collected and used to cover the range of mental models held by the participants and 

detailed information on them.  

 

3.1.5 Kurland & Pea’s (1985) Study of the Mental Models of Recursion 

 

Goal of the study 

 

This study aimed to elicit children’s mental models of the recursion concept.  

 

Methods  

 

7 children, 11 years old or 12 years old, participated in this study. They were highly 

motivated, and had learned Logo programming over 50 hours, including the topics of 

iteration and recursion.  

 



 45

During this study, the participants were provided with a collection of short Logo 

programs that were used to move a ‘turtle’. These programs are at four distinct levels 

of complexity: 1) there are only direct commands to move the turtle; 2) the iterative 

REPEAT command was involved; 3) tail recursive procedures were used; 4) 

embedded recursion procedures were used. The programs at the first two levels were 

relatively simpler because there was no recursion involved in them. The programs at 

the last two levels used recursive procedures that were relatively complex. Figures 3-

4 and figure 3-5 show the examples of programs at the last two levels. 

 

TO SHAPEB:SIDE 
  IF:SIDE=20 STOP 
  REPEAT 4 [FORWARD: SIDE RIGHT 
90] 
  RIGHT 90 FORWARD: SIDE LEFT 90 
  SHAPEB: SIDE/2 
END 

Figure 3-4: The tail recursion program used in Kurland & Pea’s (1985) study 
 

TO SHAPEB:SIDE 
  IF:SIDE=10 STOP 
SHAPEC: SIDE/2 

  REPEAT 4 [FORWARD: SIDE RIGHT 
90] 
  RIGHT 90 FORWARD: SIDE LEFT 90 
END 

Figure 3-5: The embeded recursion program used in Kurland & Pea’s (1985) study 
 

For each level of programs, the participants were asked to explain how the programs 

would work. In addition, they were also asked to hand simulate the execution of the 

programs line by line using a graphic turtle ‘pen’ on paper. Afterwards, they would 

be shown the actual results of program execution, i.e. how the ‘turtle’ should move 

on paper. If the actual result of program execution was not consistent with the way 

explained by the participant, they were asked to explain the reason.  

 

Findings 

 

The results show that all the participants could successfully complete the first two 

levels of programs in which there were no recursive procedures. All of them made an 



 46

accurate explanation of program execution. Most of the participants could 

successfully complete the third level of programs that contained tail recursion, except 

two participants who had an inappropriate understanding of the IF statement. In 

contrast, none of the participants could properly explain the behaviours of the fourth 

level of programs that contain embedded recursion. Kurland & Pea (1985) claimed 

that there were several sources of the participants’ difficulties to understand 

embedded recursion. Firstly, there were general errors in the participants’ 

understandings of programming concepts. Some participants tended to understand 

each line of code individually, and ignored the context built by the lines that had 

previously been executed. This problem could also be explained as that these 

participants held inappropriate understanding of sequential program execution. In 

addition, some participants viewed programs as conversation-like. They did not think 

that a task was completed by the execution of a sequence of statements, but rather 

believed that the programmers could ‘tell’ the program to do a task by giving it a 

statement. Moreover, some participants often used their prior knowledge or 

experience to understand programming concepts. For example, they used natural 

language semantics to understand the statement END and STOP. Furthermore, some 

participants held the ‘Looping’ model of embedded recursion. As mentioned above, 

the ‘Looping’ model could only help the participants understand tail recursion (the 

third level of programs) accurately, but not embedded recursion.  

 

Discussion of the Used Mental Model Elicitation Method 

 

This study investigated participants’ mental models of recursion by asking them to 

predict and explain the execution of the programs that contain recursive procedures. 

Compared to the Kahney (1983) study in section 3.1.4, the prediction of program 

execution in this study was open-ended and was not based on a collection of pre-

defined mental models. The participants’ mental models were identified based on the 

verbal data collected from them. In addition, this study employed structured 

interviews rather than questionnaires to collect data. It allowed the in-depth 

conversation between researchers and participants that could not be obtained by 

using questionnaires. Researchers could further investigate a participant’s thoughts if 



 47

this participant gives interesting information. In this case, researchers are able to 

identify more detailed information about participants’ mental models. However, a 

weakness of structured interviews is that researchers have to be highly involved in 

the implementation and data collection stage. The researchers, especially those who 

are teaching a big class, would not be able to afford the associated time cost.   

 

3.1.6 Yehezkel et al.’s (2005) Study of the Mental Models of Computer 

Architecture 

 

Goal of the study 

 

This study aimed to study the effectiveness of visualization to improve novice 

students’ mental models of computer architecture.  

 

Methods  

 

11 tenth-grade students who had received a one-year, 90-hour course in computer 

architecture and assembly language programming participated in this study. These 

participants experienced two learning phases. The first learning phase was merely 

based on theoretical learning, covering the topics of data representation, computer 

organization, basic symbolic representation and program execution. The learning 

materials presented in this phase used a static description of the computer 

architecture and dynamic information transfer between computer units. The second 

learning phase employed a visualization environment, EasyCPU, to provide students 

with a dynamic representation of information transfer. The data flow between the 

units of the computer, such as CPU register, memory segments, and I/O, are 

animated when each instruction is executed.  

 

Two interviews were conducted to investigate participants’ mental models of 

computer architecture: the first interview was carried out after the first learning phase 

when the participants only used static learning materials; the second interview was 

conducted after they had used the EasyCPU Environment. During both interviews, 



 48

the participants were asked to describe the topology of the interconnections between 

the units (the static viewpoint) and the data transfer between computer units when a 

specific instruction was executed (the dynamic viewpoint). Six scenarios were 

designed to test participants’ understanding of dynamic data transfer between 

computer units (Table 3-5). 

 

 

Type of scenario First Interview Second 
Interview 

Internal to CPU AL <- BL MOV CH, BL 
Internal to CPU with 
data 

AL <- 03h MOV BH, 02h 

Reading memory AL <- [02h] MOV BL, [03h] 
MOV AL, [BX] 

Writing to memory [01h] <- CL MOV [01h], BH 
MOV [BX], CL 

Reading Input Port AL <- Input IN AL, 02h 
Writing to Output 
port 

Output <- AL OUT 03h, AL 

Table 3-5: The six scenarios in the interviews of Yehezkel et al.’s (2005) study 
 

There was a small difference between the first interview and the second interview. 

As table 3-5 shows, symbolic form such as AL <- [02h] was used to present 

instructions in the first interview. This form was taught to participants in the first 

learning phase. The assembly language that had been learned by the participants in 

the second learning phase was used to present instructions in the second interview.  

 

Seven schemas (Figure 3-6) were provided to the participants in the interview to help 

them to describe their mental models of the static system model and the six scenarios 

of dynamic models. The schema represents the four main units in a computer (CPU, 

Memory, Input port, and Output port) with the connections between them omitted.  

 
Figure 3-6: The schema used in Yehezkel et al.’s (2005) study 

CPU Memory

I O



 49

 

Findings 

 

The results show that there were four mental models held by the participants. They 

could be categorized into four topologies (Figure 3-7). 

 
Figure 3-7: The four topologies identified in Yehezkel et al.’s (2005) study 

 

! CC model - It is the appropriate model of computer architecture. In this model, 

the CPU is at the central position and all memory accesses and input-output 

tasks are carried out via the CPU.  

! CM model – In this model, memory is at the central position. All the I/O 

operations are carried out directly to memory.  

! ICMO model – In this model, the data is linearly transferred through the four 

units in the computer: Input -> CPU -> Memory -> Output. 

! IMCO model – In this model, the data is linearly transferred through the four 

units in the computer: Input -> Memory -> CPU -> Output. 

 

The ICMO model and IMCO model are two variations of the ICO (Input-Central 

processing- Output) model that views CPU and Memory as a whole: the data flows 

CPU Memory 

I O 

CPU Memory

I O

CPU Memory

I O

Central CPU (CC) Central Memory (CM) 

CPU Memory 

I O 

Input/CPU/Memory/Output (ICMO) Input/Memory/CPU/Output (IMCO)



 50

from Input to the ‘main part’ of the computer for processing and then flows out via 

Output.  

 

In the first interview that happened when the participants had only studied via static 

learning materials, 5 out of 11 participants demonstrated the ICO model and 2 other 

participants used the CM model. Only 4 participants were found to be holding the 

appropriate mental model, i.e. the CC model. In contrast, all the participants 

demonstrated the CC model in the second interview that happened when the 

participants had used the visualization environment. This provides evidence that 

visualization may help students construct viable mental models when these students 

are exposed to the dynamic processes inside the computer during instruction 

execution.  

 

Discussion of the Used Mental Model Elicitation Method 

 

This study investigated the participants’ mental models based on their explanation of 

data transfer between the computer units. A structured interview technique was 

employed to collect the data. This could increase the researchers’ time spent at the 

implementation and data collection stages, although it allows in-depth conversation 

between the researchers and the participants.  In addition, a big difference between 

this study and the studies mentioned above is that this study used a graphical 

representation to assist participants to describe their mental models. It is suggested 

that mental models are picture-like (Sasse, 1997). People might find that it is easier 

to represent their mental models using graphical representation than using textual 

description. 

 

3.1.7 Summary of the Mental Model Elicitation Methods 

 

This section summarizes and discusses the mental models elicitation methods used in 

the studies presented above from two perspectives: the elicitation activities, and the 

elicitation techniques.  

 



 51

3.1.7.1 The close-ended predicting activities versus the open-ended predicting 

activities 

 

Young (1983) suggests that mental models can be elicited when the holders of the 

mental models are carrying out four activities, including: using the target system; 

explaining the target system; predicting the behaviours of the target system; learning 

the target system. The review of previous mental model studies introduced above 

shows that all these studies elicited participants’ mental models by asking them to 

predict the behaviours of a program1.  Predicting activities seem suitable for studying 

programmers’ mental models of program concepts. While programmers are 

predicting the behaviors of a program, they have to mentally simulate the program 

execution based on their mental models. Exposing the programmers’ mental 

simulation process may produce information on the mental models held by those 

programmers.   

 

Predicting activities could be close-ended, i.e. the prediction is based on a collection 

of pre-defined answers and each answer is mapped to a possible mental model. Two 

of the studies reviewed above employed the close-ended predicting activities. 

Dehnadi and Bornat (2006) investigated the consistency of novice programmers’ 

mental models of assignment and sequence by asking participants to predict the 

results of the execution of small program fragments from a collection of pre-defined 

answers. Kahney (1983) devised two program fragments of recursion based on two 

pre-known mental models, i.e. the ‘Copies’ model and ‘Looping’ model, and asked 

participants to predict whether or not the program fragments could solve a given 

problem. The prediction from participants could reveal whether a participant held the 

‘Copies’ model or ‘Looping’ model of recursion.  

 

Predicting activities could also be open-ended, i.e. participants would be not 

provided with answer options that are mapped to the potential mental models. Five of 

the studies reviewed above used the open-ended predicting activities. Sasse (1997) 

asked participants to predict the result of a number of Prolog queries and explained 
                                                
1 In Yehezkel et al.’s study, the participants were also asked to explain the architecture of a computer 
system.  



 52

their thoughts when the actual result of program execution was inconsistent with the 

participants’ prediction. Bayman and Mayer (1983) studied the novice programmers’ 

mental models of BASIC language constructs by asking them to describe what steps 

the computer would carry out when a BASIC statement was executed. Kurland & 

Pea (1985) asked children to mentally simulate the execution of the LOGO programs 

containing recursive procedures to elicit their mental models of recursion. Yehezkel 

et al. (2005) asked participants to predict the dynamic data transfer between units 

when a specific instruction was executed in order to study the participants’ mental 

models of computer architecture and assembly programming language. Actually, 

Yehezkel et al.’s study also employed the explaining activity that asked participants 

to explain the static topology of the interconnections between the units inside a 

computer system. Unlike the close-ended predicting activities, the open-ended 

predicting activities are not carried out based on a collection of answer options that 

are mapped to the potential mental models. Instead, researchers generally identify 

participants’ mental models based on their verbal data that describes their thoughts of 

program execution.  

 

Two kinds of representations could be used by participants to describe their thoughts, 

the textual representation (e.g. those were used in all the studies reviewed above) and 

graphical representation (e.g. that was used in Yehezkel et al.’s study). Because 

mental models are picture-like (Sasse, 1997), graphical representation seems a more 

natural way for people to depict their mental models. In addition, people often lack 

the ability to explain their thoughts (Gentner, 2002). It seems easier for people to 

describe their mental models by using graphical representation. On the other hand, 

merely using graphical representation is often not able to provide enough information. 

Different people may interpret the same graphic in different ways. It is possible that 

researchers and participants may have different interpretations of a graphic. In this 

case, additional textual explanation is required.  

 

The use of close-ended predicting activities allows researchers to identify 

participants’ mental models without collecting verbal data from them. As mentioned 

above, some participants may lack the ability to describe their thoughts. The close-



 53

ended predicting activities seem a more practical way to elicit these participants’ 

mental models. Because there is no verbal data involved, the close-ended predicting 

activities are easier to implement with little time spent on the data collection and 

analysis. It especially benefits researchers who aim to investigate the mental models 

held by a large class of students, especially when the data collection and analysis 

process are automated using computer technologies, such as online questionnaires 

and automatic assessment. In addition, when multiple questions are designed for a 

single concept, the close-ended predicting activities are capable of investigating the 

consistency of mental models.  

 

On the other hand, there are several weaknesses of the close-ended predicting 

activities. Firstly, the close-ended predicting activities require researchers to achieve 

a collection of pre-defined mental models that need to cover the models held by most 

of participants. Although the potential mental models could be forecasted by 

researchers based on their teaching experiences or through review of previous work, 

these forecasted mental models may not be able to cover all the models held by the 

current participants. In addition, the use of close-ended predicting activities increases 

the risk that a participant chooses an unwanted answer by accident, e.g. carelessness. 

However, the use of multiple questions for a single concept may solve this problem, 

because it is less likely that participants are repeatedly careless in the same way. 

 

A collection of pre-defined mental models are not necessary if the predicting 

activities are open-ended. The mental models could be elicited by analyzing the 

verbal data collected from participants. Researchers do not have to spend time on 

forecasting potential mental models based on their teaching experience or literature 

review. As mentioned above, the mental models forecasted by researchers may not 

cover all the models held by current students. In this case, the close-ended predicting 

activities may miss the mental models that are held by current students but not on the 

pre-defined mental models list. In contrast, this problem does not exist in open-ended 

predicting activities. The other strength of the open-ended predicting activities 

compared to close-ended predicting activities is that it encourages students to expose 

more information on the details of their mental models. 

 



 54

When open-ended predicting activities are used, verbal data is required to identify 

participants’ mental models. The potential risk of the open-ended predicting 

activities is that some participants may not be able to provide valid and accurate 

information about their mental models. In addition, it is time-consuming to analyze 

the verbal data collected from open-ended predicting activities compared to the 

quantitative data collected from close-ended predicting activities. Also, the use of 

qualitative data increases the difficulty of automating the data collection and analysis 

process  

 

According to Jonassen (1995), mental models are relatively intangible, so multiple 

data sources are required to assess them. Gentner (2002) proposed that mental 

models could be elicited from people’s verbal descriptions or inferred from the 

patterns of people’s behaviors. The combination of open-ended predicting activities 

that could collect subjects’ verbal descriptions and the close-ended predicting 

activities that could investigate the patterns of their behaviors should be able to 

achieve more valid information about mental models. As the comparison between the 

close-ended predicting activities and the open-ended predicting activities presented 

above shows, both kinds of predicting activities have strengths and weaknesses when 

used to investigate mental models, and fortunately they could each help address the 

weakness of the others. The open-ended predicting activities are able to identify the 

mental models that are not forecasted and are also capable of gathering the detailed 

information of mental models. However, some subjects may lack the ability to 

provide sufficient information about their thoughts. The close-ended predicting 

activities are still able to identify mental models when the holders of them do not 

provide sufficient verbal data. However, this kind of predicting activity will not 

expose the detailed information of a mental model and will only identify known 

mental models.  



 55

2.1.7.2 The questionnaire versus the structured interview 

 

Two model elicitation techniques, questionnaire and structured interview, were used 

in the studies reviewed above. While the questionnaire technique was employed in 

Dehnaid & Bornat’s (2006) study, Bayman & Mayer’s (1983) study, and Kahney’s 

(1983) study to collect information about participants’ mental models, the structured 

interview technique was used in all the remaining studies.  

 

The structured interview technique has many advantages over the questionnaire 

technique. Firstly, the structured interview gives instructors and researchers a chance 

to discuss a topic in-depth with interviewees and search more deeply for the 

information that they are interested in. For example, when an interviewee provides 

an interesting answer to the interviewer’s question, the interviewer can ask further 

questions in order to explore the interviewee’s in-depth thoughts on this topic. In 

contrast, questionnaires cannot support the in-depth conversations between the 

researcher and the respondent, even though some questionnaires simply ask 

participants to provide explanations of their answers. Secondly, structured interviews 

allow researchers to seek more accurate and clearer explanations from interviewees. 

As (Gentner, 2002) mentions, people often provide inaccurate and unclear 

explanation of their thoughts. In an interview, the researcher could ask the 

interviewees to further explain their thoughts until they are satisfied with the 

information provided.  

 

However, a vital weakness of the structured interview technique causes it to be 

inpractical as the main mental model elicitation technique that could be used in a 

‘real’ education context. As discussed before, instructors need to spend too much 

time to conduct a structure interview. They are often unable to afford the time 

required to interview students, especially when there is a big class. The questionnaire 

technique seems more practical to use in a ‘real’ education context than the interview 

techniques. Compared to the interview technique, the use of questionnaires would 

save instructors considerable time at the implementation and data collection stages of 

the mental models studies. Although the interview technique is not practical as the 

main mental model elicitation technique in an education context, it can still be used 



 56

as a additional support when it is really required, e.g. when the instructor wants to 

achieve an in-depth understanding of a mental model. 

 

Apart from the questionnaire and interview techniques, there are actually many other 

mental model elicitation techniques such as stimulated recall2 (Du, 2004) that have 

been used in the cognitive science and HCI (Human-Computer Interaction) domains 

Though few of these have been employed to elicit novice programmers’ mental 

models of programming language and basic programming concepts.  These mental 

model elicitation techniques require researchers to be highly involved and spend a 

large amount of time on the interaction with participants. These techniques are often 

used in a study that targets a small population of participants. They allow researchers 

to explore the details of individuals’ mental models. However, instructors cannot 

afford to use these techniques to investigate the distribution of mental models in 

large classes.     

 

3.2 Visualization Used in Programming Education  

 

Visualization technology has been employed to aid programming learning for over 

30 years, with numerous visualization systems developed specifically for this role. 

However, a key question still remains, namely, how does visualization improve 

learning?  Many researchers (e.g. Ben-Ari, 2001) suggest that visualization works 

because of its ability to help people construct mental models of abstract phenomena, 

such as programming concepts and algorithms. 

 

This section presents the current ‘state of the art’ of the visualization systems used 

within the programming education domain. Firstly, sub-section 3.2.1 describes the 

terminology associated with visualization systems. A survey of visualization systems 

specifically developed for programming education is then presented in sub-section 

3.2.2. Finally, sub-section 3.2.3 describes empirical studies of the effectiveness of 

visualization when used within programming education.  
                                                
2 Stimulated recall is a technique that records participants’ activities by notes or a video device and 

asks participants to recall and explain their behaviors afterwards (Du, 2004).  

 



 57

 

3.2.1 Terminology of Software Visualization Systems 

 

There is a long history of research in the use of visualization to support software 

development and programming education. However, the terminology associated with 

the use of visualization in this domain was obscure in the early years (Hyrskykari, 

1993). The terms visual programming and program visualization were employed in 

almost any situation where graphical elements appeared together with programs 

(Hyrskykari, 1993). Myers (1990) made the first attempt to give precise definitions 

to these terms.  

 

Myers (1990) defined Visual Programming as “any system that allows the user to 

specify a program in a two (or more) dimensional fashion”. Unlike conventional 

programs that consist of a one dimensional text-based stream, the programs in visual 

programming are built up with two (or more) dimensional, graphic-based elements. 

Visual programming allows programmers to construct a program without writing any 

code. It should be noted that the conventional programming languages that are used 

to define picture, or drawing, packages, e.g. AWT and SWING, do not belong to 

Visual Programming (Myers, 1990).  

 

With Program Visualization, the programs are still represented in a conventional, 

textual manner, but “graphics are used to illustrate some aspect of the program or its 

run-time execution” (Myers, 1990). Unlike visual programming, where the graphics 

are used to create programs, the graphics in Program Visualization are just employed 

to illustrate programs after they have been created in the conventional textual manner 

(Myers, 1990). 

 

Myers (1990) proposed that Program Visualization systems can be categorized along 

two axes: whether they illustrate the code, data or algorithm of the program, and 

whether they are dynamic or static (Figure 3-8). Depending on the first axis, program 

visualization systems can be divided into three categories, including code 

visualization, data visualization, and algorithm visualization. Code visualization 



 58

systems add graphical marks to textual program code, or covert textual code into a 

graphical form, e.g. a flowchart or UML diagrams. Data visualization systems 

employ graphical elements to represent the actual data used within a program. 

Algorithm visualization systems use graphics, often with animations, to illustrate 

computer algorithms. Unlike code visualization and data visualization, algorithm 

visualization functions at a higher abstract level to visualize how a program operates. 

As Myers (1990) explains, the graphical elements in algorithm visualization are not 

directly mapped to the data in a program and the evolvement of the pictures might 

not correspond to the execution of a program statement.   

 

Based on the second axis, program visualization systems can be divided into two 

categories, including static visualization and dynamic visualization (Myers, 1990). A 

static visualization system can only show snapshots of a program at different points, 

whereas a dynamic visualization system can represent the changes from one state of 

the program to another, as the program executes. Animations have been employed in 

some dynamic visualization systems. However, the definition of animation was also 

obscure. According to Stasko & Patterson (1992), the term ‘animation’ was often 

misused in the past. Many systems claimed to have animation capabilities although 

they just simply highlighted lines of code, or changing colour of graphics, while 

statements were executed.  Stasko & Patterson (1992) give a definitive explanation 

of animation as “consists of the rapid sequential display of pictures or images, with 

the pictures changing gradually over time”. They explain that the conditions for an 

animation are: the image’s changes from frame to frame have to be small enough; 

and the speed of displaying has to be fast enough (Stasko & Patterson, 1992).  

 
Figure 3-8: The taxonomy of program visualization system presented by Myers  

 

Data Code Algorithm  

Static 

Dynamic 



 59

3.2.2 Visualization Systems Developed for Programming Education 

 

While a huge number of visualization systems were proposed to support professional 

programmers to develop and maintain software products in industry, the potential of 

visualization to support novices when learning programming has also been widely 

acknowledged. Over the last twenty years, many visual programming and program 

visualization systems have been developed to support programming education. This 

section presents a survey of these systems.  

 

Based on Myers (1990)’s taxonomy, program visualization systems can be classified 

into six categories: Static-Code, Dynamic-Code, Static-Algorithm, Dynamic-

Algorithm, Static-Data, and Dynamic-Data. A survey of program visualization 

systems that were developed specifically for education purposes shows that these 

systems fall into three categories: Static-Code, Dynamic-Algorithm, and Dynamic-

Data. Along with visual programming systems, there are four categories of 

visualization systems available for supporting novice programmers (Table 3-6) 

 

 

 

 

 

 

 

 

Visual Programming Systems 
RAPTOR (Carlisle et al., 2005); 

SFC, (Watts, 2004); 

BACCII++ (Calloni, 1997); 

FLINT (Henriksen & Kolling, 2004) 

SICAS (Marcelino et al., 2004) 

Program Visualization Systems 

Static-Code Dynamic-Algorithm Dynamic-Data 



 60

BlueJ (Kölling et al., 

2003); 

JGRASP (Cross et al., 

2002) 

CABTO (Barnes & 

Kind 1987); 

DSV (Galles, 2006); 

DSN (Dittrich et al., 

2001); 

IDSV (Jarc, 2005); 

LVJ (Hamer, 2004); 

VISA (Giannotti, 

1987) 

 

Bradman (Smith & Webb, 1999) 

Jeliot (Moreno et al., 2004) 

jGRASP (Cross et al., 2002) 

OOP-Anim (Esteves & Mendes, 

2004) 

PlanAni (Sajaniemi & Kuittinen, 

2003). 

Memview (Gries, 2005); 

ITEM/IP (Brusilovsky, 1993) 

VisMod (Jimenez-Peris, 1999) 

VIP (Virtanen, 2005), 

SDE (Romero et al., 2004) 

Table 3-6: The visualization systems developed for educational purpose 
 

3.2.2.1 Visual Programming Systems 

 
A number of visual programming systems have been developed, aimed at improving 

a novice programmer’s algorithmic problem solving ability and avoiding syntactic 

baggage while learning programming. This kind of system is often a flowchart-based 

development environment.  One example of this type of system is RAPTOR (Figure 

3-9), the Rapid Algorithmic Prototyping Tool for Ordered Reason (Carlisle et al., 

2005). RAPTOR allows users to create a program visually by adding graphical 

symbols corresponding to loops, selections, procedure calls, assignments, inputs and 

outputs. The programs built by RAPTOR are forced to be structured. For example, 

selections and loops have to be appropriately nested, and each loop can only have a 

single exit. RAPTOR also provides a large number of pre-defined functions and 

procedures to simplify program development. When a program has been edited, it 

can then be compiled and executed by the RAPTOR environment. The user can run 

the program in a step-by-step mode or in a continuous play mode. When the program 

is executed, the location of the current executing symbol and the values of all 

variables are shown to the user. 

 



 61

 
Figure 3-9: The RAPTOR development environment (Carlisle et al., 2005) 

 

Apart from RAPTOR, there are several similar systems currently available to support 

novice programmers.  The SFC, Structured Flow Chart editor (Watts, 2004), supports 

programmers when building flowcharts for structured programs, and simultaneously 

generates pseudo-code in a generic or C++ format. The BACCII++ (Calloni, 1997) 

system also supports the function of automatic code generation.  Once a program is 

completed, the system can generate code for one of five languages, including Pascal 

and C++. The FLINT (Henriksen & Kolling, 2004) system allows programmers to 

first make a top-down decomposition of the program and then develop the sub-

modules in flowchart mode. The SICAS (Marcelino et al., 2004) system further 

integrates an additional ‘teacher mode’ that enables teachers to set problems for their 

students to solve. 

