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Abstract

Groups can be studied using methods from different fields such as
combinatorial group theory or string rewriting. Recently techniques from
Grobner basis theory for free monoid rings (non-commutative polynomial
rings) respectively free group rings have been added to the set of methods
due to the fact that monoid and group presentations (in terms of string
rewriting systems) can be linked to special polynomials called binomials.
In the same mood, the aim of this paper is to discuss the relation between
Nielsen reduced sets of generators and the Todd-Coxeter coset enumera-
tion procedure on the one side and the Grobner basis theory for free group
rings on the other. While it is well-known that there is a strong relationship
between Buchberger’s algorithm and the Knuth-Bendix completion proce-
dure, and there are interpretations of the Todd-Coxeter coset enumeration
procedure using the Knuth-Bendix procedure for special cases, our aim
is to show how a verbatim interpretation of the Todd-Coxeter procedure
can be obtained by linking recent Grobner techniques like prefix Grobner
bases and the FGLM algorithm as a tool to study the duality of ideals. As
a side product our procedure computes Nielsen reduced generating sets for
subgroups in finitely generated free groups.

*The author was supported by the Deutsche Forschungsgemeinschaft (DFG).



1 Introduction

The principal aim of this paper is to establish a link between different methods
for computing in groups available in the literature — methods from combinatorial
group theory, methods from string rewriting theory and methods from Grobner
basis theory by giving a coset enumerating procedure using Grobner basis tech-
niques.

One very popular procedure in combinatorial group theory is due to Todd and
Coxeter and systematically enumerates all cosets of a finitely generated subgroup
in a given finitely presented group [26]. Nielsen reduced sets allow the computa-
tion of Schreier coset representatives hence enabling syntactical solutions to the
subgroup problem in finitely generated free groups [22]. Another approach to the
study of groups stems from the fact that they can be presented as string rewriting
systems and, hence, completion based procedures a la Knuth and Bendix can be
applied [12]. Recently, some authors have started using Grobner basis methods
to model groups in appropriate rings and solve group theoretical problems in this
setting [17, 4].

In [17] the existence of explicit connections between the word problem for monoids
and groups and the ideal membership problem in free monoid and free group
rings, respectively, as well as connections between the submonoid problem and
the subalgebra problem and between the subgroup problem and the one-sided
ideal membership problem is proven. These results strongly encourage people
designing new algorithms for attacking monoid or group theoretical problems to
look for methods in all three fields mentioned above. Here we want to present the
fundamental results of Nielsen and Todd and Coxeter from combinatorial group
theory using Grobner basis techniques for free group rings. More on connections
between the Todd-Coxeter coset enumeration procedure (abbreviated by Tc in
the following) and the Knuth-Bendix completion procedure (abbreviated by KB)
for the special case of the trivial subgroup can be found in [2, 25].

A group G is called finitely presented if there is a finite set of generators
Y and a finite set of relators R such that G is isomorphic to the quotient of
the free group generated by ¥ modulo the congruence generated by R. Let ¥ =
YUX ! where X' = {a! | a € ¥} denotes the set of formal inverses for the
generators. The group elements then are represented as words on . In 1911
Dehn stated decision problems for groups, two of which will be studied here
using coset enumeration: The word problem for a group is to decide whether
two representations describe the same group element. The subgroup problem
for a group is to decide for a group element and a subgroup of the group whether
the element is in fact a member of the subgroup. Both problems are undecidable
in general, but become decidable when restricted to special classes of groups. For
finitely generated free groups the word problem can be solved by free reduction,
i.e. by deleting occurrences of subwords of the form aa™! and a 'a for a € X.
The subgroup problem can be solved using Nielsen reduced sets due to the fact



that there is a lot of crucial information on the maximal parts of words which
can cancel each other when multiplying generating elements of subgroups. A
well established procedure for dealing with these two problems in the case of
arbitrary finitely presented groups is T'C: Given a set of defining relators for the
group G and a set of generators of the subgroup #H (as words in the generators
of G) Tc enumerates the cosets of H in G. Of course this process can only stop
in case H has finite index in G and then Tc also provides the multiplication
table of the cosets. Now given a word w in the generators of G we have that
w € H if and only if w is in the coset of the identity. Hence Tc provides a
semi-decision procedure by determining, while enumerating cosets, whether w is
in one of the cosets enumerated so far, and answering “yes” in case it is in the
coset of the identity. It is obvious that the answer “no” can only be given in case
the procedure terminates, since as long as more cosets are enumerated there is
the possibility of cosets collapsing, i.e., even if w is found in a coset which is not
the identity it might later on be derived that the coset coincides with the coset
of the identity. Notice that when choosing the trivial group as the subgroup H
Tc in fact enumerates all elements of the group G and terminates if and only if
G is finite.

