
Division is in Uniform TC0

William Hesse⋆

Department of Computer Science
University of Massachusetts

Amherst, MA 01002
FAX: (001) 413 545-1249
whesse@cs.umass.edu

Abstract. Integer division has been known since 1986 [4, 13, 12] to be in
slightly non-uniform TC0, i.e., computable by polynomial-size, constant
depth threshold circuits. This has been perhaps the outstanding natural
problem known to be in a standard circuit complexity class, but not
known to be in its uniform version. We show that indeed division is in
uniform TC0. A key step of our proof is the discovery of a first-order
formula expressing exponentiation modulo any number of polynomial
size.

1 Introduction

The exact complexity of integer division has been harder to pin down than the
complexities of addition, subtraction, and multiplication. In 1986, Beame, Cook,
and Hoover showed that iterated multiplication, and thus division, could be per-
formed by Boolean circuits of logarithmic depth (NC1 circuits) [4]. In 1987,
Reif showed that these circuits could be implemented as constant depth circuits
containing threshold gates (TC0 circuits) [12, 13]. Since then, the remaining is-
sue has been the complexity of constructing these circuits. Division is the only
prominent natural problem whose computation uses non-uniform circuits, cir-
cuits which require a non-trivial amount of computation for their construction.

The division problem discussed in this paper is the division of two n-bit
integers, given in binary, yielding their integer quotient, also in binary. A related
problem is the multiplication of n n-bit integers, computing their product as
a binary integer. These problems are easily reduced to each other, so that a
uniform circuit for one yields a uniform circuit for the other.

In this paper, we construct uniform constant depth circuits for division and
iterated multiplication. We work within the framework of descriptive complexity,
and show that there is a first-order formula using majority quantifiers that ex-
presses division. This implies that there is an FO-uniform TC0 circuit performing
division [3]. First-order (FO) uniformity, equivalent to DLOGTIME uniformity,
is the strongest uniformity requirement found to be generally applicable. A key
step focuses on the one step of the TC0 division computation not previously

⋆ Supported by NSF grant CCR-9877078.

known to be expressible by a first order formula with majority quantifiers (an
FO(M) formula). This is the problem of finding powers in the finite field Zp,
the integers modulo a prime, where p has O(log n) bits. We show that there is a
first-order formula without majority quantifiers computing powers in Zp. Thus
this subproblem is in FO, and can be computed with uniform AC0 circuits.

2 Definitions

We will express division as a predicate DIVISION(X, Y, i) which is true if and
only if bit i of ⌊X/Y ⌋ is 1. We denote numbers with n or nO(1) bits by capital
letters, and numbers with O(log n) bits by lowercase letters. We also refer to
numbers with O(log n) bits as small, and those with nO(1) bits as large. We
will always note the size of numbers with (log n)O(1) bits explicitly. The iterated
multiplication problem will be written as the predicate IMULT(A1, . . . , An, i)
which is true if bit i of

∏n
j=1 Aj is 1; i ranges from 0 to n2, and so has 2 logn

bits.
Though the size of the input to division is 2n+logn and the input to iterated

multiplication has size n2+2 logn, we will consider the input size, for all problems
in this paper, to be n, as the circuit complexity classes and descriptive complexity
classes we consider are closed under a polynomial change in the input size.

In this paper we produce simple logical formulas expressing these predicates.
A problem is in the complexity class FO (first order) if the predicate correspond-
ing to the decision problem can be expressed by a first order formula interpreted
over a finite universe, the set of natural numbers 0, . . . , n. The inputs to the
problem are encoded as relations over the universe, and are available to be used
in the formula. The fixed numeric relations < and BIT are also available1. For
example, the n bits of the input X to DIVISION are represented by the values of
a unary predicate X() on the elements of the universe: X(1), X(2), . . . , X(n). An
n2 bit input can be represented by a binary predicate, so the inputs A1, . . . , An

to IMULT are represented as a binary predicate A. Short inputs to a problem,
like i, the index of the result bit queried, may be represented by a constant in
the range 0, . . . , n, which can also be regardedas a free variable. Since an FO or
FO(M) formula over the universe 1, . . . , nk can be simulated by an equivalent
formula over the universe 1, . . . , n, DIVISION and IMULT with inputs X , Y ,
and Ai having nk bits, encoded by k-ary relations over 0, . . . n, are in the same
descriptive complexity class as DIVISION and IMULT with n-bit inputs.

