
E�cient Algorithms for Speech Recognition

Mosur K. Ravishankar

May 15, 1996

CMU-CS-96-143

School of Computer Science
Computer Science Division
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial ful�llment of the requirements

for the degree of Doctor of Philosophy.

Thesis Committee:

Roberto Bisiani, co-chair (University of Milan)
Raj Reddy, co-chair
Alexander Rudnicky

Richard Stern
Wayne Ward

c 1996 Mosur K. Ravishankar

This research was supported by the Department of the Navy, Naval Research Laboratory under
Grant No. N00014-93-1-2005. The views and conclusions contained in this document are those of
the author and should not be interpreted as representing the o�cial policies, either expressed or
implied, of the U.S. government.

Keywords: Speech recognition, search algorithms, real time recognition, lexical
tree search, lattice search, fast match algorithms, memory size reduction.

Abstract

Advances in speech technology and computing power have created a surge of
interest in the practical application of speech recognition. However, the most accurate
speech recognition systems in the research world are still far too slow and expensive to
be used in practical, large vocabulary continuous speech applications. Their main goal
has been recognition accuracy, with emphasis on acoustic and language modelling.
But practical speech recognition also requires the computation to be carried out in
real time within the limited resources|CPU power and memory size|of commonly
available computers. There has been relatively little work in this direction while
preserving the accuracy of research systems.

In this thesis, we focus on e�cient and accurate speech recognition. It is easy to
improve recognition speed and reduce memory requirements by trading away accu-
racy, for example by greater pruning, and using simpler acoustic and language models.
It is much harder to improve both the recognition speed and reduce main memory
size while preserving the accuracy.

This thesis presents several techniques for improving the overall performance of
the CMU Sphinx-II system. Sphinx-II employs semi-continuous hidden Markov mod-
els for acoustics and trigram language models, and is one of the premier research
systems of its kind. The techniques in this thesis are validated on several widely used
benchmark test sets using two vocabulary sizes of about 20K and 58K words.

The main contributions of this thesis are an 8-fold speedup and 4-fold memory size
reduction over the baseline Sphinx-II system. The improvement in speed is obtained
from the following techniques: lexical tree search, phonetic fast match heuristic, and
global best path search of the word lattice. The gain in speed from the tree search is
about a factor of 5. The phonetic fast match heuristic speeds up the tree search by
another factor of 2 by �nding the most likely candidate phones active at any time.
Though the tree search incurs some loss of accuracy, it also produces compact word
lattices with low error rate which can be rescored for accuracy. Such a rescoring is
combined with the best path algorithm to �nd a globally optimum path through a
word lattice. This recovers the original accuracy of the baseline system. The total
recognition time is about 3 times real time for the 20K task on a 175MHz DEC Alpha
workstation.

The memory requirements of Sphinx-II are minimized by reducing the sizes of
the acoustic and language models. The language model is maintained on disk and
bigrams and trigrams are read in on demand. Explicit software caching mechanisms
e�ectively overcome the disk access latencies. The acoustic model size is reduced by
simply truncating precision of probability values to 8 bits. Several other engineering
solutions, not explored in this thesis, can be applied to reduce memory requirements
further. The memory size for the 20K task is reduced to about 30-40MB.

i

ii

Acknowledgements

I cannot overstate the debt I owe to Roberto Bisiani and Raj Reddy. They have
not only helped me and given me every opportunity to extend my professional career,
but also helped me through personal di�culties as well. It is quite remarkable that I
have landed not one but two advisors that combine integrity towards research with a
human touch that transcends the proverbial hard-headedness of science. One cannot
hope for better mentors than them. Alex Rudnicky, Rich Stern, and Wayne Ward,
all have a clarity of thinking and self-expression that simply amazes me without end.
They have given me the most insightful advice, comments, and questions that I could
have asked for. Thank you, all.

The CMU speech group has been a pleasure to work with. First of all, I would
like to thank some former and current members, Mei-Yuh Hwang, Fil Alleva, Lin
Chase, Eric Thayer, Sunil Issar, Bob Weide, and Roni Rosenfeld. They have helped
me through the early stages of my induction into the group, and later given invaluable
support in my work. I'm fortunate to have inherited the work of Mei-Yuh and Fil.
Lin Chase has been a great friend and sounding board for ideas through these years.
Eric has been all of that and a great o�cemate. I have learnt a lot from discussions
with Paul Placeway. The rest of the speech group and the robust gang has made it a
most lively environment to work in. I hope the charge continues through Sphinx-III
and beyond.

I have spent a good fraction of my life in the CMU-CS community so far. It has
been, and still is, the greatest intellectual environment. The spirit of cooperation, and
informality of interactions as simply unique. I would like to acknowledge the support
of everyone I have ever come to know here, too many to name, from the Warp and
Nectar days until now. The administrative folks have always succeeded in blunting
the edge o� a di�cult day. You never know what nickname Catherine Copetas will
christen you with next. And Sharon Burks has always put up with all my antics.

It goes without saying that I owe everything to my parents. I have had tremendous
support from my brothers, and some very special uncles and aunts. In particular, I
must mention the fun I've had with my brother Kuts. I would also like to acknowledge
K. Gopinath's help during my stay in Bangalore. Finally, \BB", who has su�ered
through my tantrums on bad days, kept me in touch with the rest of the world, has a
most creative outlook on the commonplace, can drive me nuts some days, but when
all is said and done, is a most relaxed and comfortable person to have around.

Last but not least, I would like to thank Andreas Nowatzyk, Monica Lam, Duane
Northcutt and Ray Clark. It has been my good fortune to witness and participate in
some of Andreas's creative work. This thesis owes a lot to his unending support and
encouragement.

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 The Modelling Problem : 3

1.2 The Search Problem : 5

1.3 Thesis Contributions : 7

1.3.1 Improving Speed : 8

1.3.2 Reducing Memory Size : 8

1.4 Summary and Dissertation Outline : : : : : : : : : : : : : : : : : : : 9

2 Background 11

2.1 Acoustic Modelling : 11

2.1.1 Phones and Triphones : 11

2.1.2 HMM modelling of Phones and Triphones : : : : : : : : : : : 12

2.2 Language Modelling : 13

2.3 Search Algorithms : 15

2.3.1 Viterbi Beam Search : 15

2.4 Related Work : 17

2.4.1 Tree Structured Lexicons : 17

2.4.2 Memory Size and Speed Improvements in Whisper : : : : : : 19

2.4.3 Search Pruning Using Posterior Phone Probabilities : : : : : : 20

v

2.4.4 Lower Complexity Viterbi Algorithm : : : : : : : : : : : : : : 20

2.5 Summary : 21

3 The Sphinx-II Baseline System 22

3.1 Knowledge Sources : 24

3.1.1 Acoustic Model : 24

3.1.2 Pronunciation Lexicon : 26

3.2 Forward Beam Search : 26

3.2.1 Flat Lexical Structure : 26

3.2.2 Incorporating the Language Model : : : : : : : : : : : : : : : 27

3.2.3 Cross-Word Triphone Modeling : : : : : : : : : : : : : : : : : 28

3.2.4 The Forward Search : 31

3.3 Backward and A* Search : 36

3.3.1 Backward Viterbi Search : 37

3.3.2 A* Search : 37

3.4 Baseline Sphinx-II System Performance : : : : : : : : : : : : : : : : : 38

3.4.1 Experimentation Methodology : : : : : : : : : : : : : : : : : : 39

3.4.2 Recognition Accuracy : 41

3.4.3 Search Speed : 42

3.4.4 Memory Usage : 45

3.5 Baseline System Summary : 48

4 Search Speed Optimization 49

4.1 Motivation : 49

4.2 Lexical Tree Search : 51

4.2.1 Lexical Tree Construction : 54

4.2.2 Incorporating Language Model Probabilities : : : : : : : : : : 56

4.2.3 Outline of Tree Search Algorithm : : : : : : : : : : : : : : : : 61

4.2.4 Performance of Lexical Tree Search : : : : : : : : : : : : : : : 62

4.2.5 Lexical Tree Search Summary : : : : : : : : : : : : : : : : : : 67

vi

4.3 Global Best Path Search : 68

4.3.1 Best Path Search Algorithm : : : : : : : : : : : : : : : : : : : 68

4.3.2 Performance : 73

4.3.3 Best Path Search Summary : : : : : : : : : : : : : : : : : : : 74

4.4 Rescoring Tree-Search Word Lattice : : : : : : : : : : : : : : : : : : : 76

4.4.1 Motivation : 76

4.4.2 Performance : 76

4.4.3 Summary : 78

4.5 Phonetic Fast Match : 78

4.5.1 Motivation : 78

4.5.2 Details of Phonetic Fast Match : : : : : : : : : : : : : : : : : 80

4.5.3 Performance of Fast Match Using All Senones : : : : : : : : : 84

4.5.4 Performance of Fast Match Using CI Senones : : : : : : : : : 87

4.5.5 Phonetic Fast Match Summary : : : : : : : : : : : : : : : : : 88

4.6 Exploiting Concurrency : 89

4.6.1 Multiple Levels of Concurrency : : : : : : : : : : : : : : : : : 90

4.6.2 Parallelization Summary : 93

4.7 Summary of Search Speed Optimization : : : : : : : : : : : : : : : : 93

5 Memory Size Reduction 97

5.1 Senone Mixture Weights Compression : : : : : : : : : : : : : : : : : : 97

5.2 Disk-Based Language Models : 98

5.3 Summary of Experiments on Memory Size : : : : : : : : : : : : : : : 100

6 Small Vocabulary Systems 101

6.1 General Issues : 101

6.2 Performance on ATIS : 102

6.2.1 Baseline System Performance : : : : : : : : : : : : : : : : : : 102

6.2.2 Performance of Lexical Tree Based System : : : : : : : : : : : 103

6.3 Small Vocabulary Systems Summary : : : : : : : : : : : : : : : : : : 106

vii

7 Conclusion 107

7.1 Summary of Results : 108

7.2 Contributions : 109

7.3 Future Work on E�cient Speech Recognition : : : : : : : : : : : : : : 111

Appendices

A The Sphinx-II Phone Set 115

B Statistical Signi�cance Tests 116

B.1 20K Task : 117

B.2 58K Task : 121

Bibliography 125

viii

List of Figures

2.1 Viterbi Search as Dynamic Programming : : : : : : : : : : : : : : : : 15

3.1 Sphinx-II Signal Processing Front End. : : : : : : : : : : : : : : : : : 24

3.2 Sphinx-II HMM Topology: 5-State Bakis Model. : : : : : : : : : : : : 25

3.3 Cross-word Triphone Modelling at Word Ends in Sphinx-II. : : : : : : 29

3.4 Word Initial Triphone HMM Modelling in Sphinx-II. : : : : : : : : : 31

3.5 One Frame of Forward Viterbi Beam Search in the Baseline System. : 33

3.6 Word Transitions in Sphinx-II Baseline System. : : : : : : : : : : : : 35

3.7 Outline of A* Algorithm in Baseline System : : : : : : : : : : : : : : 38

3.8 Language Model Structure in Baseline Sphinx-II System. : : : : : : : 46

4.1 Basephone Lexical Tree Example. : 52

4.2 Triphone Lexical Tree Example. : 55

4.3 Cross-Word Transitions With Flat and Tree Lexicons. : : : : : : : : : 57

4.4 Auxiliary Flat Lexical Structure for Bigram Transitions. : : : : : : : 58

4.5 Path Score Adjustment Factor f for Word wj Upon Its Exit. : : : : : 59

4.6 One Frame of Forward Viterbi Beam Search in Tree Search Algorithm. 63

4.7 Word Lattice for Utterance: Take Fidelity's case as an example. : : : 69

4.8 Word Lattice Example Represented as a DAG. : : : : : : : : : : : : : 70

4.9 Word Lattice DAG Example Using a Trigram Grammar. : : : : : : : 71

4.10 Suboptimal Usage of Trigrams in Sphinx-II Viterbi Search. : : : : : : 73

4.11 Base Phones Predicted by Top Scoring Senones in Each Frame; Speech
Fragment for Phrase THIS TREND, Pronounced DH-IX-S T-R-EH-
N-DD. : 81

ix

4.12 Position of Correct Phone in Ranking Created by Phonetic Fast Match. 82

4.13 Lookahead Window for Smoothing the Active Phone List. : : : : : : 83

4.14 Phonetic Fast Match Performance Using All Senones (20K Task). : : 85

4.15 Word Error Rate vs Recognition Speed of Various Systems. : : : : : : 94

4.16 Con�guration of a Practical Speech Recognition System. : : : : : : : 95

x

List of Tables

3.1 No. of Words and Sentences in Each Test Set : : : : : : : : : : : : : 40

3.2 Percentage Word Error Rate of Baseline Sphinx-II System. : : : : : : 41

3.3 Overall Execution Times of Baseline Sphinx-II System (xRealTime). : 43

3.4 Baseline Sphinx-II System Forward Viterbi Search Execution Times
(xRealTime). : 43

3.5 HMMs Evaluated Per Frame in Baseline Sphinx-II System. : : : : : : 44

3.6 N -gram Transitions Per Frame in Baseline Sphinx-II System. : : : : : 45

4.1 No. of Nodes at Each Level in Tree and Flat Lexicons. : : : : : : : : 55

4.2 Execution Times for Lexical Tree Viterbi Search. : : : : : : : : : : : 64

4.3 Breakdown of Tree Viterbi Search Execution Times (xRealTime). : : 65

4.4 No. of HMMs Evaluated Per Frame in Lexical Tree Search. : : : : : : 65

4.5 No. of Language Model Operations/Frame in Lexical Tree Search. : : 65

4.6 Word Error Rates for Lexical Tree Viterbi Search. : : : : : : : : : : : 66

4.7 Word Error Rates from Global Best Path Search of Word Lattice Pro-
duced by Lexical Tree Search. : 74

4.8 Execution Times for Global Best Path DAG Search (x RealTime). : : 74

4.9 Word Error Rates From Lexical Tree+Rescoring+Best Path Search. : 77

4.10 Execution Times With Rescoring Pass. : : : : : : : : : : : : : : : : : 77

4.11 Fast Match Using All Senones; Lookahead Window=3 (20K Task). : : 86

4.12 Fast Match Using All Senones; Lookahead Window=3 (58K Task). : : 87

4.13 Fast Match Using CI Senones; Lookahead Window=3. : : : : : : : : : 88

6.1 Baseline System Performance on ATIS. : : : : : : : : : : : : : : : : : 103

xi

6.2 Ratio of Number of Root HMMs in Lexical Tree and Words in Lexicon
(approximate). : 103

6.3 Execution Times on ATIS. : 104

6.4 Breakdown of Tree Search Execution Times on ATIS (Without Pho-
netic Fast Match). : 104

6.5 Recognition Accuracy on ATIS. : 105

A.1 The Sphinx-II Phone Set. : 115

xii

Chapter 1

Introduction

Recent advances in speech technology and computing power have created a surge
of interest in the practical application of speech recognition. Speech is the primary
mode of communication among humans. Our ability to communicate with machines
and computers, through keyboards, mice and other devices, is an order of magnitude
slower and more cumbersome. In order to make this communication more user-
friendly, speech input is an essential component.

There are broadly three classes of speech recognition applications, as described
in [53]. In isolated word recognition systems each word is spoken with pauses before
and after it, so that end-pointing techniques can be used to identify word boundaries
reliably. Second, highly constrained command-and-control applications use small vo-
cabularies, limited to speci�c phrases, but use connected word or continuous speech.
Finally, large vocabulary continuous speech systems have vocabularies of several tens
of thousands of words, and sentences can be arbitrarily long, spoken in a natural fash-
ion. The last is the most user-friendly but also the most challenging to implement.
However, the most accurate speech recognition systems in the research world are still
far too slow and expensive to be used in practical, large vocabulary continuous speech
applications on a wide scale.

Speech research has been concentrated heavily on acoustic and language modelling
issues. Since the late 1980s, the complexity of tasks undertaken by speech researchers
has grown from the 1000-word Resource Management (RM) task [51] to essentially
unlimited vocabulary tasks such as transcription of radio news broadcast in 1995
[48]. While the word recognition accuracy has remained impressive, considering the
increase in task complexity, the resource requirements have grown as well. The RM
task ran about an order of magnitude slower than real time on processors of that
day. The unlimited vocabulary tasks run about two orders of magnitude slower than
real time on modern workstations whose power has grown by an order of magnitude
again, in the meantime.

The task of large vocabulary continuous speech recognition is inherently hard for

1

2 CHAPTER 1. INTRODUCTION

the following reasons. First, word boundaries are not known in advance. One must
be constantly prepared to encounter such a boundary at every time instant. We can
draw a rough analogy to reading a paragraph of text without any punctuation marks
or spaces between words:

myspiritwillsleepinpeaceorifthinksitwillsurelythinkthusfarewellhesprangfrom
thecabinwindowashesaidthisupontheiceraftwhichlayclosetothevesselhewassoon
borneawaybythewavesandlostindarknessanddistance...

Furthermore, many incorrect word hypotheses will be produced from incorrect seg-
mentation of speech. Sophisticated language models that provide word context or
semantic information are needed to disambiguate between the available hypotheses.

The second problem is that co-articulatory e�ects are very strong in natural or
conversational speech, so that the sound produced at one instant is inuenced by
the preceding and following ones. Distinguishing between these requires the use of
detailed acoustic models that take such contextual conditions into account. The in-
creasing sophistication of language models and acoustic models, as well as the growth
in the complexity of tasks, has far exceeded the computational and memory capacities
of commonly available workstations.

E�cient speech recognition for practical applications also requires that the pro-
cessing be carried out in real time within the limited resources|CPU power and
memory size|of commonly available computers. There certainly are various such
commercial and demonstration systems in existence, but their performance has never
been formally evaluated with respect to the research systems or with respect to one
another, in the way that the accuracy of research systems has been. This thesis is
primarily concerned with these issues|in improving the computational and memory
e�ciency of current speech recognition technology without compromising the achieve-
ments in recognition accuracy.

The three aspects of performance, recognition speed, memory resource require-
ments, and recognition accuracy, are in mutual conict. It is relatively easy to improve
recognition speed and reduce memory requirements while trading away some accu-
racy, for example by pruning the search space more drastically, and by using simpler
acoustic and language models. Alternatively, one can reduce memory requirements
through e�cient encoding schemes at the expense of computation time needed to de-
code such representations, and vice versa. But it is much harder to improve both the
recognition speed and reduce main memory requirements while preserving or improv-
ing recognition accuracy. In this thesis, we demonstrate algorithmic and heuristic
techniques to tackle the problem.

This work has been carried out in the context of the CMU Sphinx-II speech
recognition system as a baseline. There are two main schools of speech recognition
technology today, based on statistical hidden Markov modelling (HMM), and neural

1.1. THE MODELLING PROBLEM 3

net technology, respectively. Sphinx-II uses HMM-based statistical modelling tech-
niques and is one of the premier recognizers of its kind. Using several commonly used
benchmark test sets and two di�erent vocabulary sizes of about 20,000 and 58,000
words, we demonstrate that the recognition accuracy of the baseline Sphinx-II system
can be attained while its execution time is reduced by about an order of magnitude
and memory requirements reduced by a factor of about 4.

1.1 The Modelling Problem

As the complexity of tasks tackled by speech research has grown, so has that of
the modelling techniques. In systems that use statistical modelling techniques, such
as the Sphinx system, this translates into several tens to hundreds of megabytes of
memory needed to store information regarding statistical distributions underlying the
models.

Acoustic Models

One of the key issues in acoustic modelling has been the choice of a good unit of
speech [32, 27]. In small vocabulary systems of a few tens of words, it is possible to
build separate models for entire words, but this approach quickly becomes infeasible
as the vocabulary size grows. For one thing, it is hard to obtain su�cient training
data to build all individual word models. It is necessary to represent words in terms
of sub-word units, and train acoustic models for the latter, in such a way that the
pronunciation of new words can be de�ned in terms of the already trained sub-word
units.

The phoneme (or phone) has been the most commonly accepted sub-word unit.
There are approximately 50 phones in spoken English language; words are de�ned as
sequences of such phones1 (see Appendix A for the Sphinx-II phone set and examples).
Each phone is, in turn, modelled by an HMM (described in greater detail in Section
2.1.2).

As mentioned earlier, natural continuous speech has strong co-articulatory ef-
fects. Informally, a phone models the position of various articulators in the mouth
and nasal passage (such as the tongue and the lips) in the making of a particular
sound. Since these articulators have to move smoothly between di�erent sounds in
producing speech, each phone is inuenced by the neighbouring ones, especially dur-
ing the transition from one phone to the next. This is not a major concern in small
vocabulary systems in which words are not easily confusable, but becomes an issue
as the vocabulary size and the degree of confusability increase.

1Some systems de�ne word pronunciations as networks of phones instead of simple linear se-
quences [36].

4 CHAPTER 1. INTRODUCTION

Most systems employ triphones as one form of context-dependent HMM models
[4, 33] to deal with this problem. Triphones are basically phones observed in the
context of given preceding and succeeding phones. There are approximately 50 phones
in spoken English language. Thus, there can be a total of about 503 triphones,
although only a fraction of them are actually observed in the language. Limiting
the vocabulary can further reduce this number. For example, in Sphinx-II, a 20,000
word vocabulary has about 75,000 distinct triphones, each of which is modelled by a
5-state HMM, for a total of about 375,000 states. Since there isn't su�cient training
data to build models for each state, they are clustered into equivalence classes called
senones [27].

The introduction of context-dependent acoustic models, even after clustering into
equivalence classes, creates an explosion in the memory requirements to store such
models. For example, the Sphinx-II system with 10,000 senones occupies tens of
megabytes of memory.

Language Models

Large vocabulary continuous speech recognition requires the use of a language model
or grammar to select the most likely word sequence from the relatively large number
of alternative word hypotheses produced during the search process. As mentioned
earlier, the absence of explicit word boundary markers in continuous speech causes
several additional word hypotheses to be produced, in addition to the intended or
correct ones. For example, the phrase It's a nice day can be equally well recognized
as It sun iced A. or It son ice day. They are all acoustically indistinguishable, but the
word boundaries have been drawn at a di�erent set of locations in each case. Clearly,
many more alternatives can be produced with varying degrees of likelihood, given the
input speech. The language model is necessary to pick the most likely sequence of
words from the available alternatives.

Simple tasks, in which one is only required to recognize a constrained set of
phrases, can use rule-based regular or context-free grammars which can be repre-
sented compactly. However, that is impossible with large vocabulary tasks. Instead,
bigram and trigram grammars, consisting of word pairs and triples with given prob-
abilities of occurrence, are most commonly used. One can also build such language
models based on word classes, such as city names, months of the year, etc. However,
creating such grammars is tedious as they require a fair amount of hand compilation
of the classes. Ordinary word n-gram language models, on the other hand, can be
created almost entirely automatically from a corpus of training text.

Clearly, it is infeasible to create a complete set of word bigrams for even medium
vocabulary tasks. Thus, the set of bigram and trigram probabilities actually present
in a given grammar is usually a small subset of the possible number. Even then, they
usually number in the millions for large vocabulary tasks. The memory requirements

1.2. THE SEARCH PROBLEM 5

for such language models range from several tens to hundreds of megabytes.

1.2 The Search Problem

There are two components to the computational cost of speech recognition: acoustic
probability computation, and search. In the case of HMM-based systems, the former
refers to the computation of the probability of a given HMM state emitting the
observed speech at a given time. The latter refers to the search for the best word
sequence given the complete speech input. The search cost is largely una�ected by
the complexity of the acoustic models. It is much more heavily inuenced by the size
of the task. As we shall see later, the search cost is signi�cant for medium and large
vocabulary recognition; it is the main focus of this thesis.

Speech recognition|searching for the most likely sequence of words given the
input speech|gives rise to an exponential search space if all possible sequences of
words are considered. The problem has generally been tackled in two ways: Viterbi
decoding [62, 52] using beam search [37], or stack decoding [9, 50] which is a variant
of the A* algorithm [42]. Some hybrid versions that combine Viterbi decoding with
the A* algorithm also exist [21].

Viterbi Decoding

Viterbi decoding is a dynamic programming algorithm that searches the state space
for the most likely state sequence that accounts for the input speech. The state
space is constructed by creating word HMM models from its constituent phone or
triphone HMM models, and all word HMM models are searched in parallel. Since
the state space is huge for even medium vocabulary applications, the beam search
heuristic is usually applied to limit the search by pruning out the less likely states.
The combination is often simply referred to as Viterbi beam search. Viterbi decoding
is a time-synchronous search that processes the input speech one frame at a time,
updating all the states for that frame before moving on to the next frame. Most
systems employ a frame input rate of 100 frames/sec. Viterbi decoding is described
in greater detail in Section 2.3.1.

Stack Decoding

Stack decoding maintains a stack of partial hypotheses2 sorted in descending order of
posterior likelihood. At each step it pops the best one o� the stack. If it is a complete
hypothesis it is output. Otherwise the algorithm expands it by one word, trying all

2A partial hypothesis accounts for an initial portion of the input speech. A complete hypothesis,
or simply hypothesis, accounts for the entire input speech.

