

Abstract— This paper proposes an offline method for detecting

feature interactions related to the functionality of a composite
web service. There are several important ways in which func-
tional features of web services can adversely affect each other
through interaction. This problem is a particular challenge in the
web services domain, since these services evolve rapidly and in-
dependently, that is, not under the control of a single party. Our
approach uses labeled transition systems (LTS) to model service
compositions. An LTS allows us to model the salient behavioral
aspects of each web service, and to define properties for compos-
ite services through which we can detect different types of feature
interactions, including assumption violation, race conditions, and
incorrect invocation order. We have performed a number of case
studies that demonstrate the different types of functional feature
interactions, and their detection. One emphasis in the paper will
be on the approach, the other on the case studies.

I. INTRODUCTION
A service-oriented architecture (SOA) approach holds the

promise for businesses that they will be able to adapt quickly
and easily to changes. Services are a way of encapsulating
application functionality in a location and implementation
transparent manner. They package features and make them
accessible to other businesses as distributed software compo-
nents. However, rapid changes in the services a business pro-
vides or uses can lead to undesirable results and poor service
quality: services may interact with each other in unexpected
and undesirable ways. In the literature, this problem has been
studied as the feature interaction problem.

This paper proposes an offline method for detecting feature
interactions related to the functionality of a composite web
service. There are several important ways in which functional
features of web services can affect each other through interac-
tion. A feature interaction is an unexpected and undesirable
side effect of the composition of services (also referred to as
features in this context). There are various causes for interac-
tions, including race conditions, violation of assumptions, goal

Michael Weiss is with the School of Computer Science, Carleton Univer-

sity, Ottawa, ON, K1S 5B6, Canada (corresponding author; phone: 613-520-
2600x1642; fax: 613-520-4334; e-mail: weiss@scs.carleton.ca).

Alexander Oreshkin was with the School of Computer Science, Carleton
University, Ottawa, ON, K1S 5B6, Canada (e-mail: oreshkin@comnet.ca).

Babak Esfandiari is with the Department of System and Computer Engi-
neering, Carleton University, Ottawa, ON, K1S 5B6, Canada (e-mail: ba-
bak@sce.carleton.ca).

conflicts, and invocation order. For a categorization of the
sources of feature interactions among web services see [1].

The remaining sections are organized as follows. In Section
II, we give an introduction to the feature interaction problem,
and to how it applies to the web services domain. In Section
III, we describe our offline detection approach based on La-
beled Transitions Systems (LTS), and in Section IV, we pre-
sent results from our case studies that demonstrate different
functional feature interactions. This is followed, in Section V,
by a recap of related work. Section VI concludes the paper.

II. FEATURE INTERACTION PROBLEM
The problem of undesirable interactions between compo-

nents of a system can occur in any software system that is sub-
ject to changes. It was originally described for the problems
occurring during the design of telecom software [2]. Some
progress has been made recently towards explicitly modeling
and analyzing feature interaction in other domains [3], [4]. The
first description of undesirable side effects of web service
composition as feature interactions was given in [5].

The problem concerns the coordination of interacting fea-
tures such that their cooperation yields a desired result. Many
hundreds of features can interact directly or indirectly, and can
affect each other’s behavior. Some interactions are desirable
(even required as part of the design), while other interactions
can lead to undesirable side effects such as an inconsistent
system state, an unstable system, or data inaccuracies.

In [5], a distinction between functional and non-functional
interactions is made. This distinction reflects that many of the
side effects affect service properties such security, privacy, or
availability. Functional feature interactions are those undesir-
able side effects of the composition of features that render the
system no longer functional. Non-functional feature interac-
tions, on the other hand, are undesirable side effects in a sys-
tem that is working from a purely functional point of view.