DIVISION and IMULT are provably not in FO, as parity is FO reducible to
them, and parity is not in FO [8, 9]. They will be shown to be in the class FO(M),
problems described by first-order logic plus the majority quantifier. The majority
quantifier (Mx) can appear anywhere that an (∃x) or a (∀x) can appear. The
formula (Mx)ϕ(x) is true iff ϕ(j) is true for more than half the values 0 ≤ j ≤ n.

1 Following [10], we consider FO to include ordering and BIT. The BIT predicate
allows us to look at the bits of numbers. BIT(i, x) is true if bit i of the number x

written in binary is 1. This is equivalent to having addition and multiplication on
numbers between 0 and n.

These quantifiers let us count the number of 1 bits in a string of length n; the
counting quantifiers (∃!i x) are definable in terms of (Mx). These quantifiers are
analogous to gates with n inputs that output 1 iff at least i of their inputs are
1, called threshold gates. We see next how an FO(M) formula is equivalent to a
circuit containing threshold gates.

A TC0 circuit is a constant-depth, polynomial-size circuit with AND, OR,
NOT, and threshold gates with arbitrary fanin. If the type of each gate and the
connections between gates can be computed by a deterministic logtime Turing
machine, or equivalently by an FO formula, then the circuit is FO-uniform.
The equivalence of FO-uniform TC0 circuits and FO(M) formulas is shown by
Barrington, Immerman, and Straubing in [3]. The Boolean function computed
by an FO-uniform TC0 circuit can be computed by an FO(M) formula, a first
order formula using majority quantifiers, ordering, and BIT. The converse also
holds; any FO(M) formula can be turned into a uniform TC0 circuit. Here and
throughout the paper, uniform will mean FO-uniform.

TC0 is contained in the circuit complexity class NC1, which contains all prob-
lems decided by Boolean circuits containing NOT gates, and AND and OR gates
with two inputs, with nO(1) gates, n inputs, and depth O(log n). TC0 contains
the class AC0 of constant depth polynomial size circuits without threshold gates.
FO-uniform AC0 circuits are equivalent to FO formulas with only existential and
universal quantifiers, no majority quantifiers [3].

3 Previous work

As stated in the introduction, Beame, Cook, and Hoover, et. al. gave NC1 cir-
cuits deciding DIVISION and IMULT in 1986 [4]. They also gave a polynomial
time algorithm for constructing the n’th circuit. Reif showed how to convert these
to constant-depth threshold circuits a year later [13, 12]. Immerman and Landau
then observed that the construction was logspace uniform given the product of
the first n3 primes, implying that the full construction was TC1 uniform [11].

These circuits were based on finding the remainders of the inputs on division
by a set of small primes. The value of a number modulo a set of primes uniquely
determines its value modulo the product of those primes. This is referred to as
the Chinese remainder representation (CRR). The circuits work by converting
the inputs to CRR, computing iterated products in that representation, and con-
verting the output to binary. In the later 1990s, Chiu, Davida, and Litow devised
new ways of computing in CRR that reduced the complexity of converting from
CRR into binary [5, 6]. These steps allowed them to construct logspace-uniform
and NC1-uniform TC0 circuits for division and iterated multiplication.

Allender and Barrington reinterpreted those results in the framework of de-
scriptive complexity, and showed that the only difficulty in expressing iterated
multiplication and division in FO(M) was the difficulty of raising numbers to
a power modulo a small prime [2]. The current paper completes this effort by
showing that this power predicate lies in FO. As division is complete for FO(M)

via FO Turing reductions, it is unlikely that the complexity of division can be
further reduced.

4 Division reduces to POW

The key problem examined by this paper is POW, the predicate expressing
exponentiation modulo a prime. For a small prime p, and small arguments a, r,
and b,

POW(a, r, b, p) ⇐⇒ ar ≡ b (mod p) .

To be exact, we have a family of problems POWk log n(a, r, b, p) for k = 1, 2, . . .,
where the inputs to POWk log n have size k log n. An input with k log n bits can be
represented by a k-tuple of variables taking values in 0, . . . , n. Thus POWk log n is
a 4k-ary numeric relation. Though the inputs have O(log n) bits, we consider the
descriptive complexity of this problem as if it had input size n. We ask whether
this predicate can be represented by FO or FO(M) formulas over the universe
0, . . . , n.

