
An Approach Towards Enabling Intelligent
Networking Services for Distributed Multimedia

Applications
Srikanth Sundaragopalan, Ada Gavrilovska, Sanjay Kumar, Karsten Schwan

{srikanth, ada, ksanjay, schwan}@cc.gatech.edu

Center for Experimental Research in Computer Science
Georgia Institute of Technology, Atlanta, Georgia 30332-0280

Abstract
An increase in network speeds and addition of new
services in the Internet has increased the demand for
intelligence and flexibility in network systems. This
paper explores the extent to which an emergent class
of programmable networking devices – network
processors, can be used to deliver more efficient,
innovative services to multimedia applications. We
present and experimentally evaluate an architecture
model, which enables the dynamic creation of
application-specific services on programmable
communication devices, using the Intel IXP2400
network processor and an image manipulation
application.

Keywords: network processors, IXP, IP Multicast,
streaming applications

1. Introduction
An increase in speed of networks and addition of new
services in the Internet has increased the demand for
intelligence and flexibility in network systems.
Distributed multiplayer video games based on
distributed virtual environments are becoming
increasingly popular. These applications involve
periodic exchange of messages between the
participating machines using some distributed
agreement protocol. On the other hand distributed
streaming applications involve large volumes of
audio/video data to be transmitted across a wide range
of clients [6]. Both these class of applications need
two kinds of strict requirements: (1) bandwidth to send
large amount of data, and (2) processing power in
participating hosts to ensure timely processing and
distribution of the content on continuous basis. These
applications typically rely on the existence of an
underlying communication infrastructure, such as
application-level overlays or peer-to-peer networks.
Application-specific processing actions are executed at

intermediate nodes to implement data distribution
functionality and ensure end-user QoS requirements.

Recent advancement in the network speed
(Gigabit networks) has far reduced our concern about
the bandwidth needed for such applications. However,
the increase in sustainable bandwidth continues to
present challenges. First, the growth in the network
speed is fast approaching the memory interface speeds
of general-purpose processors, making even a single
memory reference impact the performance of the
network application. Though the network is able to
deliver data at high speeds, the overlay host machine
becomes a bottleneck in processing and delivering
them. Second, the increase in diverse mobile and
wireless end-user platforms has created demand for
continuous delivery of application services in resource
poor environments (e.g., low-bandwidth connectivity,
and limited computation power). In order to meet the
high-bandwidth, low and predictable latency
requirements of multimedia applications, additional
processing needs to be applied to the data path in the
overlays.

We argue that such processing and distribution of
high bandwidth data must be carried out in the
fastpath to get the maximum performance. The
fastpath processing could be entirely supported by
dedicated hardware, if only for their cost and
inflexibility. With emergence of high-speed
programmable network processors (NPs), software
based solutions are considered feasible compared to
their costly hardware based counterparts. Performance
of previous implementations of software based router
and QoS has strengthened the cause of exploring
various services that can be added at network
processor level [1,4,5,8]. Network processors such as
IXP 2xxx series are one such high-speed
programmable processor, which meets these
requirements with less cost and greater flexibility
through their programmable nature.

This paper presents and evaluates a flexible
architecture which supports efficient execution of

mailto:srikanth, ada, ksanjay, schwan}@cc.gatech.edu

variety of services required in distributed media
applications.

2. Distributed Media Services
A wide range of multimedia services could be
supported at the network level with the use of high-
speed network processors. We can broadly classify
these services as 1) path transforming services
(PathX) -- manipulation on the media stream, and 2)
data transforming services (DataX) -- manipulation of
the data content.

The first set includes services such as routing,
multicasting, broadcasting, prioritizing, filtering, etc.
For example, removing certain frames from an MPEG
stream to produce an MPEG video with reduced, but
still satisfactory quality can be easily supported on
these platforms. All of these services would require
access and manipulation of the protocol and
application level headers, but still leave the data
content unmodified.

The second category includes services such as
transforming/transcoding the data in different format
representation, down sampling image quality by
modifying the image, cropping the image to match to
client view, compression algorithms, encryption, etc.
Applications which require such functionality at the
network level, include visualization of remote
experiments, or camera-captured data for a pool of
clients with wide range of interests in the ongoing
visualization, and/or which use devices with varying
computational or networking capabilities. These
applications need services that (1) render appropriate
view of imaging data on behalf of the clients, and (2)
match the quality of the image stream to the client’s
interests, or device and connection capabilities.

Finally, consider services like application-level IP
multicasting, needed in variety of distributed media
applications. In these services, once the data is
received, it needs to be duplicated to ‘n’ other
members, as indicated in the routing tables. Such
duplication involves heavy copying, and imposes
additional loads on the host’s memory and I/O
infrastructure. Moreover these packets need to be
received by the network adapter, processed through
the IP and UDP/TCP stacks and then delivered to the
application, which manages multicast routing
functionality. One could remove this multi layer
approach by handling such duplication at the network
level itself. One approach could be to program such
multicasting logic into programmable networking
devices such as NPs. Such programmable processors
provide sufficient headroom for carrying out
application level packet manipulation and in the fast
path [4,2].