Group presentations can be interpreted as string rewriting systems and this field
is well studied (compare [3]). The most important procedure is due to Knuth and
Bendix and allows computing convergent! presentations for groups. In case such a
presentation is additionally finite it can be used to compute unique normal forms
for the group elements and hence to decide the word problem for the group.
The advantage is that this method is often still applicable to infinite groups.
For an overview see e.g. [3] and [13]. The presentation of a finitely generated
free group in terms of the inverse relators can be interpreted as a convergent
string rewriting system and free reduction is exactly reduction using this string
rewriting system. In [2] it is outlined how Tc and KB are related for the special
case of the trivial subgroup: for a modified version of T, which represents the
cosets by appropriate words on ¥ and uses a certain strategy (depending on the
ordering chosen for the words representing the elements of the group) to replace
cosets when new equations are obtained, on termination the output of KB is
a subset of the rules corresponding to the equations generated by Tc. What
now are the essential differences between TC and KB in this case? In case Tc
terminates so will a specialized version of KB but the converse does not hold. This
is due to the fact that Tc, when viewed as a rewriting procedure, does not apply
ordinary string rewriting but prefiz rewriting. Now if no finite convergent system
with respect to prefix rewriting exists, Tc does not detect whether it might
already have computed a convergent set of rules with respect to ordinary string
rewriting and hence will not terminate although KB might. Variants of prefix

LConvergent presentations for groups are string rewriting systems which are terminating
and confluent.



rewriting have a long tradition when studying subgroups using string rewriting
techniques (compare [13]). But there are two main differences: These techniques
require certain assumptions for the relators defining the group (e.g. convergence)
while Tc allows any presentation. The output gained by prefix string rewriting
completion techniques is a description of cosets of the subgroup in the group
while T'C enumerates cosets of the subgroup generated by the original subgroup
generators and the normal closure of the relators in the corresponding free group.
This difference explains why prefix string rewriting techniques can also handle
cases where the subgroup has infinite index. A well-known algorithm can be found
for free groups: In a finitely presented free group the subgroup problem can be
solved using Nielsen reduced sets of generators and prefix string rewriting.

KB techniques can be applied to complete group presentations as string rewriting
systems. Sims incorporated prefix string rewriting techniques for the subgroup
generators by decoding them as special rules of the form $u — $ where §$ is a new
symbol. In [25] he compares running KB on input {r — A | r € R} U {$u —
$ | u € U} where R are the relators and U the subgroup generators to Tc.
However, in general the completion does not terminate even for subgroups of
finite index. This is due to the fact that it will always compute a convergent
presentation for the group which need not be finite. In Section 5 we will outline
how our procedure using Grobner basis techniques can be “translated” into a
Knuth-Bendix type procedure which simulates TC and always terminates if the
subgroup has finite index.

In this paper we present TC in an unusual framework due to the fact that monoids
and groups can be simulated by binomial ideals? in free monoid and free group
rings. A first explicit connection between finitely presented commutative monoids
and ideals in commutative polynomial rings was used 1958 by Emelichev yielding
a solution to the word problem in the monoid by deciding the ideal membership
problem (compare [18]): Assuming the commutative monoid M is presented by a
set of generators x1, ..., x, and a set of defining relations ¢; = ry,..., ¥, = r,, the
following is true: A relation u = w holds in M if and only if the polynomial u —w
lies in the ideal generated by the polynomials ¢;—ry, ..., £,,—7,, in the polynomial
ring Q[z1, ..., z,]. In his paper Emelichev uses the result of Hermann presented in
[9] to show that the latter question is decidable. Of course the ideal membership
problem is also solvable using Buchberger’s method of Grobner bases, which is
based on a special reduction system associated to finite sets of polynomials which
represent ideal congruences in polynomial rings [6].

It was observed independently in [20, 23, 17] that similar results hold for con-
gruences on arbitrary finitely generated monoids and groups. Here we want to
develop these ideas for the free group case in order to give a coset enumerating
procedure using Grobner techniques for free group rings:

2An ideal is called binomial if it has a basis solely consisting of polynomials of the form
my — mo where my,ms are monomials.