 

3.2.2.2 Program Visualization Systems 

 
Static-Code Visualization Systems 
 
An example of a pedagogical system that provides static-code visualization is BlueJ 

(Kölling et al., 2003). BlueJ is an integrated development environment, specifically 

developed for introductory programming education, focusing on teaching students 



 62

object-oriented programming concepts through the Java language. BlueJ has been 

accepted by many educators as a successful pedagogic environment and is being 

widely used in introductory programming courses all around the world.  

 

BlueJ supports static visualization of a program structure as UML diagrams (Figure 

3-10). In the diagrams, a box with a class name represents a class. The relations 

between classes are represented as lines: the ‘use’ relation is represented as a broken 

line and the ‘inheritance’ relation is represented as a solid line. The static 

visualization provided by BlueJ clearly shows the structure of an object-oriented 

program. It encourages novice programmers to view an object-oriented program at a 

higher level. However, Ragonis & Ben-Ari (2005) criticize BlueJ in that it fails to 

help students get the overall picture of program execution. They suggest that BlueJ 

has to be enhanced by a function showing dynamic visualisation of program 

execution.  JGRASP (Cross et al., 2002) is similar to BlueJ in that it also supports 

UML class dependency diagrams to represent the overall topology of an object-

oriented program. 

 
Figure 3-10: The BlueJ development environment 

 
Dynamic-Algorithm Visualization Systems 



 63

 
Algorithm visualization systems can help programming students to construct and 

interact with visual representations of an algorithm. Undoubtedly, algorithms and 

data structures are crucial for program development. The classical equation 

‘Programs = Algorithms + Data Structures’ reveals the importance for programmers 

to master algorithms and data structures. The in-depth understanding of algorithms is 

not only beneficial to the learning of programming, but also crucial for the 

understanding of other areas, such as database, graphics, and artificial intelligence 

(Stasko, & Hundhausen, 2004). However, it is not an easy task to learn algorithms. 

Most algorithms are complex, requiring many steps of operations, such as 

conditional, iterative and recursive, based on the manipulation of large and 

complicated collections of data (Stasko, & Hundhausen, 2004). 

 

In order to help programming students understand algorithms, a large number of 

algorithm visualization systems have been developed, e.g. CABTO (Barnes & Kind 

1987), DSV (Galles, 2006), DSN (Dittrich et al., 2001), LVJ (Hamer, 2004), IDSV 

(Jarc, 2005), and VISA (Giannotti, 1987). Shaffer et al. (2007) have developed a 

wiki with links to 350 currently available algorithm visualizations.  

 

The current algorithm visualization systems cover a wide range of algorithms and 

data structures, covering the most important topics in undergraduate courses. Shaffer 

et al. (2007) investigated the distribution of algorithms and data structures that have 

been visualized (Figure 3-11 and Figure 3-12). The results show that most 

visualizations are focused on sorting algorithms, searching structures, linear 

structures, and graph algorithms. Actually, these topics are often the main contents in 

an undergraduate algorithm course.  

 

Some simple observations reveal that most of the currently available visualization 

systems visualize algorithms using similar formats: data structures are represented 

using graphical elements with a specific layout and algorithms are visualized by 

dynamic illustrations of the changes of data over the life of the algorithm’s execution. 

According to Stasko & Hundhausen (2004), algorithms are fundamentally sequences 

of operations upon data structures. The dynamic nature of algorithms decides the 



 64

dynamic nature of visualization. This static-algorithm visualization system appears  

to be incapable of representing an algorithm. 

 

 
Figure 3-11: The distribution of algorithms and data structures that have been visualized 

(Shaffer et al., 2007) 



 65

 
Figure 3-12: Major categories for collected algorithm visualizations (Shaffer et al., 2007). 

 
Dynamic-Data Visualization Systems 

 

Dynamic-data visualization is capable of showing the changes of a program from one 

state to another, over the duration of the program’s execution. Ben-Ari et al. (2002) 

argue that the details of program execution must be explicitly shown to students, or 

else students will try to construct a mental model of program execution by 

themselves, which may be inappropriate. A dynamic-data visualization system is one 

of the tools that is able to expose the details of program execution.  

 
 



 66

 
 
 

Name 
Supported 

Programming 
Language 

Support the 
visualization 

of OOP 
concepts 

Animation 
Capability 

Jeliot Java Yes Yes 
Memview Java Yes No 
jGRASP Java Yes No 
Bradman C No No 

OOP-
Anim Java Yes Yes 

VIP C++ No No 
PlanAni Pascal No Yes 

SDE Java Yes No 
ITEM/IP Turingal No No 
VisMod Pascal No No 

Table 3-7: The Dynamic-Data visualization systems 
 

A large number of dynamic-data visualization systems (e.g. those shown in Table 3-7) 

have been developed specifically for supporting novice programmers. These systems 

have similar functions and generally work in a similar manner. Typically, in these 

systems (e.g. the Jeliot system shown in Figure 3-13), there is one or more 

‘graphical’ windows showing the current state of the program. Generally, the 

classical ‘box and arrow’ diagrams are used in the ‘graphical’ windows, e.g. a box 

represents a variable and an arrow represents a pointer. The source code is often 

shown along with the ‘graphical’ windows. The statement currently being executed 

is highlighted and the visualization, represented in the ‘graphical’ window, evolves 

along with the execution of the current statement. It is argued that this approach, 

visually mapping a program statement with the behaviour of the statement, is able to 

help students construct a dynamic model of how the statement works. In addition, 

these systems typically support a step-by-step running model and some systems also 

support ‘backward’ execution.  



 67

 
Figure 3-13: The Jeliot System (Moreno et al., 2004) 

 

Some dynamic-data visualization systems, such as OOP-Anim (Esteves & Mendes, 

2004), SDE (Romero et al., 2004), and Jeliot (Moreno et al., 2004), allow students to 

visualize the dynamic program execution of object-oriented programs that are 

organized in a very different way from procedural programs. Unlike the static-code 

visualization systems such as BlueJ that only provides static representation of the 

class dependency diagrams, those dynamic-data visualization systems visualize the 

dynamic processes of how an object is created, changed, disposed of and interacts 

with other objects.  For example, the OOP-Anim system (Figure 3-14) not only 

provides class dependency diagrams, but also visualizes the states of object 

evolvement. As figure 3-14 shows, an object is represented as a box that contains 

two areas: the up area shows current values of the fields in the objects; and the low 

area shows the methods in the objects (the method will be highlighted when it is 

invocated). When the execution of a statement changes the state of an object, the 

corresponding object diagram will change simultaneously.  

 



 68

 
Figure 3-14: The OOP-Anim visualization system (Esteves & Mendes, 2004) 

 

In addition, some of these systems, e.g. PlanAni (Sajaniemi & Kuittinen, 2003), 

OOP-Anim (Esteves & Mendes, 2004), and Jeliot (Moreno et al., 2004), use 

animations to simulate operations such as variable declaration, assignment, and 

object creation. For example, in the Jeliot system (Figure 3-13), the assignment 

process is represented as an animation where the symbol of a value (e.g. a number or 

a character) flies from a box which represents the ‘source’ variable to another box 

which represents the ‘target’ variable. In the OOP-Anim system, the object creation 

process is animated by highlighting the ‘class’ symbol with a red border and moving 

the square formed by the red border to the object’s area and then changing it to a 

‘object’ symbol.  

 

Animation has been viewed as an important tool to help construct viable mental 

models of dynamic phenomena (e.g. Ben-Ari, 2001; Byrne et al., 1999; Moody et al., 

1996). Some programming concepts such as assignment and object creation have 

dynamic attributes. Arguably, the use of static representation alone cannot represent 

a dynamic process and animation is a better choice. Animation is able to supply a 

vivid, explicit representation of how those dynamic concepts operate. It not only 

graphically represents the connections between the components of the model, but 

also depicts their dynamic transition from one state to another.  

 



 69

3.2.3 Empirical Studies on the Effectiveness of Visualization Systems in 

Programming Education 

 

As described in section 3.1.7, Yehezkel et al. (2005) investigated 11 tenth-grade 

students’ mental models of computer architecture before and after they used the 

EasyCPU visualization system. The results showed that many students failed to 

construct an appropriate mental model before using the visualization system, even 

though they had covered the theoretical knowledge with the traditional teaching 

materials. However, they successfully built an appropriate model after using the 

visualization system. This implied that the visualization played a critical role helping 

towards the construction of appropriate mental models. 

 

George (2000) conducted a study to investigate the importance of graphical 

representations for supporting novice programmers’ mental models of recursion. 

Kahney’s Model Test (introduced in section 3.1.4) was used in this study as a tool to 

investigate the mental models held by participants. Kahney’s Model Test is able to 

reveal whether the participant held a ‘Copies’ model (the appropriate model) or a 

‘Looping’ model. The results showed that many participants who had previously 

demonstrated an understanding of the ‘Copies’ model (at that time they were 

facilitated by explicitly diagrammatic traces) failed to do so without diagrammatic 

traces. George (2000) claimed that mental models are unstable, and graphical 

representations can assist novice programmers to retrieve their mental models.  

 

Moody et al. (1996) performed an experiment to study the importance of animation 

for the creation of mental models. In this experiment, the participants learned about 

and used a simplified computer operating environment, namely SPEAkS (Simplified 

Program Editing And Submission system), which supported users to create, save, and 

retrieve files (i.e. programs) and also allowed users to run programs, to view the 

output and to print program files and resulting output. There were two groups of 

participants: the first group received animated materials that explained the 

information communication between the various components in the system and the 

other group received non-animated materials. The results showed that the 



 70

participants with the animation interacted more effectively with the target system and 

demonstrated a better understanding of the system than those without animation.    

 

Kasmarik, K. and Thurbon, J. (2003) carried out an empirical study of the value of 

diagrammatic representation as an aid to improve program comprehensibility at 

novice level. The results revealed that the use of diagrammatic representation could 

significantly improve the novice programmers’ understanding of program code. 

Statistical analysis identified that a diagrammatic aid increased the correctness by 

18.2% without affecting efficiency. 

 

Ben-Bassat Levy et al. (2000) performed a long-term (a full year course) evaluation 

of the Jeliot 2000 visualization system. There were two groups: one group took the 

course that was facilitated by the Jeliot system; the other groups took another course 

that was receiving exactly the same teaching materials, but without the aid of the 

Jeliot system. The results showed that animation, in long term use, did not improve 

the performance of all the students. However, the animation group was found to use 

a better vocabulary of terms in their explanations and predictions than the group 

without Jeliot.  

 

Although many empirical results show that visualization technology is capable of 

aiding the construction of mental models and of improving a student’s understanding 

of programming concepts and algorithms, there were many empirical studies that did 

not identify any pedagogical benefits from visualization. 

 

Stasko et al. (1993) conducted a study to investigate the effectiveness of visualization 

when teaching the ‘pairing heap’ algorithm to graduate students in Computer Science. 

The participants were divided into two groups: one group only used textual materials 

and the other group used the same textual materials supplemented by interactive 

animation. The results did not identify a significant difference between the two 

groups. The group with animation did not perform any better than the group with 

only textual materials.  

 



 71

Humdhausen et al. (2002) conducted a meta-analysis of twenty-four experimental 

evaluations of visualization technology. The results showed that the pedagogical 

benefits of visualization technology were not as marked as expected.  Figure 3-15 

shows, 10 out of 24 studies found no significant difference between the group using 

the visualization materials and the group using traditional materials. 2 studies found 

that the group using visualization materials performed better, but they could not 

determine whether or not the difference was from the use of visualization. 1 study 

achieved a ‘negative’ result in which the participants with visualization technology 

performed significantly worse than those with text-based tools. Only 11 studies (less 

than 50% of all studies) found that the use of visualization technology improved a 

student’s performance. 

 

 
Figure 3-15: The results of the 24 experiment analyzed by Humdhausen et al. (2002)  

 

Naps et al. (2003) attributed the poor pedagogical value of visualization technology 

to the low engagement of learners with the visualization. As they claimed, 

“visualization technology, no matter how well it is designed, is of little educational 

value unless it engages learners in an active learning activity”. They further 

proposed that the more active engagement activities such as constructing a 

visualization by students themselves or presenting a visualization to an audience for 

feedback and discussion would help students achieve more pedagogical benefits than 

those passive activities such as only viewing the visualization.  

 



 72

In addition, Kohoe et al. (1999) found that it was more likely that students would 

achieve pedagogical benefits from animation in an open homework-style learning 

scenario, rather than in a closed exam-style learning scenario. This implies that 

students should not only be able to access the animation systems in school, but also 

outside school. They further speculated that animation is more pedagogically 

effective when it is used in coordination with other learning materials, or 

accompanying the instructors’ explanation of the animation.  In addition, Stasko et al. 

(1993) also proposed two conditions in which animation might be more beneficial: 1) 

animations need be accompanied by comprehensive, motivational instructions; 2) 

animation systems need to have ‘rewind’ or ‘replay’ functions. 

 

3.3 Empirical Studies on the Effectiveness of the Cognitive Conflict Teaching 

Strategy  

 

The role of cognitive conflict has been emphasised by many researchers (e.g. Posner 

et al, 1982) as a central condition for conceptual change and a large number of 

empirical studies have been conducted to investigate the pedagogical effectiveness of 

the cognitive conflict teaching strategy.  

 

Many empirical studies have achieved positive results. The following presents 

several examples. Baser (2006) conducted a study to compare the effectiveness of 

cognitive conflict based physics instruction over traditional physics instruction for 

improving a student’s understanding of heat and temperature concepts. 82 second 

grade pre-service teachers, 27 males and 55 females, took part in this study. They 

were divided into two classes: one class included 42 participants who received 

cognitive conflict based instruction (this class was named as the CCI group); and the 

other class included 40 participants who received traditional physics instruction (this 

class was named as the TPI group). Before the instruction, all the participants’ prior 

conceptual understanding of heat and temperature concepts was assessed using a 

Thermal Concepts Evaluation (TCE) test that was specifically designed to investigate 

any misconceptions held by a student of heat and temperature. Participants then took 

a three-week course. In the class that received cognitive conflict based instruction, 



 73

the instructors demonstrated an anomalous situation to trigger cognitive conflict, or 

in some situations where an experiment was possible, participants conducted the 

experiment and observed the result to achieve cognitive conflict. Afterwards, the 

participants were asked to compare and discuss their prior ideas and what they just 

saw from instructor’s demonstration or experiment results. Finally, the instructor 

explained the scientific ideas to the participants in detail. The results of the pre-test 

showed that there was no significant difference of the understanding of heat and 

temperature concepts between the CCI group and the TPI group. The results of post-

test showed that the cognitive conflict based instruction was indeed more effective in 

improving the participants’ understanding. Mean scores of the post-TCE test of the 

CCI group were significantly higher than that of the TCI group. 

 

Demircioglu et al. (2005) carried out a study to investigate the effects of the 

cognitive conflict based learning approach within chemistry, on the topic of acids 

and bases.  88 participant tenth grade students, aged from 16 to 17 years old, took 

part in this study. They were divided into an experimental group and a control group. 

Both groups took a chemistry course consisting of five 45-minute sessions per week, 

including three lectures and two laboratories. However, the experimental group 

experienced the cognitive conflict based teaching approach while the control group 

experienced the traditional teaching approach. In the experimental group, students 

conducted chemical experiments that were designed to trigger conflicts between the 

students’ existing misconceptions of acids and bases concepts and their observed 

results of the experiments. After the experiment the instructor encouraged and guided 

the students to compare and discuss their misconception and experiment results. Two 

instruments, the ‘Concept Achievement Test’ and the ‘Chemistry Attitude Scale’ 

were used before and after the study to investigate the students’ understanding of 

acids and bases concepts and their attitudes towards chemistry. The results of the 

post-test showed that the students who experienced the cognitive conflict based 

teaching approach exhibited a significantly greater achievement than those who 

experienced the traditional teaching approach. In addition, there was a significant 

difference in the attitude of the students towards chemistry between these two groups. 



 74

The students who experienced the cognitive conflict based teaching approach 

showed a more positive attitude towards chemistry.  

 

An earlier study was conducted by Nussbaum and Novick (1982) who proposed a 

cognitive conflict based teaching model that consisted of three stages: 1) create an 

‘exposing event’ to drive students to invoke their existing conception and interpret it; 

2) create a ‘discrepant event’ to trigger a conflict between a student’s existing 

conception and the observed phenomenon or experiment results; 3) support the 

student to look for a solution to the conflict and encourage accommodation. This 

teaching model was used in a teaching unit to improve a student’s understanding of 

the particle model of gases. Participants in this unit were school students in sixth to 

eighth grades. The data observed from the first two lessons revealed that this model 

helped students become aware of the problems in their own existing model, engaged 

them in a meaningful discussion of competing hypothetical models, and enhanced 

cognitive accommodation.  

 

While a large number of empirical studies achieved positive results with a cognitive 

conflict teaching strategy, there were still many studies that did not support the 

effectiveness of this teaching strategy. For example, Hand & Treagust (1988) 

employed the cognitive conflict teaching strategy in order to enhance students’ 

learning of the concepts associated with acids and bases. This study did not find any 

significant improvement. A student’s preconceptions of acids and bases were 

collected through interviews held three months before the study commenced. Based 

on these preconceptions, a collection of experiments involving acids and bases were 

designed. Students then carried out these experiments and noted whether or not the 

experimental results were consistent with their preconception. The results obtained 

showed that the cognitive conflict teaching strategy was not successful in promoting 

conceptual change for all the misconceptions appearing in this study, although some 

students showed partial understanding of the concepts.  

 

Researchers (e.g. Chinn and Brewer, 1998) found that students often failed to 

achieve meaningful conflict and hence did not become dissatisfied with their prior 



 75

concepts. Even when students experienced a conflict event when confronted with 

contradictory information, they often did not recognize the conflict between the 

contradictory information and their prior ideas.  Students often present different 

responses to the conflict event and anomalous data. Chinn and Brewer (1998) 

conducted a study to investigate students’ responses to anomalous data in science. 

They summarized eight possible responses from students: 

• Ignoring – the student simply ignores the anomalous data.  

• Rejection – the student rejects the data and does not believe that the data is 

valid. They might think the data is produced due to methodological flaws or 

other errors.  Even when they deny the data, they still explain why the data is 

invalid. 

• Uncertainty- the student is not sure of whether or not the data is valid. 

• Exclusion – the student excludes the data from the domain of the current 

theory. The student may believe the data, or may not, but they think that it is 

not necessary to explain the data because it is irrelevant to the current theory. 

• Abeyance – the student believes the data is valid, but they also believe that 

their theory should be able to explain the data. 

• Reinterpretation- the student does not change their current theory to a new 

one, but rather reinterpret the data by using the current theory. 

• Peripheral Theory Change – the student believes the anomalous data is true 

and agrees to change the current theory. However, this student just makes 

minor changes to the peripheral components of the theory, but keeps the core 

components in the theory. 

• Theory Change – the student abandons their current belief and constructs a 

new theory instead. 

For the students who gave one of the first six responses, they did not make any 

conceptual change. Although the students who gave the seventh response made a 

change to their prior conceptions, it is not a substantial conceptual change. Only the 

last response involves an effective conceptual change.  

 

Based on the controversial results from empirical studies, some researchers (e.g. 

Zohar and Aharon-Kravetsky, 2005) argued that the evidence regarding the 



 76

effectiveness of the cognitive conflict teaching strategy was still inconclusive. In 

addition, some researchers (e.g. Limón 2001) went on to explore the reasons why 

some applications of the cognitive conflict teaching strategy failed. Limón (2001) 

proposed that many effects might affect the success of the cognitive conflict teaching 

strategy, such as motivational factors, social factors, students’ prior knowledge, 

students’ epistemological beliefs, students’ values and attitudes, students’ learning 

strategies and cognitive engagement, and students’ reasoning abilities. Kang et al. 

(2005) carried out a study to investigate the influence of students’ cognitive variables 

(including logical thinking ability, field dependence/independence (FDI) 3 , 

meaningful learning approach), and motivational variables (failure tolerance, mastery 

of goal orientation, and self-efficacy) on cognitive conflict and conceptual change. 

The results show that FDI significantly affects the degree of cognitive conflict, while 

logical thinking ability, FDI, and failure tolerance significantly affect the conceptual 

changes.   

 

Zohar and Aharon-Kravetsky (2005) also claims that the inconclusive findings 

regarding the effectiveness of the cognitive conflict teaching strategy can be 

explained by the difference in the academic levels of students. They conducted a 

study to compare the effectiveness of a cognitive conflict based teaching approach 

(ICC) and direct teaching approach (DT) for teaching the control of variables (COV) 

strategy to students of two academic levels (low level and high level). Teaching 

students the COV strategy could help them gain experience with experimental 

science: “the understanding that in a multivariate system only one variable should be 

manipulated at a time while others are held constant” (Moher & Wiley, 2004). 121 

ninth-grade students, 67 were at a high academic level and 54 were at a low 

academic level, took part in this study and were divided into four groups in a 2*2 

design with the academic level of students and teaching method as independent 

variables. The ICC teaching method started with students’ independent investigation 

of the computerized simulation of a problem, such as a photosynthesis problem, to 

expose their pre-instructional thinking strategies. Students’ initial thinking strategies 

were challenged by the conflict scenarios presented by teachers and by class 
                                                
3 FDI refers to cognitive ability of “how successfully one can dis-embed relevant information from 
complex and potentially confusing contexts” (Kang et al., 2005). 



 77

discussion. Then the teachers led the class discussions to help students construct 

appropriate COV rules. The DT teaching method followed a more traditional 

teaching model in which the teacher presents the COV rule, explains it and 

demonstrates how to use it, and students do not experience cognitive conflict. The 

results did not demonstrate significant difference between the ICC method and the 

DT method for teaching the COV strategy. However, there was indeed a significant 

interaction effect between the level of students and teaching methods. The findings 

show that the students with high academic level benefited from the ICC method and 

were hindered by the DT method, while the students with low academic level 

benefited from the DT method and were hindered by the ICC method. It reveals that 

the effectiveness of the cognitive conflict based teaching method may vary, 

depending on students’ academic levels. Apart from Zohar and Aharon-Kravetsky 

(2005), Dreyfus et al. (1990) also identified the effects of students’ academic levels 

on the effectiveness of cognitive conflict teaching strategy. They investigated two 

groups of junior high school students who were taught biological concepts using a 

cognitive conflict teaching strategy. One group of students had a successful academic 

history while the other had one of failure. The successful students performed with 

positive attitudes and reacted enthusiastically to cognitive conflict, while the 

unsuccessful students felt anxious, unsafe and threatened by cognitive conflict.  

 

3.4 Summary  
 
This chapter first presents six previous studies that investigated the mental models 

held by novice programmers. The research goal, method employed, and findings 

achieved for each study are described. In addition, the mental model elicitation 

methods used in these studies are specifically discussed from two dimensions: the 

elicitation activities and the elicitation techniques. The current state of the art of 

visualization used in programming education is then presented. This section first 

clarifies the terminology associated with visualization systems, and then describes 

visual programming systems, Static-Code program visualization systems, Dynamic-

Algorithm program visualization systems, and Dynamic-Data program visualization 

systems that were specifically developed to support students when learning to 

program. Empirical studies of the effectiveness of visualization used in programming 



 78

education were then discussed. The last section of this chapter presented empirical 

studies on the effectiveness of the cognitive conflict strategy, including some 

possible reasons why cognitive conflict might not always succeed.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 79

 

CHAPTER 4 – Investigating the Viability of Mental 

Models Held by Novice Programmers 

 
It is important to study novice programmers’ mental models. As Gentner (2002) 

pointed out: “if typical incorrect models are understood, then instructors and 

designers can create materials that minimize the chances of triggering errors”. This 

chapter presents a study that aimed to investigate the mental models of basic 

programming concepts (focusing on assignment and reference) held by novice 

programmers and to study the relations between novice programmers’ mental models 

and their performance in exam and programming tasks.  

 

4.1 Introduction 
 

This study was prompted by the recent, somewhat controversial, test conducted by 

Dehnadi and Bornat (2006), who explored the relationship between consistency of 

response and programming ability (This test is described in detail in chapter 3.1.1). 

In this study, Dehandi and Bornat’s original test was extended to cover the concept 

of reference assignment as well as value assignment, and extended to capture 

qualitative data on participants’ mental models. Although not directly comparable 

with the Dehnadi and Bornat study, this investigation revealed some parallels 

regarding consistency. However, of more interest was the variety of mental models 

of value and reference assignment held by participants. Many of these models were 

seen as nonviable, meaning that they could result in a flawed understanding of 

programming concepts. Perhaps unsurprisingly, it was found that students with 

viable mental models performed significantly better in the course examination and 

programming tasks than those with non-viable mental models. Of more interest is the 

fact that many students holding non-viable models of the more advanced concept of 

reference assignment still managed to perform well in the course assessments. Rather 

more disturbing is the discovery that some students still held non-viable models of 

the relatively simple concept of value assignment at the end of the course. The 



 80

problem of helping students to convert this diverse and persistent range of non-viable 

mental models into viable ones presents a real challenge to computer science 

educators. 

 

4.2 Research Aims 

 

Intrigued by the study of Dehnadi and Bornat, this work was to study the range and 

consistency of mental models held by students of both simple (value assignment) and 

more challenging (reference assignment) programming concepts towards the end of a 

first-year course. It also sought to elicit the range of models held by novice 

programmers and to investigate the relationship between mental models and 

programming tasks. 

 

4.3 Research Method 

 

4.3.1 Participants 

 

Volunteers were recruited from students who were in the introductory programming 

course, Programming Foundations, in the University of Strathclyde. The 

programming language taught in this course is Java. BlueJ, the most popular 

educational programming IDE, was introduced as the programming tool in this 

course. The text book used in this course is “Objects First with Java - A Practical 

Introduction using BlueJ” (Barnes and Kölling, 2002). The object-oriented 

programming paradigm is taught in this course. Students start to learn object-oriented 

concepts at an early stage of the course. Object-oriented programming and Java have 

become the most popular programming paradigm and language in industry. Currently, 

more and more programming courses teach object-oriented programming and use 

Java as the programming language. As a result, this study chose the Programming 

Foundation course as a focus for the investigation. 