2.1. IXP 2xxx Architecture
The proposed architecture assumes the availability of
programmable communication cores or network cards
at (at least some) nodes participating in the distributed
infrastructure. Our implementation uses network
processors from the Intel IXP family, specifically the
IXP2400, attached to standard Linux-based hosts, to
represent these future platforms. We assume that any
network processing platform will have similar
architecture and functionality of Intel IXP 2400. The
feature that is important from the perspective of our
design is the presence of multiple processing engines
(such as the microengines of IXP2400), which can be
pipelined in arbitrary manner to perform certain tasks.
We briefly outline the key architectural features of the
IXP2400 architecture. For more detailed information
on the IXP2400 refer to [3].

The Intel IXP2xxx network processors have
specialized hardware to support network operations,
which gives the ability to implement network services
with high packet throughput and low latency. Apart
from network centric operations, it also provides
support for data processing in the form of CRC
checksum calculations, integer arithmetic etc. The
IXP2400 chip includes eight 8-way multithreaded
microengines for data movement and processing, an
Xscale core for management and other functions, local
SRAM and DRAM controllers and an integral PCI
interface with three DMA channels. The Radisys
ENP2611 board on which the IXP2400 resides
includes a 600MHz IXP2400, 256MB DRAM, 8MB
SRAM, a POS-PHY Level 3 FPGA which connects to
3 Gigabit interfaces and a PCI interface. An Xscale
core, running Linux, is primarily used for
initialization, management and debugging. The
IXP2400 is attached to hosts running standard Linux
kernels over a PCI interface. Data is delivered to and
from the host-resident application components through
the IXP’s network interfaces.

Apart from the above-mentioned features, there is
wide range of tools (simulator, debuggers, etc.)
available for application developers.

3. System Architecture
The high-level view of the distributed infrastructure
targeted by our work can be described as follows.
Media data is exchanged on continuous basis on top of
an application-level overlay. The data may traverse
intermediate nodes on the path from sources to
destinations. The processing at these intermediate
nodes may involve solely overlay routing actions, or
may require additional application-specific data
content and path manipulations. Based on the

processing actions required, or the existing loads at
intermediate nodes, the data path may be mapped to
their dedicated communication subsystems, at the
network interface level. The mapping of processing
actions to individual nodes in the overlay is
responsibility of the middleware utilized by the
distributed applications, and is not the focus of this
paper.

Fig. 1: System Architecture Overview

Individual nodes enhanced with programmable
communication interfaces, similar to those discussed
in [2] are depicted in Figure 1. In addition to data
distribution functionality, the general-purpose host
CPU may execute other application components. The
distribution of data in the overlay, and deployment of
processing on behalf of overlay clients is managed by
a Distribution Manager. This layer drives any
reconfiguration actions through which the data path
through this node can be offloaded onto the
communication interface (e.g., programmable NIC,
attached NP, dedicated communication core, etc.).

The core functionality implemented on the fast
path is encapsulated by the Rx and Tx tasks, which
implement receive- and transmit-side protocol
processing. Additional DataX and PathX tasks may be
deployed on the fast path to implemented new
services, thereby forming a processing pipeline.
Depending on the underlying platform architecture and
resource availability, DataX and PathX tasks are
mapped to separate execution contexts (e.g., threads,
microengines, processing elements). This may be
particularly needed for DataX tasks, which have
greater computational requirements and include
repeated access to data content stored in chip memory.
PathX tasks may be combined and executed jointly
with the Tx processing. Compositions of DataX and
PathX tasks can be formed to represent variety of
services, ranging from data filter, transcoding, or
multicast [2,6].

The processing executed as part of the DataX and
PathX blocks can be dynamically configured through
the host-resident FastPath Configuration interface.

4. Implementation Detail
As an instance of the pipelined architecture, we have
implemented a Packet Forwarding Application and an
Image Filtering Application to benchmark application
level data manipulation in fastpath. Our current
implementation assigns individual blocks from the
fastpath pipeline to separate microengines on the
IXP2400 NPs. Communication between pipeline
stages is implemented through controlled access to
shared ring buffers. SRAM based data descriptors
describe the application level data, stored across
multiple DRAM resident buffers. Communication
with the host-resident control processes occurs via
using shared mailboxes implemented on top of a PCI-
based interface, similar to [2]. Fastpath
reconfiguration requires involvement of the Xscale
core, and has already been implemented for the
previous generation IXP NPs with practically
negligible service interruption (28-30 microseconds).
Additional implementation details appear in the
extended version of this paper [7].

H
O
S
T

Application

Data Distribution Mgt

Fast Path (Re-

)config

control plane

Rx Tx Data

X
Path

X

fastpath NI

5. Performance Analysis
We have carried out different sets of experiments to
analyze the performance of application level data
manipulation.