Let F denote the free group generated by ¥ = {ay, ..., a,}. The elements of F are
represented by the freely reduced words in ¥* and multiplication of two elements,
denoted by o, is just their concatenation followed by free reduction. In the follow-
ing we will not distinguish between group elements and their representation. The
empty word A represents the unit in F. By K[F| we denote the free group ring,
i.e. the set of finite formal sums S°F | o, - t;, a; € K\{0}, t; € F where - denotes
multiplication with scalars and * will denote multiplication in K[F]. The elements
are called polynomials. The precedence a; < as < ... < a, < afl < ... <a, in-
duces a length lexicographical ordering on F denoted by < which is well-founded
and total, but unfortunately not admissible for F3. This ordering can be lifted to
K[F] and used to distinguish the head term HT(f), head coefficient HC(f)
and head monomial HM(f) of a polynomial f and HT(F) = {HT(f) | f € F}
for subsets F' of K[F] as usual. Identifying the elements of F by their represen-
tatives we define the syntactically motivated concept of prefix reduction: For two
non-zero polynomials p, f in K[F|, we say f prefix reduces p to ¢ at a mono-
mial « - t, « € K\{0}, ¢t € F of p in one step, denoted by p—>? q, if HT(f) is
a prefix of ¢ as a word (i.e. HT(f)w = t for some w € F where HT(f)w stands
for the concatenation of HT(f) and w and = denotes identity as words) and
q=p—a-HC(f)! fxw. We will call a basis G of a right ideal i in K[F] a
prefix Grobmner basis of i, if HT(i) = {uw | u € HT(G),w € F}. G is called
reduced if no polynomial in G is prefix reducible by another polynomial in G.
As in the commutative case congruences on the free group F are modeled using
special polynomials: A subset of the free group ring K[F] is called a binomial
basis of an ideal i C K[F], if it consists solely of polynomials of the form u — v
where u,v € F and u > v*. We will speak of binomial ideals in case they have
a binomial basis. Such ideals are strongly related to the word problem in groups
(compare [23, 17]) and hence are the appropriate connection to Tc. The FGLM
algorithm® (see [7, 8, 19]) was introduced as a tool to study the duality of ideals:
the central procedure MATPHI enumerates as a bonus the set N (called the nat-
ural basis of G there) of terms which are irreducible by the Griobner basis and a
table for the multiplication of elements in N by variables. Therefore, by combin-
ing a generalization of the MATPHI algorithm presented in [8] and prefix Grébner
bases [15, 16] we produce a coset enumeration procedure which is a verbatim
interpretation of Tc. An implementation of the procedure was done in MRcC (a
system for computing Grobner bases in monoid and group rings developed at the
University of Kaiserslautern).

3Notice that while X is minimal with respect to <, the ordering is not compatible with
multiplication as A < w then would imply Aow ' =w ™! <wow ! =\

4Those familiar with string rewriting systems should notice that prefix reducing a word u
with a binomial £ — r where £ > r directly corresponds to prefix string reducing u with a rule
(¢, r) followed by free reduction.

5The FGLM Algorithm has been generalized to the setting of finitely presented groups in

[5]-



The paper is organized as follows: In Section 2 we present the basics on Nielsen
reduction and T'C. Section 3 summarizes the necessary results from Grobner basis
theory which are applied in Section 4 to give a coset enumeration procedure based
on prefix Grobner bases in free group rings. Section 5 summarizes our results and
points out how our procedure can be transformed into a Knuth-Bendix type
completion procedure directly comparable to TcC.

2 The Subgroup Problem

Computational group theory provides two classical methods for dealing with the
subgroup problem: Nielsen reduced sets for subgroups in finitely generated free
groups and coset enumeration for subgroups in finitely presented groups.

2.1 Nielsen Reduction

Let us start by giving a short description of Nielsen’s method, which can be
found in more detail e.g. in [14]. Let F be a free group with generating set .
We call a word w = w; ... wg, w; € F, reduced, in case w = w; o...0 wy, i.e.,
jw| = 3% Jw;|. Subsets of F are written as U = {u; | i € N} or U = {u, ..., up}
depending on whether they are finite or not. The subgroup generated by U is the
set {syj0...08; |k€N,s; e UUU '} where U"' = {u"" | u € U}. Then we can
define elementary Nielsen transformations on a set U as follows:

(T1) Replace some u; € U by u; !, where u; ' denotes the inverse of w;.
(T2) Replace some u; € U by u; o u; where j # i.
(T3) Delete some u; € U where u; = A.

In all three cases it is understood that the u; remain unchanged for [ # 7. A
product of such elementary transformations is called a Nielsen transformation.

Lemma 1 If a subset U of F is carried into a set U' by a Nielsen transformation,
then U and U' generate the same subgroup.

We call a set U Nielsen reduced, if for all v, v9,v3 € U UU ! we have :
(NO) vy # A\

(N1) vy 0wy # X implies |vg 0 vy| > max{|v], |va|};

(N2) vy 0wy # X and vy 0wz # A imply |v1 0 vg 0 v > |vy| — |va| + |v3].

Nielsen reduced sets play an important role, as they are free generating sets for
the subgroup they generate. The following theorem due to Zieschang states that
freely reducing a product of elements of a Nielsen reduced set cannot result in
arbitrary cancellations on the elements involved.



Theorem 2 Let U be a Nielsen reduced set. Then for every u € U U U™ there
are words a(u) and m(u) with m(u) # X such that u = a(u)m(u)(a(u="))"" and
ifw=wuy0...0u, for someu; € UUU", u;ouiy # A, then the words m(u;)
remain uncanceled in the reduced form of w. In particular we get |w| > n.