6 CHAPTER 1. INTRODUCTION

possible word extensions, evaluates the resulting (partial) hypotheses with respect
to the input speech and re-inserts them in the sorted stack. Any number of N -best
hypotheses [59] can be generated in this manner. To avoid an exponential growth in
the set of possible word sequences in medium and large vocabulary systems, partial
hypotheses are expanded only by a limited set of candidate words at each step. These
candidates are identi�ed by a fast match step [6, 7, 8, 20]. Since our experiments have
been mostly con�ned to Viterbi decoding, we do not explore stack decoding in any
greater detail.

Tree Structured Lexicons

Even with the beam search heuristic, straightforward Viterbi decoding is expensive.
The network of states to be searched is formed by a linear sequence of HMM models
for each word in the vocabulary. The number of models actively searched in this
organization is still one to two orders of magnitude beyond the capabilities of modern
workstations.

Lexical trees can be used to reduce the size of the search space. Since many
words share common pronunciation pre�xes, they can also share models and avoid
duplication. Trees were initially used in fast match algorithms for producing candidate
word lists for further search. Recently, they have been introduced in the main search
component of several systems [44, 39, 43, 3]. The main problem faced by them is in
using a language model. Normally, transitions between words are accompanied by
a prior language model probability. But with trees, the destination nodes of such
transitions are not individual words but entire groups of them, related phonetically
but quite unrelated grammatically. An e�cient solution to this problem is one of the
important contributions of this thesis.

Multipass Search Techniques

Viterbi search algorithms usually also create a word lattice in addition to the best
recognition hypothesis. The lattice includes several alternative words that were recog-
nized at any given time during the search. It also typically contains other information
such as the time segmentations for these words, and their posterior acoustic scores
(i.e., the probability of observing a word given that time segment of input speech).
The lattice error rate measures the number of correct words missing from the lattice
around the expected time. It is typically much lower than the word error rate3 of the
single best hypotheses produced for each sentence.

Word lattices can be kept very compact, with low lattice error rate, if they are
produced using su�ciently detailed acoustic models (as opposed to primitive models

3Word error rates are measured by counting the number of word substitutions, deletions, and
insertions in the hypothesis, compared to the correct reference sentence.

1.3. THESIS CONTRIBUTIONS 7

as in, for example, fast match algorithms). In our work, a 10sec long sentence typically
produces a word lattice containing about 1000 word instances.

Given such compact lattices with low error rates, one can search them using
sophisticated models and search algorithms very e�ciently and obtain results with a
lower word error rate, as described in [38, 65, 41]. Most systems use such multipass
techniques.

However, there has been relatively little work reported in actually creating such
lattices e�ciently. This is important for the practical applicability of such techniques.
Lattices can be created with low computational overhead if we use simple models, but
their size must be large to guarantee a su�ciently low lattice error rate. On the other
hand, compact, low-error lattices can be created using more sophisticated models, at
the expense of more computation time. The e�cient creation of compact, low-error
lattices for e�cient postprocessing is another byproduct of this work.

1.3 Thesis Contributions

This thesis explores ways of improving the performance of speech recognition systems
along the dimensions of recognition speed and e�ciency of memory usage, while
preserving the recognition accuracy of research systems. As mentioned earlier, this
is a much harder problem than if we are allowed to trade recognition accuracy for
improvement in speed and memory usage.

In order to make meaningful comparisons, the baseline performance of an estab-
lished \research" system is �rst measured. We use the CMU Sphinx-II system as the
baseline system since it has been extensively used in the yearly ARPA evaluations.
It has known recognition accuracy on various test sets, and with similarities to many
other research systems. The parameters measured include, in addition to recognition
accuracy, the CPU usage of various steps during execution, frequency counts of the
most time-consuming operations, and memory usage. All tests are carried out using
two vocabulary sizes of about 20,000 (20K) and 58,000 (58K) words, respectively.
The test sentences are taken from the ARPA evaluations in 1993 and 1994 [45, 46].

The results from this analysis show that the search component is several tens
of times slower than real time on the reported tasks. (The acoustic output proba-
bility computation is relatively smaller since these tests have been conducted using
semi-continuous acoustic models [28, 27].) Furthermore, the search time itself can
be further decomposed into two main components: the evaluation of HMM models,
and carrying out cross-word transitions at word boundaries. The former is simply a
measure of the task complexity. The latter is a signi�cant problem since there are
cross-word transitions to every word in the vocabulary, and language model proba-
bilities must be computed for every one of them.

8 CHAPTER 1. INTRODUCTION

1.3.1 Improving Speed

The work presented in this thesis shows that a new adaptation of lexical tree search
can be used to reduce both the number of HMMs evaluated and the cost of cross-word
transitions. In this method, language model probabilities for a word are computed not
when entering that word but upon its exit, if it is one of the recognized candidates.
The number of such candidates at a given instant is on average about two orders of
magnitude smaller than the vocabulary size. Furthermore, the proportion appears to
decrease with increasing vocabulary size.

Using this method, the execution time for recognition is decreased by a factor of
about 4.8 for both the 20K and 58K word tasks. If we exclude the acoustic output
probability computation, the speedup of the search component alone is about 6.3 for
the 20K word task and over 7 for the 58K task. It also demonstrates that the lexical
tree search e�ciently produces compact word lattices with low error rates that can
again be e�ciently searched using more complex models and search algorithms.

Even though there is a relative loss of accuracy of about 20% using this method, we
show that it can be recovered e�ciently by postprocessing the word lattice produced
by the lexical tree search. The loss is attributed to suboptimal word segmentations
produced by the tree search. However, a new shortest-path graph search formulation
for searching the word lattice can reduce the loss in accuracy to under 10% relative
to the baseline system with a negligible increase in computation.

If the lattice is �rst rescored to obtain better word segmentations, all the loss in
accuracy is recovered. The rescoring step adds less than 20% execution time overhead,
giving an e�ective overall speedup of about 4 over the baseline system.

We have applied a new phonetic fast match step to the lexical tree search that
performs an initial pruning of the context independent phones to be searched. This
technique reduces the overall execution time by about 40-45%, with a less than 2%
relative loss in accuracy. This brings the overall speed of the system to about 8 times
that of the baseline system, with almost no loss of accuracy.

The structure of the �nal decoder is a pipeline of several stages which can be
operated in an overlapped fashion. Parallelism among stages, especially the lexical
tree search and rescoring passes, is possible for additional improvement in speed.

1.3.2 Reducing Memory Size

The two main candidates for memory usage in the baseline Sphinx-II system, and
most of the common research systems, are the acoustic and language models.

The key observation for reducing the size of the language models is that in decod-
ing any given utterance, only a small portion of it is actually used. Hence, we can

1.4. SUMMARY AND DISSERTATION OUTLINE 9

consider maintaining the language model entirely on disk, and retrieving only the nec-
essary information on demand. Caching schemes can overcome the large disk-access
latencies. One might expect the virtual memory systems to perform this function
automatically. However, they don't appear to be e�cient at managing the language
model working set since the granularity of access to the related data structures is
much smaller than a pagesize.

We have implemented simple caching rules and replacement policies for bigrams
and trigrams, which show that the memory resident portion of large bigram and
trigram language models can be reduced signi�cantly. In our benchmarks, the number
of bigrams in memory is reduced to about 15-25% of the total, and that of trigrams
to about 2-5% of the total. The impact of disk accesses on elapsed time performance
is minimal, showing that the caching policies are e�ective. We believe that further
reductions in size can be easily obtained by various compression techniques, such as
a reduction in the precision of representation.

The size of the acoustic models is trivially reduced by a factor of 4, simply by
reducing the precision of their representation from 32 bits to 8 bits, with no di�erence
in accuracy. This has, in fact, been done in many other systems as in [25]. The new
observation is that in addition to memory size reduction, the smaller precision also
allows us to speed up the computation of acoustic output probabilities of senones every
frame. The computation involves the summation of probabilities|in log-domain,
which is cumbersome. The 8-bit representation of such operands allows us to achieve
this with a simple table lookup operation, improving the speed of this step by about
a factor of 2.

1.4 Summary and Dissertation Outline

In summary, this thesis presents a number of techniques for improving the speed
of the baseline Sphinx-II system by about an order of magnitude, and reducing its
memory requirements by a factor of 4, without signi�cant loss of accuracy. In doing
so, it demonstrates several facts:

� It is possible to build e�cient speech recognition systems comparable to research
systems in accuracy.

� It is possible to separate concerns of search complexity from that of mod-
elling complexity. By using semi-continuous acoustic models and e�cient search
strategies to produce compact word lattices with low error rates, and restricting
the more detailed models to search such lattices, the overall performance of the
system is optimized.

� It is necessary and possible to make decisions for pruning large portions of the
search space away with low cost and high reliability. The beam search heuristic

10 CHAPTER 1. INTRODUCTION

is a well known example of this principle. The phonetic fast match method and
the reduction in precision of probability values also fall under this category.

The organization of this thesis is as follows. Chapter 2 contains background
material and brief descriptions of related work done in this area. Since recognition
speed and memory e�ciency has not been an explicit consideration in the research
community so far, in the way that recognition accuracy has been, there is relative
little material in this regard.

Chapter 3 is mainly concerned with establishing baseline performance �gures for
the Sphinx-II research system. It includes a comprehensive description of the base-
line system, speci�cations of the benchmark tests and experimental conditions used
throughout this thesis, and detailed performance �gures, including accuracy, speed
and memory requirements.

Chapter 4 is one of the main chapter in this thesis that describes all of the new
techniques to speed up recognition and their results on the benchmark tests. Both the
baseline and the improved system use the same set of acoustic and language models.

Techniques for memory size reduction and corresponding results are presented in
Chapter 5. It should be noted that most experiments reported in this thesis were
conducted with these optimizations in place.

Though this thesis is primarily concerned with large vocabulary recognition, it is
interesting to consider the applicability of the techniques developed here to smaller
vocabulary situations. Chapter 6 addresses the concerns relating to small and ex-
tremely small vocabulary tasks. The issues of e�ciency are quite di�erent in their
case, and the problems are also di�erent. The performance of both the baseline
Sphinx-II system and the proposed experimental system are evaluated and compared
on the ATIS (Airline Travel Information Service) task, which has a vocabulary of
about 3,000 words.

Finally, Chapter 7 concludes with a summary of the results, contributions of this
thesis and some thoughts on future directions for search algorithms.

Chapter 2

Background

This chapter contains a brief review of the necessary background material to un-
derstand the commonly used modelling and search techniques in speech recognition.
Sections 2.1 and 2.2 cover basic features of statistical acoustic and language mod-
elling, respectively. Viterbi decoding using beam search is described in Section 2.3,
while related research on e�cient search techniques is covered in Section 2.4.

2.1 Acoustic Modelling

2.1.1 Phones and Triphones

The objective of speech recognition is the transcription of speech into text, i.e., word
strings. To accomplish this, one might wish to create word models from training
data. However, in the case of large vocabulary speech recognition, there are simply
too many words to be trained in this way. It is necessary to obtain several samples
of every word from several di�erent speakers, in order to create reasonable speaker-
independent models for each word. Furthermore, the process must be repeated for
each new word that is added to the vocabulary.

The problem is solved by creating acoustic models for sub-word units. All words
are composed of basically a small set of sounds or sub-word units, such as syllables
or phonemes, which can be modelled and shared across di�erent words.

Phonetic models are the most frequently used sub-word models. There are only
about 50 phones in spoken English (see Appendix A for the set of phones used in
Sphinx-II). New words can simply be added to the vocabulary by de�ning their pro-
nunciation in terms of such phones.

The production of sound corresponding to a phone is inuenced by neighbouring
phones. For example, the AE phone in the word \man" sounds di�erent from that in

11

12 CHAPTER 2. BACKGROUND

\lack"; the former is more nasal. IBM [4] proposed the use of triphone or context-
dependent phone models to deal with such variations. With 50 phones, there can be
up to 503 triphones, but only a fraction of them are actually observed in practice.
Virtually all speech recognition systems now use such context dependent models.

2.1.2 HMM modelling of Phones and Triphones

Most systems use hidden Markov models (HMMs) to represent the basic units of
speech. The usage and training of HMMs has been covered widely in the literature.
Initially described by Baum in [11], it was �rst used in speech recognition systems by
CMU [10] and IBM [29]. The use of HMMs in speech has been described, for example,
by Rabiner [52]. Currently, almost all systems use HMMs for modelling triphones and
context-independent phones (also referred to as monophones or basephones). These
include BBN [41], CMU [35, 27], the Cambridge HTK system [65], IBM [5], and LIMSI
[18], among others. We will give a brief description of HMMs as used in speech.

First of all, the sampled speech input is usually preprocessed, through various
signal-processing steps, into a cepstrum or other feature stream that contains one
feature vector every frame. Frames are typically spaced at 10msec intervals. Some
systems produce multiple, parallel feature streams. For example, Sphinx has 4 feature
streams|cepstra, �cepstra, ��cepstra, and power|representing the speech signal
(see Section 3.1.1).

An HMM is a set of states connected by transitions (see Figure 3.2 for an example).
Transitions model the emission of one frame of speech. Each HMM transition has
an associated output probability function that de�nes the probability of emitting the
input feature observed in any given frame while taking that transition. In practice,
most systems associate the output probability function with the source or destination
state of the transition, rather than the transition itself. Henceforth, we shall assume
that the output probability is associated with the source state. The output probability
for state i at time t is usually denoted by bi(t). (Actually, bi is not a function of t,
but rather a function of the input speech, which is a function of t. However, we shall
often use the notation bi(t) with this implicit understanding.)

Each HMM transition from any state i to state j also has a static transition
probability, usually denoted by aij, which is independent of the speech input.

Thus, each HMM state occupies or represents a small subspace of the overall
feature space. The shape of this subspace is su�ciently complex that it cannot be
accurately characterized by a simple mathematical distribution. For mathematical
tractability, the most common general approach has been to model the state output
probability by a mixture Gaussian codebook. For any HMM state s and feature stream
f , the i-th component of such a codebook is a normal distribution with mean vector
�s;f;i and covariance matrix Us;f;i. In order to simplify the computation and also

2.2. LANGUAGE MODELLING 13

because there is often insu�cient data to estimate all the parameters of the covariance
matrix, most systems assume independence of dimensions and therefore the covariance
matrix becomes diagonal. Thus, we can simply use standard deviation vectors �s;f;i

instead of Us;f;i. Finally, each such mixture component also has a scalar mixture
coe�cient or mixture weight ws;f;i.

With that, the probability of observing a given speech input x in HMM state s is
given by:

bs(x) =
Y

f

(
X

i

ws;f;iN (xf ;�s;f;i;�s;f;i)) (2.1)

where the speech input x is the parallel set of feature vectors, and xf its f -th feature
component; i ranges over the number of Gaussian densities in the mixture and f over
the number of features. The expression N (:) is the value of the chosen component
Gaussian density function at xf .

In the general case of fully continuous HMMs, each HMM state s in the acoustic
model has its own separate weighted mixture Gaussian codebook. However, this is
computationally expensive, and many schemes are used to reduce this cost. It also
results in too many free parameters. Most systems group HMM states into clusters
that share the same set of model parameters. The sharing can be of di�erent degrees.
In semi-continuous systems, all states share a single mixture Gaussian codebook, but
the mixture coe�cients are distinct for individual states. In Sphinx-II, states are
grouped into clusters called senones [27], with a single codebook (per feature stream)
shared among all senones, but distinct mixture weights for each. Thus, Sphinx-II uses
semi-continuous modelling with state clustering.

Even simpler discrete HMM models can be derived by replacing the mean and
variance vectors representing Gaussian densities with a single centroid. In every
frame, the single closest centroid to the input feature vector is computed (using the
Euclidean distance measure), and individual states weight the codeword so chosen.
Discrete models are typically only used in making approximate searches such as in
fast match algorithms.

For simplicity of modelling, HMMs can have NULL transitions that do not con-
sume any time and hence do not model the emission of speech. Word HMMs can be
built by simply stringing together phonetic HMM models using NULL transitions as
appropriate.

2.2 Language Modelling

As mentioned in Chapter 1, a language model (LM) is required in large vocabulary
speech recognition for disambiguating between the large set of alternative, confusable
words that might be hypothesized during the search.

14 CHAPTER 2. BACKGROUND

The LM de�nes the a priori probability of a sequence of words. The LM proba-
bility of a sentence (i.e., a sequence of words w1; w2; : : : ; wn) is given by:

P (w1)P (w2jw1)P (w3jw1; w2)P (w4jw1; w2; w3) � � �P (wnjw1; : : : ; wn�1)

=
nY

i=1

P (wijw1; : : : ; wi�1):

In an expression such as P (wijw1; : : : ; wi�1), w1; : : : ; wi�1 is the word history or simply
history for wi. In practice, one cannot obtain reliable probability estimates given
arbitrarily long histories since that would require enormous amounts of training data.
Instead, one usually approximates them in the following ways:

� Context free grammars or regular grammars. Such LMs are used to de�ne the
form of well structured sentences or phrases. Deviations from the prescribed
structure are not permitted. Such formal grammars are never used in large
vocabulary systems since they are too restrictive.

� Word unigram, bigram, trigram, grammars. These are de�ned respectively as
follows (higher-order n-grams can be de�ned similarly):

P (w) = probability of word w
P (wj jwi) = probability of wj given a one word history wi

P (wkjwi; wj) = probability of wk given a two word history wi; wj

A bigram grammar need not contain probabilities for all possible word pairs.
In fact, that would be prohibitive for all but the smallest vocabularies. Instead,
it typically lists only the most frequently occurring bigrams, and uses a backo�
mechanism to fall back on unigram probability when the desired bigram is not
found. In other words, if P (wjjwi) is sought and is not found, one falls back on
P (wj). But a backo� weight is applied to account for the fact that wj is known
to be not one of the bigram successors of wi [30]. Other higher-order backo�
n-gram grammars can be de�ned similarly.

� Class n-gram grammars. These are similar to word n-gram grammars, except
that the tokens are entire word classes, such as digit, number, month, proper
name, etc. The creation and use of class grammars is tricky since words can
belong to multiple classes. There is also a fair amount of handcrafting involved.

� Long distance grammars. Unlike n-gram LMs, these are capable of relating
words separated by some distance (i.e., with some intervening words). For
example, the trigger-pair mechanism discussed in [57] is of this variety. Long
distance grammars are primarily used to rescore n-best hypothesis lists from
previous decodings.

2.3. SEARCH ALGORITHMS 15

Time0 1 2 3 4 5

Start state

Final state
States

Figure 2.1: Viterbi Search as Dynamic Programming

Of the above, word bigram and trigram grammars are the most commonly used
since they are easy to train from large volumes of data, requiring minimal manual
intervention. They have also provided high degrees of recognition accuracy. The
Sphinx-II system uses word trigram LMs.

2.3 Search Algorithms

The two main forms of decoding most commonly used today are Viterbi decoding
using the beam search heuristic, and stack decoding. Since the work reported in this
thesis is based on the former, we briey review its basic principles here.

2.3.1 Viterbi Beam Search

Viterbi search [62] is essentially a dynamic programming algorithm, consisting of
traversing a network of HMM states and maintaining the best possible path score
at each state in each frame. It is a time-synchronous search algorithm in that it
processes all states completely at time t before moving on to time t+ 1.

The abstract algorithm can be understood with the help of Figure 2.1. One
dimension represents the states in the network, and the other is the time axis. There is
typically one start state and one or more �nal states in the network. The arrows depict
possible state transitions throughout the network. In particular, NULL transitions
go vertically since they do not consume any input, and non-NULL transitions always
go one time step forward. Each point in this 2-D space represents the best path
probability for the corresponding state at that time. That is, given a time t and
state s, the value at (t; s) represents the probability corresponding to the best state
sequence leading from the initial state at time 0 to state s at time t.

The time-synchronous nature of the Viterbi search implies that the 2-D space
is traversed from left to right, starting at time 0. The search is initialized at time

16 CHAPTER 2. BACKGROUND

t = 0 with the path probability at the start state set to 1, and at all other states
to 0. In each frame, the computation consists of evaluating all transitions between
the previous frame and the current frame, and then evaluating all NULL transitions
within the current frame. For non-NULL transitions, the algorithm is summarized
by the following expression:

Pj(t) = max
i
(Pi(t� 1) � aij � bi(t)); i� set of predecessor states of j (2.2)

where, Pj(t) is the path probability of state j at time t, aij is the static probability
associated with the transition from state i to j, and bi(t) is the output probability
associated with state i while consuming the input speech at t (see Section 2.1.2 and
equation 2.1). It is straightforward to extend this formulation to include NULL
transitions that do not consume any input.

Thus, every state has a single best predecessor at each time instant. With some
simple bookkeeping to maintain this information, one can easily determine the best
state sequence for the entire search by starting at the �nal state at the end and
following the best predecessor at each step all the way back to the start state. Such
an example is shown by the bold arrows in Figure 2.1.

The complexity of Viterbi decoding is N2T (assuming each state can transition
to every state at each time step), where N is the total number of states and T is the
total duration.

The application of Viterbi decoding to continuous speech recognition is straight-
forward. Word HMMs are built by stringing together phonetic HMM models using
NULL transitions between the �nal state of one and the start state of the next. In
addition, NULL transitions are added from the �nal state of each word to the initial
state of all words in the vocabulary, thus modelling continuous speech. Language
model (bigram) probabilities are associated with every one of these cross-word tran-
sitions. Note that a system with a vocabulary of V words has V 2 possible cross-word
transitions. All word HMMs are searched in parallel according to equation 2.2.

Since even a small to mediumvocabulary system consists of hundreds or thousands
of HMM states, the state-time matrix of Figure 2.1 quickly becomes too large and
costly to compute in its entirety. To keep the computation within manageable limits,
only the most likely states are evaluated in each frame, according to the beam search
heuristic [37]. At the end of time t, the state with the highest path probability Pmax(t)
is found. If any other state i has Pi(t) < Pmax(t) � B, where B is an appropriately
chosen threshold or beamwidth < 1, state i is excluded from consideration at time
t+ 1. Only the ones within the beam are considered to be active.

The beam search heuristic reduces the average cost of search by orders of magni-
tude in medium and large vocabulary systems. The combination of Viterbi decoding
using beam search heuristic is often simply referred to as Viterbi beam search.

2.4. RELATED WORK 17

2.4 Related Work

Some of the standard techniques in reducing the computational load of Viterbi search
for large vocabulary continuous speech recognition have been the following:

� Narrowing the beamwidth for greater pruning. However, this is usually asso-
ciated with an increase in error rate because of an increase in the number of
search errors: the correct word sometimes get pruned from the search path in
the bargain.

� Reducing the complexity of acoustic and language models. This approach works
to some extent, especially if it is followed by more detailed search in later
passes. There is a tradeo� here, between the computational load of the �rst
pass and subsequent ones. The use of detailed models in the �rst pass produces
compact word lattices with low error rate that can be postprocessed e�ciently,
but the �rst pass itself is computationally expensive. Its cost can be reduced if
simpler models are employed, at the cost of an increase in lattice size needed to
guarantee low lattice error rates.

Both the above techniques involve some tradeo� between recognition accuracy and
speed.

2.4.1 Tree Structured Lexicons

Organizing the HMMs to be searched as a phonetic tree instead of the at structure
of independent linear HMM sequences for each word is probably the most often cited
improvement in search techniques in use currently. This structure is referred to as
tree-structured lexicon or lexical tree. If the pronunciations of two or more words
contain the same n initial phonemes, they share a single sequence of n HMM models
representing that initial portion of their pronunciation. (In practice, most systems
use triphones instead of just basephones, so we should really consider triphone pro-
nunciation sequences. But the basic argument is the same.) Since the word-initial
models in a non-tree structured Viterbi search are typically the majority of the total
number of active models, the reduction in computation is signi�cant.

The problem with a lexical tree occurs at word boundary transitions where bigram
language model probabilities are usually computed and applied. In the at (non-tree)
Viterbi algorithm there is a transition from each word ending state (within the beam)
to the beginning of every word in the vocabulary. Thus, there is a fan-in at the
initial state of every word, with di�erent bigram probabilities attached to every such
transition. The Viterbi algorithm chooses the best incoming transition in each case.

However, with a lexical tree structure, several words may share the same root node
of the tree. There can be a conict between the best incoming cross-word transition

18 CHAPTER 2. BACKGROUND

for di�erent words that share the same root node. This problem has been usually
solved by making copies of the lexical tree to resolve such conicts.

Approximate Bigram Trees

SRI [39] and CRIM [43] augment their lexical tree structure with a at copy of the
lexicon that is activated for bigram transitions. All bigram transitions enter the at
lexicon copy, while the backed o� unigram transitions enter the roots of the lexical
tree. SRI notes that relying on just unigrams more than doubles the word error rate.
They show that using this scheme, the recognition speed is improved by a factor of
2-3 for approximately the same accuracy. To gain further improvements in speed,
they reduce the size of the bigram section by pruning the bigram language model in
various ways, which adds signi�cantly to the error rate.