As web services technology matures, it is becoming crucial
to manage the interactions among web services. The feature
interaction problem is presenting new challenges for the web
services domain. Our focus in this paper is on functional fea-
ture interactions, which have not been covered in earlier work
on feature interactions among web services (although work
from the area of web service verification, and web service
composition using AI planning techniques is certainly applica-
ble to this problem). Causes for functional feature interactions

Offline Detection of Functional Feature Interac-
tions of Web Services

Michael Weiss, Alexander Oreshkin, and Babak Esfandiari

in web services have been categorized as follows [1]:
—Goal/policy conflicts: Each feature has a specific task or

goal it is trying to achieve, or policy that is follows.
When there is only one web service, there is one goal or
policy. However, when services are combined into a
higher-level service, each with its own goals or policies,
it may be that the goals or policies of those services are in
conflict, and we cannot guarantee their achievement.

—Resource contention: Service users may be competing
with each other through access to limited resources on a
service provider. Examples of such resources are: disk
space, memory, CPU, network bandwidth, database ac-
cess, etc. The correct operation of one service user may
be compromised by the interference of another user that
is using more than its share of resources.

—Deployment and ownership: Decisions about where serv-
ices are deployed, and who provides them lead to per-
formance, scalability and quality issues, as well as to con-
flicts of interest. This is prevalent in web services.

—Assumption violation: Web service developers need to
make some assumptions about how a web service will be
used by service users. When service users break those as-
sumptions, the service may no longer operate correctly.
Similarly, the expectations of service users may be vio-
lated by the implementation of a service.

—Encapsulation/information hiding: If encapsulation is
used, service users are not aware of the inner workings of
service providers. This necessarily means that service us-
ers must make some assumptions about providers. If
those assumptions are wrong, the correct operation of the
service is questionable. This is another area where web
service present previously unexplored challenges.

—Invocation order: The correct operation of a composite
web service may also depend on the order of invocation
of some of its features. The service may assume a certain
order in which events will take place. If a service con-
sumer breaks this order, the correctness of the results is
no longer guaranteed. This includes race conditions.

As noted, several of these types of interactions are specific to
web services, or, in any case, more prevalent than in closed
telecom systems, and require novel approaches. In [1], we
have argued that web services also evolved from a closed-
system assumption, where services are provided over existing,
trusted relationships, to an open-system assumption.

III. OFFLINE DETECTION APPROACH
The hierarchical architecture of building larger services

from smaller services, together with object-oriented principles
such as encapsulation and information hiding, creates many
challenges in dealing with service interactions. It is, thus, de-
sirable to develop formal approaches to modeling web services
and detecting problematic interactions. Such techniques have
been previously applied to other types of domains.

A. Process
As noted above, the most significant source of feature inter-

actions are changes to features. These include modifications to
existing features, the introduction of new features, as well as
new uses of features. As the system evolves, features may be
modified, new features added, and old features removed. Thus,
at a given point in time t, we may have engineered a composite
service that is feature-interaction free. However, after changes
have been made to the features at time t+1, new feature inter-
actions can arise, and the system needs to be reassessed.

Fig. 1 summarizes our approach. The top of the diagram
represents the set of features comprising our composite service
at times t and t+1. The dashed arrows indicate additions, dele-
tions, and modifications to those features and the feature set.
Given a set of features to be composed, we translate the speci-
fications or implementations (if available) of the features into
an LTS model. We then specify properties that the composite
system has to meet. If Service Level Agreements (SLAs) and
contracts have been explicitly provided, these can feed into the
specification of the properties. Otherwise the properties encode
assumptions that the features under our control rely on.

Fig. 1. Stages of the offline detection process

Validation of the properties may result in violations that cor-

respond to feature interactions. As a result, a composite service
that met the specified properties at time t may no longer meet
them at time t+1, after the features have evolved. The feedback
arrow indicates that we will then try to correct the interaction.
Property violations can occur even though the features we are
responsible for have not changed between t and t+1. As the
figure indicates, not all the features we use are under our con-
trol. Although this is a known problem in general component-
based systems, it is exacerbated in the web services domain
due to the open nature and rapid change of web services.

Next we provide the necessary background on Labeled
Transition Systems, which are used by our approach.