 

A test was conducted at the end of the course when the participants had received 

about 20 lectures and 50 hours of tutorials and practical work. When the test was 



 81

conducted 124 students were in the course and 90 of them took part in this test. An 

analysis of student performance with in-course assessment revealed that ‘weaker’ 

students did not participate in this test.  

 

In addition, the previous programming experiences of the participants were also 

investigated. The results showed that most participants had learned programming in 

high school although they had not taken a formal programming course before. 

Generally, they had been taught the procedural programming paradigm, rather than 

the object-oriented paradigm. The most commonly used programming languages 

were Comal and Basic.    

 

4.3.2 Test Questionnaire 

 

A questionnaire (appendix A-1) was distributed to the participants who were asked to 

complete it under exam conditions. This questionnaire was derived from Dehnadi 

and Bornat (2006) and was designed to investigate students’ mental models of value 

assignment and reference assignment. For value assignment, a Java primitive type 

value is copied from the result of the evaluated expression on the right of the 

assignment operator to a variable on the left. For reference assignment, the address 

of an object is copied from the right and the copy is stored in a variable of reference 

type on the left. Note that Dehnadi and Bornat’s test focused on value assignment.  

 

The questionnaire contained two parts: the open-ended question part and the multi-

choice questions part. 

 

The open-ended question (figure 4-1) asked participants to describe the execution of 

a small program by using text or diagrams. The use of the open-ended, unstructured 

question was expected to reveal more unanticipated information on the participants’ 

mental models.  

 



 82

Figure 4-1: The Open-ended question to investigate mental models 
 

Model 
No. Model Descriptions 

Mr1 A copy of the object referenced by the variable on right-hand-side is given to the 
variable on left-hand-side 

Mr2 
The object referenced by the variable on right-hand-side is given to the variable on 
left-hand-side, and then the content of the original object on right-hand-side is 
erased (i.e. the object still exists, but no content is in the object) 

Mr3 The object referenced by the variable on right-hand-side is given to the variable on 
left-hand-side, and then the variable on right-hand-side becomes null 

Mr4 The object referenced by the variable on right-hand-side is also referenced by the 
variable on left-hand-side (Appropriate mental model) 

Mr5 A copy of the object referenced by the variable on left-hand-side is given to the 
variable on right-hand-side 

Mr6 The object referenced by the variable on left-hand-side is given to the variable on 
right-hand-side, and then the original object on left-hand-side is erased 

Mr7 The object referenced by the variable on left-hand-side is given to the variable on 
right-hand-side, and then the variable on left-hand-side become null 

Mr8 The object referenced by the variable on left-hand-side is also referenced by the 
variable on right-hand-side 

Mr9 Nothing happens 

Mr10 Variables swap values 

Mr11 A test of equality 
Table 4-1: Pre-defined mental models for reference assignment 

 

The multi-choice questionnaire contained questions asking participants to predict the 

result of executing a small program from a collection of pre-defined answer options, 

each of which mapped to a possible mental model. The first part of the questionnaire 

used Dehnadi and Bornat’s questionnaire to study the participants’ mental models of 

value assignment. The second part, devised by the author, covered four questions to 

Please trace the execution of the following statements. Describe what happens when 
each of the statements is executed. You may use both text and diagrams in your 
answer. 
 
Person a, b; 

a = new Person ("Jack"); 

b= new Person (“Tom”); 

b = a; 



 83

study the participants’ mental models of reference assignment. The programs used 

were similar to the one used in the open-ended question (figure 4-1). Again, the 

multi-choice answers were based on a full range of possible viable and non-viable 

mental models (table 4-1), which were devised based on teaching experience from 

introductory programming courses. 

 

4.4 Results 

 

This section presents the result of this test with the four sub-sections: 1) analyzing 

the participants’ responses to the open-ended question; 2) analyzing the participants’ 

responses to the multi-choice questions; 3) correlating the participants’ mental 

models with their performance from in-course tests and final exam; 4) comparing 

participants’ previous programming experiences with their mental models and their 

performance from in-course tests and final exam. 

 

4.4.1 The Results of the Open-ended Question 

 

25 out of the 90 participants provided too brief, or too unclear, answers to the 

question with the result that no valid information could be deduced from their 

description.  

 

Of the remaining 65 participants, 11 were identified as using appropriate mental 

models of assignment and reference concepts when answering the open-ended 

question.  Most of them were able to present a clear and proper explanation of type 

declarations, constructors, and other concepts. A participant even explained 

dereference and garbage collection. All the eleven participants used a consistently 

appropriate mental model when answering the multi-choice questions.  

 

The remaining 54 participants were identified as holding at least one inappropriate 

mental model. These are categorized as follows. 

 

 



 84

4.4.1.1 Inappropriate mental models of assignment 

 

Assign from the left to right 

Six participants used the inappropriate model of assigning from the left to right. One 

of the six participants presented an interesting description of the execution of the 

statement a=new Person (“Jack”) as ‘the value a is assigned to the variable ‘Jack’ 

which has just been created’. It seems the ‘assign from the left to right’ model was 

solid in this participant’s mind, and he obviously had an inappropriate mental model 

of object creation.  

 

Inappropriate mental model:  Compare operator 

Four participants viewed ‘=’ as a compare operator, rather than an assignment 

operator. They explained the execution of the statement b=a as follows: 

“b=a means object b is equivalent to object a”; 

 “‘Tom’ (the string) is compared to ‘Jack’ (the string)”.  

In addition, one participant ticked all the answer options in which the values in b and 

a are equal, e.g., ‘a = 20 b=20’, ‘a=10 b=10’. They believed all the equal values 

would make the statement b=a work.  

 

Inappropriate mental model: Inheritance & Instance of  

A participant explained the assignment b=a as “b is a subclass of a”, and drew a 

diagram as figure 4-2. 

 
Figure 4-2: A diagram drawn by the student with the Inheritance model 

 

Another participant explained the statement b=a as “a instance of b” so “a=Tom, 

b=Tom”. This participant also provided an extra note to the multi-choice questions. 

The extra note for answering multi-choice questions provided by this participant 

reveals that they also used the ‘instance of’ model when answering the multi-choice 

questions.  

a

b



 85

 

It seems that the participants had very fuzzy mental models that are based on 

fragmental and improper understanding of basic programming concepts, such as 

assignment, object, and inheritance.  

 

Other 

A number of participants appeared to hold other inappropriate models but these were 

difficult to categorise from the descriptions e.g., “b=a means both people are made 

equal to each other”. In addition, another participant used the following diagram 

(figure 4-3) to explain the execution of b=a.  

 

Figure 4-3: A diagram drawn by the student with an unknown mental model 
 

4.4.1.2 Inappropriate mental model of reference and reference assignment 

 

 ‘Stored at’ model  

Seven participants were found holding a Stored at model, i.e., an object is ‘stored at’ 

a reference variable. For this model, a reference variable is viewed as a memory 

space where an object is stored. The participants with this model described the 

execution of the statement a=new Person (“Jack”) as:  

“A person object with value ‘Jack’ is created and stored in a”; 

“The variable a now holds a new person object which has the value of ‘Jack’”; 

“Sets a to store a new person object calling the person class constructor with a string 

‘Jack’”. 

 

 ‘Is’ model 

21 participants were found holding an Is model, i.e., the execution of assignment 

statement is just a process to name the object. For example, the execution of 

statement a= new Person (“Jack”) is to name the created object as a. The 

Jack Tom=



 86

participants with this model described the statement a= new Person (“Jack”) as “a is 

a new object of type Person”.  

 

It is obvious that the participants holding the ‘Is’ model lack an appropriate mental 

model of reference as well. In addition, they even ignore the variable concept. That 

means the participants with this model might not understand what a variable is and 

how it works. It highlights the question that: Is the knowledge on the memory 

mechanism of a computer program necessary for early programming learning, and 

should programming instructors teach the knowledge explicitly at an early stage of 

programming education? 

 

 ‘Assign’ model  

Four participants were found holding an Assign model4. For this model, an object is 

‘assigned’ to a variable.  In other words, the value or object is copied and the copy is 

‘sent’ to the variable. This model is accordant to a classic conceptual model of 

‘assignment’ used in programming teaching materials, especially in some animation-

based program visualization tools. For example, when teaching students the 

execution of the statement b=a, an animation could show students that a copy of the 

value in variable a moves to variable b. the original value in b is overwritten, and the 

original value in a is unchanged. Four participants have been found holding this 

model. They described the statement a = new Person (“Jack”) as “create a new 

person object… then assigns this new person to variable a”. 

 

 ‘Set equals to’ model  

19 participants were found holding a set equal to model. The participants with this 

model described the statement a = new Person (“Jack”) as “A new person object is 

made … a is made equal to it”, and described the statement b = a as “b is set to 

become equal to a”.  

 

 

                                                
4 The Assign model and the following Set equal to model can be viewed as appropriate if a student can 
understand that the address of an object rather than the object is ‘assigned’ or ‘set equal to’. 
 



 87

‘Component assignment’ model 

Four participants were found holding a Component assignment model, i.e., b=a 

means that some attributes of the object ‘in’ variable a replace the corresponding 

attributes of the object ‘in’ variable b. They described the execution of statement b=a 

as: 

“person b is given all the characteristics of person a”; 

“person b takes on all attributes of person a”; 

“instance b now contains variables in a”; 

Or shown diagram graphically as: 

 
Figure 4-4: A diagram drawn by the student with component change mental model 

 

4.4.1.3 Inappropriate mental models of other concepts: 

 

Although this test focused on investigating novice programmers’ mental models of 

assignment and reference concepts, some inappropriate mental models of other 

concepts such as variable, class, and object were also identified.  

 

Inappropriate mental model of ‘Variable’ concepts 

Apart from the ‘Is’ model mentioned above in which a variable is viewed as the 

name of an object, participants may have other inappropriate mental models of the 

variable concept. For example, one participant drew the diagram shown in figure 4-5, 

and appeared to believe that a variable can hold more than one value. Another 

participant described the execution of the statement a=new Person (“Jack”) as “Jack 

is stored at position a”. Further, one participant also described variable declaration as 

“sets up two parameters a and b of type Person”. It is difficult to say what this 

participant was thinking when answering the question, but it is obvious that this 

b = a 
b
 

“Tom”

a
 

“Jack”

b
 

“Jack”



 88

participant did not have a proper understanding of the variable and parameter 

concepts. 

 
Figure 4-5: A diagram drawn by the student with an inappropriate mental model of the 

variable concept 
 

Reference variable declaration 

4 participants believed an object would be created automatically when a reference 

variable was declared. They thought two instances of the Person class were created 

when the statement “Person a, b” was executed. The statement “a=new Person 

(“Jack”)” was just to fill new contents to the objects. This misconception may come 

from their learning of the primitive type. In Java, an instance variable of primitive 

type is automatically assigned with a default value after this variable is declared. 

Students would not encounter problems when they did not explicitly give an initial 

value to an instance variable. Hence they may extend this to the case of a reference 

variable, and believe that a new object was created automatically when a reference 

variable was declared. This might explain why novices often omit the constructor in 

their programs and struggle with the null pointer error. 

 

‘Class and Object’ concept 

Inappropriate mental models of the class and object concept were also identified. For 

example, one participant drew the following diagram (see Figure 4-6). It is possible 

that they had an inappropriate mental model of the relationship between class and 

object.  

 
Figure 4-6: A diagram drawn by the student with an inappropriate mental model of class and 

object 

“Tom” “Jack”

a 

b

Person 
 a b 

“Jack” “Tom”



 89

 

In addition, two participants described the statement a=new Person (“Jack”) as “a 

new person contain jack” and “value of a set to ‘Jack’”. Further, one participant 

described the statement b = a as “Don’t think it would work because Tom effectively 

becomes Jack, which can’t happen”. They might also have an inappropriate model 

for an object.  

 

4.4.2 The Results of the Multi-choice Questions  

 

Following Dehnadi and Bornat, participants are categorized as consistent or 

inconsistent (no one was found in the blank group in our test). The consistent group 

can be further divided into a consistently appropriate group and a consistently 

inappropriate group. Furthermore, it is useful to compare the participants who held 

viable mental models (those in the consistently appropriate group) with those who 

held non-viable mental models (those in the consistently inappropriate group and the 

inconsistent group).  

 

 
Figure 4-7: The percentage of each group separated based on mental models of value 

assignment (a) and reference assignment (b) 
 

As figure 4-7a shows, the test revealed that 69 (77%) of participants used consistent 

(or almost consistent) 5   mental models when answering the value assignment 

questions. The remaining 21 (23%) participants used inconsistent mental models. In 

the consistent group, 56 (63% of all participants) participants used consistently 

appropriate mental models, while the other 13 (14% of all participants) used 

consistently inappropriate mental models, covering: 1) Value copied from left to right 

                                                
5 The participants who used a consistent model to answer 10 or more questions (total 12 questions) are 

put into the consistent group. This is to minimize the interference of carelessness. 



 90

(a => b; a unchanged); 2) Nothing happens (a, b unchanged); 3) ‘=’ as a test of 

equality; 4) statements are executed simultaneously. 

 

The test found that 36 (40%) participants used consistent mental models when 

answering the reference assignment questions (the consistent group), while the 

remaining 54 (60%) participants were found using inconsistent mental models (the 

inconsistent group). 

 

An interesting phenomenon was found in the inconsistent group, namely, 17 

participants (nearly 20% of all participants) used a consistent mental model when 

answering the last three out of four questions, but used another mental model when 

answering the first question. In the program used in the first question, ‘Person a, b; a 

= new Person (”Jack”); b = a;’, b does not refer to any object before the execution 

of the statement b=a. It seems unreasonable to put these participants into the 

inconsistent group because they only used a different mental model to answer this 

one question, which is significantly distinguished with the remaining questions. 

 

When placing these 17 participants into the consistent group, 53 (59% of all 

participants) participants used consistent mental models, and 37 (41% of all 

participants) used inconsistent mental models. In the consistent group, 15 (17%) 

participants have consistently appropriate mental model, while 38 (42%) participants 

have consistently inappropriate mental models, covering: 1) Object copied from left 

to right (a => b; a unchanged); 2) Object copied from left to right (a => b; the 

content of object in a is erased); 3) object copied from right to left (a <= b; b 

unchanged); 4) Nothing happens (a, b unchanged). Figure 4-7b shows the percentage 

of participants in each group. 

 

4.4.3 Comparison with the Assessment Results 

 

The participants took part in four in-course assessments throughout the introductory 

programming course and one final examination at the end of the course. In the in-

course assessments, participants were asked to complete a small program that was 



 91

evaluated on a 5-point scale. The mean of the marks for the four assessments for 

each participant was calculated and used in the data analysis. The final exam was 

paper-based, and evaluated on a 100-point scale (one participant was absent from the 

final exam).  

 

To form a comparison with Dehnadi and Bornat’s result, the inconsistent group and 

the consistent group were compared based on the participants’ mental models of 

value assignment 6 . The results obtained match Dehnadi and Bornat’s with the 

consistent group indeed performing significantly better than the inconsistent group in 

both the final exam (p7 =0.027) and the in-course assessments (p = 0.024). However, 

the separation is not clean. 14 out of 21 (67%) participants in the inconsistent group 

scored 50% or above in the final exam, while 9 out of 68 (13%) participants in the 

consistent group scored below 50%. 

 

 
Figure 4-8: The results of the final exam for the participants in the inconsistent group, 
consistently inappropriate group, and consistently appropriate group based on value 

assignment (a) and reference assignment (b) 
 

In this test the consistent group can be further divided into a consistently appropriate 

group and a consistently inappropriate group. The participants were first separated 

                                                
6 We must be cautious that Dehnadi and Bornat’s test was conducted before the programming course 
and at week 3 when students had just learned the assignment concept, but this test was conducted at 
the end of a 20 week programming course.   
7 The Wilcoxon Mann-Whitney Test was used to compare the consistent group and the inconsistent group. The 
Wilcoxon Mann-Whitney Test can be used as the data was not normally distributed.  



 92

based on their mental models of value assignment (figure 4-8a). The results reveal 

that the consistently appropriate group performed significantly better in the final 

exam than the consistently inappropriate group (p<0.001) or the inconsistent group 

(p<0.001). In addition, the consistently inappropriate group was found to be 

significantly worse than the inconsistent group (p=0.034). This is at odds with 

Dehnadi and Bornat’s result. For the in-course assessments, the consistently 

appropriate group was also found to perform better than the inconsistent group (p = 

0.049) and the consistently inappropriate group (p=0.070)8. No statistical difference 

was found between consistently inappropriate group and the inconsistent group (p = 

0.883). 

 

The consistent group can also be divided into the consistently appropriate group and 

the consistently inappropriate group based on their mental models of reference 

assignment (figure 4-8b). Similar to the situation for value assignment, the results 

show that the consistently appropriate group performed significantly better in the 

final exam than the consistently inappropriate group (p=0.011) and the inconsistent 

group (p<0.001). For the in-course assessments, the consistently appropriate group 

also performed significantly better than the inconsistent group (p<0.001) and the 

consistently inappropriate group (p=0.005). In addition, and in contrast to the results 

for value assignment, the consistently inappropriate group would appear to perform 

better than the inconsistent group (p = 0.079 for in-course assessments; p=0.071 for 

the final exam). 

 

Comparing figure 4-8a and figure 4-8b it can be seen that the majority of participants 

(42 out 56) who were in the consistently appropriate group for value assignment 

changed to the consistently inappropriate group (30 participants) or inconsistent 

group (12 participants) for reference assignment. 

 

4.4.4 Comparison with Previous Programming Experiences 

 

The results also revealed that participants with previous programming experience 

                                                
8  Although it is not statistically significant, but still strong. 



 93

performed significantly better than participants without previous programming 

experience in the in-course assessments (p = 0.023) but not in the final examination 

(p=0.68). In addition, there was a slightly higher percentage of experienced 

participants tending to hold a consistent mental model compared to those without 

previous experience. 

 

4.5 Discussions  

 

This study has identified a collection of non-viable mental models of assignment and 

reference concepts held by novice programmers. The quantitative analysis revealed 

that, at the completion of the first year course, one third of students still held non-

viable mental models of value assignment, with only 17% of students holding viable 

mental models of reference assignment. This result is of significant concern. Both 

assignment and reference are key concepts in object-oriented programming. The high 

failure rates in programming courses are not surprising if students still do not 

understand these basic programming concepts at the end of courses. 

 

This study also found that many participants held viable mental models of value 

assignment but non-viable models of reference assignment. This result is not 

surprising given that the concept of reference assignment is much more complex than 

the concept of value assignment. 

 

In addition, the results also show that the students with viable mental models 

performed significantly better in the course exam and programming tasks than those 

with non-viable mental models. This reveals how important it is that novice 

programmers develop appropriate mental models of the key programming concepts. 

 

However, the sheer diversity of mental models held for the reference assignment 

concept, and the different results for value assignment and reference assignment 

suggest that mental models may take some time to form, or that students may hold 

partially functional models which may work in certain circumstances (and which 

they consequently may be reluctant to let go of). Handling this diversity within a 



 94

cohort and helping students to develop viable models is a real challenge for computer 

science educators. 

 

Finally, it is worth observing that the results appear to support those obtained by 

Dehnadi and Bornat in that the consistent group performed significantly better than 

the inconsistent group. However, the results also show that the separation is not clean, 

particularly so in the case of the more advanced concept of reference assignment. 

Many participants in the inconsistent group still passed the examination. Actually, 

Dehnadi and Bornat’s test did not produce a clean separation either. In their test, 8 

out 34 (24%) participants in the inconsistent group still passed the end-of-course 

exam while 6 out 21 (22%) of those in the consistent group still failed. This would 

indicate that the current evidence is insufficient to suggest that it is ‘useless’ to teach 

the inconsistent group and ‘pointless’ to teach the consistent group as they claim. 

 

It should be noted that there were some potential weaknesses in this experiment. 

While the use of multi-choice questions allowed us to carry out quantitative analysis 

of the data related to students’ mental models, it might produce some inaccurate 

results. For example, an answer option could map to two or more mental models. It is 

difficult to identify which mental model the participant is holding when they choose 

this answer option.  In addition, the participants might choose an unwanted answer 

option due to carelessness. In this study, multiple questions were employed to 

minimize the effects of carelessness. Furthermore, the multi-choice questions can 

only identify the mental models that were pre-defined by the instructors based on 

their teaching experience.  

 

4.6 Summary 

 

This chapter describes an investigation into mental models of basic programming 

concepts held by novice programmers. In this study, mental models were captured 

using a multiple choice questionnaire and by getting students to describe their 

understanding using text and diagrams. These results were then used to compare 

groups based on viable and non-viable models against performance in exams and 



 95

programming tasks. 

 

As a result, this study identified a collection of non-viable mental models of basic 

programming concepts (focusing on assignment and reference) held by first year 

programming students. The quantitative analysis revealed that at the completion of 

the first year course one third of students still held non-viable mental models of value 

assignment, with only 17% of students holding viable mental models of reference 

assignment. In addition, it was found that the students with viable mental models 

performed significantly better than those with non-viable mental models. 

 

The study reveals the importance of helping students develop viable mental models. 

However, the traditional teaching approach, based on the theory of objectivism, does 

not do enough to challenge pre-existing ideas and to help students create viable 

mental models. Instead, it is proposed that teaching strategies based on the theory of 

constructivism, integrating cognitive conflict with visualization, be used to help 

students create viable mental models and to challenge and help repair non-viable 

models. The next chapter presents a constructivist-based learning model that 

integrates a cognitive conflict strategy and visualization. 



 96

 

CHAPTER 5 – A Teaching Model Integrating a 

Cognitive Conflict Strategy and Program 

Visualization 
 

The investigation described in Chapter 4 revealed the importance of improving 

novice programmers’ mental models of basic programming concepts. This chapter 

proposes a constructivist-based learning model that integrates a cognitive conflict 

strategy and program visualization. The first section of this chapter discusses the 

synerginistic benefits of uniting these two strategies when striving to improve a 

novice programmer’s mental models of fundamental programming concepts. The 

second section describes a computer-supported learning tool developed by the author 

to support the proposed teaching model.  

 

5.1 Teaching Model  

 

The participants in the mental model test (chapter 4) have learned to program under a 

traditional learning model and using traditional, static learning materials for one 

academic year when the test was carried out. However, they still held non-viable 

mental models for basic programming concepts. It implies that the traditional 

learning model along with the traditional learning materials may be inefficient when 

used to improve students’ mental models of programming concepts. 

 

Compared to the construction of mental models for physical devices, it is more 

difficult to built viable mental models of programming concepts. While physical 

devices are visible and tangible, it is relatively easy for users to create a mental 

model of how the devices operate. On the other hand, programming concepts are 

invisible and untouchable. Students cannot ‘see’ what is happening ‘in’ the computer 

when a program is executed. It follows that students often misuse their previous 

knowledge or adopt intuitive models to understand program execution. Program 

visualization provides a potential solution to address this problem. This technique is 



 97

capable of simulating how a programming concept operates by using a graphical 

representation and animation, providing students with a concrete model of the 

programming concept.    

  

As mentioned in Chapter 3, a large number of visualization tools are currently 

available to support students while learning to program.  However, they have not 

been as successful as hoped, even though many researchers have strived hard to 

improve their effectiveness through the use of facilities such as interactivity and 3D 

techniques. One possible cause of this failure is that the educational effectiveness of 

visualization does not merely rely on the quality of the visualization tools themselves, 

but also on the way they are employed.  

 

In the programming education domain, most visualization tools have been used from 

a traditional, objectivist perspective. Objectivism emphasizes that instruction is to 

transfer the objective knowledge into the learners’ head (Vrasidas, 2000). Learning is 

actually a passive process of accumulating knowledge, and a learner is actually a 

passive ‘receiver’ of objective knowledge. Objectivism ignores a student’s pre-

existing knowledge. The instructors who hold the belief of objectivism, design 

teaching approaches and materials without consideration of students’ pre-existing 

knowledge and believe students can naturally accept the knowledge. However, the 

performance of the participants in the mental model test reveals that many students 

are often unable to accept knowledge as expected. One possible reason is that 

students’ pre-existing knowledge does indeed affect students when learning new 

knowledge. If the learning materials are not ‘compatible’ with students’ pre-existing 

knowledge, they often do not work. This assumption is supported by constructivist 

and is actually being widely accepted in the education domain. Constructivism 

claims that students actively construct knowledge by combining the experiential 

world with existing cognitive structures (Ben-Ari, 2001). A student’s prior 

knowledge plays a key role in learning new knowledge. 

 

Many educators (e.g. Ben-Ari, 2001) claim that the design of learning materials has 

to take into consideration a student’s pre-existing concepts and ideas. Any learning 



 98

materials, including visualization-based materials, and no matter how well they are 

designed, will not be as educationally beneficial as expected when they are designed 

without prior consideration of a student’s pre-existing concepts and ideas. However, 

current program visualization tools and other computer simulation systems often 

neglect this prior knowledge. As Li et al. (2006) argued, “while computer simulations 

are often used to offer opportunities for students to explore scientific models, they do 

not give them the space to explore their own conceptions, and thus cannot effectively 

address the challenge of changing students’ alternative conceptions” 

 

Research (e.g. Baser, 2006) from the conceptual change domain suggests that a 

student’s pre-existing concepts and ideas often conflict with the scientific ones. This 

is especially true in the programming domain where, due to the invisibility of 

program execution, programming students often misuse their prior knowledge, or 

adopt intuitive models, to understand programming concepts (Ben-Ari, 2001). When 

students are satisfied with their pre-existing concepts, they tend not to accept the new, 

scientific ones (Nussbaum and Novick, 1982). In this case, as proposed by Posner et 

al (1982), a precondition for students to accept new concepts is to drive them to feel 

unsatisfied with their pre-existing concepts. A potential way to do this is to use the 

cognitive conflict teaching strategy, a strategy that explicitly challenges a student’s 

existing ideas in order to drive them to recognise problems in their understanding and 

motivate them to construct a scientific understanding.  