However, it should be noted that the experimental set up is based on using discrete
HMM acoustic models, with a baseline system word error rate (21.5%), which is
signi�cantly worse than their best research system (10.3%) using bigrams, and also
worse than most other research systems to begin with.

As we shall see in Chapter 3, bigram transitions constitute a signi�cant portion of
cross word transitions, which in turn are a dominant part of the search cost. Hence,
the use of a at lexical structure for bigram transitions must continue to incur this
cost.

Replicated Bigram Trees

Ney and others [40, 3] have suggested creating copies of the lexical tree to handle
bigram transitions. The leaf nodes at the �rst level (unigram) lexical tree have sec-
ondary (bigram) trees hanging o� them for bigram transitions. The total size of the
secondary trees depends on the number of bigrams present in the grammar. Sec-
ondary trees that represent the bigram followers of the most common function words,
such as A, THE, IN, OF, etc. are usually large.

This scheme creates additional copies of words that did not exist in the original
at structure. For example, in the conventional at lexicon (or in the auxiliary at
lexicon copy of [39]), there is only one instance of each word. However, in this
proposed scheme the same word can appear in multiple secondary trees. Since the
short function words are recognized often (though spuriously), their bigram copies
are frequently active. They are also among the larger ones, as noted above. It is
unclear how much overhead this adds to the system.

2.4. RELATED WORK 19

Dynamic Network Decoding

Cambridge University [44] designed a one-pass decoder that uses the lexical tree
structure, with copies for cross-word transitions, but instantiates new copies at ev-
ery transition, as necessary. Basically, the traditional re-entrant lexical structure is
replaced with a non-re-entrant structure. To prevent an explosion in memory space
requirements, they reclaim HMM nodes as soon as they become inactive by falling
outside the pruning beamwidth. Furthermore, the end points of multiple instances of
the same word can be merged under the proper conditions, allowing just one instance
of the lexical tree to be propagated from the merged word ends, instead of separately
and multiply from each. This system attained the highest recognition accuracy in the
Nov 1993 evaluations.

They report the performance under standard conditions|standard 1993 20K Wall
Street Journal development test set decoded using the corresponding standard bi-
gram/trigram language model using wide beamwidths as in the actual evaluations.

The number of active HMM models per frame in this scheme is actually higher
than the number in the baseline Sphinx-II system under similar test conditions (except
that Sphinx-II uses a di�erent lexicon and acoustic models). There are other factors
at work, but the dynamic instantiation of lexical trees certainly plays a part in this
increase. The overhead for dynamically constructing the HMM network is reported to
be less than 20% of the total computational load. This is actually fairly high since the
time to decode a sentence on an HP735 platform is reported to be about 15 minutes
on average.

2.4.2 Memory Size and Speed Improvements in Whisper

The CMU Sphinx-II system has been improved in many ways by Microsoft in pro-
ducing the Whisper system [26]. They report that memory size has been reduced by
a factor of 20 and speed improved by a factor of 5, compared to Sphinx-II under the
same accuracy constraints.

One of the schemes for memory reduction is the use of a context free grammar
(CFG) in place of bigram or trigram grammars. CFGs are highly compact, can
be searched e�ciently, and can be relatively easily created for small tasks such as
command and control applications involving a few hundred words. However, large
vocabulary applications cannot be so rigidly constrained.

They also obtain an improvement of about 35% in the memory size of acoustic
models by using run length encoding for senone weighting coe�cients (Section 2.1.2).

They have also improved the speed performance of Whisper through a Rich Get
Richer (RGR) heuristic for deciding which phones should be evaluated in detail, using
triphone states, and which should fall back on context independent phone states.

20 CHAPTER 2. BACKGROUND

RGR works as follows: Let Pp(t) be the best path probability of any state belonging
to basephone p at time t, Pmax(t) the best path probability over all states at t, and
bp(t+1) the output probability of the context-independent model for p at time t+1.
Then, the context-dependent states for phone p are evaluated at frame t+ 1 i�:

a � Pp(t) + bp(t+ 1) > Pmax(t)�K

where, a andK are empirically determined constants. Otherwise, context-independent
output probabilities are used for those states. (All probabilities are computed in
log-space. Hence the addition operations really represent multiplications in normal
probability space.)

Using this heuristic, they report an 80% reduction in the number of context de-
pendent states for which output probabilities are computed, with no loss of accuracy.
If the parameters a and K are tightened to reduce the number of context-dependent
states evaluated by 95%, there is a 15% relative loss of accuracy. (The baseline test
conditions have not be speci�ed for these experiments.)

2.4.3 Search Pruning Using Posterior Phone Probabilities

In [56], Renals and Hochberg describe a method of deactivating certain phones during
search to achieve higher recognition speed. The method is incorporated into a fast
match pass that produces words and posterior probabilities for their noway stack
decoder. The fast match step uses HMM base phone models, the states of which
are modelled by neural networks that directory estimate phone posterior probabil-
ities instead of the usual likelihoods; i.e., they estimate P (phonejdata), instead of
P (datajphone). Using the posterior phone probability information, one can identify
the less likely active phones at any given time and prune the search accordingly.

This is a potentially powerful and easy pruning technique when the posterior phone
probabilities are available. Stack decoders can particularly gain if the fast match step
can be made to limit the number of candidate words emitted while extending a
partial hypothesis. In their noway implementation, a speedup of about an order of
magnitude is observed on a 20K vocabulary task (from about 150x real time to about
15x real time) on an HP735 workstation. They do not report the reduction in the
number of active HMMs as a result of this pruning.

2.4.4 Lower Complexity Viterbi Algorithm

A new approach to the Viterbi algorithm, speci�cally applicable to speech recognition,
is described by Patel in [49]. It is aimed at reducing the cost of the large number
of cross-word transitions and has an expected complexity of N

p
NT , instead of N2T

(Section 2.3.1). The algorithm depends on ordering the exit path probabilities and

2.5. SUMMARY 21

transition bigram probabilities, and �nding a threshold such that most transitions
can be eliminated from consideration.

The authors indicate that the algorithm o�ers better performance if every word
has bigram transitions to the entire vocabulary. However, this is not the case with
large vocabulary systems. Nevertheless, it is worth exploring this technique further
for its practical applicability.

2.5 Summary

In this chapter we have covered the basic modelling principles and search techniques
commonly used in speech recognition today. We have also briey reviewed a number
of systems and techniques used to improve their speed and memory requirements. One
of the main themes running through this work is that virtually none of the practical
implementations have been formally evaluated with respect to the research systems
on well established test sets under widely used test conditions, or with respect to one
another.

In the rest of this thesis, we evaluate the baseline Sphinx-II system under normal
evaluation conditions and use the results for comparison with our other experiments.

Chapter 3

The Sphinx-II Baseline System

As mentioned in the previous chapters, there is relatively little published work on
the performance of speech recognition systems, measured along the dimensions of
recognition accuracy, speed and resource utilization. The purpose of this chapter is
to establish a comprehensive account of the performance of a baseline system that
has been considered a premier representative of its kind, with which we can make
meaningful comparisons of the research reported in this thesis. For this purpose, we
have chosen the Sphinx-II speech recognition system1 at Carnegie Mellon that has
been used extensively in speech research and the yearly ARPA evaluations. Various
aspects of this baseline system and its precursors have been reported in the literature,
notably in [32, 33, 35, 28, 1, 2]. Most of these concentrate on the modelling aspects
of the system|acoustic, grammatical or lexical|and their e�ect on recognition ac-
curacy. In this chapter we focus on obtaining a comprehensive set of performance
characteristics for this system.

The baseline Sphinx-II recognition system uses semi-continuous or tied-mixture
hidden Markov models (HMMs) for the acoustic models [52, 27, 12] and word bigram
or trigram backo� language models (see Sections 2.1 and 2.2). It is a 3-pass decoder
structured as follows:

1. Time synchronous Viterbi beam search [52, 62, 37] in the forward direction. It is
a complete search of the full vocabulary, using semi-continuous acoustic models,
a bigram or trigram language model, and cross-word triphone modelling during
the search. The result of this search is a single recognition hypothesis, as well as
a word lattice that contains all the words that were recognized during the search.
The lattice includes word segmentation and scores information. One of the key
features of this lattice is that for each word occurrence, several successive end
times are identi�ed along with their scores, whereas very often only the single
most likely begin time is identi�ed. Scores for alternative begin times are usually

1The Sphinx-II decoder reported in this section is known internally as FBS6.

22

23

not available.

2. Time synchronous Viterbi beam search in the backward direction. This search
is restricted to the words identi�ed in the forward pass and is very fast. Like
the �rst pass, it produces a word lattice with word segmentations and scores.
However, this time several alternative begin times are identi�ed while typically
only one end time is available. In addition, the Viterbi search also produces
the best path score from any point in the utterance to the end of the utterance,
which is used in the third pass.

3. An A* or stack search using the word segmentations and scores produced by the
forward and backward Viterbi passes above. It produces an N-best list [59] of
alternative hypotheses as its output, as described briey in Section 1.2. There
is no acoustic rescoring in this pass. However, any arbitrary language model
can be applied in creating the N-best list. In this thesis, we will restrict our
discussion to word trigram language models.

The reason for the existence of the backward and A* passes, even though the
�rst pass produces a usable recognition result, is the following. One limitation of the
forward Viterbi search in the �rst pass is that it is hard to employ anything more
sophisticated than a simple bigram or similar grammar. Although a trigram grammar
is used in the forward pass, it is not a complete trigram search (see Section 3.2.2).
Stack decoding, a variant of the A* search algorithm2 [42], is more appropriate for
use with such grammars which lead to greater recognition accuracy. This algorithm
maintains a stack of several possible partial decodings (i.e, word sequence hypotheses)
which are expanded in a best-�rst manner [9, 2, 50]. Since each partial hypothesis
is a linear word sequence, any arbitrary language model can be applied to it. Stack
decoding also allows the decoder to output several most likely N-best hypotheses
rather than just the single best one. These multiple hypotheses can be postprocessed
with even more detailed models. The need for the backward pass in the baseline
system has been mentioned above.

In this chapter we review the details of the baseline system needed for under-
standing the performance characteristics. In order to keep this discussion fairly self-
contained, we �rst review the various knowledge source models in Section 3.1. Some
of the background material in Sections 2.1, 2.2, and 2.3 is also relevant. This is fol-
lowed by a discussion of the forward pass Viterbi beam search in Section 3.2, and the
backward and A* searches in Section 3.3. The performance of this system on sev-
eral widely used test sets from the ARPA evaluations is described in Section 3.4. It
includes recognition accuracy, various statistics related to search speed, and memory
usage. We �nally conclude with some �nal remarks in Section 3.5.

2We will often use the terms stack decoding and A* search interchangeably.

24 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

Pre−emphasis Filter

H(z) = 1−0.97z−1

25.6msec
Hamming Window

10msec intervals

12 mel freq. coeff.
+

power coeff.

power and
cepstral normalization

cepstrum−vector
power

cepstrum cepstrum power, power,

25.6ms

10ms

16KHz, 16−bit linear samples

sentence−based power −= max(power) over sentence
cepstrum −= mean(cepstrum) over sentence

100 cepstral frames/sec

4 feature streams at 100 frames/sec.

Figure 3.1: Sphinx-II Signal Processing Front End.

3.1 Knowledge Sources

This section briey describes the various knowledge sources or models and the speech
signal processing front-end used in Sphinx-II. In addition to the acoustic models
and pronunciation lexicon described below, Sphinx-II uses word bigram and trigram
grammars. These have been discussed in Section 2.2.

3.1.1 Acoustic Model

Signal Processing

A detailed description of the signal processing front end in Sphinx-II is contained
in Section 4.2.1 Signal Processing of [27]. The block diagram in Figure 3.1 depicts
the overall processing. Briey, the stream of 16-bit samples of speech data, sampled
at 16KHz, is converted into 12-element mel scale frequency cepstrum vectors and a
power coe�cient in each 10msec frame. We represent the cepstrum vector at time t
by x(t) (individual elements are denoted by xk(t); 1 � k � 12). The power coe�cient

3.1. KNOWLEDGE SOURCES 25

0 1 2 3 4

Initial State Final State
(Non−emitting)

Figure 3.2: Sphinx-II HMM Topology: 5-State Bakis Model.

is simply x0(t). This cepstrum vector and power streams are �rst normalized, and
four feature vectors are derived in each frame by computing the �rst and second order
di�erences in time:

x(t) = normalized cepstrum vector
�x(t) = x(t+ 2)� x(t� 2); �lx(t) = x(t+ 4) � x(t� 4)
��x(t) = �x(t+ 1) ��x(t� 1)
x0(t) = x0(t);

�x0(t) = x0(t+ 2)� x0(t� 2);
��x0(t) = �x0(t+ 1) ��x0(t� 1)

where the commas denote concatenation. Thus, in every frame we obtain four feature
vectors of 12, 24, 12, and 3 elements, respectively. These, ultimately, are the input
to the speech recognition system.

Phonetic HMM Models

Acoustic modelling in Sphinx-II is based on hidden Markov models (HMMs) for base-
phones and triphones. All HMMs in Sphinx-II have the same 5-state Bakis topology
shown in the Figure 3.2. (The background on HMMs has been covered briey in
Section 2.1.2.)

As mentioned in Section 2.1.2, Sphinx-II uses semi-continuous acoustic modelling
with 256 component densities in each feature codebook. States are clustered into
senones [27], where each senone has its own set of 256 mixture coe�cients weighting
the codebook for each feature stream.

In order to further reduce the computational cost, only the top few component
densities from each feature codebook|typically 4|are fully evaluated in each frame
in computing the output probability of a state or senone (equation 2.1). The rationale
behind this approximation is that the remaining components match the input very
poorly anyway and can be ignored altogether. The approximation primarily reduces
the cost of applying the mixture weights in computing senone output probabilities in
each frame. For each senone and feature only 4 mixing weights have to be applied to
the 4 best components, instead of all 256.

26 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

3.1.2 Pronunciation Lexicon

The lexicon in Sphinx-II de�nes the linear sequence of phonemes representing the
pronunciation for each word in the vocabulary. There are about 50 phonemes that
make up the English language. The phone set used in Sphinx-II is given in Appendix
A. The following is a small example of the lexicon for digits:

OH OW

ZERO Z IH R OW

ZERO(2) Z IY R OW

ONE W AH N

TWO T UW

THREE TH R IY

FOUR F AO R

FIVE F AY V

SIX S IH K S

SEVEN S EH V AX N

EIGHT EY TD

NINE N AY N

There can be multiple pronunciations for a word, as shown for the word ZERO above.
Each alternative pronunciation is assumed to have the same a priori language model
probability.

3.2 Forward Beam Search

As mentioned earlier, the baseline Sphinx-II recognition system consists of three
passes, of which the �rst is a time-synchronous Viterbi beam search in the forward
direction. In this section we describe the structure of this forward pass. We shall
�rst examine the data structures involved in the search algorithm, before moving on
to the dynamics of the algorithm.

3.2.1 Flat Lexical Structure

The lexicon de�nes the linear sequence of context-independent or base phones that
make up the pronunciation of each word in the vocabulary. Since Sphinx-II uses
triphone acoustic models [34], these base phone sequences are converted into triphone
sequences by simply taking each base phone together with its left and right context
base phones. (Note that the phonetic left context at the beginning of a word is the
last base phone from the previous word. Similarly, the phonetic right context at the
end of the word is the �rst base phone of the next word. Since the decoder does

3.2. FORWARD BEAM SEARCH 27

not know these neighbouring words a priori, it must try all possible cases and �nally
choose the best. This is discussed in detail below.) Given the sequence of triphones
for a word, one can construct an equivalent word-HMM by simply concatenating the
HMMs for the individual triphones, i.e., by adding a NULL transition from the �nal
state of one HMM to the initial state of the next. The initial state of �rst HMM, and
the �nal state of the last HMM in this sequence become the initial and �nal states,
respectively, of the complete word-HMM. Finally, in order to model continuous speech
(i.e., transition from one word into the next), additional NULL transitions are created
from the �nal state of every word to the initial state of all words in the vocabulary.
Thus, with a V word vocabulary, there are V 2 possible cross-word transitions.

Since the result is a structure consisting of separate linear sequence of HMMs for
each word, we call this a at lexical structure.

3.2.2 Incorporating the Language Model

While the cross-word NULL transitions do not consume any speech input, each of
them does have a language model probability associated with it. For a transition
from some word wi to any word wj, this probability is simply P (wjjwi) if a bigram
language model is used. A bigram language model �ts in neatly with the Markov
assumption that given any current state s at time t the probability of transitions out
of s does not depend on how one arrived at s. Thus, the language model probability
P (wjjwi) can be associated with the transition from the �nal state of wi to the initial
state of wj and thereafter we need not care about how we arrived at wj.

The above argument does not hold for a trigram or some other longer distance
grammar since the language model probability of transition to wj depends not only
on the immediate predecessor but also some earlier ones. If a trigram language model
is used, the lexical structure has to be modi�ed such that for each word w there are
several parallel instances of its word HMM, one for each possible predecessor word.
Although the copies may score identically acoustically, the inclusion of language model
scores would make their total path probabilities distinct. In general, with non-bigram
grammars, we need a separate word HMM model for each grammar state rather than
just one per word in the vocabulary.

Clearly, replicating the word HMM models for incorporating a trigram grammar
or some other non-bigram grammar in the search algorithm is much costlier compu-
tationally. However, more sophisticated grammars o�er greater recognition accuracy
and possibly even a reduction in the search space. Therefore, in Sphinx-II, trigram
grammars are used in an approximate manner with the following compromise. When-
ever there is a transition from word wi to wj, we can �nd the best predecessor of wi

at that point, say w0

i, as determined by the Viterbi search. We then associate the
trigram probability P (wjjw0

i; wi) with the transition from wi to wj. Note, however,
that unlike with bigram grammars, trigram probabilities applied to cross-word tran-

28 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

sitions in this approximate fashion have to be determined dynamically, depending on
the best predecessor for each transition at the time in question.

Using a trigram grammar in an approximate manner as described above has the
following advantages:

� It avoid any replication of the lexical word-HMM structures and associated
increase in computational load.

� In terms of accuracy, it is much better than using a bigram model and is close to
that of a complete trigram search. We infer this from the fact that the accuracy
of the results from the �nal A* pass, which uses the trigram grammar correctly,
and also has the bene�t of additional word segmentations to choose from, is
relatively only about 5% better (see Section 3.4.2).

� A trigram grammar applied in this approximate manner is empirically observed
to search fewer word-HMMs compared to a bigram grammar, thus leading to a
slight improvement in the recognition speed. The reduction in search is a result
of sharper pruning o�ered by the trigram grammar.

3.2.3 Cross-Word Triphone Modeling

It is advantageous to use cross-word triphone models (as opposed to ignoring cross-
word phonetic contexts) for continuous speech recognition where word boundaries
are unclear to begin with and there are very strong co-articulation e�ects. Using
cross-word triphone models we not only obtain better accuracy, but also greater com-
putational e�ciency, at the cost of an increase in the total size of acoustic models.
The sharper models provided by triphones, compared to diphones and monophones,
leads to greater pruning e�ciency and a reduction in computation. However, us-
ing cross-word triphone models in the Viterbi search algorithm is not without its
complications.

Right Context

The phonetic right context for the last triphone position in a word is the �rst base
phone of the next word. In time-synchronous Viterbi search, there is no way to know
the next word in advance. In any case, whatever decoding algorithm is used, there
can be several potential successor words to any given word wi at any given time.
Therefore, the last triphone position for each word has to be modelled by a parallel
set of triphone models, one for each possible phonetic right context. In other words, if
there are k basephones p1; p2; : : : ; pk in the system, we have k parallel triphone HMM
models hp1; hp2; : : : ; hpk representing the �nal triphone position for wi. A cross-word
transition from wi to another word wj , whose �rst base phone is p is represented by

3.2. FORWARD BEAM SEARCH 29

p

p

p

p

1

2

3

k

p

w
i

Word w
j

HMM network for word

last phone position for
different phonetic
right contexts

, first basephone = p

Cross−word NULL transition

Right context
basephone

Parallel set of HMMs in

Figure 3.3: Cross-word Triphone Modelling at Word Ends in Sphinx-II.

a NULL arc from hp to the initial state of wj. Figure 3.3 illustrates this concept of
right context fanout at the end of each word wi in Sphinx-II.

This solution, at �rst glance, appears to force a large increase in the total number
of triphone HMMs that may be searched. In the place of the single last position
triphone for each word, we now have one triphone model for each possible phonetic
right context, which is typically around 50 in number. In practice, we almost never
encounter this apparent explosion in computational load, for the following reasons:

� The dynamic number of rightmost triphones actually evaluated in practice is
much smaller than the static number because the beam search heuristic prunes
most of the words away by the time their last phone has been reached. This is
by far the largest source of e�ciency, even with the right context fanout.

� The set of phonetic right contexts actually modelled can be restricted to just
those found in the input vocabulary; i.e., to the set of �rst base phones of all
the words in the vocabulary.

Moreover, Sphinx-II uses state clustering into senones, where several states
share the same output distribution modelled by a senone. Therefore, the parallel
set of models at the end of any given word are not all unique. By removing
duplicates, the fanout can be further reduced. In Sphinx-II, these two factors
together reduce the right context fanout by about 70% on average.

� The increase is number of rightmost triphones is partly o�set by the reduction
in computation a�orded by the sharper triphone models.

30 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

Left Context

The phonetic left context for the �rst phone position in a word is the last base
phone from the previous word. During decoding, there is no unique such predecessor
word. In any given frame t, there may be transitions to a word wj from a number
of candidates wi1 ; wi2; : : : The Viterbi algorithm chooses the best possible transition
into wj . Let us say the winning predecessor is wik . Thus, the last base phone of wik

becomes the phonetic left context for wj. However, this is in frame t. In the next
frame, there may be an entirely di�erent winner that results in a di�erent left context
base phone. Since the real best predecessor is not determined until the end of the
Viterbi decoding, all such possible paths have to be pursued in parallel.

As with right context cross-word triphone modelling, this problem also can solved
by using a parallel set of triphone models for the �rst phone position of each word|a
separate triphone for each possible phonetic left context. However, unlike the word-
ending phone position which is heavily pruned by the beam search heuristic, the word-
initial position is extensively searched. Most of the word-initial triphone models are
alive every frame. In fact, as we shall see later in Section 3.4, they account for more
than 60% of all triphone models evaluated in the case of large-vocabulary recognition.
A left context fanout of even a small factor of 2 or 3 would substantially slow down
the system.

The solution used in the Sphinx-II baseline system is to collapse the left context
fanout into a single 5-state HMM with dynamic triphone mapping as follows. As
described above, at any given frame there may be several possible transitions from
words wi1; wi2 ; : : : into wj . According to the Viterbi algorithm, the transition with
the best incoming score wins. Let the winning predecessor be wik . Then the initial
state of wj also dynamically inherits the last base phone of wik as its left context.
When the output probability of the initial state of wj has to be evaluated in the next
frame, its parent triphone identity is �rst determined dynamically from the inherited
left context basephone. Furthermore, this dynamically determined triphone identity
is also propagated by the Viterbi algorithm, as the path probability is propagated
from state to state. This ensures that any complete path through the initial triphone
position of wj is scored consistently using a single triphone HMM model.

Figure 3.4 illustrates this process with an example, going through a sequence of
4 frames. It contains a snapshot of a word-initial HMM model at the end of each
frame. Arcs in bold indicate the winning transitions to each state of the HMM in
this example. HMM states are annotated with the left context basephone inherited
dynamically through time. As we can see in the example, di�erent states can have dif-
ferent phonetic left contexts associated with them, but a single Viterbi path through
the HMM is evaluated with the same context. This can be veri�ed by backtracking
from the �nal state backward in time.

3.2. FORWARD BEAM SEARCH 31

p
1

p
2

p
3

p
1

p
1

p
1

p
1

p
1

p
2

p
2

p
1

p
1

p
2

p
2

previous

p
1 Time = 1

Time = 2

Time = 3

Time = 4

left context
Incoming

phone =

p
left context
Incoming

(From

word)

p
left context
Incoming

2

3

Initial (leftmost) HMM model for a word

p
1

phone =

phone =

Figure 3.4: Word Initial Triphone HMM Modelling in Sphinx-II.

Single Phone Words

In the case of single-phone words, both their left and right phonetic contexts are
derived dynamically from neighbouring words. Thus, they have to be handled by a
combination of the above techniques. With reference to Figures 3.3 and 3.4, separate
copies of the single phone have to be created for each right phonetic context, and each
copy is modelled using the dynamic triphone mapping technique for handling its left
phonetic context.

3.2.4 The Forward Search

The decoding algorithm is, in principle, straightforward. The problem is to �nd the
most probable sequence of words that accounts for the observed speech. This is
tackled as follows.

The abstract Viterbi decoding algorithm and the beam search heuristic, and its

32 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

application to speech decoding have been explained in Section 2.3.1. In Sphinx-II,
there are two distinguished words, <s> and </s> , depicting the beginning and ending
silence in any utterance. The input speech is expected to begin at the initial state of
<s> and end in the �nal state of </s> .