B. Labeled Transition Systems
The approach presented in this paper is based on Labeled

Transitions Systems (LTS). The interaction models are ana-
lyzed using the LTS Analyzer (LTSA) from [6] for violation of
properties that we can specify.1 LTSA uses well-established
model checking techniques based on state-space exploration to
automatically analyze safety and progress properties of mod-
els. This approach lays a foundation for developing a formal-
ized methodology to address the feature interaction problem in
web services. However, we should note that the general ap-
proach for detecting feature interactions outlined in this section
can used with other model checking tools such as SPIN.

A Labeled Transitions System (LTS) is a form of state ma-
chine for the modeling of concurrent systems in which transi-
tions are labeled with action names. For small systems, a LTS
can be analyzed using a graphical representation of the state
machine description, but for large number of states and transi-
tions, an algebraic notation for describing process models is
required. Such a notation is provided by FSP (Finite State
Processes), the notation supported by the LTSA [6]. An FSP
description of an LTS can be verified to satisfy specified safety
and progress properties. Informally, a property is an attribute
of a program that is true for every possible execution of that
program. A safety property is a statement of what is consid-
ered to be a correct execution of the system. If anything hap-
pens in the system that goes against the specifications of the
safety property, the system is considered to be in error. A pro-
gress property asserts that some part of the system will eventu-
ally execute. A common example of a violation of this prop-
erty is a deadlock. The analysis of a system is based on (ex-
haustive) state-space exploration. Its main benefit is that can
be automated, thus avoiding the inherent error introduced
when using manual methods such as inspection of MSCs.

An FSP model comprises a collection of constant defini-
tions, named processes, and named process compositions. FSP
offers rich syntactic features including guards, choices, vari-
ables, and index ranges. It also supports process parameters,
relabeling and hiding of actions, which allow the compact
modeling of component-based concurrent systems.

The analysis of a composite web service for functional fea-
ture interactions start with modeling the salient parts of the
behavior of each component service (feature) as a process. The
next step is to define safety and progress properties that can
detect specific types of feature interactions. For example, a
property that defines an expected sequence of transitions en-
ables us to detect order of invocation interactions.

Then we use the LTSA to analyze the model of the compos-
ite service, which comprises instances of the features, and any
safety properties we want to validate. As part of a service en-
gineering approach, we can then resolve each detected feature
interaction, and update the LTS model accordingly, and thus in
an iterative manner complete the design by eliminating interac-

1 The version used in our case studies is LTSA 2.2, which is available for

download from http://www.doc.ic.ac.uk/~jnm/book/ltsa-v2/.

tions. Resolution is outside the scope of this paper.
In Section IV, we will provide examples of the approach,

and also introduce specifics of the modeling notation.

IV. CASE STUDIES
To date, we have applied the offline detection approach to

four case studies, and through them achieved coverage of each
type of feature interaction listed in Section II. They include:
—Hotel booking service with user profile management (in-

vocation order, assumption violation)
—Remote environment management (goal conflict)
—Pay-per-view news (assumption violation)
—Virtual bookstore (invocation order, resource contention,

assumption violation, goal/policy conflict, deployment)
Two of these, pay-per-view news and portions of the virtual
bookstore case study will be presented in the following.

A. News Service
The first case study involves a News service that provides

clients with access to full-text articles on a pay-per-view basis.
It obtains recent headlines and articles from a News Catalog
service. Furthermore, the News Catalog service has been de-
signed with the expectation that requests will be logged with a
a Logging service. At the end of each billing period, News Cata-
log consults the log maintained by the Logging service to com-
pile a statement and charge the client’s account for their usage.

Following the process outlined in Fig. 1, we create the LTS
model shown in Fig. 2. This diagram depicts processes repre-
senting features and their interconnections. This type of dia-
gram is also known as a structure diagram [6]. Processes are
represented as boxes, and externally visible actions are shown
as circles on the perimeter of the box. Shared actions (that is,
actions that two processes need to execute simultaneously) are
shown as lines connecting two action circles. Relabeling of
action names is not required in this example, as the action
names are the same at either end of the lines.