Allender, Barrington, and the author showed that DIVISION and IMULT
are in FO(M) if and only if POW is in FO(M) [2]. They did this by showing
that DIVISION and IMULT are FO-Turing reducible to POW. A version of
this proof, with additional simplifications, is in the full version of this paper.
The predicate POW is used to convert inputs from binary to CRR, and to find
discrete logarithms in the multiplicative group Z∗

p of integers mod p for primes
p in the CRR basis.

FO-Turing reducibility in descriptive complexity classes is formally defined
using generalized quantifiers in [10]. In the case of an FO-Turing reduction to
POW, we shall not use this full formal definition, but a simpler characterization
of FO-Turing reducibility to a relation. In the case of POW(a, r, b, p), which
could be considered as a primitive numeric relation of arity 4k (if the inputs
have k log n bits), we can express FO(M) Turing reducibility to POW by simply
saying a predicate ϕ is FO(M) Turing reducible to POW if and only if there is
an FO(M) formula with numeric relations ≤, BIT , and POW that expresses ϕ.
This is equivalent to saying ϕ ∈ FO(M, POW). Clearly, if POW is in FO(M),
then FO(M,POW)= FO(M). We replace all uses of POW in a formula ϕ with the
equivalent FO(M) formula. This is all we shall need to use about the reduction
from DIVISION and IMULT to POW.

5 POW is FO-Turing reducible to IMULTO(logn) and
DIVISIONO((logn)2)

We now show that we can produce an FO formula deciding POW, provided that
we allow the formula to use the results of certain smaller IMULT and DIVISION
problems. These problems will have inputs constructed by FO formulas from
the inputs to POW, or from the outputs of other small IMULT and DIVISION
problems. This can be characterized as an FO-Turing reduction from POW to

these smaller versions of IMULT and DIVISION. Later we will show that these
smaller versions of IMULT and DIVISION are in FO(M), and then show that
they are in FO.

The scaled versions of IMULT and DIVISION have (log n)O(1)-bit inputs.
We still consider them as having input size n, however, so we shall define them
as

IMULT(log n)k(A1, . . . , An, j) =

IMULT(A1, . . . , An, j) ∧ (∀i)Ai < 2(log n)k

∧ (∀i > (log n)k)Ai = 1

DIVISION(log n)k(X, Y, i) = DIVISION(X, Y, i) ∧ X < 2(log n)k

∧ Y < 2(log n)k

.

Thus we only have to give correct answers to the problems when the inputs
are small. An FO Turing reduction to these problems is more complicated than
an FO(M) Turing reduction to POW because the inputs to these problems have
ω(log n) bits and so must be given as relations, not as first-order variables. We
shall only point out where these problems are used in our first-order expression
for POW, and state the implications if we have FO or FO(M) expressions for
them.

To show that POW is in FO, we will prove a more general lemma about
finding powers in groups. This is interesting in its own right, and necessary
for the extension to finding powers modulo prime power moduli. We consider a
group to be given in FO if group elements are labeled by elements of the universe
and the product operation is given by an FO formula. Note that the identity
element and inverse operation can be defined in FO from the product operation.
We can also continue to use arithmetic operations on the universe, considered
as the numbers 0, . . . , n.

Lemma 1. Finding small powers in any group of order n is FO Turing-reducible
to finding the product of log n elements.

Proof. Suppose we want to find ar, where a is an element of a group of order n.
We will compute a set of elements a1, . . . , ak and exponents u, u1, . . . , uk such
that

ar = auau1

1 · · · auk

k

and ui < 2 log n, u < 2(logn)2.

Step 1. We choose a set of k = o(log n) primes d1, . . . , dk, such that di < 2 logn
and di is relatively prime to n, for all i. We choose them such that n < D =
d1d2 · · ·dk < n2. We can do this with a first order formula by choosing the first
D > n such that D is square-free, D and n are relatively prime, and all prime
factors of D are less than 2 logn. We can decide, given D, whether a number is
one of our di or not. To compute the number k from D, and to find our list di as
a relation between i and di, requires, for each prime p0 < 2 logn, counting the
number of primes p dividing D which are less than p0. We can do this using the
BITSUM predicate, which counts the number of one bits in a log n bit number:
BITSUM(x, y) is true if the binary representation of x contains y ones. This is
shown to be in FO in [3].

Step 2. We calculate ai = a⌊n/di⌋ as follows:
First we calculate ni = n mod di. Compute a−1 using the inverse operation.

We find a−ni by multiplying ni copies of a−1 together. This is one place where
our Turing reduction to multiplication of log n group elements is used.

We can find a⌊n/di⌋ by observing that

(a⌊n/di⌋)di = a⌊n/di⌋di = an−(n mod di) = an−ni = a−ni .