We can now described the forward Viterbi beam search implementation in Sphinx-
II. It is explained with the help of fragments of pseudo-code. It is necessary to
understand the forward pass at this level in order to follow the subsequent discussion
on performance analysis and the breakdown of computation among di�erent modules.

Search Outline

Before we go into the details of the search algorithm, we introduce some terminology.
A state j of an HMM model m in the at lexical search space has the following
attributes:

� A path score at time t, Pm
j (t), that indicates the probability corresponding to

the best state sequence leading from the initial state of <s> at time 0 to this
state at time t, while consuming the input speech until t.

� A history information at time t, Hm
j (t), that allows us to trace back the best

preceding word history leading to this state at t. (As we shall see later, this is
a pointer to the word lattice entry containing the best predecessor word.)

� The senone output probability, bmj (t), for this state at time t (see Section 2.1.2).
If m belongs to the �rst position in a word, the senone identity for state j is
determined dynamically from the inherited phonetic left context (Section 3.2.3).

At the beginning of the decoding of an utterance, the search process is initialized
by setting the path probability of the start state of the distinguished word <s> to 1.
All other states are initialized with a path score of 0. Also, an active HMM list that
identi�es the set of active HMMs in the current frame is initialized with this �rst
HMM for <s> . From then on, the processing of each frame of speech, given the input
feature vector for that frame, is outlined by the pseudo-code in Figure 3.5.

We consider some of the functions de�ned in Figure 3.5 in a little more detail be-
low. Certain aspects, such as pruning out HMMs that fall below the beam threshold,
have been omitted for the sake of simplicity.

VQ: VQ stands for vector quantization. In this function, the Gaussian densities
that make up each feature codebook are evaluated at the input feature vectors. In
other words, we compute the Mahalanobis distance of the input feature vector from
the mean of each Gaussian density function. (This corresponds to evaluating N in

3.2. FORWARD BEAM SEARCH 33

forward_frame (input feature vector for current frame)

{

VQ (input feature); /* Find top 4 densities closest to input feature */

senone_evaluate (); /* Find senone output probabilities using VQ results */

hmm_evaluate (); /* Within-HMM and cross-HMM transitions */

word_transition (); /* Cross-word transitions */

/* HMM pruning using a beam omitted for simplicity */

update active HMM list for next frame;

}

hmm_evaluate ()

{

/* Within-HMM transitions */

for (each active HMM h)

for (each state s in h)

update path probability of s using senone output probabilities;

/* Within-word cross-HMM transitions and word-exits */

for (each active HMM h with final state score within beam) {

if (h is a final HMM for a word w) {

create word lattice entry for w; /* word exit */

} else {

let h' = next HMM in word after h;

NULL transition (final-state(h) -> initial-state(h'));

/* Remember right context fanout if h' is final HMM in word */

}

}

}

word_transition ()

{

let {w} = set of words entered into word lattice in this frame;

for (each word w' in vocabulary)

Find the best transition ({w} -> w'), including LM probability;

}

Figure 3.5: One Frame of Forward Viterbi Beam Search in the Baseline System.

34 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

equation 2.1.) Only the top 4 densities are fully evaluated and used further, since the
rest typically contribute very little to the senone output probability.

Since all senones share a single codebook per feature stream in the Sphinx-II
semi-continuous model, the VQ step does not have to be repeated for each senone.

Senone Evaluation: (Function senone_evaluate.) In this function, we compute
the output probability for each senone in the current frame as a weighted sum of
the top 4 density values in the frame. There are 4 feature streams in Sphinx-II. The
weighting is done independently on each stream and the �nal result is the product of
the four weighted values. (See Sections 3.1.1 and 2.1.2.)

HMM Evaluation: (Function hmm_evaluate.) This step includes two cases:

� Within-HMM transitions: For each active HMM model m the path score of
each state j in m is updated according to:

Pm
j (t) = max

i
(Pm

i (t� 1) � bmi (t) � amij) (3.1)

where, t indicates the current frame, i ranges over all states of m, and amij
is a static probability for the arc from i to j in m. (See also Section 2.1.2.)
Furthermore, the history pointer Hm

j (t), and the dynamic phonetic left context
if applicable, are propagated to j from the state i that maximizes expression
3.1.

� Within-word cross-HMM transitions and Word Exits: A cross-HMM NULL
transition within a word from HMMm1 to m2 causes the path score and history
information to be propagated from the �nal state of m1 to the start state of m2

if it results in a better path score at the start state of m2.

Words whose �nal states have a score within the allowed threshold represent
potential word recognitions in the current frame. There can be several such
words in any given frame. All of them are entered in a word lattice along with
the path score and history information from the �nal state. The right context
fanout at the end of each word actually results in several entries for each word,
one for each possible phonetic right context.

Cross-Word Transition: (Function word_transition.) In principle, this step
attempts all possible cross-word transitions from the set of words exited to all words
in the vocabulary, computing the language model probability in each case. If n words
reached their �nal state in the current frame, and there are V words in the vocabulary,
a total of nV transitions are possible. This is an enormous number. However, not all
transitions have explicit trigram or even bigram probabilities in the language model.

3.2. FORWARD BEAM SEARCH 35

Final HMMs of words exiting this frame
First HMMs of all words in vocabulary

(Right context fanout not shown)

Backoff transitions

backoff
node

Unigram transition to all words

Transitions to trigram and bigram successors of words exited this frame

Figure 3.6: Word Transitions in Sphinx-II Baseline System.

Therefore, the computation is approximated by using trigram and bigram transitions
that can actually be found in the grammar, and backing o� to unigrams through
a backo� node for the rest3. Thus, the total number of transitions evaluated is at
most V plus the number of bigrams and trigrams for the n words exited, which is a
typically a much smaller number than nV . The scheme is shown in Figure 3.6. For
the sake of clarity, details involving cross-word triphone modelling have been omitted.

If a cross-word transition is successful, the history information of the start state
of the destination word is updated to point to the word lattice entry corresponding
to the \winning" word just exited, i.e., the best predecessor word at this time. The
dynamic phonetic left context for the initial phone of the destination word is also set
from the best predecessor word.

Result of Forward Beam Search

One result of the forward pass is the word lattice identifying each word recognized
during the entire utterance. Each entry in the table identi�es a word, its segmentation
(i.e., start and end points in time), and the acoustic score for that word segmentation.

The second result of the forward Viterbi search is a single recognition hypothesis.
It is the word sequence obtained by starting at the �nal state of </s> at the end of

3Trigram probabilities are applied using the approximation described in Section 3.2.2.

36 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

the utterance and backtracking to the beginning, by following the history pointers in
the word lattice.

3.3 Backward and A* Search

As mentioned earlier, the A* or stack search is capable of exactly using more so-
phisticated language models than bigram grammars, thus o�ering higher recognition
accuracy. It maintains a sorted stack of partial hypotheses which are expanded in a
best-�rst manner, one word length at a time. There are two main issues with this
algorithm:

� To prevent an exponential explosion in the search space, the stack decoding
algorithm must expand each partial hypothesis only by a limited set of the
most likely candidate words that may follow that partial hypothesis.

� The A* algorithm is not time synchronous. Speci�cally, each partial hypotheses
in the sorted stack can account for a di�erent initial segment of the input speech.
This makes it hard to compare the path probabilities of the entries in the stack.

It has been shown in [42] that the second issue can be solved by attaching a heuris-
tic score with every partial hypothesis H that accounts for the remaining portion of
the speech not included in H. By \�lling out" every partial hypothesis to the full
utterance length in this way, the entries in the stack can be compared to one another,
and expanded in a best-�rst manner. As long as the heuristic score attached to any
partial hypothesis H is an upper bound on the score of the best possible complete
recognition achievable from H, the A* algorithm is guaranteed to produce the correct
results.

The backward pass in the Sphinx-II baseline system provides an approximation to
the heuristic score needed by the A* algorithm. Since it is a time-synchronous Viterbi
search, run in the backward direction from the end of the utterance, the path score
at any state corresponds to the best state sequence between it and the utterance end.
Hence it serves as the desired upper bound. It is an approximation since the path
score uses bigram probabilities and not the exact grammar that the A* search uses.

The backward pass also produces a word lattice, similar to the forward Viterbi
search. The A* search is constrained to search only the words in the two lattices, and
is relatively fast.

The word lattice produced by the backward pass has another desirable property.
We noted at the beginning of this chapter that for each word occurrence in the forward
pass word lattice, several successive end times are identi�ed along with their scores,
whereas very often only the single most likely begin time is identi�ed. The backward
pass word lattice produces the complementary result: several beginning times are

3.3. BACKWARD AND A* SEARCH 37

identi�ed for a given word occurrence, while usually only the single most likely end
time is available. The two lattices can be combined to obtain acoustic probabilities
for a wider range of word beginning and ending times, which improves the recognition
accuracy.

In the following subsections, we briey describe the backward Viterbi pass and
the A* algorithm used in the Sphinx-II baseline system.

3.3.1 Backward Viterbi Search

The backward Viterbi search is essentially identical to the forward search, except that
it is completely reversed in time. The main di�erences are listed below:

� The input speech is processed in reverse.

� It is constrained to search only the words in the word lattice from the forward
pass. Speci�cally, at any time t, cross-word transitions are restricted to words
that exited at t in the forward pass, as determined by the latter's word lattice.

� All HMM transitions, as well as cross-HMM and cross-word NULL transitions
are reversed with respect to the forward pass.

� Cross word triphone modelling is performed using left-context fanout and dy-
namic triphone mapping for right contexts.

� Only the bigram probabilities are used. Therefore, the Viterbi path score from
any point in the utterance up to the end is only an approximation to the upper
bounds desired by the A* search.

The result of the backward Viterbi search is also a word lattice like that from the
forward pass. It is rooted at </s> that ends in the �nal frame of the utterance, and
growing backward in time. The backward pass identi�es several beginning times for a
word, but typically only one ending time. Acoustic scores for each word segmentation
are available in the backward pass word lattice.

3.3.2 A* Search

The A* search algorithm is described in [42]. It works by maintaining an ordered stack
or list of partial hypotheses, sorted in descending order of likelihood. Hypotheses are
word sequences and may be of di�erent lengths, accounting for di�erent lengths of
input speed. Figure 3.7 outlines the basic stack decoding algorithm for �nding N -best
hypotheses.

38 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

initialize stack with <s>;

while (N > 0) {

pop best hypothesis H off top of stack;

if H is a complete hypothesis {

output H, and decrement N;

} else {

find candidate list of successor words to H from backward pass lattice;

for (each word W in above candidate list) {

extend H by appending W to it, giving new partial hypothesis H';

evaluate new score for H' using forward and backward lattices;

insert H' into the stack in accordance with its new score;

}

}

}

Figure 3.7: Outline of A* Algorithm in Baseline System

The speci�c details relevant to the Sphinx-II implementation are covered in [2].
Most of the additional details pertain to two steps: identifying candidate word ex-
tensions for a partial hypothesis H, and computing the score for each newly created
partial hypothesis H 0. Candidate words are located by looking for lattice entries that
begin where the partial hypothesis ends. The score for the new hypothesis H 0 is
computed by factoring in the acoustic score for the new word W (obtained from the
forward and backward pass word lattices), a new heuristic score to the end of the
utterance from the end point of H 0, and the language model probability for W , given
the preceding history, i.e., H.

The hypotheses produced by the A* algorithm are not truly in descending order
of likelihood since the heuristic score attached to each partial hypothesis is only an
approximation to the ideal. However, by producing a su�ciently large number of
N -best hypotheses, one can be reasonably sure that the best hypothesis is included
in the list. In our performance measurements described below, the value of N is 150.
The best output from that list is chosen as the decoding for the utterance. There is
no other post processing performed on the N -best list.

3.4 Baseline Sphinx-II System Performance

The performance of the baseline Sphinx-II recognition system was measured on several
large-vocabulary, speaker-independent, continuous speech data sets of read speech4

from theWall Street Journal and other North American business news domain. These

4As opposed to spontaneous speech.

3.4. BASELINE SPHINX-II SYSTEM PERFORMANCE 39

data sets have been extensively used by several sites in the past few years, including
the speech group at Carnegie Mellon University. But the principal goal of these ex-
periments has been improving the recognition accuracy. The work reported in this
thesis is focussed on obtaining other performance measures for the same data sets,
namely execution time and memory requirements. We �rst describe the experimen-
tation methodology in the following section, followed by other sections containing a
detailed performance analysis.

3.4.1 Experimentation Methodology

Parameters Measured and Measurement Techniques

The performance analysis in this section provides a detailed look at all aspects of
computational e�ciency, including a breakdown by the various algorithmic steps in
each case. Two di�erent vocabulary sizes|approximately 20,000 and 58,000 words,
referred to as the 20K and 58K tasks, respectively|are considered for all experiments.
The major parameters measured include the following:

� Recognition accuracy from the �rst Viterbi pass result and the �nal A* result.
This is covered in detail in Section 3.4.2.

� Overall execution time and its breakdown among the major computational
steps. We also provide frequency counts of the most common operations that
account for most of the execution time. Section 3.4.3 deals with these mea-
surements. Timing measurements are performed over entire test sets, averaged
to per frame values, and presented in multiples of real time. For example, any
computation that takes 23msec to execute per frame, on average, is said to run
in 2.3 times real time, since a frame is 10msec long. This makes it convenient to
estimate the execution cost and usability of individual techniques. Frequency
counts are also normalized to per frame values.

� The breakdown of memory usage among various data structures. This is covered
in Section 3.4.4.

Clearly, the execution times reported here are machine-dependent. Even with a sin-
gle architecture, di�erences in implementations such as cache size, memory and bus
speeds relative to CPU speed, etc. can a�ect the speed performance. Furthermore,
for short events, the act of measuring them itself would perturb the results. It is
important to keep these caveats in mind in interpreting the timing results. Having
said that, we note that all experiments were carried out on one particular model of
Digital Equipment Corporation's Alpha workstations. The Alpha architecture [61]
includes a special RPCC instruction that allows an application to time very short

40 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

events of as little as a few hundred machine cycles with negligible overhead. All
timing measurements are normalized to an Alpha processor running at 175MHz.

It should also be emphasized that the main computational loops in the Sphinx-II
system have been tuned carefully for optimum speed performance. The measurements
reported in this work have been limited almost exclusively to such loops.

Test Sets and Experimental Conditions

The test sets used in the experiments have been taken from the various data sets
involved in the 1993 and 1994 ARPA hub evaluations. All the test sets consist of
clean speech recorded using high quality microphones. Speci�cally, they consist of
the following:

� Dev93 : The 1993 development set (commonly referred to as si dt 20).

� Dev94 : The 1994 development set (h1 dt 94).

� Eval94 : The 1994 evaluation set (h1 et 94).

The test sets are evaluated individually on the 20K and the 58K tasks. This is im-
portant to demonstrate the variation in performance, especially recognition accuracy,
with di�erent test sets and vocabulary sizes. The individual performance results allow
an opportunity for comparisons with experiments performed elsewhere that might be
restricted to just some of the test sets. Table 3.1 summarizes the number of sentences
and words in each test set.

Dev93 Dev94 Eval94 Total

Sentences 503 310 316 1129
Words 8227 7387 8186 23800

Table 3.1: No. of Words and Sentences in Each Test Set

The knowledge bases used in each experiment are the following:

� Both the 20K and the 58K tasks use semi-continuous acoustic models of the
kind discussed in Section 3.1.1. There are 10,000 senones or tied states in this
system.

� The pronunciation lexicons in the 20K tasks are identical to those used by CMU
in the actual evaluations. The lexicon for the 58k task is derived partly from
the 20k task and partly from the 100K-word dictionary exported by CMU.

3.4. BASELINE SPHINX-II SYSTEM PERFORMANCE 41

� The Dev93 language model for the 20K task is the standard one used by all
sites in 1993. It consists of about 3.5M bigrams and 3.2M trigrams. The 20K
grammar for Dev94 and Eval94 test sets is also the standard one used by all
sites, and it consists of about 5.0M bigrams and 6.7M trigrams. The grammar
for the 58K task is derived from the approximately 230M words of language
model training data that became available during the 1994 ARPA evaluations,
and it consists of 6.1M bigrams and 18.0M trigrams. The same grammar is used
with all test sets.

The following sections contain the detailed performance measurements conducted
on the baseline Sphinx-II recognition system.

3.4.2 Recognition Accuracy

Recognition results from the �rst pass (Viterbi beam search) as well as the �nal A*
pass are presented for both the 20K and 58K task. Table 3.2 lists the word error
rates on each of the test sets, individually and overall56. Errors include substitutions,
insertions and deletions.

Dev93 Dev94 Eval94 Mean

20K(Vit.) 17.6 15.8 15.9 16.4
20K(A*) 16.5 15.2 15.3 15.7
58K(Vit.) 15.1 14.3 14.5 14.6
58K(A*) 13.8 13.8 13.8 13.8

Table 3.2: Percentage Word Error Rate of Baseline Sphinx-II System.

It is clear that the largest single factor that determines the word error rate is the
test set itself. In fact, if the input speech were broken down by individual speakers, a
much greater variation would be observed [45, 46]. Part of this might be attributable
to di�erent out-of-vocabulary (OOV) rates for the sets of sentences uttered by in-
dividual speakers. However, a detailed examination of a speaker-by-speaker OOV
rate and error rate does not show any strong correlation between the two. The main
conclusion is that word error rate comparisons between di�erent systems must be
restricted to the same test sets.

5The accuracy results reported in the actual evaluations are somewhat better than those shown
here. The main reason is that the acoustic models used in the evaluations are more complex,
consisting of separate codebooks for individual phone classes. We used a single codebook in our
experiments instead, since the goal of our study is the cost of the search algorithm, which is about
the same in both cases.

6Note that in all such tables, the overall mean is computed over all di�erent sets put together.
Hence, it is not necessarily just the mean of the means for the individual test sets.

42 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

3.4.3 Search Speed

In this section we present a summary of the computational load imposed by the
Sphinx-II baseline search architecture. There are three main passes in the system:
forward Viterbi beam search, backward Viterbi search, and A* search. The �rst
presents the greatest load of all, and hence we also study the breakdown of that load
among its main components: Gaussian density computation, senone score computa-
tion, HMM evaluation, and cross-word transitions. These are the four main functions
in the forward pass that were introduced in Section 3.2.4. Although we present per-
formance statistics for all components, the following functions in the forward Viterbi
search will be the main focus of our discussion:

� HMM evaluation. We present statistics on both execution times as well as the
number of HMMs evaluated per frame.

� Cross word transitions. Again, we focus on execution times and the number of
cross-word transitions carried out per frame.

The execution time for each step is presented in terms of multiples of real time
taken to process that step. As mentioned earlier, the machine platform for all experi-
ments is the DEC Alpha workstation. All timing measurements are carried out using
the RPCC instruction, so that the measurement overhead is minimized. It should
again be emphasized that execution times are heavily inuenced by the overall pro-
cessor, bus, and memory architecture. For this reason, all experiments are carried
out on a single machine model. The performance �gures presented in this section are
normalized to an Alpha processor running at 175MHz.

Overall Execution Times

Table 3.3 summarizes the execution times for both the 20K and 58K tasks. As we
can see, the forward Viterbi search accounts for well over 90% of the computation. Its
four major components can be grouped into two classes: acoustic model evaluation
and search. The former includes the Gaussian density computation and senone output
probability evaluation. The latter consists of searching the network of HMMs to �nd
the best decoding|the main body of the Viterbi search algorithm.

Breakdown of Forward Viterbi Search Execution Times

Table 3.4 lists the breakdown of the forward pass execution times for the two vocab-
ularies. The important conclusion is that the absolute speed of the search component
is several tens of times slower than real time for both tasks. This shows that re-
gardless of other optimizations we may undertake to improve execution speed, the

3.4. BASELINE SPHINX-II SYSTEM PERFORMANCE 43

Dev93 Dev94 Eval94 Mean %Total

Forward 22.62 21.84 22.14 22.24 92.8%
Backward 0.56 0.57 0.59 0.57 2.4%
A* 1.28 1.02 1.12 1.15 4.8%

(a) 20K Task.

Dev93 Dev94 Eval94 Mean %Total

Forward 46.71 40.25 39.20 42.43 95.8%
Backward 0.68 0.70 0.70 0.69 1.5%
A* 1.18 1.17 1.24 1.19 2.7%

(b) 58K Task.

Table 3.3: Overall Execution Times of Baseline Sphinx-II System (xRealTime).

Dev93 Dev94 Eval94 Mean %Forward

VQ 0.16 0.16 0.16 0.16 0.7%
Senone Eval. 3.74 3.72 3.71 3.72 16.7%
HMM Eval. 10.24 9.26 9.41 9.88 44.4%
Word Trans. 8.29 8.49 8.66 8.47 38.1%

(b) 20K Task.

Dev93 Dev94 Eval94 Mean %Forward

VQ 0.16 0.16 0.16 0.16 0.4%
Senone Eval. 3.81 3.82 3.85 3.82 9.0%
HMM Eval. 19.64 17.22 16.18 17.83 42.0%
Word Trans. 22.90 18.85 18.79 20.41 48.1%

(b) 58K Task.

Table 3.4: Baseline Sphinx-II System Forward Viterbi Search Execution Times (xRe-
alTime).

cost of search must be reduced signi�cantly in order to make large vocabulary speech
recognition practically useful.

Since we use semicontinuous acoustic models with just one codebook per feature
stream, the cost of computing senone output probabilities is relatively low. In fact,
over 80% of the total time is spent in searching the HMM space in the case of the 20K
task. This proportion grows to over 90% for the 58K task. We can obtain signi�cant
speed improvement by concentrating almost solely on the cost of search.

44 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

We consider the search component|HMMevaluation and cross-word transitions|
in more detail below.

HMMs Evaluated Per Frame in Forward Viterbi Search

Table 3.5 summarizes the average number of HMMs evaluated per frame in each of
the test sets and the overall average, for both the 20K and 58K tasks. The table also
shows the average number of word-initial HMMs computed per frame, in absolute
terms and as a percentage of the total number.

Dev93 Dev94 Eval94 Mean

Total 16957 15315 15411 15985
Word-initial 10849 9431 9299 9940

(%Total) (63) (61) (60) (62)

(a) 20K Task.

Dev93 Dev94 Eval94 Mean

Total 33291 26723 26700 29272
Word-initial 24576 18219 17831 20569

(%Total) (74) (68) (67) (70)

(b) 58K Task.

Table 3.5: HMMs Evaluated Per Frame in Baseline Sphinx-II System.

The most striking aspect of the baseline Sphinx-II system is that in the 20K task
more than 60% of the total number of HMMs evaluated belong to the �rst position
in a word. In the case of the 58K task, this fraction grows to 70%. The reason
for this concentration is simple. Since there are no pre-de�ned word boundaries in
continuous speech, there are cross-word transitions to the beginning of every word in
the vocabulary in almost every frame. These transitions keep most of the word-initial
triphone models alive or active in every frame.

Cross-Word Transitions Per Frame in Forward Viterbi Search

A similar detailed examination of cross-word transitions shows a large number of
unigram, bigram and trigram transitions performed in each frame. As explained in
Section 3.2.4, there are three cases to be considered. If w is a word just recognized and
w0 its best Viterbi predecessor, we have the following sets of cross-word transitions:

1. Trigram followers of (w;w0),

3.4. BASELINE SPHINX-II SYSTEM PERFORMANCE 45

2. Bigram followers of (w), and

3. Unigram transitions to every word in the vocabulary.

Of course, many of them are unsuccessful because their low a priori likelihood, as
determined by the associated language model probabilities. In Table 3.6 we show
the number of successful cross-word transitions per frame in the baseline Sphinx-II
system.

Dev93 Dev94 Eval94 Mean %Total
Trigrams 996 662 708 807 6.2%
Bigrams 5845 5035 5079 5364 40.9%
Unigrams 7257 6848 6650 6944 52.9%

(a) 20K Task.

Dev93 Dev94 Eval94 Mean %Total

Trigrams 1343 1276 1351 1326 5.1%
Bigrams 10332 7360 7367 8519 32.9%
Unigrams 20090 13792 13305 16087 62.0%

(b) 58K Task.

Table 3.6: N -gram Transitions Per Frame in Baseline Sphinx-II System.

We conclude that both bigram and unigram transitions contribute signi�cantly to
the cost of cross-word transitions.

3.4.4 Memory Usage

It is somewhat hard to measure the true memory requirement of any system without
delving into the operating system details. There are two measures of memory space:
virtual memory image size, and the resident or working set size. The former is easy
to measure, but the latter is not. We consider both aspects for each of the main data
structures in the baseline system.

Acoustic Model

In our experiments with Sphinx-II using semi-continuous acoustic models, the senone
mixture weights discussed in Sections 2.1.2 and 3.1.1 constitute the largest portion of
the acoustic models. The 10,000 senones occupy 40MBytes of memory, broken down
as follows. Each senone contains 256 32-bit weights or coe�cients corresponding to

46 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

Unigrams

Bigrams

Trigrams

w1

w1

w1,w2

w2

Bigrams for

Trigrams for

Figure 3.8: Language Model Structure in Baseline Sphinx-II System.

the 256 codewords in a codebook. There are four codebooks for the four feature
streams (Section 3.1.1).