Fig. 2. Structure diagram of the initial News service

The News process is triggered by the requestArticle action,

and the billing service of the News Catalog can be triggered by
the processBilling action. The processes interact through the
shared actions getArticle, log, and getLog. These shared actions
define the external interfaces of the service components. Fig. 3
shows an FSP model of the News service. When reading the
FSP model it helps to refer back to the structure diagram.

// Logging
LOGGING = (log->LOGGING | getLog->LOGGING).

// News Catalog
NEWS_CATALOG = (getArticle-> NEWS_CATALOG |
 proccessBilling-> BILLING),
BILLING = (log.getLog->process->NEWS_CATALOG).

// News
NEWS = (requestArticle->ACCESS_CATALOG),
ACCESS_CATALOG = (log.log->catalog.getArticle->
 NEWS).

// Composite process
||NEWS_SERVICE = (NEWS || catalog:NEWS_CATALOG ||
 log:LOGGING || P).

// Check that each article request is logged
property P = (requestArticle->log.log->P).

Fig. 3. Initial structure diagram for the News service (version t)

This model contains three processes (News, News Catalog,
and Logging), one safety property (P), and one composite proc-
ess (News Service). Each process describes possible sequences
of actions. When a service provides multiple operations on its
interface, this is modeled as a choice between multiple action
sequences in the FSP model. Complex sequences can be made
more readable by using subprocesses. For example, the News
Catalog service contains a subprocess to handle Billing.

The composite process News Service represents the feature in
interaction. Here, we associate labels with process instances,
through which we can refer to actions in other processes from
a process definition. For example, we associate the label cata-
log with a News Catalog process instance. The composite proc-
ess also includes the safety property P. This property captures
the requirement that every article request should be logged.
Using the LTSA, we can perform a safety check analysis to see
whether the property can be violated. The trace will tell us, if
there is a sequence of events, where an article request is not
properly logged. Fig. 4 shows the result of this safety check.
The analysis shows that there are no violations.

Composition:
NEWS_SERVICE = NEWS || catalog:NEWS_CATALOG ||
 log:LOGGING || P
State Space:
 3 * 3 * 1 * 2 = 2 ** 5
Analysing...
Depth 5 -- States: 9 Transitions: 25 Memory used:
1493K
No deadlocks/errors
Analysed in: 18ms

Fig. 4. Safety check for the initial News service (version t)

Consider a possible evolution of the News service. Now the

News service also maintains a cache of the most recently re-
trieved article. This feature was added to avoid charging a user
more than once for retrieving the same article, and to speed up
the retrieval of full text articles. When a client requests an arti-
cle, the News service now first checks the cache. Only if the

article is not in the cache already, is an external request made
to the News Catalog service, and the retrieved article is subse-
quently cached. Otherwise, the cached copy of the article is
immediately returned without an external request.

Fig. 5 shows a structure diagram of the evolved service.

Fig. 5. Structure diagram of the evolved News service (version t+1)

Version t+1 of the service adds a Cache feature with a get

and a put action, for retrieving and storing articles in the cache.
This time, we extract the LTS model from the implementation
of the News service. With respect to Fig. 4, Fig. 6 adds a new
process to represent the Cache feature, and inserts actions into
the process for the News feature to check the cache before the
News Catalog is accessed. That is, the actions in the Access
Catalog subprocess will only be executed, if the article is not
already in the cache (simulated by the cache.notFound action).

// Logging
LOGGING = (log->LOGGING | getLog->LOGGING).

// News Catalog
NEWS_CATALOG = (getArticle-> NEWS_CATALOG |
 proccessBilling-> BILLING),
BILLING = (log.getLog->process->NEWS_CATALOG).

// Cache feature
CACHE = (put->NON_EMPTY_CACHE),
NON_EMPTY_CACHE = (put->NON_EMPTY_CACHE |
 get->NON_EMPTY_CACHE).