Experimental setup. We perform the
experiments in two different setups. The first is purely
host-based and the data path from source to destination
traverses an intermediate general-purpose host. In the
second setup, the data path traverses an IXP NP on its
route to destination. In each case, additional
processing is applied to the data at the intermediate
node. Our host machines are 4 CPU with Intel Xeon
processors, each with 2.4 GHz clock speed. The IXP
test-bed uses the aforementioned Radisys ENP2611
boards, with eight microengines running at 600 MHz
each. In order to simulate additional processing on the
intermediate nodes in a distributed infrastructure, we
run a CPU intensive process on the host machines, the
applu application from the CPU2000 benchmark
suite. The experiments use data streams generated
from a flow of PPM images of varying sizes (which
span multiple Ethernet frames), transmitted at
maximum rates.

 In the host based experiments, the image streams
are sent from the source host to the intermediate one
via UDP. Here, the user level application component
waits for the entire application-level data to arrive

(i.e., entire image) and then either forwards or grey
scales the image and sends it to the destination host.
At the destination, we either use raw sockets to capture
Ethernet frames or receive the data using UDP
depending on the performance measurement needed.
For latency measurements we use UDP at the
destination, but for measuring the throughput we need
to capture Ethernet frames of these UDP packets, and
therefore use raw sockets.

For the IXP based test-bed, the image is
packetized into Ethernet frames and is pumped into the
LAN through raw sockets. The IXP network processor
receives them and either forwards or grey filters the
image before dispatching it to the destination host. At
the destination, we again use raw socket application to
capture the Ethernet frames.

End-to-End latency. PPM images are fragmented
into 1500 bytes Ethernet frames and are put into the
LAN using the raw sockets. The first timestamp is
recorded when all the Ethernet frames are sent into the
LAN and the second one when we receive all the
frames at destination. We repeat the same experiment
with the source and destination interchanged. This is
done in order to remove the discrepancies in the two
host machines clocks. We average the results from
these measurements to get the actual end-to-end
latency between these hosts. The experiment is carried
out both on the host based test bed and the IXP based
test bed. Table 1 shows the end-to-end latency for
images of different sizes. The results show that, there
is a substantial latency difference between host-based
test bed and the IXP-based test bed for images of
lesser size and significantly less difference when the
image size is big. This is because the kernel/user space
overhead and the stack-processing (UDP/IP) overhead
are quite significant compared to the processing
carried out on the data content itself.
Image
size
(B)

Number
of frames

IXP
latency
(usec)

Host
latency
(usec)

Latency
decrease
(%)

57616 41 7150 8290 16
14436 11 1935 2956 52
3636 3 621 1499 141
936 1 340 1256 269
Table 1. End-to-end latency for the IXP-based vs. Host-
based test-bed for grey scaling service

Throughput. Here again, we evaluate a PathX
forwarding task, and a DataX grey scaling task. At the
destination host, we measure the total time to receive
the entire image stream, and compute the attained
throughput. The results are presented in Table 2. In
both case the IXP-based implementation of the service
outperforms the host-one. Simulation measurements
indicate that the IXP-based implementation will

significantly outperform the host-based
implementation under increased network loads, in
spite of the disparity of the computational capacity of
the host CPUs vs. the IXP microengines.

 IXP-based
(Mbps)

Host-based
(Mbps)

Gains (%)

DatX 94.7 93.9 1
PathX 94.5 91.8 3

Table 2. Through measurements for the host- vs. IXP-based
test-bed.

6. Conclusions
Technology advances have created the ability to bring
intelligence into the networking infrastructure, and this
work explores one architecture which, using off-the-
shelf communication devices, can deliver improved
levels of support for a range of services needed in
distributed multimedia applications.
Acknowledgment: Ramkumar Gandhapuneni and
Prashant Thakare worked on the original
implementation of the imaging application.

7. References
[1] A. Gavrilovska, S. Kumar, K. Schwan, The

Execution of Event-Action Rules on
Programmable Network Processors, OASIS
2004, held with ASPLOS-XI, Oct. 2004.

[2] A. Gavrilovska, K. Schwan, O. Nordstrom, H.
Seifu, Network Processors as Building Blocks in
Overlay Networks, Hot Interconnects, 2003.

[3] IXP Intel Network Processor Family,
http://developer.intel.com/design/npfamily

[4] T. Spalink, S. Karlin, L. Peterson, Y. Gottlieb,
Building a Robust Software-Based Router Using
Network Processors, SOSP 2001.

[5] Y-D. Lin, Y-N. Lin, S-C. Yang, Y-S. Lin,
DiffServ over Network Processors:
Implementation and Evaluation, Proc. of Hot
Interconnects 10, Aug. 2002.

[6] S. Roy, J. Ankcorn, S. Wee, An Architecture for
Componentized, Network-Based Media
Services, Proc. of IEEE International
Conference on Multimedia and Expo, Jul, 2003.

[7] S. Sundaragopalan, A. Gavrilovska, S. Kumar,
K. Schwan, An Approach Towards Enabling
Intelligent Networking Services for Distributed
Multimedia Applications, CERCS Technical
Report, GIT-CERCS-05-12, Apr. 2005

[8] X. Zhuang, W. Shi, I. Paul, K. Schwan, Efficient
Implementation of the DWCS Algorithm on
High-Speed Programmable Network Processors,
Proc. of Multimedia Networks and Systems
(MMNS), Oct. 2002.

http://developer.intel.com/design/npfamily