 

However, it should be noted that the cognitive conflict teaching strategy alone is 

unlikely to be sufficient to achieve a change from non-viable models and students 

must be supported when creating new, viable models. This is not an easy task, 

especially for programming students, where programming concepts are invisible and 

untouchable. The traditional, static teaching materials are often not effective for 

students attempting to construct viable models. Instead, program visualization along 

with an animation technique would provide more powerful support. It is therefore 

proposed that a potential way forward is to adopt this approach, employing cognitive 

conflict to help students realise that there is a potential problem with their current 



 99

understanding, and to using a visualization-oriented learning environment to support 

them in constructing viable mental models. 

 

A teaching model adopting this approach and comprising four stages is shown in 

figure 5-1:  

 
Figure 5-1: The proposed learning model to improve mental models 

 

Preliminary Stage - Instructors investigate the pre-existing mental models held by 

programming students and identify typical inappropriate models. This stage plays a 

key role in the teaching model. The learning materials and activities would be 

designed based on the understanding of students’ inappropriate models.  

 

Cognitive Conflict Stage - Trigger a discrepant event to explicitly challenge 

students’ pre-existing mental models and push students into cognitive conflict status. 

In a programming context, a potential and practical way to trigger a discrepant event 

is to ask students to predict the execution of a fragment of program that is designed 

based on the understanding of students’ inappropriate mental models and provide 

students with an immediate response about whether or not their understanding is 

appropriate.  

 

Preliminary Stage: Investigate the mental 
models held by students 

Cognitive Conflict Stage: Explicitly
challenge students’ pre-existing mental 
model  

Model Construction Stage: Help students 
construct viable model by using program 
visualization  

Application Stage: Students apply the 
constructed mental model to solve the 
programming problems 



 100

Model Construction Stage - Help students construct viable mental models by using 

visualization along with an animation technique. The visualization-based materials 

have to be able to cover the inappropriate mental models held by most of students. 

 

Application Stage - Students go on to solve a programming problem by using the 

constructed mental model. This stage would strengthen the new model built by 

students. 

 

A single version of a ‘cognitive conflict’ question or visualization-based material 

will often not be able to cover the inappropriate mental models held by all students. 

Hence multiple versions might be required to be designed and used to suit different 

categories.  

 

5.2 A Computer-Supported Learning Tool Based on the Proposed 

Learning Model  
 

To facilitate this teaching model a computer-supported, web-based learning tool was 

developed integrating a cognitive conflict strategy and visualization technique. This 

tool first presents students with a small fragment of program (figure 5-2). Students 

are then asked to predict the result of its execution. This fragment of program is 

designed to cover a collection of inappropriate mental models previously identified 

by instructors at the preliminary stage. The intention being that students who hold 

one of those inappropriate mental models would make an incorrect prediction. These 

students would then receive an immediate response that tells them their prediction is 

incorrect (figure 5-3).    

 



 101

 
Figure 5-2: The task to trigger cognitive conflict 

 
Figure 5-3: The result of the student’s prediction 

 

After this event, students who are now aware that their prediction was incorrect 

would be asked to use the visualization tool (figure 5-4) to simulate the dynamic 



 102

execution of a program fragment that is similar to the one used to trigger cognitive 

conflict. The visualization tool allows students to execute the program step by step. 

The ‘step through’ function is important for the visualization tool. With this function 

students have the control of the execution pace and able to ‘see’ what happened 

when a single statement is executed. When each statement is executed, the dynamic 

execution process is visualized using graphical representations and an animation. As 

mentioned in chapter 3, animation is an important tool to help students to construct 

viable mental models of dynamic phenomena such as programming concepts. So this 

visualization tool employs animation to reveal the dynamic process of how a concept 

works. As Stasko et al. (1993) suggested, animation might be more beneficial under 

two conditions. Firstly, animation needs to be used in coordination with an additional 

explanation of the animation. Therefore, this tool provides students with textual 

explanation of the animation for each step of the program execution (see bottom pane 

of the window in figure 5-4). In addition, Stasko et al. (1993) suggested that 

animation systems need to have ‘rewind’ or ‘replay’ functions. This is provided by 

the left pointing arrow button in the animation tool (figure 5-4). This tool currently 

supports value assignment (figure 5-4) and reference assignment concepts (figure 5-

5).  

 

The tool is easy to use. Students can use the right pointing arrow button to move the 

execution flow to the next statement or use the left pointing arrow button to move the 

execution backward. In addition, students are also allowed to edit the value of the 

variables. However, at present this tool does not provide the functions to visualize 

students’ customized program. 

 



 103

 
Figure 5-4: The interface of the visualization tool (value assignment) 

 

 
Figure 5-5: The interface of the visualization tool (reference assignment) 

 
 



 104

The following is an example of how the tool visualizes the execution of reference 

assignment. Firstly, when a reference variable is declared, e.g. ‘Student b;’, a square 

with the name of the reference variable is drawn. At this stage, this variable does not 

refer to any object (figure 5-6).  When an object is created and the reference of this 

object is assigned to a reference variable, e.g. ‘b=new Student(“Lucy”)’, a square 

that represents this object ‘flies’ onto the canvas, and then the address9 of this object 

‘flies’ into the square that represents the reference variable (figure 5-7). When a 

reference is assigned from a reference variable to another reference variable, e.g. 

‘a=b’, the address of this object ‘flies’ from the right hand side variable into the left 

hand side variable (figure 5-8).   

 

 
Figure 5-6: Declare a reference variable 

 

                                                
9 The actually implementation of ‘reference’ in the Java Virtual Machine is more complex than the 
way described in this tool. It is pointless to teach novice programmers this complexity at this stage.  



 105

 
Figure 5-7: Create new objects and assign their reference to the reference variables 

 

 
Figure 5-8: Assign a reference from a reference variable to another reference variable 

 



 106

5.3 Summary 
 
This chapter proposes a constructivist-based teaching model that integrates a 

cognitive conflict strategy along with program visualization to improve novice 

programmers’ mental models of fundamental programming concepts. A computer-

supported learning tool to support the proposed learning model, developed by the 

author, is also described.  

  

The next chapter presents a series of empirical studies investigating the effectiveness 

of the learning model.   

 

 

 

 

 



 107

 

CHAPTER 6 – Evaluation of the Proposed Teaching 

Model 

 
To improve novice programmers’ mental models of fundamental programming 

concept Chapter 5 proposed a constructivist-based learning model that integrates a 

cognitive conflict strategy and program visualization. This chapter presents three 

studies that were conducted to evaluate the effectiveness of the proposed learning 

model. The first study (section 6.1) focused on a relatively simple programming 

concept (value assignment) while the second study (section 6.2) focused on a 

relatively complex programming concept (reference assignment). The last study 

(section 6.3) assessed the students’ mental models of both the value assignment 

concept and the reference assignment concept sometime after they completed the 

first two studies. Results of the last study were compared to the results achieved from 

the first mental model study (Chapter 4) conducted in the previous year when the 

students did not experience the proposed learning model.  

 

6.1 An Evaluation of the Effectiveness of the Proposed Learning Model 

for Value Assignment  

 
6.1.1 Research Aim 

 

This study aimed to investigate the effectiveness of the proposed teaching model for 

changing novice programmers’ mental models of a relatively straightforward concept, 

value assignment. In addition, special emphasis was on whether or not the 

application of the cognitive conflict teaching strategy would engage students into the 

visualization-based learning materials and improve the effectiveness of visualization. 



 108

6.1.2 Research Method 

 

60 volunteers were recruited from students who were in the introductory 

programming course. These were different students from those who participated in 

the first ‘mental model’ test (The first ‘mental model’ test took place in the academic 

year 2005-2006, this study was carried in the year 2006-2007). The courses in both 

years had the same course structure and used the same teaching materials. In addition, 

the courses in both years were taught by same lecture. The experiment was arranged 

in a lab session (1 hour) in the fifth week of the course, after the participants had 

been introduced to and practiced the assignment concept. In the pre-test, participants’ 

pre-existing mental models of the assignment concept were elicited using a 

simplified version of Dehnadi and Bornat’s questionnaire (Appendix B-1). In 

addition, there was an additional answer option in each question for participants to 

state whether or not they thought the program fragment in the question could execute 

correctly. If they thought there was any problem in the program, they were asked to 

explain it. Participants who were found to be holding non-viable mental models were 

separated randomly and equally into two groups: the CC+Viz group, which used all 

the functions of the proposed teaching environment, i.e. they first experienced the 

conflict event and then used the visualization tool; and the Viz group which only used 

the visualization tool, but without experiencing a conflict event. In the post-test, the 

participants’ mental models of the assignment concept were investigated again using 

a simplified version of Dehnadi and Bornat’s questionnaire, but with different 

questions (Appendix B-2). In addition, the post-test questionnaire also included an 

open-ended question that asked the participants to describe the execution of a 

program which included assignment statements. Furthermore, a questionnaire 

(Appendix B-3) was employed to collect the participants’ qualitative feedback on the 

teaching environment. 

 

6.1.3 Results 

 

The pre-test identified a list of mental models held by the participants (Table 6-1).  

M2, M9, MIncon, M11Ss, and M2Ss are the mental models from Dehnadi and 



 109

Bornat’s mental model list, ME and MUR are the mental models identified in this 

research.  

 

Model Description of the Model 

M2 
A Java primitive type value is copied from the result of the evaluated expression 
on the right of the assignment operator to a variable on the left (appropriate 
mental model). 

MIncon Different models are used to answer the collection of questions. 

M9 Nothing happens when an assignment statement is executed. 
ME Viewing ‘=’ as a compare operator. 

MUR A variable can not be ‘rewritten’, i.e., the variable can be only written once. 

M11Ss Variables swap values when an assignment statement is executed + Ss Model 

M2Ss M2 + Ss 
Table 6-1: The mental models identified in the value assignment study 

 

22 (37%) participants were found to be consistently using the appropriate mental 

model, i.e. M2 on Dehnadi and Bornat’s mental model list, while 12 (20%) 

participants used inconsistent models (MIncon), and 26 (43%) consistently used 

inappropriate models, covering M9, ME, MUR, M11Ss and M2Ss. The inappropriate 

models can be separated into two categories: the inappropriate models of the 

assignment process, covering M9, ME, MUR, and M11Ss; and the inappropriate 

models of execution flow, covering M11Ss and M2Ss. (Note that M11Ss actually 

covers two inappropriate models: ‘M11’ is an inappropriate model of assignment; 

and ‘Ss’ is the inappropriate model of execution flow.) According to Dehnadi and 

Bornat, the Ss model is “derived from the misconception that assignments execute 

simultaneously; each line of code is an individual statement and should be treated 

separately” 

 

Figure 6-1 shows the number and percentage of participants for each model. The 

M2Ss model and ME model were most widely used inappropriate models. 



 110

    

M2 MIncon M2Ss M9 M11Ss ME MUR Total 

22 12 12 1 2 10 1 60 
Figure 6-1: The number and percentage of participants for each model of value assignment 

 

10 out of the 38 participants who held non-viable mental models (inconsistent 

models or consistently inappropriate model) did not finish the post-test. The data 

from the remaining 28 participants were available for analysis. Table 6-2 shows the 

distribution of these participants. The analysis of the participants’ performance in the 

course assessment revealed that there was not a significant difference (p=74%) 

between those in the CC+Viz group and the Viz group.   

 

Group MIncon M9 ME MUR M11Ss M2Ss Total 

CC+Viz 6 0 2 1 1 4 14 

Viz 2 1 4 0 1 6 14 

Total 8 1 6 1 2 10 28 
Table 6-2: The distribution of the participants whose data is available to analyse 

 

As Table 6-2 shows, 18 participants (10 were in the CC+Viz group and 8 were in the 

Viz group) held inappropriate models of the assignment process (M9, ME, MUR, 

and M11Ss) while 12 participants (5 were in the CC+Viz group and 7 were in the 

Viz group) held inappropriate models of execution flow (M11Ss and M2Ss). 

 

The result show that all 18 participants who held inappropriate mental models of the 

assignment process, no matter which group (CC+Viz or Viz) they were in, made 

36%

20%

20%

2%
3%

17%
2% M2

MIncon 

M2Ss 

M9

M11s

ME

MUR



 111

changes to their mental model of the assignment process (Table 6-3). 14 of them 

(78%) successfully changed their models into an appropriate one (only for the 

assignment process), while the remaining 4 participants changed their model from 

ME and M11Ss to inconsistent models. The CC+Viz group appears to perform 

slightly better than the Viz group: 9 out of 10 (90%) participants in the CC+Viz 

group changed their model of the assignment process to an appropriate one while 5 

out of 8 (62.5%) participants made the successful change in the Viz group.  

 

With regard to execution flow, the results showed that 6 out of 12 (50%) participants 

who held the Ss model changed their model to the appropriate one, while the 

remaining 6 participants did not make changes to their models (Table 6-4). Similar to 

the situation of model changing for the assignment concept, the CC+Viz group 

appears to perform slightly better than the Viz group: 3 out of 5 (60%) participants 

changed their models in the CC+Viz group while 3 out of 7 (43%) participants 

changed their models in the Viz group. 



 112

 

 Model Change Successfully Model Change Failed 

Group MIncon 
=> M2/Ss10 

M9 => 
M2/Ss 

M11Ss => 
M2/Ss 

ME=> 
M2/Ss Total M11s => 

MIncon 
ME => 
MIncon Total 

CC+Viz 6 0 1 2 9 1 0 1 

Viz 2 1 1 1 5 0 3 3 
Total 8 1 2 3 14 1 3 4 

Table 6-3: The distribution of participants who changed their mental model of assignment process 
 

 Model Change Successfully Model Change Failed 

Group M2Ss => 
M2 

M11Ss => 
M2 Total M2Ss => 

M2Ss 
M11Ss => 

M2Ss Total 

CC+Viz 2 1 3 2 0 2 

Viz 3 0 3 3 1 4 

Total 5 1 6 5 1 6 
Table 6-4: The distribution of participants who changed their mental model of execution flow 

                                                
10 M2/SS means the model is M2 or M2Ss 



 113

Along with the quantitative data, qualitative data was also collected using a 

questionnaire. This feedback revealed three important characteristics of the teaching 

environment. Firstly, the animation to simulate the dynamic process of assignment 

could challenge a participant’s pre-existing understanding of the assignment concept. 

Secondly, the animation was viewed as being very helpful in promoting 

understanding of the concept. Finally, the step by step execution was viewed as 

another helpful feature, which in the words of one student “broke down the changes 

taking place”. 

 

6.1.4 Discussion 

 

The pre-test, which investigated the pre-existing mental models held by participants, 

revealed that students often held similar inappropriate mental models. There were 10 

participants who held the ME model and 12 participants who held the M2Ss model, 

while only 4 participants held other inappropriate models. In this case, it would seem 

a relatively simple task for instructors to design learning materials that could change 

the inappropriate mental models held by most students. In addition, well-designed 

learning material can cover many different kinds of mental models, i.e. the same 

learning material is capable of changing different kinds of inappropriate mental 

models. For example, it is argued that the visualization tool used in this study is 

capable of changing all the inappropriate mental models of the assignment process 

identified in the pre-test. In addition, the cognitive conflict question is also capable of 

triggering cognitive conflict for all the inappropriate mental models of the 

assignment process identified in the pre-test. This implies that the ‘conceptual 

change’ based teaching strategy is a practical proposal.  

 

In this study, all the participants, no matter which group they were in, made changes 

to their mental model of the assignment process. This implies that the visualization 

tool, even though not using an explicit cognitive conflict strategy, was also able to 

challenge a student’s pre-existing ideas of the assignment concept.   

 



 114

One possible explanation for this is that the assignment concept is relatively 

straightforward.  When the animation simulates the process of assignment, it is not 

difficult for participants (e.g. those who viewed ‘=‘ as an equal sign) to realised they 

were holding an inappropriate mental model. In addition, it also implies that the 

animation may be a better tool to promote conceptual change than the traditional 

textual and static learning materials. This study was conducted after the participants 

had covered the assignment concept using traditional learning materials delivered in 

a traditional lecture-based course. Those traditional learning materials did not help 

many of the participants to realise that their understanding of the assignment concept 

was inappropriate.  It is even possible that the participants did not engage, or only 

engaged superficially, with the traditional learning materials.  

 

Furthermore, the visualization/animation has been found to be an effective way to 

help students construct viable mental models of the assignment concept. Nearly 80% 

of participants constructed a viable mental model from their non-viable one by using 

the visualization tool. On the other hand, a few students still did not manage to 

construct a viable mental model of the assignment concept, even though they had 

realized their pre-existing mental model was inappropriate. For those students, the 

construction of viable mental models might require more time and support. 

 

While the visualization tool helped improve the participants’ mental models of the 

assignment process successfully, it seemed less effective for improving the mental 

models of execution flow. Half of the 12 participants who held inappropriate models 

of execution flow did not realize they were holding inappropriate models after using 

the visualization tool, even when some of them were challenged with a cognitive 

conflict question. As mentioned earlier, the inappropriate mental model derived from 

two misconceptions, namely: 1) assignments execute simultaneously; and 2) each 

line of code is an individual statement and should be treated separately. On reflection, 

while the step by step execution mode of the visualization tool is capable of 

correcting the first misconception, unfortunately, the example (figure 6-2a) used in 

the cognitive conflict question and the visualization tool failed to trigger cognitive 

conflict when a participant held the second misconception. As figure 6-2a shows, the 



 115

execution of Line1 does not affect the result of the execution of Line2, i.e. no matter 

whether or not the Line1 is executed, the result of Line2 is always ‘b = 30; c=30’. In 

this case, even though the participants held the second misconception, they can still 

pass the example successfully. Actually, it is easy to solve this problem by using 

another example, e.g. the example in figure 6-2b.  

 

int a =10, b=20, c=30; 
Line1: a = b; 
Line2: b = c; 

(a) the current example 
int a =10, b=20, c=30; 
Line1: a = b; 
Line2: c = a; 

(b) the proposed example 
Figure 6-2: The current example and modified example used in this study 

 

In this case, it is not difficult to understand why so many participants in the 

experiment did not change their mental models of execution flow. This finding 

explains why some teaching materials (including visualization-based materials) are 

not always helpful for improving students’ understanding, even though those 

materials have been viewed as well-designed by instructors. When instructors design 

materials based on their views, but without considering students’ pre-existing mental 

models, those materials might miss models held by some students.  In these cases, 

those students may not change their mental models, even though they are engaging 

with the materials. This reveals a weakness of the objectivism-based teaching 

approach and highlights the value of using a constructivism-based teaching approach.  

 

It should be noted that there were some limitations and weaknesses in this 

experiment. Firstly, in order to minimize any external inferences on the results the 

participants experienced the learning model under examination conditions.  However, 

a learning model should be more beneficial when it is used in a ‘real’ learning 

environment where students are allowed to communicate with other, to obtain 

assistance from tutors and to user other learning materials.  Future work would be 

needed to investigate the performance of the model in a ‘real’ pedagogical context.  



 116

In addition, the study adopted an aggregated approach to assess the effectiveness of 

the proposed learning model. The studies did not provide an in-depth exploration of 

how an individual’s mental models evolved, driven by the cognitive conflict strategy 

and the program visualization technique. Furthermore, the pedagogical benefits of 

the cognitive conflict strategy combined with a visualization technique might take 

some time before becoming effective. A long-term, continuous study is required to 

investigate the development of mental models. 

 

When participants were confronted with the cognitive conflict event (i.e. they were 

told that their answers were incorrect), some participants might not achieve cognitive 

conflict. They might just ignore or resist the cognitive conflict event. This study 

employed a series of scaled questions to investigate the participants’ attitude to the 

cognitive conflict event. However, the use of closed questions might give 

participants hints on how to answer the questions. In addition, some participants 

might have other reactions to the cognitive conflict event that were not predicted and 

were not taken into account when designing the scaled questions.  

 

In this study, open questions were used to collect qualitative data that was expected 

to reveal how participants reacted to a cognitive conflict event and visualization. 

However, some participants provided too little, or invalid, information to allow an 

analysis of those participants’ reactions to the proposed learning model.  

 

In order to elicit participants’ mental model before and after they had experienced the 

learning model, a pre-test and a post-test were carried out. There were six questions 

in each test. The participants claimed that there were too many questions that they 

had to answer, especially for the post-test when they believed that their 

understanding was appropriate. In this case, the participants might not answer the 

questions seriously.   

 

This section has evaluated the effectiveness of the proposed learning model for 

improving novice programmers’ mental models of value assignment. The results 

suggest that, for the relatively straightforward concept of assignment, tight 



 117

integration of program visualization with a cognitive conflict event that highlights a 

student’s inappropriate understanding can help improve students’ non-viable mental 

models. While most students successfully constructed a viable mental model of the 

assignment concept using the learning model, the importance of the cognitive 

conflict component within the model remains less obvious, perhaps due to the 

simplicity of the assignment concept. As mentioned above, the assignment concept is 

straightforward, and hence it was relatively easy for students to become engaged 

with the learning materials, no matter whether or not they were challenged explicitly 

by a cognitive conflict event. However, when learning a more complex concept, 

cognitive conflict is expected to play a more significant role in ensuring that students 

become more engaged with the learning materials. A further study is proposed to 

investigate the effectiveness of the teaching model for a more complex concept, 

reference assignment. 

 

6.2 An Evaluation of the Effectiveness of the Proposed Learning Model 

for Reference Assignment  

 

6.2.1 Research Aim 

 

This study investigates the effectiveness of the proposed learning model that 

integrates a cognitive conflict strategy along with visualization technology with the 

aim of improving students’ mental models of a relatively complex programming 

concept, namely, reference assignment.  

 

6.2.2 Research Method 

 

Participants 

43 volunteers were recruited from students who were in the Programming 

Foundations course. 17 of them participated in the ‘value assignment’ experiment 

(Chapter 6.1). The study was conducted in the twelfth week of the course after the 

participants had covered fundamental object-oriented programming concepts. The 



 118

teaching materials presented in the course covered the reference concept, as well as a 

comparison between reference assignment and value assignment.   

 

Procedure 

This study was conducted in one lab session (1 hour) in the 12 week of the course. 

The procedure carried out for this experiment was similar to that employed in the 

‘value assignment’ experiment described in the previous section. Firstly, the 

participants’ pre-existing mental models of reference assignment were elicited by the 

pre-test. The participants who held non-viable mental models were separated 

randomly and equally into two groups: the CC+Viz group and the Viz group. In a 

similar manner to the ‘value assignment’ experiment, the CC+Viz group were first 

challenged by a cognitive conflict question designed to explicitly trigger the 

cognitive conflict event and then exposed to the visualization based material; the Viz 

group only experienced the visualization based material without the explicit 

cognitive conflict event. After the exercise, the participants’ mental models were 

analyzed again as a post-test. At end of the experiment, participants were also asked 

to complete a ‘feedback’ questionnaire used to collect their views of the exercise.    

 

Experiment Material  
 

Pre-Test and Post-Test Questionnaire  

The pre-test and post-test investigated the participants’ mental models of the 

reference concept before and after an exercise designed based on the proposed 

teaching model. The test questionnaires cover three close-ended questions and one 

open-ended question (Appendix C-1). The close-ended questions ask participants to 

predict the execution result of a program which contains one or two reference 

assignment statements. Figure 6-3 shows the program used in the first close-ended 

question in the pre-test. The programs used in the second and third questions are 

slightly more complex: the program used in the second question contains two 

reference assignment statements; and the program used in the third question contains 

three reference variables and two reference assignment statements. The pilot study 

using three postgraduate students and three teaching staff in particular found that the 

third program was very challenging because it created a heavy cognitive load for the 



 119

participants. Even experienced programmers claimed that they needed to work 

carefully when tracing the execution of this program. Although this program seems 

overly complex for first year students, it is still interesting to investigate a student’s 

performance when applying their mental model to solve a complex problem. 

Therefore, this program was not replaced by a simpler one. The questions in the post-

test use the same question style but within a different problem context (Appendix C-

2).  

 

A Staff class has been defined that holds an ID field as an integer. 
Constructors like 'new Staff(1) ' are used to create an object of Staff 
class with an ID of '1 '.  
 
Methods in the form 'changeID(5) ' are used to change the value of the 
ID field of an object to be '5 '. 
 
The following questions require you to determine the value the ID 
field of the objects after the execution of the program fragment. 
 
Staff a; 
Staff b; 
a = new Staff (1); 
b = new Staff (2); 
a = b; 
b.changeID (5); 
 
a.ID = ___________;         b.ID = ____________; 

Figure 6-3: A close-ended question used in the pre-test 
 

Compared to the test questions used in the early mental model study (chapter 4), 

there are two differences with the questions (figure 6-3) in this experiment. Firstly, 

there is an additional statement ‘b.changeID(5)’ in the programs. Secondly, 

participants are asked to ‘fill in’ the result of program execution rather than choosing 

an answer from a list of diagram-based answer options. The reasoning behind this 

question style was to avoid possible ‘pattern matching’ with the pre-test occurring 

when participants answered the post-test question. The conceptual model used in the 

visualization employed similar diagrams to present the memory states. It was 

possible that some participants would choose the correct diagram-based answer 

option by matching it with the diagram shown in the visualization but without 

substantial understanding of the reference concept. However, the use of the statement 



 120

‘b.changeID(5)’ solved this problem. With this approach it was difficult for 

participants to select the correct answer if they did not hold a good understanding of 

the concept.  

 

The early ‘Mental Models’ study (Chapter 4) identified a collection of mental models 

of reference and reference assignment held by novice programmers. A list of possible 

answers is predicted based on the collection of mental models. Table 6-5 shows the 

mapping between the answer options and mental models. The first answer A1 is 

mapping to the appropriate mental model, while the remaining answers are mapped 

to improper mental models. As table 6-5 has shown, the remaining answers, e.g. A2, 

are mapping to more than one inappropriate mental models. So, the close-ended 

question can only test whether or not participants hold an appropriate mental model, 

but can not test which inappropriate model a participant holds. In this case, an open-

ended question is designed to help identify the inappropriate model held by a 

participant. This open-ended question asks participants to describe what happens 

when the statements ‘a = new Staff (1);’ and ‘a = b’ are executed. In addition, the 

open-ended question is also able to investigate whether or not participants held other 

models that can not be identified by the close-ended questions, such as the ME 

model, i.e. viewing assignment as a test of equality. This model has been found as the 

most widely used inappropriate model of assignment in the ‘value assignment’ 

experiment. 

