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Abstract 
An increase in network speeds and addition of new 
services in the Internet has increased the demand for 
intelligence and flexibility in network systems. This 
paper explores the extent to which an emergent class 
of programmable networking devices – network 
processors, can be used to deliver more efficient, 
innovative services to multimedia applications. We 
present and experimentally evaluate an architecture 
model, which enables the dynamic creation of 
application-specific services on programmable 
communication devices, using the Intel IXP2400 
network processor and an image manipulation 
application. 
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1. Introduction 
An increase in speed of networks and addition of new 
services in the Internet has increased the demand for 
intelligence and flexibility in network systems. 
Distributed multiplayer video games based on 
distributed virtual environments are becoming 
increasingly popular. These applications involve 
periodic exchange of messages between the 
participating machines using some distributed 
agreement protocol. On the other hand distributed 
streaming applications involve large volumes of 
audio/video data to be transmitted across a wide range 
of clients [6]. Both these class of applications need 
two kinds of strict requirements: (1) bandwidth to send 
large amount of data, and (2) processing power in 
participating hosts to ensure timely processing and 
distribution of the content on continuous basis. These 
applications typically rely on the existence of an 
underlying communication infrastructure, such as 
application-level overlays or peer-to-peer networks. 
Application-specific processing actions are executed at 

intermediate nodes to implement data distribution 
functionality and ensure end-user QoS requirements.  

Recent advancement in the network speed 
(Gigabit networks) has far reduced our concern about 
the bandwidth needed for such applications. However, 
the increase in sustainable bandwidth continues to 
present challenges. First, the growth in the network 
speed is fast approaching the memory interface speeds 
of general-purpose processors, making even a single 
memory reference impact the performance of the 
network application. Though the network is able to 
deliver data at high speeds, the overlay host machine 
becomes a bottleneck in processing and delivering 
them.  Second, the increase in diverse mobile and 
wireless end-user platforms has created demand for 
continuous delivery of application services in resource 
poor environments (e.g., low-bandwidth connectivity, 
and limited computation power). In order to meet the 
high-bandwidth, low and predictable latency 
requirements of multimedia applications, additional 
processing needs to be applied to the data path in the 
overlays.  

We argue that such processing and distribution of 
high bandwidth data must be carried out in the 
fastpath to get the maximum performance. The 
fastpath processing could be entirely supported by 
dedicated hardware, if only for their cost and 
inflexibility. With emergence of high-speed 
programmable network processors (NPs), software 
based solutions are considered feasible compared to 
their costly hardware based counterparts. Performance 
of previous implementations of software based router 
and QoS has strengthened the cause of exploring 
various services that can be added at network 
processor level [1,4,5,8]. Network processors such as 
IXP 2xxx series are one such high-speed 
programmable processor, which meets these 
requirements with less cost and greater flexibility 
through their programmable nature. 

This paper presents and evaluates a flexible 
architecture which supports efficient execution of 
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variety of services required in distributed media 
applications. 

2. Distributed Media Services 
A wide range of multimedia services could be 
supported at the network level with the use of high-
speed network processors. We can broadly classify 
these services as 1) path transforming services 
(PathX) -- manipulation on the media stream, and 2) 
data transforming services (DataX) -- manipulation of 
the data content. 

The first set includes services such as routing, 
multicasting, broadcasting, prioritizing, filtering, etc. 
For example, removing certain frames from an MPEG 
stream to produce an MPEG video with reduced, but 
still satisfactory quality can be easily supported on 
these platforms. All of these services would require 
access and manipulation of the protocol and 
application level headers, but still leave the data 
content unmodified.  

The second category includes services such as 
transforming/transcoding the data in different format 
representation, down sampling image quality by 
modifying the image, cropping the image to match to 
client view, compression algorithms, encryption, etc. 
Applications which require such functionality at the 
network level, include visualization of remote 
experiments, or camera-captured data for a pool of 
clients with wide range of interests in the ongoing 
visualization, and/or which use devices with varying 
computational or networking capabilities. These 
applications need services that (1) render appropriate 
view of imaging data on behalf of the clients, and (2) 
match the quality of the image stream to the client’s 
interests, or device and connection capabilities.  

Finally, consider services like application-level IP 
multicasting, needed in variety of distributed media 
applications. In these services, once the data is 
received, it needs to be duplicated to ‘n’ other 
members, as indicated in the routing tables. Such 
duplication involves heavy copying, and imposes 
additional loads on the host’s memory and I/O 
infrastructure. Moreover these packets need to be 
received by the network adapter, processed through 
the IP and UDP/TCP stacks and then delivered to the 
application, which manages multicast routing 
functionality. One could remove this multi layer 
approach by handling such duplication at the network 
level itself. One approach could be to program such 
multicasting logic into programmable networking 
devices such as NPs. Such programmable processors 
provide sufficient headroom for carrying out 
application level packet manipulation and in the fast 
path [4,2]. 