This property can be used to solve the subgroup problem using Nielsen reduced
sets by computing Schreier coset representatives by prefix rewriting.

Theorem 3 Let U C F be a finite set. Then there is a Nielsen transformation
from U into some Nielsen reduced set V.

The proof of this theorem provided in [14] is constructive and gives rise to a
procedure for transforming a finite generating set of a subgroup into a Nielsen
reduced set. There are well-known algorithms for performing this task and Aven-
haus and Madlener have provided one which works in polynomial time (see [1]).
We will see later on how this can be done using prefix Grobner bases.

2.2 The Todd-Coxeter Coset Enumeration Procedure

The Todd-Coxeter coset enumeration (Tc) is a famous method from combina-
torial group theory for studying finitely presented groups (see e.g. [21, 10, 25]
for detailed descriptions). It is based on the following fundamental observations:
Presenting a group ¢ in terms of generators > and relators R corresponds to
viewing it as the quotient of the free group F (generated by X) by the normal
subgroup N generated by R. N can be viewed as the subgroup of F generated
by N(R) = {worow ! | w € F,r € R}. Notice that if R is finite, A/, while
finitely generated as a normal subgroup of F, need not be finitely generated as a
subgroup.

Now given a subgroup U of G for ¢ € G we can study the cosets Ug = {uo g |
ue U} of U in G. Since for g, h € G either Ug = Uh or UgNUK = () the group G
is a disjoint union of cosets and the number of different cosets is called the index
|G : U| of U in G. We know that if U is generated by a set U C G the index of
U in G is the same as the index of the subgroup H generated by U U N(R) in
JF. While it is undecidable whether a subgroup has finite index in a group, Tc
attempts to verify whether the index is finite.

In the following we will always assume that the group G and the subgroup U
are finitely presented respectively generated, i.e. the sets ¥, R and U are finite.
Moreover, Tc requires that each generator should occur in at least one relator.
Tc tries to compute the index of U in G using the following two facts for cosets:
For w € U we have Uu = U and for r € R and any coset Ug, g € G we have
U(gorog ) =U.

The procedure proceeds by filling two different kinds of tables with coset rep-
resentatives, (one row) tables for the subgroup generators u = ...z of the
form
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and (possibly infinite row) tables for the relators y; ...y, of the form

Yi - Ym
A‘ ‘)\

Depending on the strategy used for choosing the next slot in the tables different
types of equations (called defining, bonus and collapse) are deduced. While most
versions of TcC simply use numbers to represent the cosets, it is possible to de-
scribe them using appropriate words as coset representatives. Then the deduced
equations w; o a = w;, where w;, w; are words representing cosets and a € ¥,
lead to word equations w;a = w; or w; = w; depending on whether the last letter
of w; is a~ ' or not. If w;a = w; or w; = w; (i.e. the words of the left and right
side are identical) the equations are called trivial. Otherwise they are ordered
with respect to a well-founded ordering (in our case the length lexicographical
ordering defined in the previous section) and used as a prefix string rewriting sys-
tem (modulo free group reduction®) to simplify the existing equations. Of course
such a simplification can lead to new rules and to a new simplification and so
on. More details of this strategy can be found in [2, 24]. We only list some of
the properties and their interpretations here: If the index of ¢/ in G is finite the
procedure halts and produces a prefix closed set of coset representatives and a
multiplication table with entries w o a for each coset w and each a € ¥. The
(unique) coset representative for any word in £* can be computed by tracing
it through the multiplication table starting with A or equivalently by using the
multiplication table as a prefix string rewriting system as follows: To each coset
w, each a € ¥ and the respective coset w, corresponding to w o a, associate a
rule” woa — w, which is either of the form wa — w, or w' — w, depending
on whether the last letter of w is a .

Let us illustrate these findings with an example from [10], page 71:

Example 4

Let G be the Dyck group D(3,3,2) presented by ¥ = {a,b} and R =
{aaa, bbb, abab} and U the subgroup of G generated by {a}. The index of
U in G is 4 and Tc (using the length lexicographical ordering induced by
a < b < a' < b') computes the coset representatives {\,b,07" ba"'}, the
multiplication table

6We say a free reduced word w € F prefix reduces to v (modulo free group reduction) using
a rule £ — r if there exists x € F such that w =z and v =r o z.

"Notice that there are trivial rules among these where the left and right hand sides coincide
as words and these of course have to be removed in order to make the system terminating.



a b a” ! -1

b
A A b A b!
b b=t b7 o | A
b=l | ba™t | A b
ba ! b ba ' | bt | ba !
which corresponds to the prefix string rewriting system (omitting trivial rules)
a — Nal — XNbo —blbb—b'bla—bal bla? — b,
b'b' — b, ba'b —0b batla —btand ba b — ba .
The coset representative of the word aba can be deduced by either tracing the
multiplication table: A\oa= ), A\ob=0band boa=0b""', or by prefix reduction:
aba —"__, ba —>P b=! In both cases we find that aba lies in the coset

a—\ ba—sb—1
represented by b~! which is in fact the minimal representative of this coset.