 

No. Answer Mental Model 

A1 

a.ID = 5   b.ID = 5 (Q1)
a.ID = 5   b.ID = 5 (Q2)
a.ID = 2   b.ID = 5  
c.ID = 5                 (Q3) 

MA – Appropriate mental model of reference and 
assignment. Variables hold a reference; and an reference is 
assigned from right side to left side 



 121

A2 
 

a.ID = 2   b.ID = 5 (Q1)
a.ID = 2   b.ID = 5 (Q2)
a.ID = 2   b.ID = 5 
c.ID = 3                 (Q3) 
 
 

MStored – An object is stored at a variable. 
MIs – a and b are not variables, but rather the name of 
objects. 
MComponentAssign – the value of ID field in an object is 
replaced by the value of ID field in another object 
 
When the participants held any one of the models of the 
reference concept above, they also held the following 
models of the assignment concept: 
MRtoL – the assignment is from right-hand side to left-
hand side (appropriate model of assignment) 

A3 

a.ID = 2   b.ID = 5 (Q1)
a.ID = 1   b.ID = 5 (Q2)
a.ID = 2   b.ID = 5 
c.ID = 3                 (Q3) 

The participants held one of the MStored, MIs, and 
MComponentAssign models of the reference concept, and 
the following models of the assignment concept: 
MRtoL(Ss)– the assignment is from right-hand side to left-
hand side (appropriate model of assignment); but the 
participants held an inappropriate mental model of execution 
flow 

A4 

a.ID = 2   b.ID = 5 (Q1)
a.ID = 1   b.ID = 5 (Q2)
a.ID = 2   b.ID = 5 
c.ID = 1                 (Q3) 

The participants held one of the MStored, MIs, and 
MComponentAssign models of the reference concept, and 
the following models of the assignment concept: 
MSwap –Variables swap values 

A5 

a.ID = 2   b.ID = 5 (Q1)
a.ID = 1   b.ID = 5 (Q2)
a.ID = 2   b.ID = 5 
c.ID = 2                 (Q3) 

The participants held one of the MStored, MIs, and 
MComponentAssign models of the reference concept, and 
the following models of the assignment concept: 
MSwap(Ss) –Variables swap values; but the participants 
held an inappropriate mental model of execution flow 

A6 

a.ID = 1   b.ID = 5 (Q1)
a.ID = 1   b.ID = 5 (Q2)
a.ID = 1   b.ID = 5 
c.ID = 1                 (Q3) 

The participants held one of the MStored, MIs, and 
MComponentAssign models of the reference concept, and 
the following models of the assignment concept: 
MLtoR – the assignment is from left-hand side to right-
hand side. 

A7 

a.ID = 1   b.ID = 5 (Q1)
a.ID = 2   b.ID = 5 (Q2)
a.ID = 1   b.ID = 5 
c.ID = 2                 (Q3) 

The participants held one of the MStored, MIs, and 
MComponentAssign models of the reference concept, and 
the following models of the assignment concept: 
MLtoR(Ss) – the assignment is from left-hand side to right-
hand side; but the participants held an inappropriate mental 
model of execution flow 

A8 

a.ID = 1   b.ID = 5 (Q1)
a.ID = 1   b.ID = 5 (Q2)
a.ID = 1   b.ID = 5 
c.ID = 3                 (Q3) 

The participants held one of the MStored, MIs, and 
MComponentAssign models of the reference concept, and 
the following models of the assignment concept: 
MUnchange – Nothing happens 
MUnchange(Ss) – Nothing happens; and the participants 
held the inappropriate mental model of execution flow 

Table 6-5: The mapping between the answer options for the close-ended questions and 
mental models 

 



 122

Apart from the close-ended questions and the open-ended question, there is also a 

question to investigate how confident the participants felt about their answer. The 

participants evaluated their level of confidence against a 5 point scale (from 1–

strongly unconfident to 5-strongly confident).  

 

The Learning Environment  

The learning environment designed to assist the proposed learning model was 

extended with support for the object and reference assignment concept. The learning 

environment first challenges the participant with a question in order to trigger 

cognitive conflict. This question (Appendix C-3) is in similar style to those used in 

the pre-test but uses a different problem context. After participants present their 

answer to the question, the system will tell them whether or not the answer is correct. 

Then the visualization tool (figure 6-4) is used to help participants develop mental 

models of the reference concept. As the Code Window in figure 6-4 shows, the 

segment of the program does not cover the statement of ‘b.changeName(“Tom”)’. 

This is to avoid a potential ‘pattern match’ problem occurring when participants 

answer the post-test question. If participants are presented with the visualization of 

this statement, it is possible that the participants just remember the pattern 

superficially without substantial understanding of the reference concept. In this case, 

they may be able to produce a correct answer to the post-test question but with 

inappropriate or unstable mental models.  

 



 123

 
Figure 6-4: The visualization of reference assignment 

 

The Feedback Questionnaire 

The Feedback Questionnaire was designed to collect participants’ feedback on the 

proposed teaching model. In the ‘value assignment’ experiment, all the questions in 

the feedback collection questionnaire were open-ended. Although open-ended 

questions are capable of collecting unanticipated information, the disadvantage of 

this type of questions is also obvious. A large number of participants did not provide 

valid information in response to the open-ended questions but rather presented 

fragments such as “the visualization is useful” without any explanation why the 

visualization is useful. To address this, some closed questions are used in this 

experiment in order to gather more valid information. 

 

 Appendix C-4 shows the questions for both the CC+Viz group and the Viz group. 

The first question asks participants whether or not they have changed their 

understanding of any programming concepts as a result of the exercise and what are 

the changes. The second question asks participants when they realized their original 

understanding was incorrect. The third question asks how much attention they have 

paid to the textual explanation in the visualization tool, and how much they have 



 124

understood it. The reason for using this question is that the pilot study found the 

users of the visualization tool only focused on the graphical materials but ignored the 

textual explanation. It is interesting to investigate whether or not the participants who 

experienced a cognitive conflict event pay more attention to the textual materials. 

The last question asks participants to describe any questions or issues they have after 

the exercise.    

 

Apart from the questions above, the participants in the CC+Viz group were asked to 

answer two extra questions (Appendix C-5). The first question, which appeared just 

after the participants answered the cognitive conflict question, asked the participants 

about their reaction to the cognitive conflict event, while the second question, which 

appeared after the exercise, asked the participants about the effects of the cognitive 

conflict event to their knowledge construction. Please refer to Appendix C-5 for the 

details of the answer options.  



 125

6.2.3 Results 

 

The Results of Pre-test 

The result of the pre-test shows that only 2 participants consistently used answer A1 

(i.e. the correct answer) in table 6-5 to answer all the pre-test questions. Both of them 

gave appropriate and clear explanations of reference assignment in the open-ended 

question. One participant also provided an appropriate description of the difference 

between value assignment and reference assignment.  

 

24 out of the remaining 41 participants consistently used answer A2 in table 6-5 to 

answer all the pre-test questions. The open-ended question identifies that: 6 of them 

held the MStored model; 11 of them held the MIs model; 2 of them held both the 

MIs and MComponentAssign model. In addition, 3 participants left the answer blank 

or gave uninterpretable information (i.e. “it finds what b is then assigns a to be the 

same thing”). A participant described the statement ‘a = b’ as “a is referenced to b”. 

More interestingly, a participant described the statement ‘a = new Staff (1)’ as 

“creates new array” (the participants had just learned the array concept before the 

experiment). 

 

The pre-test also found that 2 participants consistently used the answer A6 in table 6-

5 (i.e. viewing assignment as from the left-hand side to the right-hand side) to answer 

all of the pre-test questions. One of them held the MStored model when the other one 

held the MIs model.  

 

The remaining 15 participants used the inconsistent model to answer the close-ended 

questions. The open-ended question found that: one participant used the Mstored 

model; 2 participants used the MIs model; 2 participants used the MIs and 

MComponentAssign model; and 7 participants left it blank. In addition, 4 

participants provide strange descriptions, such as:  

“a is set to whatever is in location 1 in the array staff” 

“a is made equal to 1” 

“A new staff element is created at index 1.” 



 126

“a will be given the variable new Staff(1)” 

It is difficult to identify the mental model from their descriptions, but they seem to 

hold a very inappropriate understanding of the variable and object concepts. 

 

In addition, the results of the pre-test also show that the participants with a consistent 

mental model were more confident than those with inconsistent models (p11 = 0.042). 

 

The Result of Post-Test 

The 41 participants who held inappropriate or inconsistent mental models were 

separated into the CC+Viz group and the Viz group. 3 participants in the CC+Viz 

group did not finish the post-test. One of them went back to the cognitive conflict 

question after using the visualization rather than going forward to the post-test. He or 

she kept doing the ‘cognitive conflict question -> visualization -> cognitive conflict 

question’ cycle until they got the correct answer. Apart from the 3 participants, 18 

participants were in the CC+Viz group while 20 participants were in the Viz group. 

The analysis of the participants’ performance in the course assessment revealed that 

there was not significant difference (p=11.1%) between those in the CC+Viz group 

and the Viz group.  

 

The results of the post-test along with the result of the first question in the feedback 

questionnaire (i.e. asking participants to describe what changes they had made to 

their understanding of the programming concepts) show that the participants can be 

grouped into five categories: 

 

Category 1 – the participants can answer at least the first two close-ended questions 

correctly. 

 

Category 2 – the participants cannot answer the close-ended questions correctly, but 

their answers to the open-ended questions show that they improved their 

understanding of the reference concept. 

 
                                                
11 The Wilcoxon Mann-Whitney Test was used to compare the consistent group and the inconsistent group. The 
Wilcoxon Mann-Whitney Test was used as the data was not normally distributed.  



 127

Category 3 – the participants cannot answer the close-ended questions correctly, and 

they cannot give appropriate descriptions of the reference concept in the open-ended 

question. However, their understanding of other concepts such as variable and object 

were changed after the exercise, even though they may not have changed to the 

appropriate one. 

 

Category 4 – the participants realized their understanding of reference or other 

concepts were inappropriate, but they did not make any change of their 

understanding.  

 

Category 5 – the participants did not realize their understandings of reference or 

other concepts were inappropriate after the exercise. 

 

Table 6-6 shows the number of participants in each category. 

 

 Category 1 Category 2 Category 3 Category 4 Category 5 
CC+Viz 4 1 9 4 0 

Viz 0 5 4 4 7 
Table 6-6: The distribution of participants in terms of the mental model changes 

 

Category 1 

The result shows that only one participant answered all the three close-ended 

questions correctly. However, another 3 participants gave correct answers to the first 

two questions but failed the third one. As mentioned above, the third question, which 

places a heavy cognitive load, is relatively challenging for novice programmers. 

Even experienced programmers who hold appropriate mental models of the reference 

concept found it easy to make a mistake. In this case, the participants who could 

answer the first two questions correctly were put into category 1. All of the 4 

participants were from the CC+Viz group. 

 

Apart from one participant who did not provide any valid information to interpret, all 

the remaining 3 participants in the category 1 presented appropriate descriptions to 

the open-ended questions, such as:  



 128

“A reference to an instance of Account with a value of 100 for balance is stored in 

acc1.” 

“The reference inside acc2 is made equal to the reference inside acc1.” 

 

The results of pre-test reveal that: 2 participants in the category 1 held MIs model 

before the exercise; one held both the MIs model and the MComponentAssign model; 

and one held inconsistent models. 

 

Category 2 

6 participants were in category 2: one was from the CC+Viz group while 5 were 

from the Viz group. In this category, the participants gave incorrect answers to the 

post-test questions (5 participants consistently used answer A2 for all the questions, 

while one participant gave inconsistent answers) even though their answers to the 

open-ended question show that their understanding of reference concept was 

improved, such as: 

From “The staff object assigned to variable b is assigned to variable a” To “The 

variable acc2 now refers to the same object as the variable acc1” 

 

From “The value in b is being assigned to a.” To “Object acc2 points to the location 

of the acc1 object. When an object is assigned to another object it doesn't copy the 

object to this object but it points to the location of the object” 

 

From “The value of b is transposed onto the value of a. b stays the same but a 

changes.” To “The reference of the object in acc1 is copied, replacing the reference 

to acc2 meaning that the two objects are now being referenced at the same time.” 

 

However, the descriptions of reference presented by some of the participants are still 

not accurate. For example, in the third example description, the first half of the 

sentence is correct that “The reference of the object in acc1 is copied, replacing the 

reference to acc2”, but the second half of the sentence, “the two objects are now 

being referenced at the same time”, shows that the participant did not construct an 

appropriate mental model of reference.  



 129

 

The results of the pre-test reveal that: one participant in the category 2 held the 

MStored Model before the exercise; 2 participants held the MIs model; one held the 

MComponentAssign model; and one described the statement ‘a = b’ as “a is 

referenced to b”.  

 

Category 3 

The results of the close-ended questions show that the participants in this category 

did not change their model to an appropriate one. However, the results of the open-

ended questions show that they seem to have made changes to their understanding of 

some programming concepts, such as variable and assignment. In addition, the 

participants in this category seem able to construct an appropriate mental model of 

value assignment that is a simplified version of the mental model of reference 

assignment. For example, a participant explained the statement ‘a = new Staff(1)’ as 

“a is set to whatever is in location 1 in the array staff” in the pre-test and explained 

the statement ‘acc1 = new Account(100)’ in the post-test as “whatever was in acc1 

has been changed to 100” in the post-test. The participant’s answer to the open-

ended question shows that they held a very inappropriate understanding of object 

concept. In their understanding, the class Staff is an array and the parameter is the 

index of the array. After the exercise, their understanding seems to have changed to 

the appropriate one of value assignment.  

 

However, most of the participants in this category seem just to have made a very 

superficial adaptation of their understanding, rather than making a change to their 

mental model. They just used the phrases that appeared in the visualization to re-

describe their model. For example, a participant described the statement ‘a=b’ as 

“a's value, 1, is changed to b's value, 2” in the pre-test, and “acc2 is made equal to 

the value stored in acc1” in the post-test.  

 

The comparison of the pre-test and the post-test shows that 9 participants are in this 

category: 5 changed from inconsistent model to a consistent model; 3 changed in the 

opposite direction; and 1 changed from the consistent model, MIs (assign from left to 



 130

right) to another consistent model, MStored. The remaining 4 participants in this 

category did not change their answer options to the close-ended questions.  

 

Category 4 

The participants in this category meet all of the following conditions:  

! They answered ‘No’ to the first question in the Feedback questionnaire that asks 

them to describe the changes they had made to their understanding of 

programming concepts. 

! They used the same answer option for the close-ended questions in the pre-test 

and the post-test. 

! They used the same descriptions for the open-ended questions in the pre-test 

and the post-test.  

! They gave an answer to the second question in the feedback questionnaire, 

which asks them when they realized their original understanding was incorrect. 

 

There are 8 participants in this category: 4 were in the CC+Viz group and 4 were in 

the Viz group.  

 

Category 5 

The participants in this category did not realize that their understandings were 

inappropriate. Unsurprisingly, all the participants were in the Viz group (the 

participants in the CC+Viz group were explicitly told that their answer to the 

cognitive conflict question was incorrect). 7 participants were in this category.  

 

The Data from the Feedback Questionnaire 

 

There is a question in the feedback questionnaire which investigated when the 

participants realized their original understanding was inappropriate. The result 

identifies four periods:  

Period 1: when they were answering the pre-test questions 

Period 2: when they were told that their answer was incorrect to the cognitive 

conflict question 



 131

Period 3: when they were viewing the visualization tool 

Period 4: when they were answering the post-test questions 

In addition, there were some participants who were not aware that their 

understanding was incorrect. 

 Period 1 Period 2 Period 3 Period 4 Not Aware 

CC+Viz 0 9 5 4 0 

Viz 5 0 6 2 7 

Total 5 9 11 6 7 

Table 6-7: The distribution of the participants in term of the period when they achieved 
cognitive conflict 

 

As Table 6-7 shows, 9 out of 18 participants in the CC+Viz group realized their 

original understanding was inappropriate when they were told that their answer was 

incorrect to the cognitive conflict question. The remaining participants in the 

CC+Viz group realized the inappropriateness when they were viewing the 

visualization tool or when they were answering the post-test questions. None of the 

participants in the CC+Viz group realized the inappropriateness when answering the 

pre-test questions 

 

In the Viz group, none of participants answered the cognitive conflict question. So, 

none of participants realized the inappropriateness of their understanding during 

period 2. 6 of the remaining participants realized their original understanding was 

incorrect when they were viewing the visualization tool. 2 participants realized the 

inappropriateness when they were answering the post-test questions. In addition, 5 

participants realized the inappropriateness when they were answering the pre-test 

questions. 

 

There was also a question to investigate how much attention the participants paid to 

the textual explanation in the visualization tool, and how much they understood it. 

The results show that the participants in the CC+Viz group did not pay more 

attention than those in the Viz group (p = 0.803). In addition, the CC+Viz group did 

not have any better understanding of the textual materials than the Viz group 

(p=0.363). However, perhaps unsurprisingly, the results show that the participants in 



 132

the Categories 1 and 2 have better understanding of the textual materials than those 

in the Categories 3, 4, 5 (p=0.046). All of the participants in Categories 1 and 2 

understood at least ‘most’ of the materials. In particularly, 3 out of 4 participants in 

Category 1 understood ‘all’ of the materials. 

 

The participants in the CC+Viz group had two extra questions. The first question 

asked their reaction when they were told their answer to the cognitive conflict 

question was incorrect. They could choose one or more answers from a pre-defined 

answer list (please refer to C-2). The results show that 5 participants claimed “I was 

surprised because I thought my answer was correct” and 4 picked “I was surprised 

and even wondered if there is something wrong with the system”. 10 participants 

claimed “I was interested to know why my answer was incorrect”. None of 

participants choose the following answer options: 

! To be honest, I did not really care about whether or not my answer is correct. 

! I was not surprised because I was not confident with my answer. 

! I felt upset 

 

The participants who felt ‘surprised’ seem to perform slightly better than the others. 

3 of them were in Category 1, while only 1 of the other 10 participants were in this 

category.  

 

The second extra question asks the participants about the effects of the cognitive 

conflict event to the learning exercise. As with the first extra question, the 

participants can choose one or more answers from a pre-defined answer list (please 

refer to C-2). The results show that most of the participants gave positive feedback to 

the cognitive conflict strategy. 7 participants claimed “It helped me to concentrate on 

the learning materials when I was told beforehand that my understanding was 

incorrect”. 4 participants picked “It helped increase my interest in the learning 

materials when I was told beforehand that my understanding was incorrect”. 10 

participants chose “It encouraged me to actively seek the reason why my 

understanding was mistaken when I was told beforehand that my understanding was 

incorrect”. Only 2 participants chose the negative comment “It did not make any 



 133

difference when I was told beforehand that my understanding was incorrect”. None 

of the participants claimed “It decreased my interest in the learning materials when I 

was told beforehand that my understanding was incorrect”.  

 

The Observation Data 

 

Some participants seemed not to engage with the learning materials. When these 

participants were using the visualization tool, they just went through each statement 

quickly. After the exercise, the participants still used inappropriate mental models.  

 

Some participants raised questions during the experiment. This provided some useful 

information to the experimenters. A participant questioned the answers of the post-

test provided by the learning environment, and believed his answer was correct. The 

experimenter asked him to explain the visualization of the execution of each 

statement. His explanation shows that he held the MStored model, but more 

interestingly, he interpreted the visualization as matching the MStored model. It 

proposed that the visualization did not change his original mental model, but rather 

he used his original mental model to interpret the visualization.   

 

6.2.4 Discussion 

 

The results of the pre-test reveal that novice programmers find difficulty when 

grasping the reference concept, one of the most important concepts in object-oriented 

programming. Only 2 out of 43 participants in this study held viable mental models 

of the reference concept. This matches the findings of the earlier mental model study 

(presented in Chapter 4) where only 17% of all participants held viable mental 

models when they had been learning object-oriented programming for one year. It is 

not difficult to explain why so many students were not able to change their mental 

model of the reference concept to an appropriate one after experiencing traditional 

instruction. In many situations, even though the students held inappropriate mental 

models of the reference concept such as the ‘store at’ model, i.e. ‘an object is stored 

at a variable’, they can still make many programs execute successfully. This 



 134

strengthens many students’ confidence in their inappropriate models. In this case, 

extra efforts are required to help students to discover their inappropriate mental 

models and construct an appropriate one.  

 

The results of the post-test separated the participants into five categories. Those in 

the first category could answer at least the first two questions correctly. A necessary 

condition to do that is that the participant had to hold an appropriate mental model of 

the reference concept, i.e. the reference rather than the object is stored in the variable, 

and both variables ‘point to’ the same object when an reference is assigned from the 

right hand side variable to the left hand side variable.  

 

The participants in the second category were those who failed to present correct 

answers to the close-ended questions, but whose answers to the open-ended question 

showed that they had improved their understanding of the reference and reference 

assignment. There are two possible explanations for this category of participants. 

Firstly, the participants realized that their original understanding of the reference 

concept was not appropriate and tried to construct an appropriate one. However, they 

did not succeed and only managed to construct a mental model that was only 

partially functional.  It is possible that these students require more time to construct a 

viable model. Secondly, it was also possible that the participants just superficially 

remembered the ‘phrases’ as they appeared in the visualization tool and then ‘copied’ 

them to their answer the open-ended question, but without substantial change of their 

mental models.   

 

The participants in the third category failed to construct an appropriate mental model 

of the reference concept, but they appeared to be able to build an appropriate mental 

model of variable and assignment concepts. They tended to construct a mental model 

that was appropriate for value assignment, which can be viewed as a simplified 

version of the mental model of reference assignment. Previous researchers (Norman, 

1983; Doyle et al., 2001) found that people often build a simplified version of the 

mental model for a complex system. An appropriate mental model of the reference 

assignment concept is much more complex than that of the value assignment concept. 



 135

Students have to understand how an object is created, as well as its relation with the 

reference variable, in order to construct an appropriate mental model of reference 

assignment. In addition, it is difficult for a novice programming student, who does 

not have appropriate mental models of the memory mechanism, to understand why 

reference assignment works in this way. For example, their prior experience, 

especially when they are holding the appropriate model of the value assignment 

concept, may drive them to believe that ‘an object is stored in a variable and a copy 

of it replaces the object stored in the left side variable’ is a more reasonable 

explanation. In this case, it is possible that they use a more reasonable way, in their 

opinion, to understand the learning materials. According to the Conceptual Change 

Model (CCM) from Posner et al. (1982) and Hewson & Hewson (1984), a necessary 

condition for conceptual change is that the new conception has to be plausible. 

Obviously, students tend to accept an idea that they view as reasonable.   

 

The participants in the fourth category knew that there might be something wrong 

with their understanding of the programming concepts presented in the learning 

materials, but they did not manage to improve their understanding. A comparison of 

their answers in the pre-test and post-test also reveals that they had not made any 

change to their understanding after using the learning materials. The learning 

materials might have helped them to realize the complexity of reference assignment 

and perhaps led them to feel apprehensive about their existing understanding. 

However, their base knowledge was not enough to help them to understand the basic 

components of the mental model of reference assignment, such as how an object is 

created and stored in memory. In this case, they just knew their ideas were 

inappropriate but did not understand why.  

 

The participants in the fifth category did not realize their mental models were 

inappropriate. One possible reason for this was that these participants were not 

engaged with the learning materials. In addition, other researchers on conceptual 

change (Hewson & Hewson, 1984) have found that students who hold prior 

conceptions are often prevented from accepting new conceptions. They do not realize 

their conceptions are inappropriate even though they are confronted with scientific 



 136

conceptions that are presented in lectures and tutorials. Moreover, it was possible 

that the participants interpreted the learning materials, such as the visualization, 

based on their existing mental model. Certainly, it was also possible that those 

participants might be totally lost. They could understand nothing of the learning 

materials. 

 

In the previous study presented in Chapter 6.1, the visualization technique was found 

to be very effective in helping students construct viable mental models of the value 

assignment concept, a relatively straightforward concept. However, the visualization 

technique appeared much less effective in this study when it was applied to a 

complex concept, namely, reference assignment. Compared to value assignment, to 

construct a viable mental model of reference assignment requires students to have 

more base knowledge, such as those related to object creation and storage. It is very 

possible that the students had not built that base knowledge when they started to 

learn the reference assignment. In addition, Ben-Ari (2001a) also suggests that 

novice programmers lack the necessary model of a computer such as the memory 

mechanism to support their learning of computer science courses. It is difficult for 

these participants to construct a viable mental model of reference assignment without 

this base knowledge, especially when some participants even described an object as 

an array. Even though the visualization tool simulated the process of object creation 

and reference assignment, many participants seem unable to understand the 

visualization and the textual explanations. It matches the suggestion from other 

researchers (Ben-Ari, 2001b) that the visualization has to be designed to suit 

students’ levels in order to achieve pedagogical benefits. In other words, no matter 

how well the visualization is designed, it cannot help students construct viable 

mental models if the students’ prior knowledge is not enough for them to understand 

the visualization.   

 

In addition, this finding also provides evidence to support Ben-Ari (2001a)’s idea, 

that can be announced as “Don’t start with abstraction”. Object-oriented 

programming concepts, such as class, object, and reference, are at a relatively high 

level of abstraction. Abstraction is crucial for programming. However, programmers 



 137

have to understand the low level underlying model of the abstraction in order to use 

it properly (Ben-Ari, 2001a). As Ben-Ari (2001a) mentioned, professional software 

engineers who can understand and use abstraction properly have a fairly good idea of 

the underlying model. However, novice programming students have not constructed 

these underlying models when the object-oriented programming concepts are 

presented at an early stage. In this case, it would be more reasonable to help students 

construct the low level models underlying the object-oriented programming concepts 

before teaching those more abstract concepts.  