The memory resident size of the senone mixture weights is not signi�cantly less
than their total size. If all Gaussian densities were fully evaluated in every frame and
weighted by the senone coe�cients, the entire 40MB data structure would be touched
and resident in memory every frame. In practice, only the top 4 densities out of 256
are used in a given frame. Nevertheless, the identity of the top 4 densities varies
rapidly from frame to frame. Hence, most of the senone mixture weights are accessed
within a short period of time. That is, there isn't very much locality of access to this
data structure to be exploited by the virtual memory system.

Language Model

The representation of the language model data structure has been quite well opti-
mized. The sets of unigrams, bigrams, and trigrams are organized into a tree struc-
ture wherein each unigram points to the set of its bigram successors, and each bigram
points to its trigram successors. Figure 3.8 illustrates this organization.

The memory requirement for unigrams in a large-vocabulary, word trigram gram-
mar is negligible, compared to the higher-order n-grams. A bigram entry includes
the following four components:

1. Word-id. A bigram is a two-word pair. Since all bigram followers of a single
unigram are grouped under the unigram, it is only necessary to record the
second word of the bigram in its data structure.

2. Bigram probability.

3. A backo� weight that is applied when a trigram successor of the bigram is not
in the language model and we have to back o� to another bigram.

3.4. BASELINE SPHINX-II SYSTEM PERFORMANCE 47

4. Pointer to the trigram successors for the bigram.

Similarly, a trigram consists of 2 entries: a word-id and its trigram probability. By
means of a set of indirect lookup tables, each of the components of a bigram or trigram
entry is compressed into 2 bytes. In other words, a single bigram requires 8 bytes,
and a single trigram 4 bytes.

Based on these �gures, the two language models used in the 20K task (see Section
3.4.1) occupy about 41MB and 67MB of memory, respectively. The 58K task language
model measures at about 121MB.

In this case, the di�culty faced by the virtual memory system in managing the
working set is that the granularity of access is usually much smaller than the physical
page size of modern workstations. Many words have just a few 10s to 100s of bigram
successors. For example, the average number of bigrams per word in the case of the
58K vocabulary is about 105. Whereas, the page size on a DEC Alpha is 8KB, 16KB,
or more. Hence, much of the contents of a page of bigrams might be unused.

Search Data Structures

One of the search data structures is the network of active word HMMs in each frame.
It is a dynamically varying quantity. The average number of active HMMs per frame,
shown in Table 3.5, is a rough measure of this parameter. Its peak value, however, can
be substantially higher. Since all of the active HMMs in a frame have to be evaluated,
they are all resident in memory. Other prominent search data structures include the
forward and backward pass word lattices, the sizes of which grows approximately
proportionately with the utterance length.

All of these data structures are relatively small compared to the acoustic and
language models, and we exclude them from further discussion.

Memory Usage Summary

In summary, the virtual memory requirement of the baseline system is well over
100MB for the 20K tasks and around 200MB for the larger 58K task, excluding aux-
iliary data structures used in the three passes. It is worth noting that the 20K tasks
are on the verge of thrashing on a system with 128MB of main memory, indicating
that most of the virtual pages are indeed being touched frequently.

48 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

3.5 Baseline System Summary

The purpose behind this chapter has been to outline the basic algorithms comprising
the baseline Sphinx-II speech recognition system, as well as to evaluate its perfor-
mance on large-vocabulary, continuous-speech tasks. We have obtained a measure of
its e�ciency along three basic dimensions: recognition accuracy, speed, and memory
requirements. The evaluations were carried out on several test sets of read speech
from the Wall Street Journal and North American Business News domains. The tests
are run with two di�erent vocabulary sizes of 20K and 58K words.

The immediate conclusion from these measurements is that the baseline Sphinx-II
system cannot be used in practical, large vocabulary speech applications. Its compu-
tational and memory requirements are an order of magnitude beyond the capabilities
of commonly available workstations. While it is possible to improve the recognition
speed by tightening the beam width (i.e., pruning the search more ruthlessly) and us-
ing less sophisticated acoustic models to reduce memory requirements, such measures
cannot overcome the inherent algorithmic complexities of the system. Moreover, they
also result in an unacceptable increase in the recognition error rate.

We summarize our conclusions from this chapter:

� The main search of the full vocabulary, i.e. the forward Viterbi search, is
computationally the most expensive. It accounts for over 90% of the total time.
Postprocessing the word lattice is relatively inexpensive.

� The search component of the forward Viterbi search, even on modern high-end
workstations, is several tens of times slower than real time on large vocabulary,
continuous speech tasks.

� About half of the search cost is attributable to HMM evaluation. Moreover, the
active HMMs to be evaluated during search are concentrated near the beginning
of words. Speci�cally, over 60-70% of the active HMMs are word-initial models.
This is not a new result. It has also been pointed out before, for example in
[39, 43], although it has not been quanti�ed as systematically.

� The other half of the search cost is attributable to the evaluation of cross-
word transitions, along with the need to perform several thousands of language
model accesses in each frame. Both bigram and unigram transitions contribute
signi�cantly to this cost.

� The memory requirements of large vocabulary speech recognition systems are
dominated by the two main databases: acoustic models and language models.
For large tasks they can run between 100-200MB.

It is clear that in order for the state-of-the-art speech recognition systems to become
useful, we must address all of the above issues.

Chapter 4

Search Speed Optimization

4.1 Motivation

Most of the research e�ort on large vocabulary continuous speech recognition has
primarily been in improving recognition accuracy, exempli�ed by the baseline Sphinx-
II system. We have seen in the previous chapter that the Sphinx-II system is several
tens of times too slow and requires 100-200MB of memory for large vocabulary tasks.
In order to be practically useful, speech recognition systems have to be e�cient in
their usage of computational resources as well.

There clearly are several real-time recognition systems around in the ARPA speech
research community [23, 60, 55, 24]. However, the published literature is relatively
bare regarding them. Their performance has never been formally evaluated with re-
spect to the research systems or with respect to one another, in the way that the
accuracy of research systems has been. One goal of this thesis is to demonstrate
that it is possible to achieve near real-time performance on large-vocabulary, contin-
uous speech recognition tasks without compromising the recognition accuracy o�ered
by research systems. This is a way of lending validity to the ongoing research on
improving accuracy.

We can also look at the current focus of speech research from the following angle.
Speech recognition systems consist of two main components:

� Modelling structure, consisting of acoustic and language models.

� Algorithmic or search structure. For example, the forward pass Viterbi beam
search algorithm described in the previous chapter.

Clearly, both components contribute to the various dimensions of e�ciency of the
system|accuracy, speed, memory usage. But much of speech research has been
focussed on the modelling aspect, speci�cally towards improving recognition accuracy.

49

50 CHAPTER 4. SEARCH SPEED OPTIMIZATION

This chapter concentrates on improving the algorithmic structure of search, while
preserving the gains made in the modelling arena.

Another reason for concentrating on the search problem is the following. The
complexity of speech tasks is constantly growing, outpacing the growth in the power
of commonly available workstations. Since the late 1980s, the complexity of tasks
undertaken by speech researchers has grown from the 1000-word Resource Manage-
ment (RM) task [51] to essentially unlimited vocabulary tasks such as transcription
of radio news broadcast in 1995 [48]. The RM task ran about an order of magnitude
slower than real time on processors of that day. The unlimited vocabulary tasks run
about two orders of magnitude slower than real time on modern workstations. At
least part of the increase in the computational load is the increase in the search space.
It seems reasonable to expect that task complexity will continue to grow in the future.

In this chapter, we discuss several algorithms and heuristics for improving the
e�ciency of a recognition system. We use the Sphinx-II research system described in
Chapter 3 as a baseline for comparison. Since the focus of this work is in improving
search algorithms, we use the same acoustic and language models as in the baseline
system. As mentioned above, there are two variables in speech recognition systems,
modelling and search algorithms. By keeping one of them constant, we also ensure
that comparisons of the performance of proposed search algorithms with the baseline
system are truly meaningful.

Though the work reported in this thesis has been carried out in the context of semi-
continuous acoustic models, it is also relevant to systems that employ fully continuous
models. At the time that this work was begun, the Sphinx-II semi-continuous acoustic
models were the best available to us. Over the last two years fully continuous acoustic
models [66, 5, 18] have become much more widely used in the speech community.
They reduce the word error rate of recognition systems by a relative amount of about
20-30% compared to semi-continuous acoustic models1 [46, 47]. The use of fully
continuous models does not eliminate the search problem. On the other hand, the cost
of computing output probabilities for each state in each frame becomes much more
signi�cant that in the semi-continuous system. Hence, improving the speed of search
alone is not su�cient. We demonstrate that the proposed search algorithms using
semi-continuous models generate compact word lattices with low lattice error rate.
Such lattices can be postprocessed e�ciently using more complex acoustic models for
higher accuracy.

The outline of this chapter is as follows:

� In Section 4.2 we discuss lexical tree Viterbi search and all its design rami�ca-

1The contribution of acoustic modelling in di�erent systems to recognition accuracy is hard to
estimate since some systems use not one but several sets of acoustic models, particularly for speaker
adaptation [64]. The overall accuracy resulting from the use of continuous HMM models plus several
cycles of mean and variance adaptation was about 50% better than semi-continuous HMM modelling
with little or no adaptation.

4.2. LEXICAL TREE SEARCH 51

tions. We show how the lexical tree can be used to not only take advantage of
the reduction in the number of active HMMs, but also to signi�cantly reduce
the number of language model operations during cross-word transitions. Tree-
structured lexicons are increasingly being used in all speech recognition systems
to take advantage of the sharing of HMMs across words, but this is the �rst
instance of reducing the language model operations signi�cantly. The section
includes detailed performance measurements and comparisons to the baseline
Sphinx-II system.

� In Section 4.3 we present an e�cient word lattice search to �nd a globally
optimum path through the lattice using a trigram grammar. Even though the
lexical tree search is about 20% worse in recognition accuracy relative to the
baseline system, most of the loss is recovered with this step. The global word
lattice search improves the recognition accuracy by considering alternative paths
that are discarded during the lexical tree Viterbi search.

� In Section 4.4 we show that by rescoring the word lattice output of the tree
search using the conventional search algorithm of the baseline system, we es-
sentially regain the recognition accuracy of the baseline system. Though our
rescoring experiments are restricted to semi-continuous acoustic models, clearly
more sophisticated models can be used as well.

� In Section 4.5 we propose a phonetic fast match heuristic that can be easily
integrated into the lexical tree search algorithm to reduce the search, with
virtually no loss of accuracy. The heuristic uses senone output probabilities in
each frame to predict a set of active basephones near that frame. All others are
considered inactive and pruned from search.

� There is a good deal of inherent parallelism at various levels in a speech recog-
nition system. As commercial processor architectures and operating systems
become capable of supporting multithreaded applications, it becomes possible
to take advantage of the applications' inherent concurrency. In Section 4.6 we
explore the issues involved in exploiting them.

This chapter concludes with Section 4.7 that summarizes the performance of all of
the techniques presented in this chapter.

4.2 Lexical Tree Search

The single largest source of computational e�ciency in performing search is in or-
ganizing the HMMs to be searched as a phonetic tree, instead of the at structure
described in Section 3.2.1. It is referred to as a tree-structured lexicon or lexical tree

52 CHAPTER 4. SEARCH SPEED OPTIMIZATION

ABOUND AX B AW N DD

ABOUT AX B AW TD

ABOVE AX B AH V

BAKE B EY KD

BAKED B EY KD TD

BAKER B EY K AXR

BAKERY B EY K AXR IY

BAKING B EY K IX NG

(a) Example Pronunciation Lexicon.

AX B

AW

KD

VAH

TD

DDN

EY

AXR

IX

K

IY

NG
B

TD

ABOUND

ABOUT

ABOVE

BAKE

BAKED

BAKER

BAKERY

BAKING

(b) Basephone Lexical Tree.

Figure 4.1: Basephone Lexical Tree Example.

structure. In such an organization, if the pronunciations of two or more words con-
tain the same n initial phonemes, they share a single sequence of n HMM models
representing that initial portion of their pronunciation. Tree-structured lexicons have
often been used in the past, especially in fast-match algorithms as a precursor step to
a stack-decoding algorithm. More recently, tree search has come into widespread use
in the main decoding process [43, 39]. Figure 4.1 shows a simple base-phone lexical
tree2 for a small example lexicon.

The lexical tree o�ers a potential solution to the two main sources of computational
cost in the baseline system:

� By introducing a high degree of sharing at the root nodes, it reduces the number

2Strictly speaking, the so-called lexical tree is actually a collection of trees or a forest, rather
than a single tree. Nevertheless, we will continue to use the term lexical tree to signify the entire
collection.

4.2. LEXICAL TREE SEARCH 53

of word initial HMMs that need to be evaluated in each frame. As we saw in
Section 3.4.3, word-initial HMMs are the most frequently evaluated HMMs in
the baseline system.

� The tree structure also greatly reduces the number of cross-word transitions,
which is again a dominant part of search in the baseline system (see Section
3.4.3, Table 3.6).

Another advantage of the tree organization is that both the number of active HMMs
and the number of cross-word transitions grow much more slowly with increasing
vocabulary size than in the case of a at lexical structure. On a per active HMM
basis, however, there is more work involved in the lexical tree search, since each active
HMM makes NULL transitions to several successor nodes, rather than just a single
node as in the baseline system.

The main impediment to the full realization of the above advantages of tree search
is the incorporation of a language model into the search. In the at lexical structure,
each cross-word transition from word wi to wj is accompanied by a language model
probability P (wjjwi), assuming a bigram grammar. The di�culty with the tree struc-
ture is that individual words are not identi�able at the roots of the tree. The root
nodes represent the beginning of several di�erent words (and hence multiple gram-
mar states), which are related phonetically, but not grammatically. This can lead to
conicts between di�erent cross-word transitions that end up at the same root node.

Most of the current solutions rely on creating additional word HMM networks to
handle such conicts. The prominent ones have been reviewed in Section 2.4. The
obvious drawback associated with these solutions is an increase in the number of
operations that the lexical tree structure is supposed to solve in the �rst place.

In this work we present a coherent solution that avoids the replication by post-
poning the computation of language model probability for a word until the end of the
word is reached. We show that this strategy improves the computational e�ciency
of search as it takes full advantage of the tree structure to dramatically reduce not
only the number of HMMs searched but also the number of cross-word transitions
and language model probabilities to be evaluated.

We �rst present the structure of the lexical tree in Section 4.2.1, followed by the
main issue of treating language model probabilities across word transitions in Section
4.2.2. The overall tree search algorithm is discussed in Section 4.2.3. Section 4.2.4
contains a detailed performance analysis of this algorithm, and we �nally conclude
with a summary in Section 4.2.5.

54 CHAPTER 4. SEARCH SPEED OPTIMIZATION

4.2.1 Lexical Tree Construction

In Figure 4.1 we saw the construction of a lexical tree of base phone nodes. However,
we wish to use triphone acoustic models rather than simple base phone models for
high recognition accuracy. Hence, the lexical tree has to be built out of triphone nodes
rather than basephone nodes. This basically requires a trivial change to Figure 4.1,
except at the roots and leaf positions of the tree (corresponding to word beginnings
and endings), which have to deal with cross-word triphone models.

The issues that arise in dealing with cross-word triphone modelling have been
discussed in Section 3.2.3. The Sphinx-II tree-structured decoder also uses similar
strategies3. To summarize:

� In a time-synchronous search, the phonetic right contexts are unknown since
they belong to words that would occur in the future. Therefore, all phonetic
possibilities have to be considered. This leads to a right context fanout at the
leaves of the lexical tree.

� The phonetic left context at the roots of the lexical tree is determined dynami-
cally at run time, and there may be multiple contexts active at any time. How-
ever, a fanout at the roots, similar to that at the leaves, is undesirable since the
former are active much more often. Therefore, cross-word triphones at the root
nodes are modelled using the dynamic triphone mapping technique described in
Section 3.2.3. It multiplexes the states of a single root HMM between triphones
resulting from di�erent phonetic left contexts.

Figure 4.2 depicts the earlier example shown in Figure 4.1, but this time as a
triphone lexical tree. The notation b(l; r) in this �gure refers to a triphone with base-
phone b, left context phone l, and right context phone r. A question-mark indicates
an unknown context that is instantiated dynamically at run time.

The degree of sharing in a triphone lexical tree is not as much as in the basephone
version, but it is still substantial at or near the root nodes. Table 4.1 lists the number
of tree nodes at various levels, the corresponding number of nodes in the attened
lexicon (i.e., if there were no sharing), and the ratio of the former to the latter as a
percentage. Leaf nodes were not considered in these statistics since they have to be
modelled with a large right context fanout. The degree of sharing is very high at the
root nodes, but falls o� sharply after about 3 levels into the tree.

In our implementation, the entire lexical tree, except for the leaf nodes with their
right context fanout, is instantiated as a data structure in memory. If the leaf nodes
were also allocated statically, their right context fanout would increase the total

3Unlike the baseline system, however, single-phone words have been modelled more simply, by
modelling di�erent left contexts but ignoring the right context.

4.2. LEXICAL TREE SEARCH 55

KD(EY,TD)

V(AH,?)

TD(KD,?)

KD(EY,?)

K(EY,IX)

EY(B,K)

EY(B,KD)

B(?,EY)

DD(N,?)

TD(AW,?)

N(AW,DD)

AH(B,V)

AW(B,TD)

AW(B,N)

B(AX,AH)

B(AX,AW)

AX(?,B)

IY(AXR,?)

NG(IX,?)

AXR(K,IY)

AXR(K,?)

IX(K,NG)

K(EY,AXR)

ABOUND

ABOUT

ABOVE

BAKE

BAKED

BAKER

BAKERY

BAKING

Figure 4.2: Triphone Lexical Tree Example.

20K(Dev93) 20K(Dev94/Eval94) 58K
Level Tree Flat Ratio Tree Flat Ratio Tree Flat Ratio
1 656 21527 3.0% 690 21725 3.2% 851 61657 1.4%
2 3531 21247 16.6% 3669 21430 17.1% 5782 61007 9.5%
3 8047 19523 41.2% 8339 19694 42.3% 18670 57219 32.6%
4 9455 16658 56.8% 9667 16715 57.8% 26382 49390 53.4%
5 8362 12880 64.9% 8493 12858 66.1% 24833 38254 64.9%
6 6359 9088 70.0% 6388 8976 71.2% 18918 26642 71.0%
7 4429 5910 74.9% 4441 5817 76.3% 13113 17284 75.9%
8 2784 3531 78.8% 2777 3448 80.5% 8129 10255 79.3%

Table 4.1: No. of Nodes at Each Level in Tree and Flat Lexicons.

number of triphone models enormously. Therefore, leaf nodes are only allocated on
demand; i.e., when these HMMs become active during the search.

56 CHAPTER 4. SEARCH SPEED OPTIMIZATION

4.2.2 Incorporating Language Model Probabilities

The application of language model probabilities at word boundaries presents an inter-
esting dilemma. Traditionally, the language model probability for a transition from
word wi to wj is computed and accumulated during the transition into the initial state
of wj. See, for example, the baseline system description in Section 3.2.4. As a result,
the initial score for the new word wj is \primed" with the appropriate expectation
for that word in the context of the preceding history. This approach �ts neatly into
the Markov model and the Viterbi search algorithm, and has two main advantages:

� By using the language model probability upon word entry, the search process
is biased in favour of the grammatically more likely words, and against the less
likely ones. This bias serves to prune away the less likely words, reducing the
dynamic search space.

� Frequently occurring short words or function words, such as a, the, an, of, etc.,
which are generally poorly articulated, are given an initial boost by the language
model at the appropriate moments4. Thus, even though their poor articulation
might result in a poor acoustic match subsequently, the initial priming by the
language model often allows them to survive the beam search without getting
pruned.

The disadvantage of computing language model probabilities upon word entry is, of
course, the computational cost of evaluating a very large number of them in each
frame. This was seen in the previous chapter in Section 3.4.3, Table 3.4, making the
execution of cross-word transitions one of the most costly steps in the search process.

One would like to retain the advantages stated above, without incurring the asso-
ciated cost, if possible. The immediate problem with a tree-structured lexicon is that
one does not have distinct, identi�able initial states for each word in the lexicon. The
tree structure implies that the root nodes are shared among several words, related
phonetically, but quite unrelated grammatically. Hence it is not possible to determine
a meaningful language model probability upon transitioning to a root node.

The Language Modelling Problem

Let us see the problem in detail by referring to Figure 4.3(a) and the original algorithm
for cross-word transitions in the baseline system in Figure 3.6. Figure 4.3(a) depicts
cross-words NULL transitions attempted from the �nal states of two words p1 and p2
to the initial states of words w1 and w2 at time t. Let us represent the path scores

4The correct thing to do is, of course, to improve the acoustic modelling of such events rather
than relying on the language model to overcome the former's shortcomings. However, every bit
helps!

4.2. LEXICAL TREE SEARCH 57

w
2

p
1

p
2

w
1

w
2

p
1

p
2 w

1

Shared by

(a) (b)

Figure 4.3: Cross-Word Transitions With Flat and Tree Lexicons.

at the end of any pi at time t by Ppi(t), and the bigram probability for the transition
from pi to wj by PLM (wjjpi). In the at-lexical search of the baseline system, the
path score entering wj from pi at time t is:

Ppi(t) � PLM (wjjpi) (4.1)

The Viterbi algorithm chooses the better of the two arcs entering each word w1 and w2,
and their history information is updated accordingly. In Figure 4.3(a), the \winning"
transitions are shown by bold arrows.

In particular, the presence of separate word-HMM models for w1 and w2 allows
them to capture their distinct best histories. However, if w1 and w2 share the same
root node in the tree lexicon, as shown in Figure 4.3(b), it is no longer possible to
faithfully retain the distinctions provided by the grammar. It should be emphasized
that the bigram grammar is the source of the problem. If only unigram probabilities
are used, PLM (wjjpi) is independent of pi and the best incoming transition is the same
for all words wj.)

Suggested Solutions to Language Modelling Problem

Several attempts have been made to resolve this problem, as mentioned in Section 2.4.
One solution to this problem has been to augment the lexical tree with a separate
at bigram section. The latter is used for all bigram transitions and the lexical
tree only for unigram transitions [39]. The scheme is shown in Figure 4.4. Bigram
transitions, from the leaves of either the lexical tree or at structure, always enter
the at structure, preserving the grammar state distinctions required, for example, in
Figure 4.3(a). Unigram transitions enter the roots of the lexical tree. This solution
has two consequences for the speed performance:

� The addition of the at lexicon increases the dynamic number of HMM models
to be searched.

58 CHAPTER 4. SEARCH SPEED OPTIMIZATION

Lexical
Tree

Flat
Lexicon
(Bigram
Section)

Bigram
Transitions

Bigram
Transitions

Backoff
Unigram
Transitions

Figure 4.4: Auxiliary Flat Lexical Structure for Bigram Transitions.

� The number of unigram transitions is reduced signi�cantly because of the tree
structure. However, the number of bigram transitions is similar to that of the
baseline system (Section 3.4.3, Table 3.6), which still constitutes a signi�cant
computational load.

Alternative solutions are proposed in [40, 3] that construct separate secondary
trees for the bigram section, instead of the at lexical structure of Figure 4.4. Both
of them report results on 10,000 word vocabulary experiments. In the former, the
number of tree copies that are active range between 20 and 30, causing an increase
in the number of active states by about a factor of 2. The latter have reported near
real-time performance on the 10,000 word task with a language model of perplexity
27. It is not clear how the performance extends to tasks with a larger vocabulary and
grammars.

Computing Language Model Probability Upon Word Exit

The di�culties can be overcome simply by deferring the computation of the language
model probability for a word until we reach a node in the lexical tree that uniquely
represents that word; i.e., it is not shared with any other word. If there are multiple
words with identical pronunciations (homophones), they can still be forced to become
distinct at the leaf nodes. Therefore, we can defer the computation of language model
score for a word until it exits its leaf node in the lexical tree. The advantage of this
approach is that the total number of such computations per frame is very small. The
number of words that survive the beam search all the way to their �nal state, on
average, is about two orders of magnitude smaller than the vocabulary size.

Let us see how this scheme works with respect to the example in Figure 4.3(b).

4.2. LEXICAL TREE SEARCH 59

Extract Htemp from the �nal state of wj;
From Htemp �nd ptemp, the initially chosen predecessor word;
Obtain t, the end time of ptemp;
Find all word lattice entries pi that ended at t;

(In this example, they are p1 and p2.)
Find: f = maxi((Ppi(t)=Pptemp(t)) � PLM (wjjpi));

Figure 4.5: Path Score Adjustment Factor f for Word wj Upon Its Exit.