2.1. IXP 2xxx Architecture 
The proposed architecture assumes the availability of 
programmable communication cores or network cards 
at (at least some) nodes participating in the distributed 
infrastructure. Our implementation uses network 
processors from the Intel IXP family, specifically the 
IXP2400, attached to standard Linux-based hosts, to 
represent these future platforms. We assume that any 
network processing platform will have similar 
architecture and functionality of Intel IXP 2400. The 
feature that is important from the perspective of our 
design is the presence of multiple processing engines 
(such as the microengines of IXP2400), which can be 
pipelined in arbitrary manner to perform certain tasks. 
We briefly outline the key architectural features of the 
IXP2400 architecture. For more detailed information 
on the IXP2400 refer to [3].  

The Intel IXP2xxx network processors have 
specialized hardware to support network operations, 
which gives the ability to implement network services 
with high packet throughput and low latency. Apart 
from network centric operations, it also provides 
support for data processing in the form of CRC 
checksum calculations, integer arithmetic etc. The 
IXP2400 chip includes eight 8-way multithreaded 
microengines for data movement and processing, an 
Xscale core for management and other functions, local 
SRAM and DRAM controllers and an integral PCI 
interface with three DMA channels. The Radisys 
ENP2611 board on which the IXP2400 resides 
includes a 600MHz IXP2400, 256MB DRAM, 8MB 
SRAM, a POS-PHY Level 3 FPGA which connects to 
3 Gigabit interfaces and a PCI interface. An Xscale 
core, running Linux, is primarily used for 
initialization, management and debugging. The 
IXP2400 is attached to hosts running standard Linux 
kernels over a PCI interface. Data is delivered to and 
from the host-resident application components through 
the IXP’s network interfaces.  

Apart from the above-mentioned features, there is 
wide range of tools (simulator, debuggers, etc.) 
available for application developers. 

3. System Architecture 
The high-level view of the distributed infrastructure 
targeted by our work can be described as follows. 
Media data is exchanged on continuous basis on top of 
an application-level overlay. The data may traverse 
intermediate nodes on the path from sources to 
destinations. The processing at these intermediate 
nodes may involve solely overlay routing actions, or 
may require additional application-specific data 
content and path manipulations. Based on the 



processing actions required, or the existing loads at 
intermediate nodes, the data path may be mapped to 
their dedicated communication subsystems, at the 
network interface level. The mapping of processing 
actions to individual nodes in the overlay is 
responsibility of the middleware utilized by the 
distributed applications, and is not the focus of this 
paper. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: System Architecture Overview 
 

Individual nodes enhanced with programmable 
communication interfaces, similar to those discussed 
in [2] are depicted in Figure 1. In addition to data 
distribution functionality, the general-purpose host 
CPU may execute other application components. The 
distribution of data in the overlay, and deployment of 
processing on behalf of overlay clients is managed by 
a Distribution Manager. This layer drives any 
reconfiguration actions through which the data path 
through this node can be offloaded onto the 
communication interface (e.g., programmable NIC, 
attached NP, dedicated communication core, etc.).  

The core functionality implemented on the fast 
path is encapsulated by the Rx and Tx tasks, which 
implement receive- and transmit-side protocol 
processing. Additional DataX and PathX tasks may be 
deployed on the fast path to implemented new 
services, thereby forming a processing pipeline. 
Depending on the underlying platform architecture and 
resource availability, DataX and PathX tasks are 
mapped to separate execution contexts (e.g., threads, 
microengines, processing elements). This may be 
particularly needed for DataX tasks, which have 
greater computational requirements and include 
repeated access to data content stored in chip memory. 
PathX tasks may be combined and executed jointly 
with the Tx processing. Compositions of DataX and 
PathX tasks can be formed to represent variety of 
services, ranging from data filter, transcoding, or 
multicast [2,6]. 

The processing executed as part of the DataX and 
PathX blocks can be dynamically configured through 
the host-resident FastPath Configuration interface. 