 

Moreover, the finding also suggests that programming concepts have to be taught to 

students in an appropriate order. For example, the student has to first construct 

appropriate mental models of the base concepts, such as variables, objects and 

assignment, before learning the reference concept. However, programming 

instructors are often confronted with a large population of students with different 

learning paces. It is impossible for instructors to wait for those ‘slow’ students. In 

this case, additional, self-managed learning sessions may be practical and helpful to 

‘mend’ students’ mental models. Actually, these learning sessions can be easily 

implemented based on the proposed teaching model: students can do the cognitive 

conflict–based practices by themselves to help identify the problems in their 

understanding, and try to improve their mental models by using the visualization-

based materials.     

 

Another explanation for students’ failures to present viable mental models in the 

post-test is that the construction of viable mental models may take longer. 

Researchers (e.g. Hand & Treagust, 1988) who studied the conceptual changes in the 

science education domain proposed that students may have two conceptions, the 

inappropriate one and the scientific one, for some period of time after they receive 

teaching of the new scientific concept. They often have not fully accepted the new 

concept and in the meantime have not rejected the pre-existing concept. The new 

concept can only be accepted when it makes sense to the students with enough 

experience of using the concepts in more conflicting situations.  

 



 138

The previous study that focused on the value assignment concept did not identify the 

importance of a cognitive conflict teaching strategy. However, the results of this 

study show that the participants experiencing the explicit cognitive conflict event 

performed better than the others. Four participants from the CC+Viz group 

constructed appropriate mental models of reference assignment and answered the 

post-test questions correctly. On the other hand, nobody from the Viz group was in 

this category. In addition, without experiencing the cognitive conflict event, 7 out of 

20 participants from the Viz group did not even realize their original understanding 

was inappropriate. The data from participants’ responses to the feedback 

questionnaire reveals that the cognitive conflict teaching strategy is indeed capable of 

increasing students’ interest in the learning topic, and engages them in the learning 

materials.  

 

However, the results also show that there were still many participants from the 

CC+Viz group who could not locate where the problem was and construct an 

appropriate mental model. Although they knew their understandings were not 

appropriate after experiencing the cognitive conflict event, they could not find what 

and where the problem was. Perhaps, it is not surprising because these participants 

lacked the necessary base knowledge to explore the problems. In this case, these 

participants actually did not reach a cognitive conflict state because they did not 

identify and understand the conflict between their existing mental model and the 

scientific model.  

 

The study identified four possible stages during which the participants realized their 

original understanding was inappropriate. In the CC+Viz group, half of the 

participants realized the inappropriateness of their understanding when they were 

experiencing the cognitive conflict event. The remaining participants realized theirs 

during use of the visualization tool or answering the post-test questions. For these 

participants, although they were told their answer was incorrect in the cognitive 

conflict event, it was still not enough to convince them that they were holding an 

inappropriate understanding. For example, some participants even suspected there 

was something wrong with the system. When they continued to use the visualization-



 139

based materials or were confronted with other problem contexts in the post-test, there 

was more information to challenge their beliefs. In the Viz group, the participants did 

not experience the cognitive conflict event. Interestingly, some participants claimed 

that they realized their understanding was inappropriate during the pre-test. It 

perhaps implies that the common, traditional learning activity such as exercises and 

exams could drive students to doubt their understanding as well. 

 

This study was carried out in similar way with the study for evaluating the 

effectiveness of the learning model for the value assignment concept (section 6.1). 

Therefore, this study has similar limitations and weaknesses as those mentioned in 

section 6.1.4. In addition, this study has some extra limitations and weaknesses. For 

example, to avoid ‘pattern match’ risk, as mentioned above, the participants did not 

answer a series of diagram-based, multi-choice questions (that were used in the 

mental models test) in the pre-test and post-test. Instead, they were asked to provide 

their own answer. As table 6-5 shows, one possible answer may map to more than 

one mental model. Therefore, the pre-test and post-test can only test whether or not 

the mental model held by a participant was viable or non-viable, but cannot 

automatically identify which mental model the participants were holding.  In this 

case, an additional open question was required to identify the participants’ mental 

model. However, when a participant did provide valid information to the open 

question, their mental model could not be identified.  

 

This section reported a study to assess the effectiveness of the proposed learning 

model for a relatively complex concept, reference assignment. This study used a 

similar research method and experiment procedure to the ones employed in the first 

study for value assignment. The results show that the proposed learning model was 

capable of motivating students to engage with the learning materials and help 

students construct viable mental models, although the visualization technique seems 

less effective when students lack enough base-knowledge to interpret the 

visualization. 

 



 140

6.3 A Comparison between the Original Study and the Proposed Teaching 

Model Study. 
 

As chapter 4 presents, the first year programming students’ mental models of the 

value assignment and reference assignment concepts were investigated at the end of 

the Programming Foundations course in the 2005-2006 academic year. In that year, 

students did not experience the proposed learning model. The studies (chapter 6.1 

and chapter 6.2) conducted to apply and assess the learning model were carried out in 

the 2006-2007 academic year. It is of interest to compare the mental models held by 

the students in 2005-2006 when they did not experience the learning model to those 

held by the students in 2006-2007 when they experienced the learning model. This 

section presents a study to elicit students’ mental models at the same time as the 

mental model test conducted in 2005-2006 and to compare the mental models 

between these two years.   

 

6.3.1 Research Aim 

 
The aim of repeating the mental model test was to investigate whether or not the 

students who experienced the proposed teaching model during the academic year 

(2006-2007) performed better than those who did not experience this model in the 

previous year (2005-2006). In addition, this test would be used to investigate the 

long-term effects of the proposed teaching model.   

 

6.3.2 Research Method 

 
In order to form a comparison between the mental models held by the students in this 

year and those held by the students in the previous year, this test used the same test 

questions and was conducted under the same conditions as the test conducted in the 

previous year. 

 

Sixty-six first year programming students from the Programming Foundations course 

participated in this test in week 22 of the course: 36 of them participated in the ‘value 

assignment’ experiment (chapter 6.1) in week 6 of the course; 32 of them 



 141

participated in the ‘reference assignment’ experiment (chapter 6.2) in week 12 of the 

course; and 12 of them had not participated any experiment.  

 

The Programming Foundations course taught this year was very similar to the one 

taught in the previous year. Both courses adopted the same course structure, teaching 

materials, and were taught by the same lecturer. In addition, the students have been 

found to hold similar backgrounds on programming. The only difference was that 

some of the students from this year participated in the experiments and experienced 

the proposed teaching models.  

 

6.3.3 Results 

 
This study aimed to compare the mental models held by the students who 

experienced the proposed teaching model during the academic year (2006-2007) and 

those held by the students who did not experience the teaching model in the previous 

year (2005 - 2006). In this case, only the results from the students who participated in 

the ‘value assignment’ or/and ‘reference assignment’ experiment were analyzed.  

 

There were 36 out of 66 students that participated in the ‘value assignment’ 

experiment. The results show that 30 out of them (84%) used consistently 

appropriate mental models to answer the ‘value assignment’ questions in this test. 

The figure is higher than that (63%) in last year (Figure 6-5). There was a smaller 

percentage of students using inconsistent or consistently inappropriate mental models 

this year compared to last year.   

 



 142

 
Figure 6-5: The comparison of students’ mental models of value assignment  

 

Thirty-two out of 66 students participated in the ‘reference assignment’ experiment. 

Half of them used consistently appropriate mental models to answer the ‘reference 

assignment’ questions in this test while only 17% of students used consistently 

appropriate mental models in last year (Figure 6-6).  

 

 
Figure 6-6: The comparison of students’ mental models of reference assignment 

 
The results of this test were also compared to the results achieved in the ‘Value 

Assignment’ and ‘Reference Assignment’ experiments in order to see whether or not 



 143

the students had made any change to their mental models during the period between 

finishing the experiment and starting to do this test.  

 

Among the 36 students who participated in the ‘Value Assignment’ experiment, five 

students only completed the pre-test but not the post-test. It is difficult to evaluate 

whether or not they had used the proposed learning tool. So those students were not 

taken into account. Table 6-8 shows the evolution of the mental models of the 

remaining 31 students. 15 of them have been found as holding viable mental models 

of the value assignment concept before the ‘value assignment’ experiment. All of 

them still used viable mental models in the mental model test at the end of the course. 

 
The Mental Models Used in the ‘Value  

Assignment’ Experiment 
Pre-Test Post-Test 

The Mental 
Models Used in 

the Test 

Number of 
Students 

Viable - Viable 15 
Non-Viable Viable Viable 7 

Non-Viable Viable Non-Viable 1 
Non-Viable Non-Viable Viable 5 

Non-Viable Non-Viable Non-Viable 3 
Table 6-8: Evolution of the mental models of value assignment under the proposed learning 

model 
 

Eight students held non-viable mental models before the ‘value assignment’ 

experiment but changed their mental models to a viable one after using the proposed 

learning materials. At end of this course, seven of them kept their mental models as 

viable, but the remaining one changed their mental model to be non-viable.  

 

In addition, there were eight students who held non-viable mental models before the 

‘value assignment’ experiment and did not change their mental models to the viable 

ones after experiencing the proposed learning materials. At end of this course, five of 

them changed their non-viable mental models to a viable one (four students changed 

from the ‘Ss’ model, i.e. view statements execution as simultaneous; and one 

changed from the inconsistent model). The remaining three students kept their non-

viable mental models unchanged (two held the ‘Ss’ model; and one held the 

inconsistent model).  



 144

 

Among the 32 students who participated in the ‘Reference Assignment’ experiment, 

one student only finished the pre-test but not the post-test. This student was not taken 

into account during the analysis. Table 6-9 shows the evolution of the mental models 

of the remaining 31 students. One student who had already held a viable mental 

model of reference assignment before experiencing the proposed learning materials 

used consistently appropriate mental models to answer all the reference assignment 

questions in the test at the end of the course. This student also provided a proper and 

detailed answer to the open-ended question on the subject. 

 

The Mental Models Used in the ‘Reference 
Assignment’ Experiment 

Pre-Test Post-Test 

The Mental 
Models Used in 

the Test 

Number of 
Students 

Viable - Viable 1 
Non-Viable Viable Viable 2 

Non-Viable Viable Non-Viable 1 

Non-Viable Non-Viable Viable 11 

Non-Viable Non-Viable Non-Viable 16 
Table 6-9: Evolution of the mental models of reference assignment under the proposed 

learning model 
 

Three students held non-viable mental models before the ‘reference assignment’ 

experiment but changed their mental models to a viable one after using the proposed 

learning materials. At end of this course, two of them kept their mental models as 

viable. The remaining one demonstrated an inconsistent mental model, and explained 

the reference assignment statement ‘b=a’ as “object b becomes equivalent to the 

object a” in the open-ended question.  

 

Twenty-seven students held non-viable mental models before the ‘reference 

assignment’ experiment and did not change their mental models to the viable ones 

after experiencing the proposed learning materials. At end of the course, 11 of them 

changed their non-viable mental models to be a viable one (apart from two students 

who did not answer or provided too little information for the open-ended answer, all 

the other night students demonstrated proper explanations of reference assignment). 



 145

The remaining 16 students still used non-viable mental models in this test at the end 

of the course. 

 

In the first mental models test carried out in the previous academic year (2005-2006), 

the relationship between the viability of participants’ mental models and their 

performance on course assessment, was investigated. However, this investigation 

was not repeated in the academic 2006-2007 year’s mental models test. The reason 

was that the number of participants was too small to allow a statistical analysis (e.g. 

there were only 3 participants in the consistently inappropriate group and 3 

participants in the inconsistent group when the participants were separated based on 

their mental models of value assignment).  

 

6.3.4 Discussion  

 
The results show that a higher percentage of students who experienced the proposed 

learning materials in 2007 held viable mental models compared to the percentage in 

2006. The students from both years had similar backgrounds in programming, and 

the learning contexts of both years were the same: same instructor, same course 

structure, and same learning materials. The only difference is that the students in 

2007 had the opportunity to use the proposed learning materials. In this case, it could 

be deduced that the higher percentage of students who held viable mental models this 

year was caused by the proposed learning materials. However, the results also show 

that some students could not change their mental models (especially for reference 

assignment) from non-viable to viable immediately after using the proposed 

materials. Instead, some of them changed their mental models after a period of time. 

A possible reason is that some students with limited base knowledge might need 

more time to construct a viable mental model. Even though they have experienced 

cognitive conflict, their existing knowledge is not sufficient to support them in 

solving the conflict. A period of further learning and practice in programming might 

help them accumulate enough knowledge to solve the conflict and construct a new 

cognitive balance. However, it should be noticed that the current evidence is not 

enough to support this assumption. These students might change their mental models 

due to other reasons. In this case, further long-term, qualitative studies are required 



 146

to investigate students’ reactions to cognitive conflict events and monitor the 

subsequent evolution of students’ mental models. 

 

On the other hand, there were far fewer students, only two, who changed their mental 

model from viable to non-viable after a period. A possible reason is that the mental 

models constructed by them were unstable. However, it is also possible that these 

students did not answer the questions in the mental model test seriously.   

 

It should be noted that there were some potential weaknesses in this experiment. 

Firstly, some threats may affect the accuracy of the results obtained from this 

experiment. For example, as mentioned above, some students who held viable mental 

models might not answer the questions seriously. In addition, the answer options for 

the ‘reference assignment’ questions used in this test are diagram-based. It was 

possible that some participants might have remembered the patterns that appeared in 

the visualization tool presented in the ‘reference assignment’ experiment and answer 

the questions based on patterns matching, even though this mental model test was 

conducted more than four months after the ‘reference assignment’ experiment. 

Furthermore, this experiment might encourage a student’s interest in the topics of 

value assignment and reference assignment. In this case, they might spend more time 

and effort learning these topics. Therefore, the improvement of students’ mental 

models might be caused by the students’ extra effort rather than the proposed 

learning model.  

 

6.4 Summary 
 

This chapter presents three studies that were conducted to evaluate the effectiveness 

of the proposed learning model. In the first two studies, the learning model was 

implemented to help first year programming students construct viable mental models 

of value assignment and reference assignment. The results reveal that the learning 

model was effective for improving students’ mental models of those two concepts, 

although visualization seems less useful to help students construct a viable mental 

model of a complex concept when the students lack enough base knowledge to 



 147

understand the visualization. The third study compared the mental models held by 

the students in 2006-2007 who experienced the proposed learning model with those 

held by the students in 2005-2006 who did not experience the learning model. The 

results show that, in general, the students who experienced the learning model 

performed better than those who did not experience the learning model.  

 



 148

 

CHAPTER 7 – Conclusion 
 

This final chapter summarises the research work presented in this thesis and 

discusses its achievements and limitations along with suggestions for future work. 

 

7.1 Summary of the Work 
 

The research described in this thesis investigated the viability of mental models held 

by novice programmers, and proposed and evaluated a constructivist-based teaching 

model that integrates a cognitive conflict strategy and program visualization to 

improve novice programmers’ mental models.  

 

The mental model study (chapter 4) captured the first year programming students’ 

mental models of fundamental programming concepts (focusing on value assignment 

and reference assignment) using a multiple choice questionnaire and by getting 

students to describe their understanding using text and diagrams. These results were 

then used to compare groups based on viable and non-viable models against 

performance in exams and programming tasks. 

 

To improve the mental models of novice programmers a constructivist-based 

learning model was proposed (chapter 5). This learning model emphasizes the 

importance of students’ prior knowledge and takes advantage of the potential 

benefits from the cognitive conflict strategy and program visualization. In addition, a 

computer-supported learning tool was developed to support the proposed teaching 

model.  

 

The evaluation of the proposed teaching model consists of three parts (chapter 6). 

The first part investigated the effectiveness of the proposed teaching model for a 

relatively straightforward concept, value assignment, with special emphasis on the 

capacity of the cognitive conflict strategy for engaging students with the 



 149

visualization-based learning materials and improving the effectiveness of 

visualization. In this study, a learning session based on the proposed teaching model 

and facilitated by the developed computer-supported learning tool, was conducted to 

help the first year programming students change their mental models to be viable. 

Pre-tests and post-tests were carried out to elicit the students’ mental models of the 

value assignment concept before and after the learning session. The mental model 

elicitation method used in the pre-test and post-test was similar to the one employed 

in the first mental model study (Chapter 4). While the first part of the evaluation 

focused on a straightforward programming concept, the second part of the evaluation 

targeted a relatively complex programming concept, reference assignment. This part 

employed the same research method as the one used in the first part of the evaluation, 

but the participants were challenged with the reference assignment concept. The last 

part of the evaluation duplicated the first mental model test conducted in the previous 

year (Chapter 4) in order to make a comparison between the performance of the 

students who had experienced the proposed teaching model and those who did not 

experience the model. In addition, the last part of the evaluation also studied the 

long-term effects of the proposed teaching model for the evaluation of mental models.  

 

7.2 Research Conclusions 

 

This thesis aims to answer four research questions as proposed in Chapter 1.   

 

• What is the viability of mental models held by novice programmers? 

 

The mental model study (Chapter 4) chose two typical and important programming 

concepts, value assignment and reference assignment, and investigated the viability 

of novice programmers’ mental models of them. The results identified a variety of 

mental models of value and reference assignment held by first year programming 

students. Many of these models were seen as non-viable, meaning that they could 

result in an inappropriate understanding of programming concepts and drive 

programmers to create improper solutions to programming problems. The 

quantitative analysis revealed that, at the completion of the first year course, one 



 150

third of students still held non-viable mental models of value assignment, with only 

17% of students holding viable mental models of reference assignment. This result is 

of significant concern. Both assignment and reference are key concepts in object-

oriented programming. The high failure rates in programming courses are not 

surprising if students still do not understand these basic programming concepts at the 

end of courses. 

 

• Does the viability of the mental models held by novice programmers affect 

their performance in solving programming problems? 

 

When the viability of students’ mental models was compared to their performance in 

exams and programming tasks, the results show that the students with viable mental 

models performed significantly better than those with non-viable mental models. 

This reveals how important it is for novice programmers to develop viable mental 

models of key programming concepts. 

 

• Is a cognitive conflict strategy able to improve the effectiveness and 

pedagogical benefits of the program visualization technique? 

 

The first part of the evaluation of the effectiveness of the proposed teaching model, 

which focused on a related simple programming concept, value assignment, did not 

reveal the importance of the cognitive conflict strategy to change mental models. In 

this study, all the participants, no matter whether or not they experienced cognitive 

conflict event, made changes to their mental models of the assignment process based 

on the support from programming visualization. One possible explanation for this is 

that the assignment concept is straightforward. When the visualization along with 

animation simulates the process of assignment, it is not difficult for participants to 

realise that they were holding an inappropriate mental model.  

 

The second part of the evaluation investigated the effectiveness of the proposed 

teaching model using a relatively complex concept, reference assignment. The results 

show that the participants who experienced the explicit cognitive conflict event 



 151

performed better than the others. All the participants who changed their mental 

model of reference assignment to viable were from the CC+Viz group, i.e. the group 

that experienced the explicit cognitive conflict event. On the other side, all the 

participants who did not even realize their original understanding was inappropriate 

were from the Viz group, i.e. the group that did not experience the explicit cognitive 

conflict event. In addition, the feedback from the participants revealed that the 

cognitive conflict event was indeed capable of increasing students’ interest in the 

learning topic, and engaging them in the learning materials.  

 

This suggests that the cognitive conflict strategy can be effective to help improve 

students’ interest and engagement in learning materials, including visualization-

based materials, especially when the learning topics are not straightforward.   

 

• Is a constructivist-based learning model that integrates cognitive conflict 

and program visualization able to improve novice programmers’ mental 

models of basic programming concepts? 

 

The evaluation of the effectiveness of the proposed teaching model took place after 

the participants had learned assignment and the reference concept using traditional 

learning materials that were delivered in a traditional lecture-based teaching style. 

However, those traditional learning materials did not help many of the participants 

construct viable mental models. After following the traditional learning materials, the 

participants still did not realise that their understanding of the concepts was 

inappropriate. It is even possible that the participants did not engage, or only engaged 

superficially, with the traditional learning materials. On the other hand, the proposed 

teaching model that integrates cognitive conflict and program visualization has been 

found to be effective to help students change their mental models to be viable. The 

cognitive conflict strategy appeared to be capable of engaging students with the 

learning materials and the visualization then helped students construct viable mental 

models  

 

The visualization technique alone seems less effective when it was applied to a 



 152

complex concept. A much smaller portion of participants who constructed a viable 

mental model of reference assignment concept after using the visualization-based 

learning materials, compared to those for value assignment. This might be explained 

by Ben-Ari (2001) who proposed that students had to hold enough base knowledge in 

order to construct a viable mental model of a new concept. To construct a viable 

mental model of reference assignment requires students to have more base 

knowledge, such as that related to object creation and storage, than to build a model 

of value assignment. So, it may be difficult for the participants to construct a viable 

mental model of reference assignment without this base knowledge, particularly 

when some participants even described an object as an array.  

 

In this case, even though the visualization tool simulated the process of object 

creation and reference assignment, many participants were still unable to understand 

the visualization and the textual explanations. The result suggests that instructors 

must ensure the students have built sufficient, appropriate base models of 

fundamental knowledge before teaching new concepts. In addition, this result also 

challenges the currently popular object-first teaching paradigm. Object-oriented 

programming concepts such as class, object, and reference are at a relatively high 

level of abstraction. Students without the low-level underlying model of the 

abstraction might have difficulty constructing an appropriate understanding of those 

concepts. To teach object-oriented programming concepts at an early stage when 

students have not built the low-level underlying model is obviously risky. In 

summary, this result might suggest the requirements for instructors and programming 

educators to rethink current object-oriented programming course structure.   

 

7.3 Limitations and Future Work 
 

The work carried out in this thesis has led to a number of issues that could form the 

focus of further investigation. 

 
This study has focussed on the mental models held by first year programming 

students. However, it did not investigate how these mental models originated or how 

they came to be adopted. It would be of interest to investigate the backgrounds and 



 153

prior experiences of participants, to identify the sources and causes of these 

inappropriate models. This information might help in preventing the initial adoption 

of non-viable models or in changing them to viable models. 
 
In this research, the studies conducted to assess the effectiveness of the proposed 

learning model adopted an aggregated approach to the range of models held by 

participants. The studies did not provide an in-depth exploration of how an 

individual’s mental models evolved, driven by the cognitive conflict strategy and the 

program visualization technique. In other words, these studies focused more on the 

question of whether or not the proposed learning model could improve a novice 

programmer’s mental models, as opposed to finding out how an individual’s mental 

models changed under the proposed learning model. Future work would be required 

to explore this issue. An in-depth, qualitative study that focuses on a smaller number 

of participants could be carried out to seek a participant’s reactions and thoughts to 

the proposed learning model, and to investigate the underlying mechanisms of how 

the cognitive conflict strategy combined with program visualization, actually work.   

 

In addition, it is important to conduct a long-term, continuous investigation of the 

development of mental models. The pedagogical benefits of the cognitive conflict 

strategy combined with a visualization technique might take some time before 

becoming effective. Continuous monitoring of the development and evolution of 

students’ mental models over an extended time period might reveal any long-term 

effects of the proposed approach. 

 

The studies that were used to evaluate the effectiveness of the proposed learning 

model were conducted under experimental conditions. That means that this learning 

model was not assessed in a ‘real’ learning environment. In order to minimize any 

external inferences on the results, participants were not allowed to communicate with 

others or to seek assistance from tutors. In addition, they could not use other learning 

materials and tools to support their learning. Future work would be needed to 

investigate the performance of the model in a ‘real’ pedagogical context. The 

learning materials forming the basis of this study would then need to be seamlessly 

integrated into the programming course, and students would have to be given the 



 154

rights to access any of the learning resources and to access assistance from tutors and 

other students. Actually, the proposed learning model can also be implemented in a 

group-based learning style and it might be easier for students to achieve cognitive 

conflict, and to have a better understanding of the visualization materials, through 

discussions with each other.    

 

Chapter 3 suggested that the efficiency of the cognitive conflict strategy for science 

education may be shaped by other effects such as a student’s attitudes to conflict 

events. Meanwhile, the efficiency of the visualization technique may also be 

influenced by other effects such as a student’s learning style (Melis & 

Monthienvichienchai, 2004; Thomas et al, 2002). It is possible that the proposed 

learning model brings more benefits to students who demonstrate positive attitudes to 

conflict events and a visual learning style, as opposed to those who present negative 

attitudes to this approach. This is an area that requires further investigation to gauge 

its influence on the effectiveness of the proposed learning model. One approach 

would be to recruit participants from different backgrounds and group them based on 

criteria such as learning styles, attitudes, motivational factors, prior knowledge, 

epistemological beliefs, and reasoning abilities. The participants’ reactions to the 

learning model could then be analyzed and compared.  

 

The utility of the learning model proposed in this thesis is not restricted solely within 

the domain of programming education. It has the potential to support students in 

other disciplines and within other computer science topics, such as hardware, 

databases and computer networks.  Future work could investigate the effectiveness of 

the proposed learning model for any of these topics, investigating whether or not this 

approach has more general applicability in education and training.    

 

7.4 Conclusion  

 
This thesis presented work aimed at investigating and improving the viability of the 

mental models held by novice programmers. The work commenced with a study of 

the mental models held by first year programming students of the fundamental 



 155

programming concepts of value and reference assignment. The results of this study 

revealed that a large number of students held non-viable mental models of these 

simple concepts.  Further, the study showed that students with viable mental models 

performed significantly better in programming tasks than those with non-viable 

mental models. This result highlighted the importance of improving a novice 

programmer’s mental models of these fundamental programming concepts. To 

achieve this aim, a constructivist-based learning model, integrating the cognitive 

conflict strategy along with a program visualization technique was proposed and 

adopted. The evaluation of this learning model revealed that this approach was 

effective in enhancing a student’s interest in, and engagement with, the learning 

materials and helped them to construct viable mental models. However, it was noted 

that the visualization technique was found to be less effective with a complex 

concept in situations where a student lacks the necessary base knowledge to interpret 

the visualization.  

 
 
 

 

 

 

 

 

 



 156

 

REFERENCE 
 

Aebli, H. (1970). Piaget, and beyond. Journal of Interchange, 1, pp.12-24. 