S

3 Towards Grobner Bases

In commutative polynomial rings there is a strong relation between Grobner bases
of an ideal and its quotient ring. In fact Grobner bases enable computations
in the quotient ring by normal form computations. The quotient is determined
as a K-vector space by the natural basis associated to the reduced Grobner
basis of the ideal. This natural basis consists of those commutative terms which
are irreducible with respect to the Grobner basis, i.e. it is a regular subset of
the commutative terms (when viewed as a formal language). Of course such a
vector space basis is strongly dependent on the ordering chosen for computing
the Grobner basis. In [8] the procedure MATPHI is presented which, given a
reduced Grobner basis, enumerates the natural basis: This is done systematically
by initializing the natural basis to N = {A} and the set of border elements to
B = {X; | X;is a variable of the polynomial ring}. While there are elements in
B the minimal one 7 is removed and it is checked whether it is irreducible with
respect to the Grobner basis. If this is the case for each new element 7 added to N
the border elements 7.X; are added to B. On termination /N contains the natural
basis. Additionally MATPHI computes a multiplication table which for each m €
N and each variable X; contains the result of the normal form computation
normal.form(mX;, — ). While in general the entries of this multiplication table
are vectors, when restricted to binomial polynomials they can be interpreted as
terms. Notice that then the output is similar to the one produced by TC where
on termination we get a set of coset representatives and a multiplication table
g o a for all coset representatives g and a € X.

However, MATPHI works in the setting of commutative polynomial rings using a
Grobner basis as input while TC belongs to the setting of groups using arbitrary
relators and subgroup generators as input. In order to compare both methods,
we have to use the generalized setting presented in Section 1  binomial ideals
in free group rings and enable the new procedure to deal with possibly infinite



generating sets U U N(R) in a finitary manner.

To encode the input of TcC as binomials we associate the relators R and the
subgroup generators U with two sets of polynomials Fr = {r —1 | r € R} and
Fy = {u —1 | u € U}. Essentially we want to check whether the subgroup
generated by U U N(R) in F is finitely generated and this will be done in an
incremental fashion using the fact that for a given finitely generated subgroup
of a free group the membership problem can be solved using prefix Grobner
bases and the generating subset of the subgroup is then enlarged by adding
polynomials modified by left multiplication with suitable group elements in order
to “approximate” N(R).

To compute prefix Grobner bases of subgroups in the free group ring K[F] we
need the concept of weak prefix saturation: A set F' C K[F] is called weakly
prefix saturated if for every p € F, w € F we have pxw L)% 0. This becomes
necessary as the ordering on K[F] is no longer admissible (see [23] for the details).

Theorem 5 ([23]) A set F C K[F] is a prefiz Grobner basis of the right ideal
it generates if it is prefir reduced and weakly prefix saturated.

The property of being weakly saturated can be ensured for a set of polynomials
by using a procedure to compute a saturating set for a polynomial, i.e. a set
such that each right multiple of the polynomial prefix reduces to 0 in one step
by a polynomial in the saturating set. For free groups there are saturating sets
consisting of at most two polynomials called can and acan. In our setting of
binomials u — v, informally can(u — v) is gained from u — v by “shortening” the
head term u without losing its head position while acan(u — v) is derived from
can(u —v) by forcing the shortened head term to lose its head position by cutting
off its last letter. Then can(u—wv) = za—y and acan(u—v) = (za—y)oa ' where
z,y € F, a,a”" € ¥ and there exists w € F such that u = zaw, y = vow™',
HT(can(u — v)) = HT((u —v) ow™ ') = uow ' = za and HT(acan(u — v)) =
HT((u —v)ow ta ') =vow la ! =yal.

Procedure: PREFIX GROBNER BASES OF RIGHT IDEALS IN FREE GROUP
RINGS

Given: A finite set F' C K[F].
Find: @G, the monic reduced prefix Grobner basis of the right ideal generated by F.

G = {can(f),acan(f) | | € F}:
while there is g € G such that HT(g) is prefix reducible by G\{g} do

G = G\{g}

f = normal.form(g, —¢, );

% Compute a normal form (if non-zero with head coefficient 1).

if f#0

then G := GU{can(f),acan(f)};

endif

endwhile

10



Correctness and termination follow from the results presented in [23, 16]. The
procedure can be used to solve the subgroup problem for a subgroup in F:

Theorem 6 ([15]) Let U be the generating subset of a subgroup U in F. Then
w € F is an element of U if and only if w prefix reduces to 1 using a prefix
Grobner basis of the right ideal generated by {u — 1| u € U} in K[F].