// News
NEWS = (requestArticle->CHECK_CACHE),
CHECK_CACHE = (cache.found->cache.get->NEWS |
 cache.notFound->ACCESS_CATALOG),
ACCESS_CATALOG = (log.log->catalog.getArticle->
 cache.put->NEWS).

// Composite process
||NEWS_SERVICE = (NEWS || cache:CACHE ||
 catalog:NEWS_CATALOG || log:LOGGING || P).

// Check that each article request is logged
property P = (requestArticle->log.log->P).

Fig. 6. FSP model of the evolved News service (version t+1)

The trace of events in Fig. 7 demonstrates that, in the new
implementation of the News service, the safety property P can

be violated. This happens when a client requests an article, and
subsequently another client requests the same article. Since the
article was cached after the first request, the next time it is
retrieved from the Cache rather than the News Catalog service.
While it is fine for requests from the same user to be answered
from the Cache, returning the article no matter which user sent
the request, leads to an unexpected behavior.

Composition:
NEWS_SERVICE = NEWS || cache:CACHE ||
 catalog:NEWS_CATALOG || log:LOGGING || P
State Space:
 6 * 2 * 3 * 1 * 2 = 2 ** 7
Analysing...
Depth 9 -- States: 26 Transitions: 76 Memory used:
1580K
Trace to property violation in P:
 requestArticle
 cache.notFound
 log.log
 catalog.getArticle
 cache.put
 requestArticle
 cache.found
 cache.get
 requestArticle
Analysed in: 71ms

Fig. 5. Safety check for the evolved News service (version t+1)

The graphical representation of the News service can provide
additional insight in the scenario that led up to the feature in-
teraction. Fig. 6 shows the LTS for the News service, indicat-
ing (in red) the violating transition (requestArticle). The
interaction is an example of an assumption violation. Only
those client requests are being logged for which the requested
article is not found in the cache. What is worse is that nobody
is charged for those requests, except the first client that ac-
cessed this article and caused it to be retrieved and cached. So
it is possible to gain access to an article for free (as long it does
not get expelled from the cache). The behavior of the service
depends subtly on when article requests are logged.

Fig. 6. LTS for the News service showing the violating transition (version t+1)

The essence of the problem, from the point of view of the
News Catalog service, is that it is unaware of the Cache feature

present in one of its service consumers, the News service. It
(incorrectly) expects that all requests for articles made by the
clients of the News service will be logged with the Logging
service associated with the News Catalog. It does not expect
that these consumer services can have mechanisms that will
prevent some of the requests from being logged.

While we may have obtained this result from a manual in-
spection of the implementation, for large composite web serv-
ices with many potential feature interactions a manual analysis
is generally not feasible. Also, from a test-driven development
view [7], it is desirable to perform the detection of problematic
feature interactions automatically using formal approaches.

B. Virtual Bookstore
The second case study is part of a larger case study that aims

to provide a benchmark for web service feature interactions
(both functional and non-functional). In this case study, we
consider a virtual bookstore (Retailer) that does not maintain an
inventory of its own, but relies on its Suppliers to fulfill book
orders. On receiving an order, the Retailer selects a Supplier that
stocks the book, and places an order with it, in turn. The Sup-
plier determines the availability of the ordered book, and, if
successful confirms to the Retailer that the order has been ful-
filled. If the chosen Supplier cannot deliver the book, the Re-
tailer selects another Supplier, if one is available.

In our model, we focus on the Retailer-Supplier relationships,
and are not concerned with the details of supplier selection, or
the exception handling required when a book cannot be sour-
ced from one of the Suppliers, or is out-of-print. Fig. 7 depicts
the system architecture resulting from the Retailer-Supplier con-
tract. The up and down labels indicate the direction of the order
flow. Suppliers are downstream (down) from the Retailer in the
supply chain, whereas the Retailer is upstream (up). Note that
we include a Publisher process in the model, which is assumed
to always fulfill an order. (Of, course, ordering from the Pub-
lisher is the least desirable option, because of the additional
delay in fulfilling the order)

Fig. 7. Initial structure diagram for the Virtual Bookstore service (version t)

Fig. 8 shows the FSP model of the Virtual Bookstore service.