Since the transitions to the root node shared by w1 and w2 no longer include their
language model probabilities, the incoming score into the root at time t is simply:

max
i
(Ppi(t))

The root node also inherits a history information that points to the word lattice
entry for the best predecessor word, as described in Section 3.2.4. However, it is
a temporary value since it does not include a language model probability for the
transition. Let's call this history Htemp. It is propagated as usual by the Viterbi
algorithm and eventually reaches the �nal states of w1 or w2 (assuming they are not
pruned by the beam search). By our earlier assumption, the �nal states of the leaf
nodes belong to distinct words and are not shared. Therefore, their language model
probabilities can now be included, and the path scores and history information htemp

updated if necessary. Figure 4.5 summarizes this path score adjustment at the end
of word wj. The value f computed in the �gure is the adjustment factor applied to
the path score at the end of wj . The word lattice entry that maximizes f becomes
the adjusted history at the end of wj, replacing Htemp. (In our discussions we have
neglected to deal with cross-word triphone models. However, it is straightforward to
accommodate it into the expression Ppi(t).)

There are some disadvantages that stem from deferring the accumulation of lan-
guage model probabilities until word exit:

� The initial \priming" or guidance provided by the language model is absent.
Since all words are grammatically equal until their �nal state is reached, the
search pruning provided by the language model is lost and the number of HMM
models to be searched increases.

� Short function words which occur frequently but are poorly articulated, are
more likely to be pruned by the beam search before their �nal state is ever
reached. If their language model probabilities had been included upon word
entry, on the other hand, they would have received an initial boost allowing
them to survive the beam pruning.

60 CHAPTER 4. SEARCH SPEED OPTIMIZATION

These concerns are addressed below.

Computing Language Model Probability When Entering Leaf Nodes

One obvious solution to the lack of guidance from a language model is to adopt an
intermediate solution between computing the language model probability at the very
beginning upon word entry and at the very end upon word exit. Since the degree
of sharing in the lexical tree drops rapidly beyond 3 or 4 phone positions, one might
as well atten the lexical structure completely beyond that depth. For example, the
lexical tree of Figure 4.2 is essentially at beginning at a depth of 4.

Since individual words are identi�able beyond a level of 3 or 4 from the roots,
language model scores can be computed during the NULL transitions at these points
in a similar fashion to that described above. Thus, the computational savings a�orded
by the tree structure are retained near the root where it matters most, and the
guidance and search pruning provided by the language model is available when the
tree structure ceases to be as e�ective.

However, the above solution still doesn't address the problem of poorly articulated
function words which are typically just 1-3 phones long. Secondly, the shorter we make
the depth of the actual tree structure and the earlier we compute language model
probabilities, the more HMMs are actively being searched at that point, increasing
the cost of the path score adjustments.

For these reasons, in the �nal implementation of our tree search algorithm, the
language model probability for a word is computed upon entering the �nal leaf node5

for that word, rather than when exiting it. The algorithm is basically identical to
that shown in Figure 4.5, except that the path score adjustment is performed when
entering the �nal phone of wj, rather than exiting wj . Furthermore, it does not apply
to single-phone words, which have to be treated essentially as in the baseline Sphinx-
II system, outside the lexical tree structure. But this is not a major issue since the
number of single-phone words in the vocabulary is only about 10.

For a short function word, this organization has the e�ect of accumulating the
language model probability early into the word, reducing the chances of its having
been pruned because of poor acoustic match. In particular, in the case of single
phone words, the language model probability is computed and accumulated upon
word entry. This compromise partly retains the guidance provided by the language
model for poorly articulated short function words, while preserving computational
e�ciency for the vast majority of the remaining words.

5Note that there are really several leaf nodes for any given word, caused by the right context
fanout for cross-word triphone modelling. However, we shall continue to speak loosely of a leaf node

in the singular, with the right context fanout being implicitly understood.

4.2. LEXICAL TREE SEARCH 61

Optimization of Path Score Adjustment

We can further reduce the cost of path score adjustment operations shown in Figure
4.5 using the following optimization.

We observe that in the Viterbi algorithm, if a triphone model survives the beam
pruning through to its exit state at a certain frame, it is very likely to continue to
survive in the next several frames. This is particularly true of triphones near word-
ends. Thus, if we make a transition into a given leaf node of the lexical tree at time
te, we are likely to make that transition again at te + 1. This is because speech
corresponding to a phone lingers for several frames.

We note that the path score adjustment for a transition into a leaf node at te+1 is
identical to the adjustment at te, provided the temporary history information Htemp

is identical in both cases (see previous discussion and Figure 4.5). This is obvious
because the �nal expression in Figure 4.5 for the adjustment factor f :

max
i
((Ppi(t)=Pptemp(t)) � PLM (wjjpi))

is independent of te; all the variables involved depend only on Htemp.

Therefore, we can eliminate many path score adjustment operations as follows.
When we enter the leaf node of a word wj with a new temporary history information
Htemp for the �rst time, we compute the complete path score adjustment factor and
cache the result. If we transition to the leaf node again in subsequent frames with the
same history, we simply re-use the cached result. Some rough measurements indicate
that this optimization eliminates approximately 50% of the adjustment operations in
our benchmarks.

4.2.3 Outline of Tree Search Algorithm

The lexical tree search is implemented as a time-synchronous, Viterbi beam search
algorithm6. It is similar to the baseline Sphinx-II decoder in many ways:

� It uses the same signal processing front end and semi-continuous phonetic HMM
models as the baseline system, described in Section 3.1.1. The HMM topology
is the 5-state Bakis model shown in Figure 3.2.

� The pronunciation lexicon is also identical to that used in the baseline system
(Section 3.1.2).

� It uses backed o� word trigram language models.

6The tree-search decoder is known within CMU as FBS8.

62 CHAPTER 4. SEARCH SPEED OPTIMIZATION

� Cross-word modelling at word ends is accomplished by right context fanout,
and at word beginnings by multiplexing a single HMM with dynamic triphone
mapping (Section 3.2.3).

� The vector quantization step is identical to the baseline system (Section 3.2.4).
In particular, only the top 4 densities in each feature codebook are fully evalu-
ated and used.

� Senone output probability evaluation is similar to the baseline system, except
that we have the option of evaluating only the active senones in a given frame.
These are identi�ed by scanning the active HMMs in that frame. It is not
worthwhile in the baseline system because of the overhead of scanning the much
larger number of active HMMs.

� The result of the Viterbi search is a single recognition hypothesis, as well as a
word lattice that contains all the words recognized during the decoding, their
time segmentations, and corresponding acoustic scores. The word lattice typi-
cally contains several alternative end times for each word occurrence, but usually
only a single beginning time.

As with the baseline system, the decoding of each utterance is begun with the
path probability at the start state of the distinguished word <s> set to 1, and 0
everywhere else. An active HMM list that identi�es the set of active HMMs in the
current frame is initialized with this �rst HMM of <s> . From then on, the processing
of each frame of speech, given the input feature vector for that frame, is outlined by
the pseudo-code in Figure 4.6. Some of the details, such as pruning out HMMs that
fall below the beam threshold, have been omitted for the sake of clarity.

The Viterbi recognition result is obtained by backtracking through the word lat-
tice, starting from the lattice entry for the distinguished end symbol </s> in the �nal
frame and following the history pointers all the way to the beginning.

4.2.4 Performance of Lexical Tree Search

The lexical tree search implementation was evaluated on the same large vocabulary,
continuous speech test sets of read speech from the Wall Street Journal and North
American Business News domains as the baseline Sphinx-II system. To recapitulate,
they include the clean speech development test sets from the Dec.'93 and Dec.'94
DARPA speech evaluations, as well as the evaluation test set of the latter.

The experiments are carried out on two di�erent vocabulary sizes of 20K and 58K
words. The main parameters measured include the following:

� Overall execution time and its breakdown among major components, as well as

4.2. LEXICAL TREE SEARCH 63

tree_forward_frame (input feature vector for current frame) {

VQ (input feature); /* Find top 4 densities closest to input feature */

senone_evaluate (); /* Find senone output probabilities using VQ results */

hmm_evaluate (); /* Within-HMM/cross-HMM (except leaf transitions) */

leaf_transition (); /* Transitions to tree leaf nodes, with LM adjustment */

word_transition (); /* Cross-word transitions */

/* HMM pruning using a beam omitted for simplicity */

update active HMM list for next frame;

}

hmm_evaluate () {

for (each active HMM h)

for (each state s in h)

update path probability of s using senone output probabilities;

/* Cross-HMM and tree-exit NULL transitions */

L = NULL; /* List of leaf transitions in this frame */

for (each active HMM h with final state score within beam) {

if (h is leaf node or represents a single phone word) {

create word lattice entry for word represented by h; /* word exit */

} else {

for (each descendant node h' of h) {

if (h' is NOT leaf node)

NULL transition (final-state(h) -> start-state(h'));

else

add transition h->h' to L;

}

}

}

}

leaf_transition () {

for (each transition t in L) {

let transition t be from HMM h to h', and w the word represented by h';

compute path score adjustment entering h', INCLUDING LM probability of w;

update start state of h' with new score and history info, if necessary;

}

}

word_transition () {

let {w} = set of words entered into word lattice in this frame;

for (each single phone word w')

compute best transition ({w} -> w'), INCLUDING LM probabilities;

for (each root node r in lexical tree)

compute best transition ({w} -> r), EXCLUDING LM probabilities;

}

Figure 4.6: One Frame of Forward Viterbi Beam Search in Tree Search Algorithm.

64 CHAPTER 4. SEARCH SPEED OPTIMIZATION

frequency counts of the most common operations that account for most of the
execution time.

� Word error rates for each test set and vocabulary size.

The experimentation methodology is also similar to that reported for the baseline
system. In particular, the execution times are measured on DEC's Alpha workstations
using the RPCC instruction to avoid measurement overheads. See Section 3.4.1 for
complete details.

Recognition Speed

Table 4.27 lists the execution times of the lexical tree search on the 20K and 58K
tasks, and also shows the overall speedup obtained over the baseline Sphinx-II recog-
nition system (see Table 3.3 for comparison). Clearly, tree search decoding is several

Task Dev93 Dev94 Eval94 Mean

20K 4.68 4.66 4.75 4.70
58K 8.93 8.36 8.68 8.69

(a) Absolute Speeds (xRealTime).

Task Dev93 Dev94 Eval94 Mean

20K 4.8 4.7 4.7 4.7
58K 5.2 4.8 4.5 4.9

(b) Speedup Over Forward Viterbi Pass of Baseline System.

Table 4.2: Execution Times for Lexical Tree Viterbi Search.

times faster than the baseline system on the given 20K and 58K tasks. As mentioned
at the beginning of this chapter, however, there are two main aspects to the decod-
ing procedure, acoustic model evaluation, and searching the HMM space, of which
the latter has been our main emphasis. Therefore, it is instructive to consider the
execution speeds of individual components of the lexical tree search implementation.

Table 4.3 shows the breakdown of the overall execution time of the lexical search
algorithm into �ve major components corresponding to the main functions listed in
Figure 4.6. It is also instructive to examine the number of HMMs and language
model operations evaluated per frame. These are contained in Tables 4.4 and 4.5,
respectively.

7Note that in all these tables, the mean value is computed over all test sets put together. Hence,
it is not necessarily just the mean of the means for the individual test sets.

4.2. LEXICAL TREE SEARCH 65

Dev93 Dev94 Eval94 Mean %Total

VQ 0.15 0.15 0.16 0.15 3.2%
Senone Eval. 1.73 1.70 1.73 1.72 36.6%
HMM Eval. 2.02 1.98 2.02 2.01 42.8%
Leaf Trans. 0.56 0.58 0.60 0.58 12.3%
Word Trans. 0.20 0.23 0.24 0.22 4.7%

(a) 20K System.

Dev93 Dev94 Eval94 Mean %Total

VQ 0.16 0.17 0.17 0.16 1.8%
Senone Eval. 2.39 2.27 2.32 2.33 26.8%
HMM Eval. 3.78 3.57 3.71 3.70 42.6%
Leaf Trans. 2.08 1.81 1.91 1.94 22.3%
Word Trans. 0.51 0.56 0.57 0.54 6.2%

(b) 58K System.

Table 4.3: Breakdown of Tree Viterbi Search Execution Times (xRealTime).

Dev93 Dev94 Eval94 Mean %Baseline

Total 4298 4181 4281 4259 26.6%
Word-initial 551 556 557 554 5.6%

(%Total) (12.8) (13.3) (13.0) (13.0)

(a) 20K System.

Dev93 Dev94 Eval94 Mean %Baseline

Total 7561 7122 7358 7369 25.2%
Word-initial 711 680 683 693 3.4%

%Total (9.4) (9.5) (9.3) (9.4)

(b) 58K System.

Table 4.4: No. of HMMs Evaluated Per Frame in Lexical Tree Search.

Dev93 Dev94 Eval94 Mean %Baseline

20K 663 591 609 625 4.8%
58K 1702 1493 1558 1595 6.2%

Table 4.5: No. of Language Model Operations/Frame in Lexical Tree Search.

66 CHAPTER 4. SEARCH SPEED OPTIMIZATION

In summary, the lexical tree search has reduced the total number of HMMs evalu-
ated per frame to about a quarter of that in the baseline system. More dramatically,
the number of language model operations have been reduced to about 5-6%, mainly
because of the decision to defer the inclusion of language model probabilities until
the leaves of the lexical tree.

Accuracy

Table 4.6(a) shows the word error rates resulting from the lexical tree search on the
di�erent test sets individually and overall. Table 4.6(b) provides a comparison with
the baseline system results from both the forward Viterbi search and the �nal A*
algorithm.

Dev93 Dev94 Eval94 Mean

20K 21.2 18.9 18.0 19.4
58K 19.2 17.5 17.1 18.0

(a) Absolute Word Error Rates(%).

Baseline Dev93 Dev94 Eval94 Mean
20K(Vit.) 20.6 19.6 13.4 17.8
20K(A*) 28.8 24.3 18.0 23.7
58K(Vit.) 27.9 22.4 18.3 23.1
58K(A*) 39.4 26.6 24.1 30.3

(b) %Degradation w.r.t. Baseline System Error Rates.

Table 4.6: Word Error Rates for Lexical Tree Viterbi Search.

The relative increase in recognition errors, compared to the baseline system, is
unquestionably signi�cant. The appropriate baseline for comparison is the output
of the �rst Viterbi search pass, for obvious reasons, but even then the tree search is
about 20% worse in relative terms. However, it can be argued that the nearly �ve
fold speedup a�orded by the lexical tree search is well worth the increase in error
rate. In practical terms, the absolute word error rate translates, very roughly, into 1
error about every 5 words, as opposed to the baseline case of 1 error about every 6
words.

More importantly, we shall see in the subsequent sections of this chapter that the
loss in accuracy can be completely recovered by e�ciently postprocessing the word
lattice output of the tree Viterbi search.

We attribute the increase in word error rate to occasionally poorer word segmen-
tations produced by the tree search, compared to the baseline system. One problem

4.2. LEXICAL TREE SEARCH 67

is that Viterbi search is a greedy algorithm that follows a local maximum. In each
frame, the root nodes of the lexical tree receive several incoming, cross-word transi-
tions (from the �nal states of the leaves of the tree), of which the best is chosen by
the Viterbi algorithm. The same is true in the case of the baseline system with a
at lexical structure. However, in the latter, each cross-word transition is augmented
with a grammar probability so that the e�ective fan-in is reduced. This is not possible
with the tree structure, with the result that the Viterbi pruning behaviour at tree
roots is modi�ed.

4.2.5 Lexical Tree Search Summary

Clearly, the results from the lexical tree search algorithm are mixed. On the one hand,
there is a nearly 5-fold overall increase in recognition speed, but it is accompanied by
an approximately 20% increase in word error rate, relative to the baseline system. We
shall see in subsequent sections that we can, not surprisingly, recover from the loss
in accuracy by postprocessing the word lattice output of the tree search algorithm.
Some of the other conclusions to be drawn in this section are the following:

� While the overall speedup is slightly under 5, the search speed alone, excluding
senone output probability computation, is over 6 times faster than the baseline
case (comparing Tables 4.3 and 3.4). This is an important result since our focus
in this section has been improving the speed of searching the HMM space.

� It should be pointed out that the reduction in search speed is irrelevant if
the cost of computing state output probabilities is overwhelming. Thus, it is
appropriate to rely on a detailed tree search if we are using semi-continuous or
even discrete acoustic models, but it is less relevant for fully continuous ones.

� Using semi-continuous acoustic models, we obtain a word lattice that is ex-
tremely compact. The total number of words in the lattice is, on average, sev-
eral hundreds to a few thousand for an average sentence of 10sec duration (1000
frames). Furthermore, the lattice error rate|the fraction of correct words not
found in the lattice around the expected time|is extremely small. It is about
2%, excluding out-of-vocabulary words. This is substantially the same as the
lattice error rate of the baseline Sphinx-II system, and similar to the results
reported in [65]. The compact nature of the word lattice, combined with its
low error rate, makes it an ideal input for further postprocessing using more
detailed acoustic models and search algorithms.

The lexical tree described in this section can be contrasted to those described in
[40, 3, 39, 43] in their treatment of the language model. By deferring the application of
language model probabilities to the leaves of the tree, we gain a signi�cant reduction
in computation.

68 CHAPTER 4. SEARCH SPEED OPTIMIZATION

4.3 Global Best Path Search

In Section 4.2.4 we saw that although the lexical tree search algorithm improves the
execution e�ciency of large vocabulary continuous speech recognition, there is also
a signi�cant degradation in the recognition accuracy of about 20% relative to the
baseline Sphinx-II system using the same acoustic, lexical and grammar models. We
also observed that much of this degradation could be attributed to the following
factors:

� Greedy nature of the Viterbi algorithm in following a locally optimumpath that
is globally suboptimal; and more so than in the case of the baseline system.

� Poorer word segmentations along the best Viterbi decoding.

However, the lexical tree search algorithm produces not only the single best Viterbi
decoding, but also a word lattice containing other candidate words recognized. An
examination of the word lattices from both the lexical tree Viterbi search and the
at-lexical Viterbi search in the baseline system reveals that the correct words are
predominantly present in both lattices at the expected times. Therefore, it is possible
to extract a more accurate recognition result from the word lattice.

In this section we present a simple and e�cient algorithm to search the word
lattice produced by the lexical tree search for a globally optimum decoding. This
is accomplished by casting the word lattice as a directed acyclic graph (DAG) such
that the problem is reduced to that of �nding the least-cost path from end to end.
Therefore, any of the well-known and e�cient shortest-path graph search algorithms
can be used. We show that the algorithm brings the recognition accuracy signi�cantly
closer to that of the baseline system, at an almost negligible computational cost.

4.3.1 Best Path Search Algorithm

Global Best Path Search Using Bigram Grammar

The word lattice output from the lexical tree Viterbi search algorithm contains in-
stances of all candidate words that were recognized during the search. In particular,
there may be several candidates at any point in time. Each unique word instance is
identi�ed by two quantities: the word itself, and a start time for that instance of the
word. Figure 4.7 shows an example of such a word lattice, where each word instance
is identi�ed by one of the line segments representing a word starting at a speci�c time
frame. Note that the Viterbi search algorithm produces a range of end times for each
word instance, as observed earlier at the beginning of Chapter 3 and in Section 4.2.3.

4.3. GLOBAL BEST PATH SEARCH 69

0 20 40 60 80 100 120 140 160 180 200 220 240

THEY

K.

KATE

TAKE

FIDEL

FIDELITY

FIDELITY’S

VALLEY’S

CASE

AS

SAYS

K.

KAY EXAM

EXAMPLE

AN

CAISSE

SNAGS

DELL

L.

HAS

EX

start time first end time last end time

Time

Figure 4.7: Word Lattice for Utterance: Take Fidelity's case as an example.

Thus, the information contained in the word lattice can be converted into as a
DAG as follows: Each word instance represented by a pair, (w; t), is a DAG node,
where w is a word-id and t the start time corresponding to this instance of w. There
can be a range of end-times for this word instance or DAG node, as just mentioned.
We create an edge from a node (wi; ti) to node (wj; tj) i� tj � 1 is one of the end
times of (wi; ti); i.e., there is a word lattice entry for wi at tj � 1 and so it is possible
for (wj; tj) to follow (wi; ti) in time. Such a DAG representation of the example in
Figure 4.7 is shown in Figure 4.8. It is easy to see that the graph is indeed a DAG:

� The edges are directed.

� The DAG cannot contain any cycles since edges always proceed in the direction
of increasing start time.

The DAG is rooted at (<s> ,0), since the Viterbi search algorithm is initialized to
start recognition from the beginning silence <s> at time 0. We can also identify a
�nal node in the DAG which must be an instance of the end silence word </s> that
has an end time of T , where T is the end time for the entire utterance8.

We can now associate a cost with each edge in the DAG. Consider an edge from
a node (wi; ti) to (wj; tj). The cost for this edge is the product of two components:
an acoustic score or probability and a grammar probability9. The acoustic score is
obtained as follows. The edge represents a time segmentation of wi from frame ti

8We can be sure that there will only be one such instance of </s> , since there can only be one
entry for </s> ending at T in the word lattice.

9Actually, the cost is computed from the reciprocal of the probabilities, since an increase in the
latter implies a reduction in the former.

70 CHAPTER 4. SEARCH SPEED OPTIMIZATION

TAKE

KATE

THEY

K.

FIDELITY’S

FIDELITY

FIDEL

VALLEY’S

DELL

L. CASE

CAISSE

KAY

K.

AS

SAYS

HAS
AN

SNAGS

EXAMPLE

EXAM

EX

Figure 4.8: Word Lattice Example Represented as a DAG.

and ending at tj � 1, as discussed above. Since the word lattice produced by the
Viterbi search contains all the word-ending scores of interest, we can easily compute
the acoustic score for this segmentation of wi. In fact, the word lattice contains path
scores for all possible phonetic right contexts of wi, and we can choose exactly the
right one depending on the �rst base phone of wj.

As for the language model probability component for the edge, let us �rst consider
the case of a simple bigram grammar. The grammar probability component for the
edge under consideration is just P (wj jwi). In particular, it is independent of the path
taken through the DAG to arrive at (wi; ti).

We have now obtained a cost for each edge of the graph. The cost of any path
through the DAG from the root node to the �nal node is just the product of the costs
of the individual edges making up the path. The path that has the least cost is the
globally optimum one, given the input word lattice, acoustic models and (bigram)
grammar. The word sequence making up this path has to be the globally optimum
one. Given the above formulation of the problem, any of the textbook algorithms for
�nding the least-cost path can be applied [17]. Given a graph with N nodes and E
edges, the least-cost path can be found in time proportional to N + E.

Global Best Path Search Using Trigram Grammar

The above formulation of edge costs is no longer valid if we use a trigram grammar
since the grammar probability of an edge is not solely dependent on the edge. Con-

4.3. GLOBAL BEST PATH SEARCH 71

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

(a) Original DAG.

w
1
w

2

w
1
w

3

w
2
w

4

w
3
w

4

w
2
w

5

w
3
w

5

w
4
w

6

w
5
w

6

w
6
w

7

w
6
w

8

w
7
w

9

w
8
w

9

w
1

(b) Modi�ed DAG for Trigram Grammar.

Figure 4.9: Word Lattice DAG Example Using a Trigram Grammar.

sider an edge from node (wi; ti) to (wj; tj) again. The trigram probability for the
transition depends also on the predecessor of wi. Since there can be more than one
such predecessor in the DAG, the grammar probability for the edge under consider-
ation is not uniquely determined.

The di�culty is easily resolved by the usual method of replicating a node for each
distinct predecessor, i.e., creating distinct grammar states in the DAG. We illustrate
this process with an example in Figure 4.9. (The start time information at each
node has been omitted from the �gure since it is superuous and only clutters up
the picture, as long as it is understood that each node has a speci�c start time
associated with it. We shall also omit the time component in labelling nodes below,
under the assumption that nodes can be identi�ed uniquely even after this omission.)
Modi�cation to the DAG is straightforward:

1. If a node (w) has n distinct predecessors (wi); i = 1; 2; : : : ; n in the original
DAG, it is replicated n times in the new DAG, labelled (wiw); i = 1; 2; : : : ; n
respectively; i.e., the �rst component of the label identi�es a predecessor word.
Instances of such replication where n > 1 are marked by dashed rectangles in
Figure 4.9(b).

72 CHAPTER 4. SEARCH SPEED OPTIMIZATION

2. If there was an edge from (wi) to (wj) in the original DAG, the new DAG has an
edge from every replicated copy of (wi) to (wiwj). Note that by the replication
and labelling process, if the new DAG has an edge from (wiwj) to (wkwl), then
wj = wk.

3. The acoustic score component of the cost of an edge from node (wiwj) to (wjwk)
in the new DAG is the same as that of edge (wj) to (wk) in the original DAG.

4. The language model component of the cost of an edge from node (wiwj) to
(wjwk) in the new DAG is the trigram probability: P (wkjwiwj).

In particular, it should be noted that the language model probability component of
the cost of an edge in the new DAG is no longer dependent on other edges in the
DAG.

It should be easy to convince ourselves that the new DAG is equivalent to the
original one. For any path from the root node to the �nal node in the original DAG,
there is a corresponding path in the new DAG, and vice versa. Thus, we have again
reduced the task to the canonical shortest path graph problem and the standard
methods can be applied.