In [23] it was shown how the computation of the monic prefix Grébner basis as
well as the resulting solution for the subgroup problem are related to Nielsen
reduction:

Theorem 7 Let U be a finite subset of F and G the monic reduced prefiz Grobner
of the right ideal generated by {u—1|u € U} in K[F]. Then the set Xq = {uv™" |
u—wv € G} is Nielsen reduced for U.

However, in general the subgroup H of F we are interested in is generated by
the set U U N(R) where the set of relators is not empty. We have to find a way
to treat this possibly infinitely generated subgroup of F in a finitary manner in
order to verify whether it is in fact finitely generated. The normal closure of a set
of relators R can be approached using a result similar to the one presented in [11]
to solve the ideal membership problem for two-sided ideals in solvable polynomial
rings using one-sided ideals (compare also Zharkov’s idea to compute Janet bases
in [27]). For a set F' C K[F]| let ideal (F') denote the two-sided and ideal, (F) the
right ideal generated by F' in K[F].

Theorem 8 ([16]) For F C K[F] the following properties are equivalent:
1. F is a prefic Grébner basis of ideal (F) and ideal (F') = ideal (F).

2. F is a prefix Grébner basis of ideal (F) and for allw € F, p € F we have
w* p € ideal, (F).

3. F is a prefir Grébner basis of ideal (F) and for all a € &, p € F we have
ax*p € ideal (F).

This theorem is the basis of a procedure which computes prefix Grobner bases
of two-sided ideals by iterating the computation of prefix Grobner bases and
extending them by multiplication with elements in ¥ until a prefix Grobner basis
of the two-sided ideal is computed. For a set of relators R, on input Fp = {r—1 |
r € R} this is equivalent to computing a prefix Grébner basis of an encoding of
the the normal closure of R and it halts if and only if the subgroup generated
by N(R) in F is finitely generated. This will be a special case of the procedure
presented in the next section.
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4 FEnumerating Cosets Using Grobner Tech-
niques

Let G, U, H and X, R, U be as defined before. In this section we combine the ideas
presented in Section 3 in order to give a procedure with the following output:

1. If R = () the procedure terminates with the monic prefix Grobner basis G
which allows to decide the subgroup problem for the subgroup generated
by U in F and to compute the Schreier coset representatives (with respect
to >). The set {uv~' | u — v € G} is Nielsen reduced for U.

2. If R # () then, similar to the Todd-Coxeter procedure, the procedure enu-
merates cosets of the subgroup generated by U U N(R) in F and on ter-
mination provides the set of all coset representatives of H in F and the
multiplication table for the cosets with elements in 3 encoded in the prefix
Grobner basis.

In contrast to T'C we do not need the assumption that each generator occurs in
at least one relator.

Let us start by giving an informal description of our procedure: The input are
encodings of the relators R and the subgroup generators U in binomial sets Frp =
{r—=1]r e R} and Fy = {u—1]| u € U}, respectively. All ring operations take
place in K[F]. The following sets are used by the procedure:

1. N C F contains potential coset representatives of H in F. This set corre-
sponds to the natural basis in MATPHI.

2. B C F is a test set for possible coset representatives of H in F. It corre-
sponds to the border set in M ATPHI.

3. H C K[F] is used to increment the generating set of the subgroup in order
to achieve a generating set for H.

4. G C K[F] is the monic prefix Grobner basis which is used to decide, whether
the candidates in B are indeed coset representatives of the subgroup gen-
erated so far or not.

In the first step, the procedure checks, whether the set of relators is empty. If this
is the case, the prefix Grobner basis of the set Fy is computed® and the output
of the procedure is this basis, which allows to solve the subgroup problem for U
and can be transformed into a Nielsen reduced set for U according to Theorem
7. If the set of relators is not empty the procedure starts to enumerate cosets:
The set N is initialized with the empty word which is the coset representative

8The steps in the computation of the prefix Grobner basis can be directly related to Nielsen
transformations (see [23]).
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of the subgroup itself. N will remain prefix closed throughout the computation,
i.e. it will contain all prefixes of its elements. The border set is B = {a | a € X}.
The set G contains the monic prefix Grobner basis? which allows to solve the
subgroup problem for the subgroup generated by U U R. Now, while there are
elements in B we proceed as follows: The smallest element 7 of B is removed.
Then if 7 is not prefix reducible by G, it is added to N and all border elements
7a are added to B where a € YL\{(¢(7))~'} and ({(7))~" is the inverse of the
last letter of the freely reduced word 7. Moreover, we compute the auxiliary set
H={rx(r—1)|r € R} In computing the monic prefix Grobner basis of the
set G U H we are then able to solve the subgroup problem for the subgroup now
generated by the previous generating set extended by the generators 7 or o7 1.
This of course corresponds to incrementally approaching the (infinite) generating
set U U N(R). According to the new prefix Grébner basis we have to “correct”
our set of possible cosets N. This is done by removing all elements with a prefix
reducible with the new prefix Grobner basis, as these elements are no longer coset
representatives of the incremented subgroup!®. Notice that this operation does
not change the property of N of being prefix closed. The procedure terminates
as soon as the set B becomes empty.