Observe that there is exactly one group element x such that xdi = a−ni : Let d−1
i

be the multiplicative inverse to di mod n, i.e. that did
−1
i = mn + 1 for some m.

Then

x = xmn+1 = (xdi)d−1
i = (a−ni)d−1

i .

Thus we can find ai = a⌊n/di⌋ as the value of x in the expression

(∃x) xdi = a−ni

We compute xdi using multiplication of log n elements. We could not compute

a⌊n/di⌋ directly as (a−ni)d−1
i since d−1

i is not necessarily O(log n).

Step 3. Now we find the exponents u,u1, . . . ,uk such that auau1
1 · · · auk

k = ar.
Since ai = a⌊n/di⌋,

au1
1 · · ·auk

k = a

(
∑

k

i=1
ui⌊n/di⌋

)

,

and since ar = auau1
1 · · · auk

k = a

(

u+
∑

k

i=1
ui⌊n/di⌋

)

,

u ≡ r −

k
∑

i=1

ui⌊
n

di
⌋ (mod n) .

Thus, to make the final correction term au computable, we must make u as
small as possible, and so we want to make

∑k
i=1 ui⌊n/di⌋ mod n as close to r as

possible. To approximate r as a linear combination of ⌊n/di⌋, we use the Chinese
remainder theorem.

Compute f = ⌊rD/n⌋. This step requires r to have O(log n) bits. Using the
Chinese remainder theorem, if we let Di = D/di, and let ui = fD−1

i mod di,
then

k
∑

i=1

uiDi ≡ f (mod D) . Let m be s.t.

k
∑

i=1

uiDi = f + mD .

We can calculate ui in FO, since we can guess the possibilities for D−1
i in

FO. Calculating u from the ui involves a sum of k small numbers, which, since
k < log n, is in FO. This, again, uses the fact that BITSUM is in FO.

We now show that u < (log n)2. We calculate the difference between r and
∑

ui⌊n/di⌋:

k
∑

i=1

ui⌊
n

di
⌋ =

k
∑

i=1

uin

di
−

k
∑

i=1

(
uin

di
− ui⌊

n

di
⌋)

=
n

D

k
∑

i=1

uiDi −
k

∑

i=1

ui(
n

di
− ⌊

n

di
⌋)

=
n

D
(f + mD) −

k
∑

i=1

ui(
n

di
− ⌊

n

di
⌋)

=
n

D
⌊
rD

n
⌋ + nm −

k
∑

i=1

ui(
n

di
− ⌊

n

di
⌋)

= r −
n

D
(
rD

n
− ⌊

rD

n
⌋) + nm −

k
∑

i=1

ui(
n

di
− ⌊

n

di
⌋) , so

u = r −

k
∑

i=1

ui⌊
n

di
⌋ mod n =

n

D
(
rD

n
− ⌊

rD

n
⌋) +

k
∑

i=1

ui(
n

di
− ⌊

n

di
⌋) .

The quantity y − ⌊y⌋ is always between 0 and 1, and since n/D < 1, ui <
2 logn, and k < log n, we see that u < 2(log n)2 + 1. Thus we can calculate au

using two rounds of multiplying log n group elements.

Thus we have described group elements ai and numbers u, ui such that
auau1

1 · · · auk

k = ar and the computation of auau1
1 · · · auk

k is FO Turing reducible
to the product of log n group elements. ⊓⊔

Because FO is closed under polynomial change in input size, and the product
of log(nk) = k log n group elements is FO reducible to the product of log n group
elements, we have

Corollary 1. Finding powers in any group of order nk is FO Turing-reducible
to finding the product of log n elements.

Representing a group of order nk means representing elements as k-tuples of
universe elements, and representing the product operation in FO.

We now apply this to the integers modulo p, where p = O(nk) is a prime. The
multiplicative group Z∗

p contains the p−1 integers 1, . . . , p−1, and multiplication
in this group is clearly first-order definable from multiplication and addition on
0, . . . , n. If a in POW(a, r, b, p) is zero, then we only need to check that b is zero.
Otherwise, we find ar in the multiplicative group Z∗

p . The product of log n group
elements can be computed with IMULTk log n and DIVISIONk log2 n, so we have
the main lemma of this section:

Lemma 2. POW is FO-Turing reducible to IMULTO(log n) and DIVISIONO((log n)2).