It is, in principle, possible to extend this approach to arbitrary language models,
but it quickly becomes cumbersome and expensive with higher order n-gram gram-
mars. With n-gram grammars, the size of the graph grows exponentially with n, and
this is one of the drawbacks of this approach. Nevertheless, it is still valuable since
bigram and trigram grammars are the most popular and easily constructed for large
vocabulary speech recognition.

Suboptimality of Viterbi Search

At this point we consider the question of why we should expect the global best path
algorithm to �nd a path (i.e., word sequence) that is any better than that found
by the Viterbi search. One reason has to do with the approximation in applying
the trigram grammar during Viterbi search as explained in Section 3.2.2. The same
approximation is also used in the lexical tree Viterbi search. The suboptimal nature
of this approximation can be understood with the help of Figure 4.10.

Let us say that at some point in the Viterbi tree search, there were two possible
transitions into the root node for word w4 from the �nal states of w2 and w3. And
let us say that the Viterbi algorithm deemed the path w1w2w4 (including acoustic
and grammar probabilities) to be more likely and discarded transition w3w4, shown
by the dashed arrow in the �gure. It could turn out, later when we reach word
w5, that perhaps w3w4w5 is a more likely trigram than w2w4w5, and in the global
picture transition w3w4 is a better choice. However, given that the Viterbi algorithm
has already discarded transition w3w4, the global optimum is lost. The shortest

4.3. GLOBAL BEST PATH SEARCH 73

w
1

w
2

w
3

w
4

w
5

Figure 4.10: Suboptimal Usage of Trigrams in Sphinx-II Viterbi Search.

path algorithm described here considers all such alternatives discarded by the Viterbi
algorithm and �nds the globally optimum path.

The second reason for the improvement in accuracy follows from the above. We
noted in Section 4.2.4 that the Viterbi algorithm, owing to its greedy nature, produces
suboptimal word segmentations along the best Viterbi path. However, the word
lattice often also contains other word segmentations that have been discarded along
the best Viterbi path. The global DAG search uncovers such alternatives in �nding
a global optimum, as described above.

4.3.2 Performance

We now summarize the improvement in recognition accuracy obtained by applying
the global best path search algorithm to the word lattice produced by the lexical
tree search. We also examine the computational overhead incurred because of this
additional step.

Accuracy

Table 4.7 shows the word error rate �gures on our benchmark test sets resulting from
applying the best path DAG search algorithm to the word lattice output of the lexical
tree Viterbi search.

As we can see from Table 4.7(b), there is a signi�cant improvement of over 10%
in accuracy relative to the tree search. Correspondingly, Table 4.7(c) shows that
compared to the �rst pass of the baseline Sphinx-II system, the word error rate is now
less than 10% worse, in relative terms. In practical terms, this is almost insigni�cant
given their absolute word error rates of 15%. We surmise that this di�erence in
recognition accuracy is partly attributable to incorrect word segmentations for which
no alternatives were available in the word lattice, and partly to pruning errors during
the tree search.

74 CHAPTER 4. SEARCH SPEED OPTIMIZATION

Dev93 Dev94 Eval94 Mean

20K 18.5 16.9 16.5 17.3
58K 16.5 15.4 15.2 15.7

(a) Absolute Word Error Rates.

Dev93 Dev94 Eval94 Mean

20K 12.4 10.9 8.4 10.5
58K 14.3 12.1 11.2 12.5

(b) %Improvement Over Lexical Tree Search.

Dev93 Dev94 Eval94 Mean

20K(Vit.) 5.3 7.0 4.0 5.4
20K(A*) 12.4 11.2 8.1 10.7
58K(Vit.) 9.9 7.7 5.2 7.7
58K(A*) 19.8 11.4 10.3 14.0

(c) %Degradation w.r.t. Baseline System.

Table 4.7: Word Error Rates from Global Best Path Search of Word Lattice Produced
by Lexical Tree Search.

Recognition Speed

Table 4.8 summarizes the average execution times of the shortest path algorithm.
The computational overhead associated with this step is negligible. This is to be
expected since the DAG size is usually small. For a 10sec long sentence, it typically
consists of a few hundred nodes and a few thousand edges.

Dev93 Dev94 Eval94 Mean
20K 0.04 0.05 0.05 0.05
58K 0.07 0.08 0.09 0.08

Table 4.8: Execution Times for Global Best Path DAG Search (x RealTime).

4.3.3 Best Path Search Summary

Performing a global best path search over the word lattice output of the lexical
tree Viterbi search is unquestionably advantageous. The resulting accuracy is not

4.3. GLOBAL BEST PATH SEARCH 75

signi�cantly worse than that of the baseline system, and it is achieved at an almost
negligible cost.

The DAG search is similar to the A* search of the baseline system in that it �nds a
globally optimum path, but it does so at a much lower computational cost, as seen by
comparing Tables 4.8 and 3.3. On the other hand, the A* pass in the baseline system is
not restricted to low-order n-gram grammars, and uses additional word segmentation
information from the backward Viterbi pass, which is the main reason for its superior
word accuracy. We note that we are not precluded from applying the latter passes
of the baseline system to the word lattice output of the lexical tree Viterbi search.
Likewise, we can apply the shortest path algorithm to the word lattice output of the
forward Viterbi pass of the baseline system. One reason to avoid a backward pass is
that many practical systems need online operation, and it is desirable not wait for
the end of the utterance before beginning a search pass.

The DAG search algorithm, while su�ciently fast to be unobservable for short
sentences, can cause noticeable delay for a long sentence. But this can be avoided by
overlapping the search with the forward pass. The nodes of the DAG can be built
incrementally as the forward Viterbi pass produces new word lattice entries. The
addition of a node only a�ects existing nodes that immediately precede the new one
and nodes that occur later in time. Since the Viterbi search is a time-synchronous
algorithm, it is likely to add new nodes towards the end of the DAG, and hence the
update to the DAG for the addition of each new node is minimal.

There are several other uses for the DAG structure. For example, once the word
lattice is created, it is possible to search it e�ciently using several di�erent parameters
for language weight, word insertion penalties, etc. in order to tune such parameters.
One can also search the DAG several times using di�erent language models, e�ectively
in parallel. The result is a measure of the posterior probability of each language
model, given the input speech. This can be useful when users are allowed speak
phrases from di�erent domains without explicit prior noti�cation, and the system has
to automatically identify the intended domain by trying out the associated language
models in parallel.

The creation of word graphs and some of their uses as described here, has also
been reported in [65]. However, they do not report on the performance issues or on
the use of the shortest path algorithm to �nd a global optimum that overcomes the
suboptimality of the Viterbi search algorithm. A �nal word on the use of the global
path search is that it essentially eliminates the need for a full trigram search during
the �rst pass Viterbi search. Thus, the approximate use of a trigram grammar in the
forward pass, in the manner described in Section 3.2.2 is quite justi�ed.

76 CHAPTER 4. SEARCH SPEED OPTIMIZATION

4.4 Rescoring Tree-Search Word Lattice

4.4.1 Motivation

We noted in Section 4.2.5 that the word lattice output of the lexical tree Viterbi
search is quite compact, consisting of only several hundreds or thousands of words
for a 10sec sentence, on average, and that its low lattice error rate makes it an ideal
input for postprocessing with models and algorithms of higher sophistication.

The main purpose of this section is to obtain a measure of the quality of the word
lattice produced by the lexical tree search. This is relevant for understanding what
we lose or gain by postprocessing the word lattice with detailed models instead of
performing a complete search with such models. The parameters that determine the
quality of the word lattice include its size and the lattice error rate. The former
measures the work needed to search the lattice, while the latter sets an upper bound
on the recognition accuracy.

We measure these parameters indirectly by rescoring the lexical tree word lattice
with the forward pass Viterbi search of the baseline Sphinx-II system. The main
di�erence between the two is that the rescoring pass is restricted to searching words
in the lattice. By comparing the recognition accuracy and search time overhead with
the baseline system results in Section 3.4, we ascertain the quality of the lexical tree
word lattice output.

We believe that the suboptimality of the tree search word lattice manifests itself as
occasionally poor word segmentations that we observe by manually comparing them
with the baseline Sphinx-II system. To overcome this shortcoming, we allow the word
boundaries in the input lattice to be treated in a fuzzy manner. In other words, at
any time t in the rescoring pass, we allow cross-word transitions to those words in
the tree search word lattice that begin within a given window of t. We can a�ord to
be generous with the window since the size of the input word lattice is small anyway.
In our experiments we use a window of 25 frames although that is probably an order
of magnitude larger than necessary.

The output of the rescoring pass is another word lattice that presumably has
correct word segmentations. This lattice is then searched using the global best path
algorithm described in Section 4.3 to produce the �nal recognition result.

4.4.2 Performance

The new con�guration consisting of three passes|lexical tree search, rescoring its
word lattice output, and global best path search of the rescored word lattice|has
been tested on our benchmark test sets. We use the same set of acoustic and language
models in the rescoring pass as in the lexical tree search and the baseline system.

4.4. RESCORING TREE-SEARCH WORD LATTICE 77

Dev93 Dev94 Eval94 Mean

20K 17.4 16.0 15.9 16.4
58K 15.0 14.4 14.5 14.7

(a) Absolute Word Error Rates(%).

Dev93 Dev94 Eval94 Mean

20K(Vit.) -1.0 1.3 0.2 0.1
20K(A*) 5.7 5.2 4.2 5.0
58K(Vit.) -0.1 0.7 0.3 0.4
58K(A*) 8.9 4.2 5.2 6.2

(b) %Degradation w.r.t. Baseline System. (Negative values indicate improvement
over baseline system.)

Table 4.9: Word Error Rates From Lexical Tree+Rescoring+Best Path Search.

Dev93 Dev94 Eval94 Mean

20K 0.72 0.76 0.80 0.76
58K 1.25 1.26 1.35 1.28

(a) Rescoring Pass Alone (xRealTime).

Dev93 Dev94 Eval94 Mean Speedup Over
Baseline Fwd.Vit.

20K 5.4 5.5 5.5 5.5 4.04
58K 10.2 10.0 10.0 10.0 4.24

(b) Lexical Tree+Rescoring+Best Path Search (xRealTime).

Table 4.10: Execution Times With Rescoring Pass.

Table 4.9 summarizes the word error rates obtained by using all three passes,
and compares them to the baseline system. The bottom line is that there is no
di�erence in accuracy between the new three-pass search and the baseline one-pass
search. One reason the three-pass baseline system is still better is that the backward
pass provides additional word segmentations to the A* pass, that are lacking in the
lexical tree-based system.

Table 4.10 shows the execution times with the rescoring pass. We note that our
implementation has not been optimized or tuned. Hence, the costs shown in the table
are somewhat on the higher side.

78 CHAPTER 4. SEARCH SPEED OPTIMIZATION

4.4.3 Summary

The main conclusion from this section is that the word lattice output of the lexical
tree is compact and has a low lattice-error rate. We are able to recover the baseline
system recognition accuracy at the cost of about 15% increase in computation. The
computational overhead is less than 5% compared to the forward pass of the baseline
system. The 3-pass tree-based recognizer is about 4.1 times faster than the forward
pass of the baseline system on our benchmarks.

We also conclude that though the tree search is sub-optimal in that the output
word segmentations are occasionally incorrect, it is possible to recover the loss using
a second rescoring pass similar to the �rst pass of the baseline Sphinx-II system. The
A* accuracy of the baseline system is still slightly better because of the additional
word segmentations provided by its backward pass.

4.5 Phonetic Fast Match

4.5.1 Motivation

We have described the senone as the acoustic model shared by a cluster of phonetic
HMM states (Sections 2.1.2 and 3.1.1). Mei-Yuh Hwang in her dissertation [27]
has pointed out that \: : : each senone describes a very short distinct acoustic event
(shorter than a phoneme): : : ," and \: : : it can be used to construct models of all kinds
of acoustic phenomena." One of the phenomena modelled by senones is the relative
activity of the di�erent phonemes at any given time.

Let us see how senones can be used to predict the presence or absence of a given
basephone at a given point in the input speech. In Sphinx, clusters of HMM states
that form a senone can only belong to a single parent basephone. That is, senones are
partitioned among basephones. Consider all basephones pi; i = 1; 2; : : :. Let CD(pi)
represent the collection of context dependent triphones derived from pi as well as pi
itself. We say that senone s � CD(pi), if s models any state of any phone in CD(pi).
(Similarly, s � pi, if s models any of the states of the basephone pi.) At each time
instant t, we compute base phone scores given by:

Ppi(t) = max
s � CD(pi)

(bs(t)); i = 1; 2; : : : (4.2)

where bs(t) is the output probability of senone s at t. That is, Ppi(t) is the output
probability, at time t, of the best scoring senone belonging to basephone pi or any
triphone derived from it. Equation 4.2 de�nes an ordering or ranking among all
basephones, as well as the acoustic separation between them, in each frame.

We can use the above ranking as a measure of the relative activity of the individual
basephones at any point in time. The basic understanding is that if Ppi(t) >> Ppj(t)

4.5. PHONETIC FAST MATCH 79

for some two basephones pi and pj , then none of the states derived from pj will score
well at t, and all instances of HMMs derived from pj can be pruned from search.
In other words, by setting a pruning threshold or beam width relative to the best
scoring basephone, we can limit the search at time t to just those falling within the
threshold. The phones within the beamwidth at t are the list of active candidates to
be searched at t. Because of this similarity to word-level fast match techniques that
identify candidate words active at a given time, we call this the phonetic fast match
heuristic.

The proposed heuristic raises the following issues:

� Like other fast match techniques, the phonetic fast match can cause pruning
errors during search. This occurs because senone scores are noisy, as we shall
see later in Section 4.5.2, and they occasionally mispredict the active phones.
We explore e�cient ways of minimizing pruning errors later under this section.

� Equation 4.2 requires the computation of all senone output probabilities in
order to determine the base phone scores. That is relatively expensive for a fast
match heuristic. We can also obtain base phone scores from just the context
independent senones; i.e., s � pi instead of s � CD(pi) in equation 4.2. However,
by omitting the more detailed context dependent senones from the heuristic, we
make the phone scores and ranking less reliable, and the beamwidth must be
increased to avoid pruning errors. We explore the trade-o�s presented by these
alternatives.

A somewhat similar approach to search pruning has also been suggested in [56, 31].
In their work, phones are pruned from the search process based on their posterior
probabilities estimated using neural network models. It is also di�erent in that the
pruning mechanism is embedded in a hybrid Viterbi-stack decoding algorithm. Fi-
nally, we use the phone prediction mechanism to activate new phones at a given
point in the search, and not to deactivate already active ones, unlike in their case.
We believe that this leads to a more robust pruning heuristic given the nature of our
semi-continuous acoustic models.

In Section 4.5.2, we present the details of the heuristic and its incorporation as a
fast match front end into the lexical tree search. This description is primarily based
on equation 4.2, i.e., using all senones to compute the base phone scores. But most
of it also applies to the alternative scheme of using only the context independent
senones. We present details of the performance of both schemes on our benchmarks
in Sections 4.5.3 and 4.5.4, respectively.

80 CHAPTER 4. SEARCH SPEED OPTIMIZATION

4.5.2 Details of Phonetic Fast Match

Phones Predicted by Best Scoring Senones

We �rst consider an example of the base phone ranking produced by equation 4.2.
Figure 4.11 illustrates the heuristic with an example extracted from one of our bench-
mark tests. Each row represents one frame of speech. All senone output probabilities
are computed in each frame to obtain a base phone score. The base phones are ranked
accordingly and pruned with a certain threshold. We list the remaining active phones
in each frame in descending order of their scores. (See Appendix A for a complete
list of the 50 context independent phones used in Sphinx-II.) The �gure underscores
several points:

� The candidate basephone list in each frame, even though quite short, appears
to contain the correct base phone, and quite often at the head of the list. We
emphasize appears because, a priori, it is by no means clear which base phone is
the \correct" one in any given frame. At this point we can only visually discern
a pattern in the candidate lists that seems to match the expected basephone
sequence fairly well.

� It is obvious that the best phone in a frame is certainly not always the correct
one, whatever that may be, since we sometimes observe a best phone that is
not any of the correct ones. Hence, it is necessary to look further down the list
for the correct basephone.

� The choice of the pruning threshold is crucial. Too tight a threshold causes the
correct phone to be pruned entirely from the list. On the other hand, if it is
too wide, we end up with too many unnecessary candidates.

� The length of the list varies from frame to frame, indicating the acoustic con-
fusability within each frame. The confusion is higher around phone boundaries.

Quality of Phone Prediction

We can estimate the quality of this heuristic by measuring the position of the correct
base phone in the candidate list in each frame. But we �rst need to know what the
correct phone is in a given frame. For that we use the Viterbi alignment [52] of the
correct sequence of phones to the input speech10. Speci�cally, the experiment consists
of the following steps:

1. Obtain the Viterbi alignment for an entire test set. This gives us a correct
basephone mapping for each frame in the test set.

10The choice of Viterbi alignment as the reference is debatable. But we believe that any other
alignment process will not make a signi�cant di�erence to the resulting phone segmentations.

4.5. PHONETIC FAST MATCH 81

Frame# Base phones active in each frame, ranked by score

------ ---

[331] dh b p th d ax ix k td

[332] dh b th p ix ax ih eh k ae ey d g td

[333] dh b th p ax ix ey ih eh

[334] dh th ey ih ax eh b ix p ae t d

[335] ih ax ey t dh ix eh d ae th b p

[336] ih ix ey ax ae eh t d

[337] ih ix ax ey ae eh er

[338] ix ih ax er ey eh

[339] ih ix ax ey eh er uw ah

[340] ih ix ax ey uw

[341] ix ih ax z

[342] z ix s ax

[343] z s

[344] z s ts

[345] s z ts

[346] s z ts

[347] s z ts td

[348] s td z ts t dd

[349] td t s z

[350] t td ch

[351] t td ch jh

[352] t td dd d ch

[353] t td k dd p d

[354] t td k dd

[355] t f ch hh td sh k jh

[356] ch sh t y f jh hh s k

[357] f ch t sh y hh p s th k

[358] r ch t y ae hh f p eh k th ax sh er ix d s

[359] r ae eh ax

[360] eh ae r ey aw ah aa ih ax ow ix

[361] ae eh aw ey ax ah ih ix r ow ay

[362] ae eh ax ih ey ix aw ah

[363] ax ae eh ih ix aw ey ah iy

[364] eh ax ae ih ix aw

[365] eh ax ae ix ih ah

[366] eh ax ah ix ih ae n ay

[367] n eh ix ah ng ax ih ae ay

[368] n ng ix

[369] n ng

[370] n dd m

[371] n dd m ng

[372] n dd m ng d

[373] n dd d m ng dh td

[374] dd d n dh ng m y td g v l

[375] dd d n dh ng td y ix g m

Figure 4.11: Base Phones Predicted by Top Scoring Senones in Each Frame; Speech
Fragment for Phrase THIS TREND, Pronounced DH-IX-S T-R-EH-N-DD.

82 CHAPTER 4. SEARCH SPEED OPTIMIZATION

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

Fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e(

%
)

Ranking

histogram
cumulative distribution

Figure 4.12: Position of Correct Phone in Ranking Created by Phonetic Fast Match.

2. Use the heuristic of equation 4.2 to obtain an ordering of all basephones in each
frame (without any pruning).

3. In each frame, identify the position of the correct base phone in the ranked list.

This test was run on a random sampling of sentences chosen from our benchmark
test sets described in Section 3.4.1. Figure 4.12 shows the resulting histogram of the
position of the correct base phone11 in the ordered list created by equation 4.2. For
example, we note that the correct base phone occurs at the very head of the ordered
list created by the phonetic fast match over 40% of the time. It is just one away from
the head of the list 20% of the time.

The �gure also includes the cumulative distribution corresponding to the his-
togram. It shows that the correct phone in a given frame is missing from the top 10
phones only about 5% of the time, and from the top 20 phones only 1% of the time.
The number of pruning errors is proportional to the frequency of misses.

Clearly, we should use as tight a pruning threshold as possible without incurring
an excessive number of pruning errors. Such errors occur if the correct base phone
is not within the pruning threshold in some frame. With a tight threshold, they can
occur fairly often. For a given threshold, pruning errors are more likely around phone
boundaries, where the degree of confusability between phones is higher.

11The �gure shows 63 basephones instead of the 50 listed in Appendix A. The remaining 13
correspond to various noise phones.

4.5. PHONETIC FAST MATCH 83

Current Frame Being Searched

Framest tt tt t−1 +2 +3 +4

Lookahead window (4 frames in this example):

Active set of base phones determined in each frame in window
and combined to predict base phones to activate in frame

+1

t +1.

Figure 4.13: Lookahead Window for Smoothing the Active Phone List.

Reducing Pruning Errors Through Smoothing

Pruning errors can be reduced if we use the candidate list to determine when to
activate new phones, but not to de-activate them. That is, once activated, a phone
is searched as usual by the Viterbi beam search algorithm.

Secondly, the candidate list can also be made more robust by smoothing it by
considering all candidate phones from a window of neighbouring frames. If the candi-
date list is used only to activate new phones to be searched in the future, the window
should be positioned to look ahead into the future as well. Hence, we call it a looka-
head window. The two strategies together overcome the problem of sporadic holes in
the active phone list, especially around phone boundaries.

Figure 4.13 summarizes the lookahead window scheme used in our experiments.
A window of 2 or 3 frames is usually su�cient, as we shall see in the experimental
results.

Algorithm Summary

The phonetic fast match heuristic has been incorporated into the lexical tree search
pass of the decoder. The resulting modi�cation to the original algorithm (see Figure
4.6) is straightforward:

1. We compute all senones scores in each frame instead of just the active ones,
since the base phone scores are derived from all senones (equation 4.2).

2. Since the active phones are determined by looking ahead into future frames,
senone output probability evaluation (and hence Gaussian density or VQ com-
putation) has to lead the rest by the size of the lookahead window.

3. In each frame, before we handle any cross-HMM or cross-word transition, the list
of new candidate phones that can be activated is obtained by the phonetic fast

84 CHAPTER 4. SEARCH SPEED OPTIMIZATION

match heuristic together with the lookahead window mechanism. If a basephone
is active, all triphones derived from it are also considered to be active.

4. In each frame, cross-HMM and cross-word transitions are made only to the
members in the active phone list determined above.

The main drawback of this heuristic is that one needs to compute the output
probabilities of all senones in each frame in order to determine the phones to be
activated in that frame. This overhead is partly o�set by the fact that we no longer
need to track down the active senones in each frame by scanning the list of active
HMMs. The alternative heuristic proposed at the end of Section 4.5.1 determines the
active phones from just the context-independent senone, and does not require all of
the context-dependent senone scores.

4.5.3 Performance of Fast Match Using All Senones

We measure the performance of the decoder in its full con�guration|lexical tree
search augmented with the phonetic fast match heuristic, followed by the rescoring
pass (Section 4.4) and global best path search (Section 4.3). The benchmark test sets
and experimental conditions have been de�ned in Section 3.4.1.

The two main parameters for this performance evaluation are the lookahead win-
dow width and the active phone pruning threshold. The benchmark test sets are
decoded for a range of these parameters values. Since listing the performance on each
test set individually for all parametric runs makes the presentation too cluttered, we
only show the performance aggregated over all test sets.

20K Task

Figure 4.14 shows two sets of performance curves for the 20K task. In Figure 4.14(a),
each curve shows the variation in word error rate with changing pruning threshold for
a �xed lookahead window size. (The pruning threshold is in negative log-probability
scale, using a log-base of 1.0001.) With the fast match heuristic we asymptotically
reach the baseline word error rate of 16.4% as the pruning beamdwidth is widened.
It is also clear that increasing the lookahead window size for a �xed beamwidth helps
accuracy.

Figure 4.14(b) shows the same data points, but instead of the pruning beamdwidth,
we plot the number of active HMMs per frame along the x-axis. Comparing this graph
to the statistics for the lexical tree search without phonetic fast match (Section 4.2.4,
Table 4.4), it is clear that we can essentially attain the baseline word error rate of
16.4% while reducing the number of active HMMs by about 50%.

4.5. PHONETIC FAST MATCH 85

16.5

17

17.5

18

18.5

19

19.5

20

40000 45000 50000 55000 60000 65000 70000 75000 80000

%
W

or
d

E
rr

or
 R

at
e

Phonetic Fast Match Pruning Beamwidth

Baseline WER = 16.4%

Window-size=2
3
4
5

(a) Word Error Rate vs Fast Match Pruning Beam Width.

16.5

17

17.5

18

18.5

19

19.5

20

500 1000 1500 2000 2500 3000

%
W

or
d

E
rr

or
 R

at
e

Active HMMs/Frame

Baseline WER = 16.4%

HMM/Frame(no fastmatch) = 4259

Window-size=2
3
4
5

(b) Word Error Rate vs Active HMMs/Frame in Tree Search.

Figure 4.14: Phonetic Fast Match Performance Using All Senones (20K Task).