4. Implementation Detail 
As an instance of the pipelined architecture, we have 
implemented a Packet Forwarding Application and an 
Image Filtering Application to benchmark application 
level data manipulation in fastpath. Our current 
implementation assigns individual blocks from the 
fastpath pipeline to separate microengines on the 
IXP2400 NPs. Communication between pipeline 
stages is implemented through controlled access to 
shared ring buffers. SRAM based data descriptors 
describe the application level data, stored across 
multiple DRAM resident buffers. Communication 
with the host-resident control processes occurs via 
using shared mailboxes implemented on top of a PCI-
based interface, similar to [2]. Fastpath 
reconfiguration requires involvement of the Xscale 
core, and has already been implemented for the 
previous generation IXP NPs with practically 
negligible service interruption (28-30 microseconds). 
Additional implementation details appear in the 
extended version of this paper [7].   
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5. Performance Analysis 
We have carried out different sets of experiments to 
analyze the performance of application level data 
manipulation.  

Experimental setup. We perform the 
experiments in two different setups. The first is purely 
host-based and the data path from source to destination 
traverses an intermediate general-purpose host.  In the 
second setup, the data path traverses an IXP NP on its 
route to destination. In each case, additional 
processing is applied to the data at the intermediate 
node. Our host machines are 4 CPU with Intel Xeon 
processors, each with 2.4 GHz clock speed. The IXP 
test-bed uses the aforementioned Radisys ENP2611 
boards, with eight microengines running at 600 MHz 
each. In order to simulate additional processing on the 
intermediate nodes in a distributed infrastructure, we 
run a CPU intensive process on the host machines, the 
applu application from the CPU2000 benchmark 
suite. The experiments use data streams generated 
from a flow of PPM images of varying sizes (which 
span multiple Ethernet frames), transmitted at 
maximum rates. 

 In the host based experiments, the image streams 
are sent from the source host to the intermediate one 
via UDP. Here, the user level application component 
waits for the entire application-level data to arrive 



(i.e., entire image) and then either forwards or grey 
scales the image and sends it to the destination host. 
At the destination, we either use raw sockets to capture 
Ethernet frames or receive the data using UDP 
depending on the performance measurement needed. 
For latency measurements we use UDP at the 
destination, but for measuring the throughput we need 
to capture Ethernet frames of these UDP packets, and 
therefore use raw sockets.  

For the IXP based test-bed, the image is 
packetized into Ethernet frames and is pumped into the 
LAN through raw sockets. The IXP network processor 
receives them and either forwards or grey filters the 
image before dispatching it to the destination host. At 
the destination, we again use raw socket application to 
capture the Ethernet frames. 

End-to-End latency. PPM images are fragmented 
into 1500 bytes Ethernet frames and are put into the 
LAN using the raw sockets. The first timestamp is 
recorded when all the Ethernet frames are sent into the 
LAN and the second one when we receive all the 
frames at destination. We repeat the same experiment 
with the source and destination interchanged. This is 
done in order to remove the discrepancies in the two 
host machines clocks. We average the results from 
these measurements to get the actual end-to-end 
latency between these hosts. The experiment is carried 
out both on the host based test bed and the IXP based 
test bed.  Table 1 shows the end-to-end latency for 
images of different sizes. The results show that, there 
is a substantial latency difference between host-based 
test bed and the IXP-based test bed for images of 
lesser size and significantly less difference when the 
image size is big. This is because the kernel/user space 
overhead and the stack-processing (UDP/IP) overhead 
are quite significant compared to the processing 
carried out on the data content itself. 
Image 
size 
(B) 

Number 
of frames 

IXP 
latency 
(usec) 

Host 
latency 
(usec) 

Latency 
decrease 
(%) 

57616 41 7150 8290 16 
14436 11 1935 2956 52 
3636 3 621 1499 141 
936 1 340 1256 269 
Table 1. End-to-end latency for the IXP-based vs. Host-
based test-bed for grey scaling service 
 
Throughput.  Here again, we evaluate a PathX 
forwarding task, and a DataX grey scaling task. At the 
destination host, we measure the total time to receive 
the entire image stream, and compute the attained 
throughput. The results are presented in Table 2. In 
both case the IXP-based implementation of the service 
outperforms the host-one. Simulation measurements 
indicate that the IXP-based implementation will 

significantly outperform the host-based 
implementation under increased network loads, in 
spite of the disparity of the computational capacity of 
the host CPUs vs. the IXP microengines. 

 IXP-based 
(Mbps) 

Host-based 
(Mbps) 

Gains (%) 

DatX 94.7 93.9 1 
PathX 94.5 91.8 3 

Table 2. Through measurements for the host- vs. IXP-based 
test-bed. 

6. Conclusions 
Technology advances have created the ability to bring 
intelligence into the networking infrastructure, and this 
work explores one architecture which, using off-the-
shelf communication devices, can deliver improved 
levels of support for a range of services needed in 
distributed multimedia applications. 
Acknowledgment: Ramkumar Gandhapuneni and 
Prashant Thakare worked on the original 
implementation of the imaging application. 
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