 

Barnes, D. J., Fincher, S., & Thompson, S., (1997). Introductory Problem Solving in 

Computer Science. In Daughton, G. and Magee, P. (eds.) 5th Annual Conference on 

the Teaching of Computing, Dublin City University, pp.36–39 

 

Barnes, G. M., & Kind, G. A., (1987). Visual simulations of data structures during 

lecture. In Proceedings of the Eighteenth SIGCSE Technical Symposium on 

Computer Science Education, St. Louis, Missouri, United States. 

Barnes, D., & Kölling, D., (2002), Objects First with Java - A Practical Introduction 
using BlueJ, Prentice Hall / Pearson Education. 

 

Baser, M., (2006). Fostering Conceptual Change by Cognitive Conflict Based 

Instruction on Students’ Understanding of Heat and Temperature Concepts. Eurasia 

Journal of Mathematics, Science and Technology Education, 2(2), pp. 94-115. 

 

Bayman, P., & Mayer, R. E., (1983). A Diagnosis of Beginning Programmers' 

Misconceptions of BASIC Programming Statements. Commun. ACM, 26(9), pp. 677-

679. 

 

Bednar, A.K., Cunningham, D., Duffy, T.M., & Perry, J.D., (1991). Theory into 

practice: How do we link? In G. Anglin (Ed.), Instructional Technology: Past, 

Present and Future. Englewood, CO: Libraries Unlimited, Inc. 

 

Ben-Ari, M., (2001a). Constructivism in computer science education. Journal of 

Computers in Mathematics and Science Teaching, 20 (1), 45--73. 

 

Ben-Ari, M., (2001b). Program visualization in theory and practice. Informatik/ 



 157

Informatique, 2, pp. 8–11. 

 

Ben-Bassat Levy, R., Ben-Ari, M. & Uronen, P.A., (2001), An Extended Experiment 

with Jeliot 2000, Proceedings of the First Program. Visualization Workshop, 

Joensuu, Finland, pp. 131-140. 

 

Besnard, D. & Baxter, G. (2006). Cognitive conflicts in dynamic systems. In D. 

Besnard, C., Gacek, C. & C. Jones (Eds.) Structure for Dependability: Computer-

based Systems from an Interdisciplinary Perspective. (pp. 107-126). London, UK: 

Springer. 

 

Bhattacharya, K. & Han, S., (2001). Piaget and cognitive development. In M. Orey 

(Ed.), Emerging perspectives on learning, teaching, and technology. Retrieved 23th 

January, 2007, from http://www.coe.uga.edu/epltt/piaget.htm. 

 

Bruce, K., (2004). Controversy on How to Teach CS 1: A Discussion on the 

SIGCSE-members Mailing List, SIGCSE Bulletin, 36(4). 

 

Brusilovsky, P., (1993). Program visualization as a debugging tool for novices. In 

INTERACT '93 and CHI '93 Conference Companion on Human Factors in 

Computing Systems, Amsterdam, The Netherlands.  

 

Byrne, M. D., Catrambone, R., & Stasko, J. T. (1999). Evaluating animations as 

student aids in learning computer algorithms. Comput. Educ. 33(4), pp. 253-278.  

 

Calloni, B. (1997). Iconic Programming Proves Effective for Teaching the First Year 

programming Sequence.  Proceedings of the 28th SIGCSE Symposium, pp. 262-266. 

 

Canas, J. J., Bajo, M. T., & Gonzalvo, P. (1994). Mental models and computer 

programming. Journal of Human-Computer Studies, 40(5), pp. 795-811. 

 

Carlisle, M. C., Wilson, T. A., Humphries, J. W., & Hadfield, S. M., (2005). 



 158

RAPTOR: a visual programming environment for teaching algorithmic problem 

solving. In. Proceedings of the 36th SIGCSE Technical Symposium on Computer 

Science Education. ACM Press, pp. 176-180. 

 

Chan, C., Burtis, J., & Bereiter, C., (1997). Knowledge building as a mediator of 

conflict in conceptual change. Cognition and Instruction, 15 (1), pp. 1-40. 

 

Chinn, C. A., & Brewer, W. F., (1993).  The role of anomalous data in knowledge 

acquisition: A theoretical framework and implications for science instruction. Review 

of Educational Research, 63, pp. 1-49. 

 

Chinn, C. A, & Brewer, W. F. (1998). An empirical test of a taxonomy of responses 

to anomalous data in science. Journal of Research in Science Teaching, 35, pp. 623-

654. 

 

Cohen, M.S., Thompson, B. B., Adelman, L., Bresnick, T. A., Tolcott, M. A., & 

Freeman, J. T. (1995). Rapid capturing of battlefield mental models.. Arlington, VA: 

Cognitive Technologies, Inc. 

 

Collins, A., & Gentner, D., (1987). How people construct mental models. In D. 

Holland and N. Quinn, editors, Cultural Models in Thought and Language, pp. 243-- 

265. Cambridge University Press, Cambridge, UK. 

 

Craik, K.J.W. (1943). The Nature of Explanation. Cambridge UK: Cambridge 

University Press. 

 

Crews, T., & Ziegler, U., (1998). The Flowchart Interpreter for Introductory 

Programming Courses” In. Proceedings of FIE '98 Conference, Tempe, Arizona, 

USA, pp. 307-312. 

 

Cross, J.H., Hendrix, T.D., & Barowski, L.A., (2002). Using the debugger as an 

integral part of teaching CS1. In 32nd ASEE/IEEE Frontiers in Education 



 159

Conference. 

 

Davis, J., (2001). Conceptual Change. In M. Orey (Ed.), Emerging perspectives on 

learning, teaching, and technology. 19th January, 2007, from: 

http://www.coe.uga.edu/epltt/conceptualchange.htm. 

 

Dehnadi, S., & Bornat, R., (2006). The Camel has Two Humps, Middlesex 

University Working Paper. Retrieved 17th May, 2006, from  

http://www.cs.mdx.ac.uk/research/PhDArea/saeed/  

 

Demircioglu, G., Ayas, A., & Demircioglu, H., (2005). Conceptual change achieved 

through a new teaching program on acids and bases, Chemistry Education Research 

and Practice, 6, 36-51. 

 

Denning, P. J.  & McGettrick, (2005). A. Recentering computer science. Commun. 

ACM, 48(11), pp.15–19. 

 

Dittrich, J., van den Bercken, J., Schäfer, T., & Klein, M., (2001), Data Structures 

Navigator (DSN). Retrieved 28th January, 2007, from http://dbs.mathematik.uni-

marburg.de/research/projects/dsn/  

 

Dougiamas, M. (1998). A journey into Constructivism. Retrieved 5th January, 2007, 

from http://dougiamas.com/writing/constructivism.html  

 

Doyle, J. K., Ford, D.N., Radzicki, M.J., & Trees, S.W. (2001). Mental Models of 

Dynamic Systems Encyclopedia of Life Support Systems. EOLSS Publishers. 

September. 

 

Du, W., (2004), Researches on Mental Models and Elicitation Techniques, 

Psychological Science, 2004, 27(6), pp.1473-1476. 

 



 160

Duncan, R. M. (1995). Piaget and Vygotsky revisited: Dialogue or assimilation? 

Developmental Review, 15, pp. 458-472. 

 

Ernest, P. (1995). The one and the many. In L. Steffe & J. Gale (Eds.). 

Constructivism in education (pp.459-486). New Jersey: Lawrence Erlbaum 

Associates,Inc. 

 

Eryilmaz, A. (2002). Effects of Conceptual Assignments and Conceptual Change 

Discussions on Students' Misconceptions and Achievement Regarding Force and 

Motion. Journal of Research in Science Teaching, 39, pp1001-1015. 

 

Flavell, J. H. (1996). Piaget's legacy. Psychological Science, 7(4), pp.200-203. 

 

Fleury, A. (1991). Parameter Passing: The Rules the Students Construct. 

SIGCSEBuiletin 23(1), pp.283-286. 

 

Galles, D. (2006), Data Structure Visualizations (DSV), retrieved 28th January, 2007, 

from http://www.cs.usfca.edu/galles/visualization/. 

 

Gentner, D., & Stevens A., (Ed.). (1983). Mental Models. Hillsdale NJ: Lawrence 

Erlbaum Associates. 

 

Gentner, D. (2002). Mental models, Psychology of. In NJ. Smelser & P. B. Bates 

(Eds.),. International Encyclopedia of the Social and Behavioral Sciences (pp. 9683-

9687), Amsterdam: Elsevier Science. 

 

George, C.E. (2000). Experience with novices: The importance of graphical 

representations in supporting mental models. Proceedings of the 12th workshop of the 

Psychology of Programming Interest Group, pp.33-44. 

 

Good, T. L., Brophy, J. E. (1990). Educational psychology: A realistic approach. (4th 

ed.).White Plains, NY: Longman 



 161

 

Gorsky, P. & Finegold, M., (1994). The role of anomaly and cognitive dissonance in 

restructuring students' concepts of force. Instructional Science, 22, pp.75-91. 

 

Gotschi, T., Sanders, I. & Galpin, V. (2003), Mental models of recursion, SIGCSE 

2003, pp. 346-350. 

 

Hamer, J., (2004), A Lightweight Visualizer for Java, 3rd Program Visualization 

Workshop, Warwick, UK. 

 

Hand, B. V. & Treagust, D. F. (1988). Application of a conceptual conflict teaching 

strategy to enhance student learning of acids and bases. Research in science 

education, 18, pp.53 - 63. 

 

Hand, B. & Treagust, D.F., (1988), Application of a conceptual conflict teaching 

strategy to enhance student learning of acids and bases, Research in Science 

Education, 18, pp. 53-63. 

 

Hannafin, M.J. (1997), The case for grounded learning systems design: What the 

literature suggests about effective teaching, learning, and technology. Conference 

Proceedings, ASCILITE 1997, Perth, Western Australia, pp. 255-262. 

 

Hewson, P. W. & Hewson, M. G. (1984) The role of conceptual conflict in 

conceptual change and the design of science instruction, Instructional Science, 13, 

pp.1-13. 

 

Hu, M., (2004). Teaching novices programming with Core Language and Dynamic 

Visualization.  In Proceedings of the 17th  NACCQ. 

 

Huitt, W., & Hummel, J. (2003). Piaget's theory of cognitive development. 

Educational Psychology Interactive. Valdosta, GA: Valdosta State University. 



 162

Retrieved 9th January 2007 from 

http://chiron.valdosta.edu/whuitt/col/cogsys/piaget.html 

 

Hundhausen, C., Douglas, S., & Stasko, J. (2002). A Meta-Study of Algorithm 

Visualization Effectiveness, Journal of Visual Languages and Computing, 13(3), pp. 

259-290. 

 

Hyrskykari, A. (1993). Development of Program Visualization Systems, 2nd Czech. 

British Symposium of Visual Aspects of Man-Machine, Systems, Praha,. 1993. 

 

Jarc, D.J., (2005), Interactive Data Structures Visualizations (IDSV), Retrieved 28th 

January, 2007, from http://nova.umuc.edu/~jarc/idsv. 

 

Johnson-Laird, P.N. (1983). Mental Models - Towards a Cognitive Science of 

Language, Inference and Consciousness. Cambridge MA: Harvard University Press. 

 

Johnson-Laird, P.N., Girotto, V. and Legrenzi, P. (1998). Mental models: a gentle 

guide for outsiders. Retrieved 21st January, 2007, from 

http://www.si.umich.edu/ICOS/gentleintro.html 

 

Jonassen, D., (1995). Operationalizing mental models: Strategies for assessing 

mental models to support meaningful learning and design supportive learning 

environments. In J. Schnase and E. Cunnius (Eds.), Proceedings of the Computer 

Supported Collaborative Learning Conference. 

 

Kahney, H. (1983). What do novice programmers know about recursion? 

Proceedings of the CHI ’83 Conference on Human Factors in Computer Systems, 

pp.235-239. Boston, MA. 

 

Kang, S., Scharmann, L., Noh, T., & Koh, H. (2005). The influence of students; 

Cognitive and motivational variables in respect of cognitive conflict and conceptual 

change. International Journal of Science Education, 27(9), p.1037. 



 163

 

Karagiorgim, Y., and Symeou, L. (2005), Translating Constructivism into 

Instructional Design: Potential and Limitations. Educational Technology & Society, 

8(1), pp.17-27. 

 

Kasmarik, K. & Thurbon, J. (2003). Experimental Evaluation of a Program 

Visualisation Tool for Use in Computer Science Education. In Proc. Australian 

Symposium on Information Visualisation, (invis.au'03), Adelaide, Australia. 

Conferences in Research and Practice in Information Technology, 24. Pattison, T. 

and Thomas, B., Eds., ACS. Pp.111-116. 

 

Kohoe, C., Stasko, J., Taylor, A. (1999). Rethinking the Evaluation of Algorithm 

Animations as Learning Aids: An Observational Study. Technical Report GIT-GVU-

99-10 March 1999. 

 

Kurland, D. M., & Pea, R. D. (1985), Children’s mental models of recursive Logo 

programs. Journal of Educational Computing Research, 1(2), pp.235-243. 

 

Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-M, (2005), A Study of the Difficulties 

of Novice Programmers. ITiCSE'05, Monte de Caparica, Portugal. 

 

Lakoff, G., (1987), Women, fire, and dangerous things, Chicago: University of 

Chicago Press.  

 

Law, S. Li, N.  & Lui, A.K.F. (2006). Cognitive Perturbation through Dynamic 

Modelling: a. Pedagogical Approach to Conceptual Change in Science. Journal of 

Computer Assisted. Learning, 22(6), pp.403-421. 

 

Limón, M., (2001), On the cognitive conflict as an instructional strategy for 

conceptual change: a critical appraisal. Learning and Instruction, 11, pp.357-380. 

 

Limón, M., & Carretero, M. (1997). Conceptual change and anomalous data: A case. 



 164

study in the domain of natural sciences. European Journal of Psychology of 

education, 12 (2), pp.213-230. 

 

Lister, R., Adams, E., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M. McCartney, 

R., Moström, J. E., Sanders, K., Seppälä, O., Simon, B. & Thomas, L. (2004). A 

multi-national study of reading and tracing skills in novice programmers, SIGCSE 

Bulletin, 36(4), pp.119-150 (ITiCSE Working Group Report). 

 

Lui, A. K., Kwan, R., Poon, M., & Cheung, Y. H, (2004), Saving weak programming 

students: applying constructivism in a first programming course. SIGCSE Bull. 36(2), 

pp.72-76. 

 

Maier, S. (2004), Misconception Research and Piagetian Models of Intelligence. 

Oklahoma Higher Education Teaching and Learning Conference, 2004. 

 

Marcelino, M., Gomes, A., Dimitrov, N. & Mendes, A., (2004), Using a computer-

based interactive system for the development of basic algorithmic and programming 

skills. In Proceedings of International Conference on Computer Systems and 

Technologies (CompSysTech’2004). 

 

Markri, S., (2004), Investigating users’ mental models of traditional and digital 

libraries. unpublished Master Thesis, Retrieved 24th April, 2007, from 

http://www.uclic.ucl.ac.uk/people/s.makri/stephmscthesis.pdf 

 

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B., 

Laxer, C., Thomas, L., Utting, I., & Wilusz, T., (2001), A Multi-National, Multi-

Institutional Study of Assessment of Programming Skills of First-year CS Students, 

SIGCSE Bulletin, 33(4). pp 125-140. 

 

Melis, E. & Monthienvichienchai, R. (2004). They Call It Learning Style But It's So 

Much More. In G. Richards (Ed.), Proceedings of World Conference on E-Learning 



 165

in Corporate, Government, Healthcare, and Higher Education 2004 (pp. 1383-1390). 

Chesapeake, VA: AACE. 

 

Moher, T. & Wiley, J. (2004). Technology Support for Learning Scientific Control as 

a Whole Class. Paper presented at the Annual Conference of the American Education 

Research Association. 

 

Moody, J.W., Blanton, J.E.  & Augustine, M. (1996). Enhancing End-User Mental 

Models of Computer Systems Through the Use of Animation, Proceedings of the 

Twenty-Ninth Hawaii International Conference of System Sciences. 

 

Myers, B. A. (1990). Taxonomies of visual programming and program visualization. 

Journal of Visual Languages and Computing. 1(1), pp.97-123. 

 

Naps, T.L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., 

Korhonen, A., Malmi, L., McNally, M., Rodger, S., & Velázquez-Iturbide, J.Á. 

Exploring the Role of Visualization and Engagement in Computer Science Education. 

ACM SIGCSE Bulletin 35(2), pp.131-152. 

 

Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. 

Stevens (Eds.), Mental Models, Hillsdale, NJ: Lawrence Erlbaum Associates Inc. 

 

Nurrenbern, S.C. (2001). Piaget's Theory of Intellectual Development Revisited. J. 

Chem. Educ., 78, pp. 1107-1110. 

 

Nussbaum, J. & Novick, S., (1982), Alternative frameworks, conceptual conflict and 

accommodation: toward a principled teaching strategy. Instructional Science, 11, pp. 

183-200.  

 

O’Kelly, J., Bergin S., Gaughran P., Dunne S., Ghent J., & Mooney A., (2004), 

Initial finding on the impact of an alternative approach to Problem Based Learning 

in Computer Science, present at Pleasure By Learning (PBL) conference, Cancun, 



 166

Mexico. 

 

Piaget, J. (1952). The origins of intelligence in children. New York: International 

Universities Press. 

 

Piaget, J. (1977). The development of thought: Equilibration of cognitive structures. 

New York: Viking Penguin. 

 

Pines, A.L. & West, L.H.T. (1986). Conceptual understanding and science learning: 

An. interpretation of research within a sources-of-knowledge framework. Science 

Education. 70(5), pp.583-604. 

 

Posner, G. J. (1995). Analyzing the curriculum. New York. 

 

Posner, G. J., Strike, K. A., Hewson, P. W. & Gertzog. W. A. (1982). 

Accommodation of a scientific conception: Toward a theory of conceptual change. 

Science Education, 66, pp.211-227. 

 

Proulx, J. (2006). Constructivism: A re-equilibration and clarification of the concepts 

and some potential implications for teaching and pedagogy. Radical Pedagogy, 

Volume 8: Issue 1. Retrieved 03rd January, 2007, from 

http://radicalpedagogy.icaap.org/content/issue8_1/proulx.html. 

 

Romero, P., du Boulay, B., Cox, R., Lutz, R. & Bryant, S. (2004). Dynamic rich-data 

capture and analysis of debugging processes. 16th Annual Workshop of the 

Psychology of Programming Interest Group (PPIG), Institute of Technology, Carlow, 

Ireland. 

 

Sasse, A., (1997). Eliciting and Describing Users’ Models of Computer Systems. 

Ph.D. Thesis, Computer Science, University of Birmingham, UK. 

 



 167

Schwartz, D.L. & Black, J.B., (1996). Analog imagery in mental 

reasoning: Depictive models. Cognitive Psychology. 30, pp.154-219. 

 

Scott, P., Asoko, H., & Driver R., (1992). Teaching for conceptual change: A review 

of strategies. In R. Duit, F. Goldberg, & H. Niedderer, editors, Research in Physics 

Learning: Theoretical Issues and Empirical Studies, pp.310–329, 1992. 

 

Shaffer, C.A., Cooper, M., & Edwards, S.H., (2007), Algorithm Visualization: A 

Report on the State of the Field, 38th ACM Technical Symposium on Computer 

Science Education. Covington, Kentucky. 

 

Skoumios, M., & Hatzinikita, V., (2005). The Role of Cognitive Conflict in Science 

Concept Learning. International Journal of Learning, 12(7), pp.185-194. 

 

Soloway, E., & Spohrer, J. (1989). Some difficulties of learning to program. In E 

Soloway & James C Spohrer, editors, Studying the Novice Programmer, pp. 283–299. 

Lawrence Erlbaum Associates, Hillsdale, NJ. 

 

Stasko, J. & Patterson, C. (1992). Understanding and Characterizing Software 

Visualization Systems. Proceedings of the 1992 IEEE International Workshop on 

Visual Languages, pp.3-10. 

 

Stasko, J., Bradre, A., Lewis, C. (1993). Do Algorithm Animations Assist Learning? 

An Empirical Study and Analysis. ACM INTERCHI, pp.61-66. 

 

Stasko, J.T. & Hundhausen, C.D., (2004). Algorithm Visualization. In S. Fincher & 

M. Petre (eds.), Computer Science Education Research (pp.199-228). Lisse, The 

Netherlands: Taylor & Francis. 

 

Thomas, L., Ratcliffe, M., Woodbury, J., & Jarman, E., (2002). Learning styles and 

performance in the introductory programming sequence. SIGCSE Bull. 34(1), pp.33-

37.  



 168

 

von Glasersfeld, E. (1992). Questions and Answers About Radical Constructivism. 

In M.K. Pearsall (ed.), Scope, Sequence, and Coordination of Secondary Schools 

Science, Vol. 11, Relevant Research, (pp. 169-182). Washington DC: NSTA. 

 

von Glasersfeld, E. (1984). An introduction to radical constructivism. In P. 

Watzlawick, The Invented Reality, (pp.17-40). New York: W.W. Norton & Company. 

 

von Glasersfeld, E. (1998). Why Constructivism Must Be Radical. pp. 23-28 in 

Constructivism and Education. Larochelle, Marie, Nadine Bednarz, and Jim Garrison 

(Eds.). Cambridge: Cambridge University Press. 

 

von Glasersfeld, E. (1989). Constructivism. pp. 162-163 in The International 

Encyclopedia of Education, 1 st edition, Supplement Vol.1. Husen, Torsten and T 

Neville Postlethwaite (Eds.). Oxford, England: Pergamon. 

 

von Glasersfeld, E. (1979). Radical Constructivism and Piaget's Concept of 

Knowledge. In F. B. Murray The Impact of Piagetian Theory. Baltimore, Md.: 

University Park Press. 

 

Vrasidas, C. (2000). Constructivism versus objectivism: Implication for interaction，

course design, and evaluation in distance education. International Journal of 

Educational Telecommunications, 6(4), pp.339-362. 

 

Watts, T., (2004), The SFC Editor - A Graphical Tool for Algorithm Development. 

Consortium for computing sciences in colleges. 

 

Yehezkel, C., Ben-Ari, M., & Dreyfus, T. (2005). Computer architecture and mental 

models. SIGCSE Bull., 37(1), pp.101–105. 

 



 169

Young, R. M. (1983), Surrogates and Mappings: two Kinds of Conceptual Models 

for Interactive Devices. In Gentner, D. & Stevens, A. L. [Eds.]: Mental models. 

Hillsdale, NJ: Erlbaum. 

 

Ziegler, U., & Crews, T., (1999), An Integrated Program Development Tool for 

Teaching and Learning How to Program. Proceedings of the 30th SIGCSE 

Symposium. 

 



 170

Appendix A – The Questionnaire for Investigating Novice 
Programmers’ Mental Models  
 

Investigation into Mental Models of Programmers 
 
My name is Linxiao Ma and as part of my PhD research I am investigating the 
ways in which people learn to program. This test is designed to explore the kind 
of mental models that programmers create when problem-solving. I am very 
grateful for your assistance in completing this study. 
 

Instructions 
 
1. This test questionnaire is divided into three parts: part1, part2, part3. Please 

finish each part in order, and please do not go back to previous part after 
you have finished it. 

2. Please complete the test as quickly as possible and not refer to any other 
information (books, web pages) or execute the statements on a computer. 

3. Please return the paper to me when you have finished. 
 
 
Please fill your personal information: 
 

Name:  

Registration No:  

Is this your first course in programming? 
 

 
Did you learn any other programming language before? If so, please list the 
languages here. 
 