The placeOrder and fulfilled actions are prefixed with the up and
down labels, respectively, to indicate which process interface to
use. When composing these processes we will relabel to match
up down actions with corresponding up actions. Stock availabil-
ity is modeled as a non-deterministic choice in the SUPPLIER

process between inStock and notInStock. If a book is not in
stock, a Supplier will place an order to its downstream Supplier
and wait for it to confirm order fulfillment before, in turn, con-
firming order fulfillment to its upstream customer.

RETAILER =
 (down.placeOrder->down.fulfilled ->RETAILER).
SUPPLIER = (up.placeOrder -> PROCESS_ORDER),
PROCESS_ORDER = (
 inStock -> up.fulfilled -> SUPPLIER |
 notInStock->down.placeOrder->
 down.fulfilled->up.fulfilled->SUPPLIER).
PUBLISHER =
 (up.placeOrder->up.fulfilled->PUBLISHER).

Fig. 8. FSP model of the Virtual Bookstore service

These features can be composed to model the scenario

shown in Fig. 7. In this scenario, supplier s[1] forwards unful-
filled orders to supplier s[2], and a publisher p fulfills any or-
ders that s[2] cannot fulfill, as shown in Fig. 9. Since the sup-
pliers do not form a loop, we refer to this as an open supply
chain, so we can distinguish between scenarios.

||VIRTUAL_BOOKSTORE(N=2) = (r:RETAILER ||
 forall [i:1..N] s[i]:SUPPLIER || p:PUBLISHER)
 /{
 chan[0]/r.down,
 chan[i:0..N-1]/s[i+1].up,
 chan[i:1..N]/s[i].down,
 chan[N]/p.up
 }.

Fig. 9. Composite service for an “open” supply chain (version t)

 The N=2 indicates the number of SUPPLIER processes in the

VIRTUAL_BOOKSTORE process. The forall [i:1..N] s[i]:SUPPLIER
creates N composed SUPPLIER processes. The entries enclosed
between /{ and } symbols are relabeling operations, each taking
the form of new label/old label. A key modeling choice is to use
channels (chan[i]) as the shared actions, and to map correspond-
ing down and up actions to the same channel. This leads to a
model, where the service invocations are represented as syn-
chronous messages. If we wanted to model them as asynchro-
nous messages, we could add separate channel processes.

Running a progress check against this composite service
will not turn up any problems, as expected (see Fig. 10).

Composition:
VIRTUAL_BOOKSTORE = r:RETAILER || s.1:SUPPLIER ||
 s.2:SUPPLIER || p:PUBLISHER
State Space:
 2 * 6 * 6 * 2 = 2 ** 8
Progress Check...
-- States: 10 Transitions: 12 Memory used: 1530K
No progress violations detected.
Progress Check in: 64ms

Fig. 10. Progress check for the open supply chain scenario (version t)

However, as the virtual bookstore service evolves, some

Suppliers may decide to add a capability that allows them to
source orders for books they do not have in stock through their

own network of Suppliers. Their incentive would be to keep the
Retailer happy, even if that means sourcing a book at cost, and
losing profit on some of the orders. However, this can lead to a
scenario, where the order is sent along a chain of suppliers,
which includes the originator of the order. Fig. 11 shows a
model of a chain of suppliers. Here our goal for feature inter-
action analysis is to detect such chains in a given model.

Fig. 11. Revised structure diagram for the Virtual Bookstore service allowing for
Suppliers to source books from their own network of Suppliers (version t+1)

In order to model the closed supply chain depicted in Fig.