Procedure: EXTENDED TC SIMULATION

Given: Fp = {r —1|r € R}, a set of binomials encoding the relators.
Fy ={u—1|u € U}, a set of binomials encoding the subgroup generators.

N = {;
if R = () then G := prefix.groebner.basis(Fy );
else N := {\};

B:={a|a€X};
G := prefix.groebner.basis(Fr U Fiy);
while B # () do
T := min.(B);
B:= B\{7};
if 7 is not prefix reducible by G
then N :=NU{r}
Bi=BU{ra a€S\{(t(r) '}
H:={rx(r—1)|r—1¢€ Fgr};
G := prefix.groebner.basis(G U H);
S :={w € N | w is prefix reducible by G};
N := N\S;
endif

9The computation of the prefix Grébner basis is related to the filling of the first line of the
tables in Tc and the deduction of equations

10The set H realizes the addition of subgroup generators 7 o7 o7~ ! or in T¢ corresponds to
marking the first and last slot of each relator table with the newly found coset representative
T.

H'This corresponds to the coset collapses in Tc.

1
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endwhile
endif

On termination by construction N is either empty or a set of prefix closed coset
representatives with respect to the ordering >. The latter is ensured as for each
7 added to N the set B contains all border elements 7a, a € L\{(¢(7))"'} and
removing the set of elements S = {w € N | w is prefix reducible by G} from N
does not destroy the property of being prefix closed.

Moreover, we have the following important invariant for the case that R is not
empty: Let N,, B,, GG, denote the sets when starting the execution of the while
loop and N,,, B,,, GG, the ones at the end. Then for the sets N,,, B,,, and G,, at
the end of each loop we have that for each w which is not prefix reducible by G,
one of the following three conditions holds:

1. we N, or
2. w=wa,a€and w, €N, w€ B,, or
3. w=wawy, a €Y, wy € F and wy € N,,, wya € B,.

This is true for the sets N, = {\} and B, = {a | a € &} before entering the while
loop. Notice that due to the construction the elements prefix irreducible with
respect to G, are a (not necessarily proper) subset of those prefix irreducible with
respect to (G,. In the loop first the smallest element 7 is removed from B,. If it is
prefix reducible by G, the new sets are N,, = N,, B,, = B,\{7} and G,, = G, and
the property still holds, since then 7 cannot be a prefix of any element not prefix
reducible by G,,. Now if 7 is not prefix reducible by G, it is first added to N and
its border elements are added to B. We get (,, = prefix.groebner.basis(G, U H),
N, = (N,U{tH\S and B, = (B,\{7}) U{roa | a € S\{(¢(7))"'}}. Let w
be prefix irreducible with respect to G,,. Then w was also prefix irreducible with
respect to G, and we have to check the three possible cases:

1. If w € N,, since w is still prefix irreducible by ,, it cannot be in S, hence
w € N,,.

2. If w=wa, ac€®and w, € N,, w € B,, as w; € S we find w; € N, and
either r=w € N,, or w € B,,.

3. If w = wiaw,y, a € X, wy € F and wy € N, wia € B,, again as w;, € S we
find w; € N,, and 7 = wya € N,, or wia € B,,.

For non-empty R the procedure will only terminate when B becomes empty.
Then because of the invariant the set N must contain all elements of F which
are not prefix reducible by the final set G. The next theorem now states that
on termination the subgroup H generated by U U N(R) in F is in fact finitely
generated (by {uv™' | v —v € G}). G can be used to decide the subgroup
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problem for H by prefix reduction. Moreover, if R is not empty, GG contains the
respective (non-trivial) equations which are also generated by Tc and encode the
multiplication table for the cosets with generators as follows: For each polynomial
xa—1y where 2,y € F, a € ¥ we know that  and y are coset representatives and
the corresponding entry in the table for x and a is x oa = y.

Theorem 9 Let R and U be as specified above. If procedure EXTENDED TC
SIMULATION terminates, then the subgroup H generated by U UN (R) is finitely
generated.