 
 

 
 

The questionnaire results will be recorded in a database. They will never be 
revealed to any person who could in any way identify you from the data given 
above. They will never be used for assessment purposes. 
                                                                                                  
I consent to the research use of my questionnaire    …………………………… 
 
        Participant’s signature 
 



 171

A-1: The Close-ended Questions for Value Assignment 
[* This part is from Dehnadi & Bornat (2006)] 

 

 
1.  Read the following 
statements and tick the box 
next to the correct answer in 
the next column.     
 
int  a = 10; 
int  b = 20; 
 
a = b; 
   

 
The new values of a and b are: 
 
# a = 20      b =  0      
# a = 20      b = 20        
# a = 0       b = 10      
# a = 10      b = 10        
# a = 30      b = 20      
# a = 30      b =  0      
# a = 10      b = 30      
# a = 0       b = 30      
# a = 10      b = 20      
# a = 20      b = 10      
 
Any other values for a and b: 
 
    a =         b =             

a =        b =              
a =         b =     

 

 
Use this column for your 
rough notes please   

 
2.  Read the following 
statements and tick the box 
next to the correct answer in 
the next column.         
 
int  a = 10; 
int  b = 20; 
 
b = a; 
 

 
The new values of a and b are: 
         
# a = 20      b = 0        
# a = 20      b = 20         
# a = 10      b = 30       
# a = 0       b = 30       
# a = 30      b = 10       
# a = 30      b = 0        
# a = 10      b = 20       
# a = 20      b = 10  
# a = 0       b = 10       
# a = 10      b = 10       
 
Any other values for a and b: 
 
    a =         b =             
    a =         b =             
    a =         b =             
 

 



 172

 
3.   Read the following 
statements and tick the box 
next to the correct answer in 
the next column.         
 
int  big  =  10; 
int  small = 20; 
 
big = small; 
 

The new values of big and small are: 
 
# big = 20     small =  0 
 # big = 10     small = 20    
# big = 20     small = 10    
# big = 20     small = 20     
#  big =  0     small = 10     
# big = 10     small = 10     
# big = 30     small = 20     
# big = 30     small =  0     
# big = 10     small = 30     
#  big =  0     small = 30      
 
Any other values for big and small : 
 
    big =       small  =        
    big =       small  =        
    big =        small    =              
 

Use this column for your 
rough notes please   

4.   Read the following 
statements and tick the box 
next to the correct answer in 
the next column.         
 
int  a = 10; 
int  b = 20; 
 
a = b; 
b = a; 
 
 
 
 
 
 
 
 

The new values of a and b are: 
  
# a =  0       b = 30        
# a = 40       b = 30        
# a = 30       b =  0 
# a =  0       b = 20        
# a = 20       b = 20         
# a = 10       b =  0         
# a = 10       b = 10         
# a = 30       b = 50        
# a = 10       b = 20        
# a = 20       b = 10        
# a = 30       b = 30        
 
Any other values for a and b: 
    a =          b =             
    a =          b =             
    a =          b =             
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.   Read the following 
statements and tick the box 
next to the correct answer in 
the next column.         
 
int  a = 10; 
int  b = 20; 
 
b = a; 
a = b; 
 
 
 
 
 
 
 
 
 
 
 

The new values of a and b are: 
  
# a =  0      b = 30        
# a = 10      b = 20        
# a = 10      b = 20        
# a = 20      b = 10 
# a = 10      b =  0         
# a = 10      b = 10        
# a =  0      b = 20        
# a = 20      b = 20        
# a = 40      b = 30        
# a = 30      b =  0         
# a = 30      b = 50          
# a = 30      b = 30    
 
Any other values for a and b: 
    a =         b =             
    a =         b =             
    a =         b =   
           

 



 173

 

 
6.   Read the following 
statements and tick the box 
next to the correct answer in 
the next column.         
 
int  a = 10; 
int  b = 20; 
int  c = 30; 
 
a = b; 
b = c; 

 
The new values of a and b and c are: 
  
# a = 30   b = 50   c =  0     
# a = 30   b = 30   c = 50     
# a =  0   b = 30   c = 50 
# a = 20   b = 30   c =  0    
# a = 20   b = 30   c = 30    
# a =  0   b = 10   c =  0    
# a = 10   b = 10   c = 10    
# a = 60   b = 20   c = 30    
# a = 60   b =  0   c =  0    
# a = 10   b = 30   c = 40    
# a =  0   b =  0   c = 60    
# a = 10   b = 20   c = 30    
# a = 20   b = 30   c = 20          
# a = 20   b = 20   c = 20     
# a = 30   b = 30   c = 30          
# a =  0   b = 10   c = 20     
# a = 10   b = 10   c = 20     
# a = 30   b = 50   c = 30     
 
Any other values for a and b and c : 
 
    a =     b =       c =        
    a =     b =       c =       
    a =     b =       c =       
 

 
Use this column for your 
rough notes please   

 
7.   Read the following 
statements and tick the box 
next to the correct answer in 
the next column.  
 
int   a =  5; 
int   b =  3; 
int   c =  7; 
 
a  =  c; 
b  =  a; 
c  =  b; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The new values of a and b and c are: 
      
# a =  3   b =  5   c = 5     
# a = 12   b = 14   c = 22     
# a =  0   b =  0   c = 15     
# a =  8   b = 15   c = 12     
# a =  3   b = 12   c = 0     
# a =  5   b =  3   c =  7          
# a =  3   b =  5   c = 7     
# a =  5   b =  5   c =  5     
# a =  3   b =  3   c = 3     
# a =  7   b =  5   c =  3     
# a =  3   b =  7   c =  5     
# a = 12   b =  8   c = 10     
# a = 10   b =  8   c = 12  
# a =  0   b =  0   c = 7     
# a =  7   b =  7   c = 7     
# a =  3   b =  5   c =  5    
 
Any other values for a and b and c : 
 
    a =     b =       c =        
    a =     b =       c =       
    a =     b =       c =       
 

 



 174

 

 
8.   Read the following 
statements and tick the box 
next to the correct answer in 
the next column.      
 
int   a =  5; 
int   b =  3; 
int   c =  7; 
 
c  =  b; 
b  =  a; 
a  =  c; 
 

 
The new values of a and b and c are: 
      
# a = 15   b =  8   c = 10     
# a = 10   b =  5   c = 0     
# a = 15   b = 10   c = 22     
# a =  0   b =  0   c = 15     
# a =  5   b =  3   c =  7          
# a =  3   b =  5   c = 7     
# a =  5   b =  5   c = 5     
# a =  3   b =  3   c =  3     
# a =  7   b =  5   c =  3     
# a =  3   b =  7   c =  5     
# a = 12   b =  8   c = 10     
# a =  8   b = 10   c = 12  
# a =  3   b =  5   c = 0     
# a =  3   b =  5   c = 3     
# a =  0   b =  0   c = 7     
# a =  7   b =  7   c =  7    
 
Any other values for a and b and c : 
 
    a =     b =       c =        
    a =     b =       c =       
    a =     b =       c =       
 
 

 
Use this column for your 
rough notes please   

 
9.  Read the following 
statements and tick the box 
next to the correct answer in 
the next column.      
 
int   a =  5; 
int   b =  3; 
int   c =  7; 
 
c  =  b; 
a  =  c; 
b  =  a; 
 

 
The new values of a and b and c are: 
      
# a =  7   b =  0   c = 5     
# a =  7   b =  7   c = 5     
# a = 15   b = 18   c = 10     
# a =  0   b = 15   c = 0     
# a = 15   b = 10   c = 12     
# a = 10   b =  0   c = 5     
# a =  5   b =  3   c =  7          
# a =  7   b =  3   c =  5     
# a =  5   b =  5   c = 5     
# a =  7   b =  7   c = 7     
# a =  7   b =  5   c =  3     
# a =  3   b =  7   c =  5     
# a = 12   b =  8   c = 10     
# a =  8   b = 10   c = 12 
# a =  0   b =  3   c = 0     
# a =  3   b =  3   c =  3     
 
Any other values for a and b and c : 
 
    a =     b =       c =        
    a =     b =       c =       
    a =     b =       c =       
 
 
 

 



 175

 

 
10.   Read the following 
statements and tick the box 
next to the correct answer in 
the next column.      
 
int   a =  5; 
int   b =  3; 
int   c =  7; 
 
b  =  a; 
c  =  b; 
a  =  c; 
 
 
 

 
The new values of a and b and c are: 
      
# a =  3   b =  7   c = 3     
# a = 20   b =  8   c = 15     
# a = 15   b =  0   c = 0     
# a =  8   b = 10   c = 15     
# a =  0   b =  7   c = 8     
# a =  5   b =  3   c =  7          
# a =  5   b =  7   c = 3     
# a =  3   b =  3   c =  3     
# a =  7   b =  7   c = 7     
# a =  7   b =  5   c =  3     
# a =  3   b =  7   c =  5     
# a = 12   b =  8   c = 10     
# a =  8   b = 10   c = 12 
# a =  5   b =  0   c = 0     
# a =  5   b =  5   c =  5     
# a =  0   b =  7   c =  3     
 
Any other values for a and b and c : 
 
    a =     b =       c =        
    a =     b =       c =       
    a =     b =       c =       
 
 

 
Use this column for your 
rough notes please   

 
11.   Read the following 
statements and tick the box 
next to the correct answer in 
the next column.      
 
int  a = 5; 
int  b = 3; 
int  c = 7; 
 
b =  a; 
a =  c; 
c =  b;  
 
 
 
 

 
The new values of a and b and c are: 
      
# a = 12    b =  8   c = 15    
# a =  7    b =  0   c = 8    
# a =  8    b = 18   c = 15    
# a =  0    b = 15   c = 0    
# a =  5    b =  3   c =  7         
# a =  7    b =  3   c = 5    
# a =  5    b =  5   c = 5    
# a =  7    b =  7   c = 7    
# a =  7    b =  5   c =  3    
# a =  3    b =  7   c =  5    
# a = 12    b =  8   c = 10    
# a =  8    b = 10   c = 12  
# a =  7    b =  0   c = 5    
# a =  7    b =  5   c = 5    
# a =  0    b =  3   c = 0    
# a =  3    b =  3   c =  3    
 
Any other values for a and b and c : 
    
    a =     b =       c =        
    a =     b =       c =       
    a =     b =       c =       
 
 

 



 176

 
 

 

 
12.   Read the following 
statements and tick the box 
next to the correct answer in 
the next column.      
 
int  a = 5; 
int  b = 3; 
int  c = 7; 
 
a  =  c; 
c  =  b; 
b  =  a;  
 

 
The new values of a and b and c are: 
      
# a = 20    b = 15   c = 12    
# a = 15    b =  0   c = 0    
# a =  5    b =  3   c =  7         
# a =  5    b =  7   c = 3    
# a =  3    b =  3   c = 3    
# a =  7    b =  7   c = 7    
# a =  7    b =  5   c =  3    
# a =  3    b =  7  c =  5    
# a = 12    b =  8   c = 10    
# a =  8    b = 10   c = 12 
# a =  0    b =  7   c = 3    
# a =  7    b =  7   c = 3    
# a =  5    b =  0   c = 0    
# a =  5    b =  5   c = 5    
# a = 12    b = 15   c = 10    
# a =  0    b = 12   c =  3    
 
Any other values for a and b and c : 
 
    a =     b =       c =        
    a =     b =       c =       
    a =     b =       c =       
 

 
Use this column for your 
rough notes please   



 177

A-2: The Open-ended Question 
[* This part was an original contribution of this thesis] 

 

Please trace the following statements. Describe what happens when each of the 
statements is executed. You may use both text and diagrams in your answer. 

 
Person a, b; 
a = new Person ("Jack"); 
b= new Person (“Tom”); 
b = a; 
 
 



 178

A-3: The Close-ended Questions for Reference Concept 
[* This part was an original contribution of this thesis] 

 
Given that a Person class has been defined that holds a name field as a String, which of the following 
diagrams most closely represents the state of memory after all the statements have been executed? Please 
circle the letter of the correct answer:  
Question 1: 
 
Person a, b; 
a = new Person ("Jack"); 
b = a; 

A) 

 

B) 

 

C) 

 

Use this column for your 
rough notes please 

b •a •
: Person 

 
name  “Jack

a b ••
: Person 

 
 

: Person 
 

name  “Jack

a b ••
: Person 

 
name  “Jack

: Person 
 

name  “Jack



 179

D) 

 

E) 

 

F) 

 

G) 

 

H) 

 

 

a • b•
: Person 

 
 

a •
: Person 

 
 

b •

a b ••
: Person 

 
 

: Person 
 

 

a b ••

a • b•
: Person 

 
name  “Jack



 180

J) 

 

K) 

 

If the answer is not list above, please give your answer here: 
 
 
 
 
 
 
 
 
 
 
  

 

 

a b ••
: Person 

 
name  “Jack

a b ••
: Person 

 
name  “Jack

: Person 
 

 



 181

 
Question 2: 
 
Person a, b; 
a = new Person ("Jack"); 
b = new Person (“Tom”); 
b = a; 

A) 

 

B) 

 

C) 

 

Use this column for your 
rough notes please 

b •a •
: Person 

 
name  “Jack

a b ••
: Person 

 
 

: Person 
 

name  “Jack

a b ••
: Person 

 
name  “Jack

: Person 
 

name  “Jack



 182

D) 

 

E) 

 

F) 

 

G) 

 

H) 

 

 

a • b•
: Person 

 
name  “Tom

a • b•
: Person 

 
name  “Jack

a b ••
: Person 

 
name  “Tom

: Person 
 

 

a b ••
: Person 

 
name  “Jack

: Person 
 

name  “Tom

a b ••
: Person 

 
name  “Tom



 183

I) 

 

J) 

 
If the answer is not list above, please give your answer here: 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

a b ••
: Person 

 
name  “Tom

: Person 
 

name  “Jack

a b ••
: Person 

 
name  “Tom

: Person 
 

name  “Tom



 184

 
Question 3: 
 
Person a, b; 
a = new Person ("Jack"); 
b = new Person (“Tom”); 
b = a; 
a = b; 
 
A) 

 
B) 

 
C) 

 

 
Use this column for your 
rough notes please 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a b ••
: Person 

 
name  “Jack

a b ••
: Person 

 
name  “Jack

: Person 
 

 

a b ••
: Person 

 
name  “Jack

: Person 
 

name  “Jack



 185

D) 

 
E) 

 
F) 

 
G) 

 

 
 
 
 

b •a •
: Person 

 
name  “Jack

a b ••
: Person 

 
name  “Tom

: Person 
 

name  “Tom

a b ••
: Person 

 
 

: Person 
 

name  “Tom

a b ••
: Person 

 
name  “Jack

: Person 
 

name  “Tom



 186

H)  

 
I) 
 

 
If the answer is not list above, please give your answer here: 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

a • b•
: Person 

 
name  “Jack

a • b•
: Person 

 
name  “Tom



 187

Question 4: 
 
Person a, b, c; 
a = new Person ("Jack"); 
b = new Person (“Tom”); 
c = new Person (“Jim”); 
b = a; 
a = c; 
c = b; 
 

A) 

 

Use this column for your 
rough notes please 
 

b •a •
: Person 

 
name  “Jim”

: Person 
 

name  “Jack

c •
: Person 

 
name  “Jack



 188

B) 

 

C) 

 

 

b •a •
: Person 

 
name  “Jim”

c •
: Person 

 
name  “Jack

b •a •
: Person 

 
name  “Jim”

: Person 
 

 

c •
: Person 

 
name  “Jack



 189

D) 

 

E) 

 

 

b •a •
: Person 

 
name  “Tom

: Person 
 

name  “Tom

c •
: Person 

 
name  “Tom

b •a •
: Person 

 
name  “Jim”

: Person 
 

name  “Tom

c •
: Person 

 
name  “Jack



 190

F) 

 

G) 

 

H) 

 

 

b •a •
: Person 

 
name  “Jack

: Person 
 

name  “Tom

c •
: Person 

 
name  “Jim”

b •a •

c •

: Person 
 

name  “Tom

b •a •

c •

: Person 
 

name  “Tom

: Person 
 

 

: Person 
 

 



 191

I) 

 

J) 

 
If the answer is not list above, please give your answer here: 
 
 
 
 
 
 
 

 

b
• c•

: Person 
 

name  “Jack

a •
: Person 

 
name  “Jim”

b •
c•

a •

: Person 
 

name  “Tom



 192

Appendix B – The Questionnaire for Investigating the 
Effectiveness of the Proposed Learning Model for Value 
Assignment Concept  
 

B-1: Questionnaire for Pre-Test 
 
Question 1: 
 
Please examine the following Java program and then answer the question: 
 
int a = 30; 
int b = 60; 
a = b; 
 
If you think the program is correct, please input the result: 
 
a = _________       b = _________ 
 
or please explain why the program is incorrect: 
 
 
 
 
 
 
 

 
Question 2: 
 
Please examine the following Java program and then answer the question: 
 
int a = 30; 
int b = 60; 
b = a; 
 
If you think the program is correct, please input the result: 
 
a = _________       b = _________ 
 
or please explain why the program is incorrect: 
 
 
 
 
 
 
 

 



 193

Question 3: 
 
Please examine the following Java program and then answer the question: 
 
int a = 30; 
int b = 60; 
a = b; 
b = a; 
 
If you think the program is correct, please input the result: 
 
a = _________       b = _________ 
 
or please explain why the program is incorrect: 
 
 
 
 
 
 
 

 
Question 4: 
 
Please examine the following Java program and then answer the question: 
 
int a = 30; 
int b = 60; 
int c = 90; 
a = b; 
b = c; 
 
If you think the program is correct, please input the result: 
 
a = _________       b = _________       c = _________ 
 
or please explain why the program is incorrect: 
 
 
 
 
 
 
 

 



 194

Question 5: 
 
Please examine the following Java program and then answer the question: 
 
int a = 15; 
int b = 9; 
int c = 21; 
a = c; 
b = a; 
c = b; 
 
If you think the program is correct, please input the result: 
 
a = _________       b = _________       c = _________ 
 
or please explain why the program is incorrect: 
 

 
 
 
 
 
 

 
Question 6: 
 
Please examine the following Java program and then answer the question: 
 
int a = 15; 
int b = 9; 
int c = 21; 
c = b; 
b = a; 
a = c; 
 
If you think the program is correct, please input the result: 
 
a = _________       b = _________       c = _________ 
 
or please explain why the program is incorrect: 
 

 
 
 
 
 
 

 



 195

B-2: Questionnaire for Post-Test 
 
Question 1: 
 
Please examine the following Java program and then answer the question: 
 
int a = 20; 
int b = 40; 
a = b; 
 
If you think the program is correct, please input the result: 
 
a = _________       b = _________ 
 
or please explain why the program is incorrect: 
 

 
 
 
 
 
 

 
Question 2: 
 
Please examine the following Java program and then answer the question: 
 
int a = 20; 
int b = 40; 
b = a; 
 
If you think the program is correct, please input the result: 
 
a = _________       b = _________ 
 
or please explain why the program is incorrect: 
 

 
 
 
 
 
 

 
 



 196

Question 3: 
 
Please examine the following Java program and then answer the question: 
 
int a = 20; 
int b = 40; 
a = b; 
b = a; 
 
If you think the program is correct, please input the result: 
 
a = _________       b = _________ 
 
or please explain why the program is incorrect: 
 

 
 
 
 
 

 
Question 4: 
 
Please examine the following Java program and then answer the question: 
 
int a = 20; 
int b = 40; 
int c = 60; 
a = b; 
b = c; 
 
If you think the program is correct, please input the result: 
 
a = _________       b = _________       c = _________ 
 
or please explain why the program is incorrect: 
 

 
 
 
 
 
 

 



 197

Question 5: 
 
Please examine the following Java program and then answer the question: 
 
int a = 10; 
int b = 6; 
int c = 14; 
a = c; 
b = a; 
c = b; 
 
If you think the program is correct, please input the result: 
 
a = _________       b = _________       c = _________ 
 
or please explain why the program is incorrect: 
 

 
 
 
 
 
 

 
Question 6: 
 
Please examine the following Java program and then answer the question: 
 
int a = 10; 
int b = 6; 
int c = 14; 
c = b; 
b = a; 
a = c; 
 
If you think the program is correct, please input the result: 
 
a = _________       b = _________       c = _________ 
 
or please explain why the program is incorrect: 
 

 
 
 
 
 
 

 



 198

Question 7: 
 
Please examine the following Java program and then answer the question: 
 
int a = 20; 
int b = 40; 
a = b; 
 
Please describe in the box below what happens when the 1st statement "int a = 20;" is 
executed:  
 

 
 
 
 
 
 

 
Please describe in the box below what happens when the 3rd statement " a = b " is 
executed: 
 

 
 
 
 
 
 

 
 



 199

B-3: Qualitative Questionnaire 
 
Please answer the following questions: 
 
1. Has your understanding of "variable" and "assignment" concepts changed during 

this learning session? If "yes", please describe what the changes were: 
 

 
 
 
 
 

 
(If you answered 'No' for Question 1, please ignore questions 2 - 4 and directly jump to 
Question 5) 
 
2. What event or effects made you realize that your original understanding was 

incorrect? 
 

 
 
 
 
 

 
3. Please state how strongly did you feel about the following statements: 
 

a. When I found my original understanding was incorrect, I was surprised and found it 
difficult to believe. 

Strongly disagree  

Disagree  

Neither agree nor disagree 

Agree  

Strongly agree  
 

b. When I found my original understanding was incorrect, I was curious about it and 
wanted to find the reason why. 

Strongly disagree  

Disagree  

Neither agree nor disagree 

Agree  

Strongly agree  



 200

 
c. When I found my original understanding was incorrect, I felt upset.  

Strongly disagree  

Disagree  

Neither agree nor disagree 

Agree  

Strongly agree  
 
4. At what stage during this learning session did you develop a new understanding of 

the programming concepts? Was there anything in particular that helped you 
construct this new understanding? 

 
 
 
 
 
 
 
5. What features and content of the learning materials presented in this learning 

session did you find beneficial to your understandings of programming concepts? 
How did it (they) help your learning experience?  

 
 
 
 
 
 
 
6. Do you still have any questions or still feel confused about the programming 

concepts "variable" and "assignment"? If so, please provide details.  
 
 
 
 
 
 
 
 
 
 
 
 



 201

Appendix C - The Questionnaire for Investigating the 
Effectiveness of the Proposed Learning Model for Value 
Assignment Concept  
 

C-1: Questionnaire for Pre-Test 
 
A Staff class has been defined that holds an ID field as an integer. Constructors like 
'new Staff(1) ' are used to create an object of Staff class with an ID of '1 '.  
 
Methods in the form 'changeID(5) ' are used to change the value of the ID field of an 
object to be '5 '. 
 
The following questions require you to determine the value the ID field of the objects 
after the execution of the program fragment. 
 
Question 1: 
 
Staff a; 
Staff b; 
a = new Staff (1); 
b = new Staff (2); 
a = b; 
b.changeID (5); 
 
a.ID = ___________;         b.ID = ____________; 
 
Question 2: 
 
Staff a; 
Staff b; 
a = new Staff (1); 
b = new Staff (2); 
a = b; 
b = a; 
b.changeID (5); 
 
a.ID = ___________;         b.ID = ____________; 
 



 202

Question 3: 
 
Staff a; 
Staff b; 
Staff c; 
a = new Staff (1); 
b = new Staff (2); 
c = new Staff (3); 
a = b; 
b = c; 
b.changeID(5); 
 
a.ID = ___________;      b.ID = ____________;       c.ID = ____________; 
 
Please describe what happens when the statement “a = new Staff(1);” was 
executed: 
 
 
 
 
 
Please describe what happens when the statement “a = b;” was executed: 
 
 
 
 
 
 
 
 



 203

C-2: Questionnaire for Post-Test 
 

An Account class has been defined that holds a balance field as an integer. Constructors 
like 'new Account(100) ' are used to create an object of Account class with a balance of 
'100 '. 
 
Methods of the form 'changeBalance(750) ' are used to change the value of the balance 
field of an object to be '750 '. 
 
The following questions require you to determine a value for the balance field of the 
objects after the execution of the program fragment. 
 
Question 1: 
 
Account a; 
Account b; 
a = new Account (100); 
b = new Account (200); 
a = b; 
b.changeBalance(750); 
 
a.balance = ___________;         b.balance = ____________; 
 
Question 2: 
 
Account acc1; 
Account acc2; 
acc1 = new Account (100); 
acc2 = new Account (200); 
acc1 = acc2; 
acc2 = acc1; 
acc2.changeBalance(750); 
 
acc1.balance = ___________;         acc2.balance = ____________; 
 
Question 3: 
 
Account acc1; 
Account acc2; 
Account acc3; 
acc1 = new Account (100); 
acc2 = new Account (200); 
acc3 = new Account (300); 
acc1 = acc2; 
acc2 = acc3; 
acc2.changeBalance(750); 
 
acc1.balance = ________;       acc2.balance = ________;      acc3.balance = 
________; 



 204

 
 
Please describe what happens when the statement “acc1 = new Account (100);” 
is executed: 
 
 
 
 
 
 
Please describe what happens when the statement “acc1 = acc2” is executed: 
 
 
 
 
 
 
 
 
 



 205

C-3: The Question to Trigger Cognitive Conflict 
 
AStudent class has been defined that holds an name field as a String. 
Constructors like 'new Student("Ben") ' are used to create an object of Student 
class with a name of 'Ben'. 
 
Methods in the form 'changeName("Tom") ' are used to change the value of the 
name field of an object to be "Tom". 
 
The following questions require you to predict the value the name field of the 
objects after the execution of the program. 
 
Student a; 
Student b; 
a = new Student (“Ben”); 
b = new Student (“Ross”); 
a = b; 
b.changeName(“Tom”); 
 
a.name = ___________;         b.name = ____________; 
 
 
 



 206

C-4: Feedback Questionnaire  
 
Please answer the following questions: 
 
1. Has this exercise resulted in any changes to your understanding of any 

programming concept ? If your answer is ‘yes’, please describe what these 
changes were.  

 
 
 
 
 

      
2.   When did you realize that your original understanding was incorrect? 

When I was answering the questions before using the visualization tool  

When I was using the visualization tool  

When I was answering the question after using the visualization tool  

Other (Please explain)  
 
 
 
 
 

  
3.  when you were viewing the visualization tool, how much attention did you 

pay to the accompanying textual explanations at the bottom of the window? 
Please choose the most suitable description from the following list.  

 

 I did not pay any attention to the textual explanations. 

  
I just had a quick look at the textual explanations but did not make any attempt to 
understand them. 

  
I paid attention to some of the textual explanations and spent mental effort to 
understand them. 

  
I paid attention to all of the information covered by the textual explanations and 
spent mental effort to understand it. 

 
And how much did you understand the accompanying textual explanations? 

 
Not at all  A little  Half Most All 



 207

 
4. Do you still have any questions or still feel confused about the programming 

concepts presented in this tutorial session? If so, please provide details.   

 

 



 208

C-5: the Extra Questions for the CC+Viz Group 
 
Extra Question 1 (appeared just after participants finished the cognitive conflict 
question): 
 
You were just told your answer is incorrect. What was your reaction when you 
were told your answer is incorrect? Please choose one or more of the answers 
from the following list.   
 

1. To be honest, I did not really care about whether or not my answer is correct. 
2. I was surprised because I thought my answer was correct. 
3. I was surprised and even wondered if there is something wrong with the system 
4. I was not surprised because I was not confident with my answer. 
5. I was interested to know why my answer was incorrect. 
6. I felt upset 

 
Extra Question 2 (appeared along with other questions in C-1): 
 
Before you went to use the visualization tool, there was a question asking you to 
predict the result of the execution of the program used in the visualization tool, 
and then you were told whether or not your answer was correct. How useful do 
you feel it is to explicitly let you know that your understanding was incorrect 
before using the visualization tool? Please choose one or more of the answers 
from the following list.   
 

 
It helped me to concentrate on the learning materials when I was told beforehand 
that my understanding was incorrect. 

 
It helped increase my interest in the learning materials when I was told beforehand 
that my understanding was incorrect. 

 
It encouraged me to actively seek the reason why my understanding was mistaken 
when I was told beforehand that my understanding was incorrect. 

 
It did not make any difference when I was told beforehand that my understanding 
was incorrect. 

 
It decreased my interest in the learning materials when I was told beforehand that 
my understanding was incorrect. 

 
In addition, there is one additional answer option for the second part of question 1 in 
C-1, i.e. And when did you realize that your original understanding was 
incorrect? 
 

When I was told that my answer was incorrect before using the visualization tool  
 
 