11, we only need to change the relabeling of the down action of
s[3] to match up with up action of s[1]. The resulting composi-
tion is shown in Fig. 12. This demonstrates that the model in
Fig. 8 is generic; it can model the impact of different supply
chain topologies, and analyze them for interactions.

||VIRTUAL_BOOKSTORE(N=3) = (r:RETAILER ||

 forall [i:1..N] s[i]:SUPPLIER || p:PUBLISHER)
 /{
 chan[0]/r.down,
 chan[i:0..N-1]/s[i+1].up,
 chan[i:1..N]/s[i].down,
 chan[N]/s[1].up
 }.

Fig. 12. Composite service for a “closed” supply chain (version t+1)

Repeating the progress check for the closed supply chain
scenario, LTSA will now report a deadlock, and the sequence
of actions that leads up to it, which is reproduced in Fig. 13.
We could also specify an explicit progress property that the
down.fulfilled action of the retailer must eventually execute.

Additional insight into the nature of the deadlock is pro-
vided by the LTS of the supplier s[1] in Fig. 14. This supplier
receives the initial placeOrder request from the Retailer, as well
as the forwarded request from the supplier s[3]. Since each
Supplier is now waiting for its downstream Supplier to confirm
order fulfillment, none of the Suppliers can make progress.

Composition:
VIRTUAL_BOOKSTORE = r:RETAILER || s.1:SUPPLIER ||
 s.2:SUPPLIER || s.3:SUPPLIER || p:PUBLISHER
State Space:
 2 * 6 * 6 * 6 * 2 = 2 ** 11
Progress Check...
-- States: 14 Transitions: 32 Memory used: 1735K
Finding trace...
Depth 6 -- States: 15 Transitions: 34 Memory used:
 1948K
Progress violation for actions:
 {chan[0..3].{fulfilled, placeOrder},
 s[1..3].{inStock, notInStock}}
Trace to terminal set of states:
 chan.0.placeOrder
 s.1.notInStock
 chan.1.placeOrder
 s.2.notInStock
 chan.2.placeOrder
 s.3.notInStock
Actions in terminal set:
 p.up.{fulfilled, placeOrder}
Progress Check in: 57ms

Fig. 13. Progress check for the closed supply chain scenario (version t+1)

Fig. 14. LTS for the closed supply chain with progress violation (version t+1)

This deadlock is an indication of a resource contention fea-

ture interaction. It is ultimately the result of an assumption
violation. As Suppliers independently decide to fulfill orders for
books that are not in stock through other Suppliers, the implicit
assumption is that the orders would not be forwarded back to
this Supplier, but this assumption is broken in version t+1.

V. RELATED WORK
The work on web service verification and on formal ap-

proaches in traditional feature interaction research are most
relevant to this work. Examples of recent work on web service
verification are [8] and [9]. Foster et al [8] describe an ap-
proach for modeling BPEL processes as LTS and verifying
properties about them. Lu et al [9] present work towards rea-
soning about assumptions in service compositions.

A representative example of the work on formal approaches
for detecting feature interactions using process algebras in the
telecom domain is that by Amyot et al [10]. This paper de-
scribes a scenario-based approach to generating validation test
suites and feature interaction detection by identifying scenarios
with overlapping preconditions. Features are modeled both as
use case map scenarios, and LOTOS processes. For a general
overview of existing approaches see Calder et al [2].

However, we are not aware of previous work that looks at
web service verification from a feature interaction perspective.

The closest approach in terms of analyzing service composi-
tions using LTSA is [8]. This paper describes a tool for round-
trip engineering of web service compositions using BPEL. The
inclusion of BPEL within our scope is helpful, if our goal is to
validate executable web service compositions. However, our
level of abstraction is higher: we are operating at the specifica-
tion level, and don't assume a particular implementation model
for web service composition. Our work is also complementary
to this work, as [8] provides very little guidance on defining
the properties that we want to verify, whereas our analysis is
driven by a model of the kinds of feature interactions can oc-
cur (although more work is needed to fully meet this objective
in our work, as noted in Section VI). Looking forward, how-
ever, our work can be extended to include the implementation
layer, and BPEL would be a prime target for our analysis.