6 DIVISION(logn)O(1) and IMULT(logn)O(1) are in FO(M)

Since our end result is that DIVISION and IMULT are in FO(M), it should
be no surprise that the logarithmically smaller versions DIVISION(log n)O(1) and
IMULT(log n)O(1) are in FO(M). We will prove that these smaller versions are in
FO(M) by reducing them to POWO(log log n), and showing that POWO(log log n)

is in FO.
Just as we have introduced scaled versions of IMULT and DIVISION, we use

a scaled version of POW:

POWk log log n(a, r, b, p) = POW(a, r, b, p) ∧ a, r, b, p < 2k log log n

The FO(M) Turing reduction of IMULTnO(1) to POW = POWO(log n) shown
by Allender et. al [2] scales to become an FO(M) Turing reduction of IMULT(log n)O(1)

to POWO(log log n). This can be seen as follows: consider the FO(M) reduction

on the problem with (log n)O(1) input size, which is a Turing reduction using
FO(M) formulas over the universe with (log n)O(1) elements to the correspond-
ingly scaled version of POW, POWO(log log n). But any FO(M) formula over the
smaller universe can be simulated by an FO(M) formula over the larger universe,
so this is an FO(M) reduction from IMULT(log n)O(1) to POWO(log log n).

Showing that POWO(log log n) is in FO can be done directly. Suppose the
modulus p, the exponent r, and the base a all have fewer than k log log n bits.
The numbers ai = a⌊r/2i⌋ mod p, with i ranging from 0 to k log log n can be
guessed simultaneously, since there are k log log n of them, each with k log log n
bits. An existential choice of a number x from 0 to n − 1 can be thought of as
a non-deterministic simultaneous guess of log n bits, so we can certainly simul-
taneously guess (k log log n)2 bits. There is exactly one choice of the numbers
a1, . . . , ak log log n such that the following conditions hold:

ak log log n = a⌊r/2k log log n⌋ = a0 = 1 and (∀i) ai ≡ a2
i+1a

ri (mod p) ,

where ri is bit i of r.
Extracting the numbers ai out of our log n bit choice x and checking that

they meet the above conditions can be done with an FO formula. Extracting a0

gives us ar mod p.
Thus we have concluded that POWO(log log n) is in FO. Since we have an

FO(M) Turing reduction from IMULT(log n)O(1) and DIVISION(log n)O(1) to
POWO(log log n), we can conclude

Theorem 1. IMULT(log n)O(1) and DIVISION(log n)O(1) are in FO(M).

7 DIVISION and IMULT are in FO(M)

Since we have an FO Turing reduction from POW to IMULTO(log n) and
DIVISIONO(log2 n), we can conclude that we have an FO(M) formula for POW.
Finally, using the FO(M) Turing reduction from IMULT and DIVISION to
POW, we arrive at our main result.

Theorem 2. Iterated multiplication of n n-bit numbers and division of 2 n-bit
numbers is in FO(M).

By the equivalence of FO(M) to FO-uniform TC0, we have

Corollary 2. Iterated multiplication of n n-bit numbers and division of 2 n-bit
numbers is in FO-uniform TC0.

As both of these classes are closed under polynomial change in the input size,
these results also hold for inputs with nO(1) bits.

8 POW is in FO

An additional result of the theorem that IMULT and DIVISION are in FO(M),
is that IMULT(log n)O(1) and DIVISION(log n)O(1) are in FO. This is because any
FO(M) formula over a universe 0, . . . , log n has an equivalent FO formula over
the universe 0, . . . , n.

The fact that FO is closed under the introduction of counting quantifiers with
polylogarithmic bounds is established in [1, 7]. Since IMULT(log n)O(1) is equiva-

lent to IMULT with input size (log n)O(1), it is expressed by an FO(M) formula
over 0, . . . , log n. Therefore, IMULT(log n)O(1) is expressed by an FO formula, and
similarly DIVISION(log n)O(1) is in FO, and we have

Theorem 3. IMULT(log n)O(1) and DIVISION(log n)O(1) are in FO.

This theorem gives us a tight bound on the size of cases of IMULT that are
in FO. Since we know that PARITYf(n) is in FO iff f(n) = (log n)O(1), from
H̊astad [9], and PARITY is easily FO many-one reducible to multiplication of
two numbers, which is FO many-one reducible to IMULT of the same size, we
can conclude that IMULTf(n) is in FO iff f(n) = (log n)O(1).