Proof:

If the set of relators is empty H is generated by U and we are done. On the other
hand, for non-empty R on termination the set G' contains a prefix Grobner basis
which can be used to decide the subgroup membership problem for the subgroup
H, generated by the set U U {roaoroa oz |z € Nya€ X,r € R} in
F (compare Theorem 6). We have to show that #; is in fact H, the subgroup
generated by U U N(R) in F. This is done by proving that for any w € F,
r € R the element worow ! isin H;. Let us assume H; # H. Then there
is w € F minimal with respect to > such that for appropriate r € R we have
worow ' ¢ H,. The case w € N immediately gives us a contradiction to our
construction. Therefore, by our invariant w cannot be irreducible by G as this
would imply w € N. Hence let w = wywy such that w; is the head term of some
polynomial w; — v in G. Then we know w;v~' € H; and w > v o wy. Now we get
L=wvto(vowy)oro(vowsy) to(ww ) ! and as w was a minimal
counter example (vowy)oro (vowsy) ! € H,. But this impliesworow ! € H,
as wiv ', (wyv ')~ € H; contradicting our assumption. q.e.d.

worow

Now, if H is finitely generated and contains a non-trivial normal subgroup then
‘H has finite index in F (Proposition 3.11 in [14]). Since TC terminates in case H
has finite index in F it remains to show that this is also the case for procedure
EXTENDED TC SIMULATION.

Theorem 10 Let R and U be as specified above. If the subgroup generated by
U U N(R) has finite index in F, then procedure EXTENDED TC SIMULATION
terminates.

Proof:

Let the subgroup H generated by U U N(R) in F have finite index. If the set of
relators is empty then there is nothing to show. The set of coset representatives
can for example be computed by enumerating the set of elements which are
not prefix reducible by the obtained prefix Grobner basis G of the right ideal
generated by Fy.

Hence let us assume that R is not empty. As F is finitely generated H is also
finitely generated (Proposition 3.9 in [14]) and hence has a finite Schreier transver-
sal S. Then for s € S, a € ¥ and every soa there exists just one s, € S such that
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soa € Hs,. Since soa = hos, for some h € H we have soaos, ' =h € H. The
set {soaos, ' |s€ S, aeXUX} generates H (compare Chapter 1 in [10]).
But then {scaoros, ',;soros '|s€ Sa€X,re R} again is a generating
set for H as soaos, ' = (soaoros, )o(s,ortos, 1). Hence the procedure
will terminate at least after checking the candidates soa for s € S. q.e.d.

Reviewing Example 4 with ¥ = {a, b}, R = {aaa, abab, bbb} and U = {a} we get
the output N = {\,b,b"ba™'} and G = {a — 1,a" —1,ba — b ', ba 'a™" —
b=l ba b — ba "t ba b — ba b — b b ta —ba b e — b, b0 — b}
which corresponds to the non-trivial part of the multiplication table on page 8
when interpreting the polynomials as described above: Aoa = A\, Aoa ! = ),
boa =01 (ba)oat =bt(bat)ob="0bat (bat)obt =batbob =
bl b loa=0ba ' b'oa ! =00b"'ob ! = b Notice that the set G does not
give us the trivial relations as Aoz =z or z oz~ ! = ) for € X. They can be
applied to make the multiplication table complete. On the other hand G directly
corresponds to the prefix string rewriting system in Example 4 by translating
rules v — v into polynomials u — v and vice versa.

5 Conclusions

In this paper we have stated that there are strong links between the three fields
combinatorial group theory, string rewriting theory and Grobner basis theory
when studying group theoretical problems as the word problem and the subgroup
problem. The procedure EXTENDED T'C SIMULATION has been presented in the
setting of free group rings combining a generalization of the MATPHI procedure
from [8] and prefix Grobner bases from [15]. The implementation of the procedure
(done in the system MRC developed at Kaiserslautern) will be compared to Tc
implementations.

Let us close this section by sketching how this result closes the gap in comparing
Tc to KB type procedures in string rewriting. The case of the trivial subgroup
has successfully been treated in [2, 25] while for the general case a partial solution
was presented in [25] which did not necessarily terminate for subgroups of finite
index. Now using Knuth-Bendix techniques for prefix string rewriting systems
we can give a procedure analogous to EXTENDED TC SIMULATION and hence
to Tc. We say the rule £ — 7 with £ > r prefiz rewrites the word u € ¥* to
v if £ is a prefix of u, say v = fw, and v = rw. Note that in this setting no
free reduction steps are applied due to the fact that pure prefix string rewriting
takes place in the free monoid. Therefore, we have to add the inverse relators
{aa™",a 'a | a € 3} to the defining relators of the group. Let PREFIXKB be an
algorithm which given a finite set of rules £ — r, ¢, € ¥*, £ > r computes the
reduced equivalent convergent system.

Given: Fr={r — A|reR}U{aa! — N a'la— A|aeX}
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Fy={u— X ueU}

N = 0;
if R = () then G := prefix.kb(Fy);
else N := {\};

B:={a|aeX};
G := prefix.kb(Fr U Fp);
while B # () do
7 :=min.(B);
B = B\{r};
if 7 is not prefix string reducible by G
then N :=NU{7};
B:=BU{ra|a€X};
H:={mr —r71|r-—\e Fg};
G := prefix.kb(G U H);
S :={w € N | w is not prefix string reducible by G};
N := N\S;
endif
endwhile

endif

A thorough comparison of all three methods is provided in [24].
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