VI. CONCLUSION
In this paper we proposed LTS modeling of composite web

services as basis of a formal methodology for detecting func-
tional feature interactions of web services. The approach is
based on modeling the main behavioral (that is, functional)
aspects of each individual web service as a process, and to
define safety and progress properties that can detect potential
undesirable feature interactions in the composite service.

We have applied this approach to a number of case studies.
Our current goal is to define a benchmark against which dif-
ferent detection approaches for detecting feature interactions
of web services can be compared. From our experience with
the case studies it is apparent that many traditional feature in-
teractions also occur in the web services domain. Such is the
case of an incorrect order of invocation, or a forwarding loop.
However, there are also issues germane to web services such
as deployment and ownership, and information hiding.

Open issues of our approach include dealing with state ex-
plosion (not a specific issue to our application of LTS model-
ing techniques to web services), but more importantly, the sys-
tematic development of safety and progress properties. A de-
sirable outcome of this research would be a catalog of proper-
ties (or patterns) corresponding to different types of feature
interactions from which specific properties can be derived.

We would also like to note that use of a AI planning tech-
nique alone doesn't necessarily prevent the causes that we have
listed all by itself: planning might allow various possible com-
positions, while only some of them might respect a correct
invocation order or not violate assumptions. What is proposed
in the paper is not incompatible with a planning technique; it
simply verifies whether the generated plan (the proposed com-
position) is correct wrt feature interactions. It would be inter-
esting to investigate whether our techniques could be formu-
lated in terms of a planning problem as well (for example by
specifying constraints and properties as preconditions), making
the combined approach more homogeneous and elegant.

ACKNOWLEDGMENT
This research was, in part, funded through an NSERC Dis-

covery Grant. The authors also want to thank the following
fourth year project students for their participation in the design
of the case studies: Yi Lin and Zhiyong Liu.

REFERENCES
[1] Weiss, M. and Esfandiari, B., Towards a Classification of Web Service

Feature Interactions, Intl. Conf. on Service-Oriented Computing (IC-
SOC), LNCS 3826, 101-114, Springer, 2005.

[2] Calder, M., Kolberg, M., Magill, E., and Reiff-Marganiec, S., Feature
Interaction: A Critical Review and Considered Forecast, Computer Net-
works, 41 (1), 115-141, 2003.

[3] Pulvermüller, E., Speck, A., et al, Feature Interaction in Composed Sys-
tems, Workshop on Feature Interactions in Composed Systems, TR
2001-14, 1-6, Universität Karlsruhe, Fakultät für Informatik, 2001.

[4] Turner, C.R., Fuggetta, A., et al, A Conceptual Basis for Feature Engi-
neering, Journal of Systems and Software, 49:1, 3-15, December 1999.

[5] Weiss, M., and Esfandiari, B., On Feature Interactions among Web Serv-
ices, Intl. Conf. on Web Services (ICWS), 88-95, IEEE, 2004.

[6] Magee, J., and Kramer, J., Concurrency: State Models and Java Pro-
grams, Wiley, 1999.

[7] Beck, K., Test-Driven Development, Addison-Wesley, 2003.
[8] Foster, H., Uchitel, S., Kramer, J., and Magee, J., Model-Based Verifica-

tion of Web Service Compositions, Automated Software Engineering
(ASE) Conf., 152-163, IEEE, 2003.

[9] Lu, Z., Li, S., and Ghose, A., Web Service Conflict Management, Intl.
Workshop on the Design of Service-Oriented Applications (WDSOA) at
ICSOC, IBM Research Report RC23819, 69-78, 2005

[10] Amyot, D., Charfi, L., et al, Feature Description and Feature Interaction
Analysis with Use Case Maps and LOTOS, Intl. Workshop on Feature
Interactions in Telecommunications and Software Systems, 274-289,
IOS, 2000.