Since our proof that POW was in FO(M) included an FO Turing reduction
from POW to DIVISIONO((log n)2) and IMULTO(log n), and we now have FO for-
mulas expressing DIVISIONO((log n)2) and IMULTO(log n), we can now conclude
that POW is in FO. Since the restriction that the inputs to POW have O(log n)
bits is equivalent to requiring that the inputs be in the range 0, . . . , n, we have
our second main result.

Theorem 4. The predicate POW(a, r, b, p) which is true iff ar ≡ b (mod p),
with p prime, can be expressed by an FO formula over the universe 0, . . . , n, if
a, r, b, p ≤ n.

This result can be extended to exponentiation modulo any small number n,
not just modulo a prime. We can see that the equation

ar ≡ b (mod n)

is true if and only if it is true modulo all the prime power factors of n:

ar ≡ b (mod pi) ∀pi|n .

We can show that for a relatively prime to pi, a is in the group Z∗
pi , and the

above proof can be applied. If p divides a, then if r > log n, ar ≡ 0 (mod pi).
If r ≤ log n, then IMULT(log n)O(1) can be applied. Since the prime power factors
of a small number n can be found in FO, we have

Corollary 3. The predicate ar ≡ b (mod n), with the inputs written in unary,
is in FO.

Finally, note that the property that any predicate expressible in FO over the
universe 0, . . . , nk is expressible in FO over 0, . . . , n lets us conclude that the
predicate ar ≡ b(mod n) is in FO if the inputs have O(log n) bits, but not that
it is in FO with inputs of (log n)O(1) bits. This is different from the results we
have for IMULT(log n)O(1) and DIVISION(log n)O(1) .

9 Conclusions

Our main theorem states that division and iterated multiplication are in fully
uniform TC0. This is significant on its own and also because it eliminates the
most important example of a problem known to be in a circuit complexity class,
but not known to be in the corresponding uniform complexity class.

We also proved that exponentiation modulo a number is in FO when the
inputs have O(log n) bits. This result was quite unexpected, since the problem
was previously not even known to be in FO(M). It remains unknown if exponen-
tiation modulo a number with (log n)O(1) bits is in FO, or even in FO(M).

Finally, we have found a tight bound on the size of division and iterated
multiplication problems that are in FO. We now know that these problems are
in FO if and only if their inputs have (log n)O(1) bits. Instances of the problems
with larger inputs are known not to be in FO.

9.1 Acknowledgments

These results were found while working on [2] with Eric Allender and David Mix
Barrington, who generously urged me to publish them separately.

References

1. M. Ajtai and M. Ben-Or. A theorem on probabilistic constant depth computations.
In ACM Symposium on Theory of Computing (STOC ’84), pages 471–474, 1984.
ACM Press.

2. E. Allender, D. A. Mix Barrington, and W. Hesse. Uniform circuits for division:
Consequences and problems. To appear in Proceedings of the 16th Annual IEEE
Conference on Computational Complexity (CCC-2001), 2001. IEEE Computer So-
ciety.

3. D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1.
Journal of Computer and System Sciences, 41:274–306, 1990.

4. P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and
related problems. SIAM Journal on Computing, 15(4):994–1003, 1986.

5. A. Chiu, G. Davida, and B. Litow. NC1 division. online at
http://www.cs.jcu.edu.au/∼bruce/papers/crr00 3.ps.gz.

6. G. I. Davida and B. Litow. Fast Parallel Arithmetic via Modular Representation.
SIAM Journal of Computing, 20(4):756–765, 1991.

7. R. Fagin, M. M. Klawe, N. J. Pippenger, and L. Stockmeyer. Bounded-depth,
polynomial-size circuits for symmetric functions. Theoretical Computer Science,
36(2-3):239–250, 1985.

8. M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time
hierarchy. In 22nd Annual Symposium on Foundations of Computer Science, 260–
270, 1981. IEEE.

9. J. Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings
of the Eighteenth Annual ACM Symposium on Theory of Computing, 6–20, 1986.

10. N. Immerman. Descriptive Complexity. Springer-Verlag, New York, 1999.
11. N. Immerman and S. Landau. The complexity of iterated multiplication. Infor-

mation and Computation, 116(1):103–116, 1995.
12. J. H. Reif. On threshold circuits and polynomial computation. In Proceedings,

Structure in Complexity Theory, Second Annual Conference, pages 118–123, IEEE
Computer Society Press.

13. J. H. Reif and S. R. Tate. On threshold circuits and polynomial computation.
SIAM Journal on Computing, 21(5):896–908, 1992.