86 CHAPTER 4. SEARCH SPEED OPTIMIZATION

Figure 4.14(b) also demonstrates that increasing the window size beyond 2 or 3
frames is not worthwhile. We conclude this from the fact that to achieve a given
recognition accuracy, we do more work as the window size grows larger. It also makes
intuitive sense that a smoothing window of 2-3 frames is all that is needed since the
window is needed to cover \holes" in the active phones predicted by the heuristic.
These holes occur at random and not in long bursts. In the following discussion, we
use a window of size of 3 frames, which seems to be an optimal choice considering
Figure 4.14.

Table 4.11 summarizes the performance results on the 20K task from including
the phonetic fast match heuristic. It corresponds to a �xed lookahead window size
of 3 frames. With the incorporation of the phonetic fast match heuristic in the

Pruning beamwidth 40K 50K 60K 70K 80K No fastmatch
%Word Error Rate 18.8 17.4 16.7 16.5 16.5 16.4
No. HMMs/Frame 1019 1340 1728 2134 2538 4259
No. LM Ops/Frame 151 193 245 302 360 625
Total Time (xRealTime) 3.24 3.48 3.77 4.06 4.36 5.50
(All Three Passes)
Speedup Over Baseline 6.86 6.39 5.90 5.48 5.10 4.04
Forward Viterbi

Table 4.11: Fast Match Using All Senones; Lookahead Window=3 (20K Task).

tree Viterbi search, there is a signi�cant speedup in the total execution time, with
a negligible increase in the word error rate. If we consider only the search time,
excluding the acoustic output probability computation, the improvement in speed is
between a factor of 2 to 3.

58K Task

We show similar performance �gures for the 58K task in Table 4.12, with the looka-
head window �xed once again at 3 frames. The conclusions are quite similar to those
in the 20K task. There is a factor of 2 reduction in the number of active HMMs
per frame and in the search time, with no appreciable increase in recognition errors.
The reduction in the overall execution time is more marked since the acoustic model
evaluation is a relatively smaller fraction of the total computation.

4.5. PHONETIC FAST MATCH 87

Pruning beamwidth 40K 50K 60K 70K 80K No fastmatch
%Word Error Rate 17.0 15.7 15.1 14.9 14.8 14.7
No. HMMs/Frame 1636 2195 2883 3604 4322 7369
No. LM Ops/Frame 457 559 685 820 958 1595
Total Time (xRealTime) 4.42 4.75 5.36 5.99 6.50 10.0
(All Three Passes)
Speedup Over Baseline 9.60 8.93 7.92 7.08 6.53 4.24
Forward Viterbi

Table 4.12: Fast Match Using All Senones; Lookahead Window=3 (58K Task).

4.5.4 Performance of Fast Match Using CI Senones

The main drawback of the fast match heuristic discussed in Section 4.5.2 is that all
senones have to be computed in every frame in order to determine the active base
phones. In this section we consider predicting the active basephones from just the
context-independent senones. That is, equation 4.2 now becomes:

Ppi(t) = max
s � pi

(bs(t)); i = 1; 2; : : : (4.3)

Thus, we still have to evaluate all senones of all basephones in every frame in order
to determine the active phone list, but this is a much smaller number than the total
number of senones. The context dependent senones can be evaluated on demand.

We expect the list of candidate phones indicated by this heuristic to be somewhat
less reliable than the earlier one since context independent senones are cruder mod-
els of speech. In particular, coarticulation e�ects across phone boundaries in uent
speech are captured by triphone models but might be missed by the broader mono-
phone models. On the other hand, we still use the lookahead window to smooth the
candidate list from neighbouring frames. Overall, it is a tradeo� between a poten-
tial increase in the number of active HMMs in order to retain the original level of
recognition accuracy, and a reduction in the number of senones evaluated per frame.

Table 4.13 shows a summary of the performance of this scheme on the 20K and
58K tasks. The lookahead window size is �xed at 3 frames. As we expected, the
pruning threshold has had to be widened, compared to the previous scheme.

A Comparison with the results in Section 4.5.3 brings out the following observa-
tions:

� We are able to match the baseline recognition accuracy with a further reduction
in computation. In both the 20K and 58K tasks, there is a reduction in total
execution time of about 45% for a less than 2% relative increase in word error
rate, compared to not using the fast match heuristic.

88 CHAPTER 4. SEARCH SPEED OPTIMIZATION

Pruning beamwidth 65K 75K 85K 95K 105K No fastmatch
%Word Error Rate 18.1 17.1 16.7 16.6 16.5 16.4
No. HMMs/Frame 1402 1707 2016 2290 2580 4259
Total Time (xRealTime) 2.41 2.72 3.02 3.29 3.55 5.50
(All Three Passes)
Speedup Over Baseline 9.23 8.18 7.36 6.76 6.26 4.04
Forward Viterbi

(a) 20K Task.

Pruning beamwidth 65K 75K 85K 95K 105K No fastmatch
%Word Error Rate 16.6 15.6 15.1 14.9 14.8 14.7
No. HMMs/Frame 2334 2878 3430 3919 4438 7369
Total Time (xRealTime) 4.20 4.82 5.45 5.84 6.58 10.0
(All Three Passes)
Speedup Over Baseline 10.1 8.80 7.79 7.27 6.45 4.24
Forward Viterbi

(b) 58K Task.

Table 4.13: Fast Match Using CI Senones; Lookahead Window=3.

� There is some increase in the number of active HMMs needed to achieve the
same recognition accuracy, compared to the fast match based on all senones.
But it is partially o�set by the reduction in the number of senones evaluated.
The balance, of course, depends on the relative costs of the two.

� Using context independent senones for the fast match is more bene�cial to the
smaller vocabulary system. As vocabulary size increases, the increase in the
number of active HMMs a�ects larger vocabulary systems more. The reduction
in the cost of computing senone output probabilities is o�set by the need to
scan the active HMMs to �nd the active senones in each frame.

4.5.5 Phonetic Fast Match Summary

The conclusion is that using the phonetic fast match heuristic, the speed of the lexical
tree decoder can be improved by almost a factor of two, with negligible increase in
recognition errors. The heuristic can be further tuned in ways that we have not
explored. For example, one can use basephone-speci�c pruning beamwidths. The
graph in Figure 4.12 is averaged over all 50 phones in the Sphinx-II system. However,
certain base phones, such as fricatives and long vowels, are predicted much better
than others. It is possible to tighten the pruning threshold for these phones.

4.6. EXPLOITING CONCURRENCY 89

The phonetic fast match also has several other potential uses. These need to be
explored:

� The active base phones usually occur clustered in time. One can create a phone
lattice in which each node is a phone that is active for some contiguous set of
frames. Such a phoneme lattice could be searched very e�ciently for producing
a candidate list of active words to be searched.

� A phone lattice such as described above can be used for word spotting. We may
consider the word to be present if we can trace a sequence of nodes through the
phone lattice corresponding to the word's pronunciation.

� Obtaining con�dence measures. Wherever the phone lattice is sparse, i.e., very
few phones are identi�ed as being active, we can conclude that we have a high
degree of con�dence about which phones are active. If a region of frames has
many phones active in it, on the other hand, it indicates a high degree of acoustic
confusion in that region. The acoustic modelling in that segment is less reliable.

The technique of identifying active phones has been discussed in [22], however,
only in the context of applying it to a fast match. They have reported a reduction
in fast-match computation of about 50% with a slightly under 10% increase in error
rate. A similar technique using phone posterior probabilities has also been reported
in [56]. It is also in the phase of the fastmatch step that generates word candidates
and posterior probabilities to a stack-decoding algorithm. The phonetic HMM states
are modelled by neural network that directly estimate phone posterior probabilities
that are used to identify and deactivate inactive phones during the fast match step.
They report an order of magnitude increase in search speed for a nearly real-time
performance, while incurring a 7% relative increase in word error rate on a 20K task.
Part of the large increase in speed in probably owing to the fact that the basic decoder
is based on stack-decoding algorithm. They do not report frequency counts for the
reduction in the number of active models per frame.

4.6 Exploiting Concurrency

Our main purpose in this section is to explore the potential for speeding up the recog-
nition architecture via concurrency. It is relevant since modern commercial processor
architectures are increasingly capable of multiprocessor operation and commercial op-
erating systems support concurrency and multithreading within single applications.
It is possible to take good advantage of this facility.

One of the early attempts at speeding up the Sphinx-II baseline system exploited
the large degree of concurrency within its algorithmic steps [54]. In a parallel imple-
mentation on the PLUS multiprocessor designed at CMU [13], a speed up of 3.9 was

90 CHAPTER 4. SEARCH SPEED OPTIMIZATION

obtained on a 5 node con�guration. The parallelization involved static partitioning
of data and computation among multiple threads using the Mach C-threads facility
[16]. Though the lexical tree decoder has signi�cant structural di�erences compared
to the baseline system, some of the parallelization techniques can still be applied to
it. We explore this question in some detail in this section.

In parallelizing any application, there are two broad options: dynamic load bal-
ancing using a central task queue model, or static load balancing based on some
suitable static data and computation partitioning. The former presumably achieves
the best (most even) load balance among the active threads. But it is more complex
to implement, and harder to maintain and modify for experimentation purposes. We
consider static partitioning schemes which are easier to manipulate in a coarse-grained
fashion on small-scale multiprocessors.

In the following discussion we assume a shared-memory multiprocessor con�gu-
ration with an application running in a single address space shared by multiple con-
current threads. The discussion is hypothetical. We have not actually implemented
a parallel version of the tree search decoder. But we do address the relevant issues.

4.6.1 Multiple Levels of Concurrency

There are several levels of concurrency in the decoder as discussed so far, which can
be exploited individually and in combination. We review the main ones briey.

Pipelining Between Search Passes

The lexical tree search and rescoring passes can be pipelined and executed concur-
rently. If the latter is time synchronous, the only constraint is that it cannot proceed
beyond time t until the lexical tree search has completed emitting all its word lattice
entries that correspond to a begin time of t or earlier. This is easily established by
checking the history information Hm

j in each active HMM (see Section 3.2.4). If all
of them point to word lattice entries with end times greater than t, the rescoring pass
can proceed beyond t12.

The potential speedup obviously depends on the relative costs of the two passes.
In our benchmark system, the lexical tree search is the dominant pass. However, it
can be parallelized internally, so pipelining the later pass becomes useful.

The communication bandwidth between the two passes is minimal. It only involves
the exchange of word lattice information, which consists of a few tens of words every
frame, on average. The two passes must also synchronize to ensure that the rescoring
pass does not overtake the other.

12Actually, the rescoring pass treats the word segmentations in the tree search word lattice fuzzily,
using a window, as described in Section 4.4.1. We must also allow for the window.

4.6. EXPLOITING CONCURRENCY 91

Pipelining Between Acoustic and HMM Evaluation in Tree Search

We can pipeline the VQ and senone output probability computation with the HMM
search if there is no feedback from the latter to the former. That is the case if we
decide to evaluate all senones every frame, instead of computing just the active ones.
The latter requires feedback from the active HMMs. The phonetic fast match heuristic
presented in Section 4.5.2 requires the evaluation of all senone output probabilities
every frame anyway. Hence this pipelining is suitable in that context.

Again, the potential speedup depends on the costs of the individual steps. In
our lexical tree search using semi-continuous acoustic models, the execution times
for senone output probability computation and searching the active HMMs are fairly
even for the 20K task. This is seen from Tables 4.3(a) and 4.11. Even otherwise,
each component has a fair amount of internal parallelism which can be exploited to
balance the computation.

We consider the communication bandwidth between the two components. The
data exchanged between the pipeline components consists of the senone output prob-
abilities in each frame. In our system, it amounts to 10K 4-byte values in each frame,
or about 4MB/sec, and it is not likely to be signi�cantly di�erent for most systems.
This volume is well within the capabilities of modern memory-bus systems.

The two pipeline components have a producer-consumer relationship. The pro-
ducer, senone evaluation, must stay ahead of the consumer, the search component.
The execution time for the former is fairly constant from frame to frame, but the
search cost can vary by an order of magnitude or more. Hence, for a proper balance
in computation, the two cannot be simply run in lockstep. We need a queue of frames
between the two to smooth out variations in execution times. However, the queue
cannot be arbitrarily large since it has to contain 40KB of senone output probability
data per frame. We surmise that a queue depth of about 10 frames is su�cient to
keep the pipeline owing relatively smoothly without hiccups.

Partitioning Acoustic Output Probability Computation

The computation of senone output probabilities can be trivially partitioned in most
instances. Basically, there is no dependency between the output probabilities of
di�erent senones within a given frame. Every senone can be evaluated concurrently
with the others.

Partitioning the senone output probability computation creates a multiple-producer
and consumer relationship with the search module. Hence the latter must synchronize
with all of the producer partitions to ensure integrity.

92 CHAPTER 4. SEARCH SPEED OPTIMIZATION

Concurrency in Searching the Lexical Tree HMM Network

Parallelism inside the Viterbi tree search algorithm is the hardest to control and
exploit e�ectively for several reasons:

� The beam search heuristic restricts the active HMMs to a small fraction of the
total number. The actual identity of the active HMMs is time varying. It is
necessary to balance the computation among parallel components in spite of
this variation.

� The amount of search computation varies by orders of magnitude from frame
to frame.

� There is global dependency from one frame to the next. This follows from
the time-synchronous nature of the Viterbi algorithm. For example, the word
lattice must be completely updated with new word entries in a given frame
before moving on to attempt cross-word transitions in that frame.

� The search component is the most memory intensive. The memory access pat-
tern is highly unstructured since the set of active HMMs varies over time. The
memory bottleneck is probably the largest impediment to the e�ective paral-
lelization of this component.

The most natural way to parallelize the lexical tree search is by partitioning the
collection of trees among concurrent threads. For example, the two trees in Figure
4.2 can be assigned to separate threads. This approach has the following advantages:

� The computation within each thread is largely the same as in the sequential
algorithm. It is important to retain the simplicity of structure o�ered by se-
quential implementations for ease of modi�cation and experimentation. The
main di�erence is that threads need to synchronize with each other once in
each frame to exchange updates to the word lattice.

� Since the HMM data structures to be searched are partitioned, there is no
conict during access to them, except for cross-word transition updates. These
are handled by exchanging updates to the word lattice as mentioned above.

� The large number of trees o�er su�cient parallelism and scope for e�ective
load balancing in spite of the level of activity within individual trees varying
substantially with time. In the 20K task, there are about 650 trees (see Table
4.1).

It is important to distribute the trees with some care, in order to maintain a
proper load balance among threads. The phonetic fast match heuristic restricts the
activity at the root nodes by allowing only the predicted phones to become active at

4.7. SUMMARY OF SEARCH SPEED OPTIMIZATION 93

a given point in time. Hence, it is advantageous to scatter trees with root nodes that
have the same parent basephone among di�erent threads. In general, it is desirable
to spread trees with acoustically similar initial pre�xes among threads, ensuring a
more even distribution of the computation load.

4.6.2 Parallelization Summary

We have reviewed the potential for speedup through parallelism at several levels.
Even with a static partitioning of the task, the available concurrency can be e�ectively
exploited on small-scale shared-memory multiprocessors.

It is possible to pipeline individual passes of the decoder with one another. Within
the lexical tree search, we can exploit pipelining between the acoustic output prob-
ability evaluation for senones and the HMM search algorithm. This is especially
advantageous since they are fairly evenly matched in our lexical tree decoder using
semi-continuous models. Finally, both acoustic output probability computation and
HMM search can be partitioned into concurrent threads. However, the latter requires
a careful static assignment of the overall search space to threads in order to balance
the computational load among them.

However, the e�ectiveness of a parallel implementation is limited by the available
processor-memory bandwidth. Since certain portions of the original sequential algo-
rithm, especially HMM evaluation, are heavily memory bound, the actual speedup
possible through concurrency remains to be seen.

4.7 Summary of Search Speed Optimization

The contents of this chapter can be summarized by comparing the performances of
various approaches along two axes: word error rate vs recognition speed. Figure 4.15
captures this information succinctly.

The �gure shows that we can very nearly attain the recognition accuracy of the
baseline system while speeding up the system by a factor of about 8. It also brings
out the relative contributions and costs of each technique. Appendix B contains a
summary of the results of signi�cance tests on the di�erences between the recognition
accuracies of the various systems.

We briey review the results from this chapter:

� The lexical tree search algorithm is about 5 times faster than the baseline
Sphinx-II system. The search component alone, excluding the computation of
acoustic output probabilities of senones, is over 7 times faster than the baseline
system.

94 CHAPTER 4. SEARCH SPEED OPTIMIZATION

15.5

16

16.5

17

17.5

18

18.5

19

19.5

0 5 10 15 20 25

W
or

d
E

rr
or

 R
at

e(
%

)

Recognition Speed (x RealTime)

Baseline(Vit.)

Baseline(A*)

Tree

Tree+Bestpath

Tree+Rescore+Bestpath
Fastmatch+Tree+Rescore+Bestpath

(a) 20K Task.

13.5

14

14.5

15

15.5

16

16.5

17

17.5

18

0 5 10 15 20 25 30 35 40 45

W
or

d
E

rr
or

 R
at

e(
%

)

Recognition Speed (x RealTime)

Baseline(Vit.)

Baseline(A*)

Tree

Tree+Bestpath

Tree+Rescore+Bestpath

Fastmatch+Tree+Rescore+Bestpath

(b) 58K Task.

Figure 4.15: Word Error Rate vs Recognition Speed of Various Systems.

4.7. SUMMARY OF SEARCH SPEED OPTIMIZATION 95

� During the lexical tree search, deferring the computation of language model
probabilities until the leaves of the lexical reduces the cost of such accesses by
about an order of magnitude compared to the baseline system. It also leads to
an optimization whereby about half of these computations can be eliminated
by reusing results from an earlier time.

� The lattice error rate of the word lattice produced by the lexical tree search is
about 2%, and is highly compact, making it ideal for postprocessing steps using
more sophisticated searches and models. The number of entries in the word
lattice for a 10sec sentence is typically about 1000. The word lattice size and
error rate is comparable to that of the baseline system.

� Even though the lexical tree search su�ers an increase in word error rate of
about 20% relative to the baseline system, the loss can be largely recovered by
searching the word lattice for a globally optimum path. The resulting word
error rate is within 7% relative to the baseline system. The computational cost
of the best path search is negligible.

� The compact word lattice produced by the tree search can be e�ciently postpro-
cessed using detailed acoustic models and/or search algorithms. By applying
the forward Viterbi search algorithm of the baseline system to the word lat-
tice, followed by the best path search, we equal the recognition accuracy of the
baseline system. The overall increase in computation with the addition of the
postprocessing step is about 15%.

� The phonetic fast match heuristic improves recognition speed by identifying a
limited set of candidate phones to be activated at each frame. Incorporating this
step into the lexical tree search leads to a further speedup in overall execution
time by a factor of about 1.8 with less than 2% relative increase in word error
rate.

Based on our experiences reported in this chapter, we believe that a practical
organization for the decoder is as shown in Figure 4.16.

Phonetic

Fast Match

Lexical Tree

Search

Rescore
Lexical Tree
Word Lattice

Global
Best Path
Search

(Optional)

Figure 4.16: Con�guration of a Practical Speech Recognition System.

Each of the blocks in the linear pipeline operates in the forward direction in time,
and hence the entire con�guration can be overlapped to a large extent, avoiding delays
that would be inherent if any of the blocks involved a backward pass, for instance.

96 CHAPTER 4. SEARCH SPEED OPTIMIZATION

The lexical tree search module, using fairly detailed acoustic and grammar models
but simple enough to allow near real-time operation, produces a compact word lattice
with a low lattice error rate. It is the key to the overall organization of a practical
speech recognition system.

Additional improvements in speed can be obtained by exploiting parallelism be-
tween and within the individual blocks in Figure 4.16. The pipelined organization
lends itself naturally to a parallel implementation, operating asynchronously in a
data-driven fashion. There is also a large amount of parallelism within some of the
modules. For example, the evaluation of acoustic models and the HMM network
search can be performed in parallel, with very simple communication between them.
One of the early work in this area was in parallelizing the forward Viterbi pass of
the baseline Sphinx-II system on a 5-node shared-memory multiprocessor [14, 13] on
the 1000-word Resource Management task [51], which yielded a speedup of about 3.8
[54]. Parallelizing the lexical tree search is a little di�erent, but the potential exists,
nevertheless.

Chapter 5

Memory Size Reduction

The second important computational resource needed by modern speech recognition
systems, after CPU power, is main memory size. Most research systems require
hundreds of megabytes of main memory that are only found on high-end workstations.
Clearly, practical applications of speech recognition must be able to run on much
smaller memory con�gurations.

The work reported in this chapter is once again in the context of the baseline
Sphinx-II system described in Chapter 3. It is typical of most other research systems
in use in the speech community. The two main candidates for memory usage in
the baseline Sphinx-II system are the acoustic and language models. The former
is dominated by the senone mixture weights (see Sections 2.1.2, 3.1.1, and 3.4.4).
The latter primarily consists of the bigram and trigram data structures described in
Section 3.4.4, Figure 3.8.

In this chapter we describe the approaches taken to reduce their sizes in the lexical
tree decoder. In Section 5.1 we discuss the reduction of acoustic model size and in
Section 5.2 that of the language model. Some of the techniques presented here have
also been incorporated into the baseline decoder with similar results.

5.1 Senone Mixture Weights Compression

The main hypothesis in designing a scheme for reducing the memory size requirement
of acoustic models is that the exact state score (or senone score) in each frame is not as
important to the detailed search as is the relative ranking of the models. Furthermore,
short-term �ne distinctions in the scores of states in a given frame are misleading,
because of the inherent uncertainty in the statistical models underlying those states.
These observations lead to the simple solution of clustering acoustic modelling values
into a small number of bins which can be indirectly addressed using a small number
of bits.

97

98 CHAPTER 5. MEMORY SIZE REDUCTION

This approach is applied to the Sphinx-II semi-continuous acoustic models in the
case of the senone weights. As we saw in Section 3.4.4, the senone mixture weights
or coe�cients account for about 40MB of memory usage, where each coe�cient is a
4-byte value. These coe�cients are reduced to 1 byte by simply truncating their least
signi�cant bits until the entire dynamic range can be �t into 8 bits. Thus, we obtain
a 4-fold reduction in their memory requirement.

Most benchmark evaluations described in this thesis have been carried out with
this memory organization. The impact of this truncation on recognition accuracy is
virtually non-existent. More important, only about 1% of the individual sentences
have di�erent recognition results in the two cases. In other words, the reduction in
precision makes little di�erence not just on average, but even in detail. In fact, the
overall recognition accuracy is actually slightly better after the truncation.

There is also an execution speed bene�t to this compaction. Equation 2.1 in
Section 2.1.2 de�nes the expression for the output probability of a senone in a given
frame. In Sphinx-II, as in many other speech recognition systems, all probability
calculations are carried out in log-space, so that multiplication operations can be
reduced to additions in log-space. But the summation term in equation 2.1 poses a
di�culty. By truncating all log-probability values to 8-bits, however, the addition
operation can be achieved in log-space by simply implementing it as a table-lookup
operation. This optimization reduces the execution time for senone output probability
computation by a factor of 2.

5.2 Disk-Based Language Models

In the case of the language model, a totally di�erent approach is necessary. It is
indeed feasible to reduce the probability values and backo� weights to 8-bit values
without any e�ect on recognition accuracy. But in this case, the probability values
have already been compacted to 16-bits as mentioned in Section 3.4.4. Hence, the
payo� in reducing them to 8 bits is less. Furthermore, there are other �elds in each
bigram and trigram, such as the word-id, which are much harder to compress further.

The observation in this case is that in decoding any given utterance, only a very
small portion of the language model is actually used. Hence, we can consider main-
taining the language model entirely on disk, and retrieving only the necessary pieces,
on demand. One would expect the virtual memory system to e�ectively accomplish
this for free. But, as we noted in Section 3.4.4, the granularity of access to the bi-
gram and trigram data structures is much smaller than a physical page size on most
modern workstations. For example, the average number of bigrams per word in the
case of the 58K vocabulary is about 105. The average number of trigrams per word
pair is at least an order of magnitude smaller. Hence, the virtual memory system is
relatively ine�ective in managing the working set for these data structures.

5.2. DISK-BASED LANGUAGE MODELS 99

It is possible to maintain the language model on disk and explicitly load the
necessary bigrams and trigrams on demand. However, to avoid excessive delays due
to disk access, we must resort to some caching strategy. For this, we observe that
if we are required to compute a bigram probability P (wjjwi) during some frame, we
are very likely to have to compute other bigram probabilities P (wkjwi); k 6= j, in the
same frame. We can make a similar case for trigram probabilities. The reason for
this phenomenon is that typically several words arrive at their ends in a given frame,
and we need to compute each of their language model probabilities with respect to
each of some set of predecessor words.

The caching policy implemented in our system is quite straightforward:

� Since unigrams are a small portion of the large vocabulary language models,
they are always kept in memory. Only bigrams and trigrams are read from disk,
and they are cached in logical chunks. That is, all bigram followers of a word
or all trigram followers of a word pair are cached at a time.

� Whenever a bigram probability P (wjjwi) is needed, and it is not in memory, all
bigram followers of wi are read from disk and cached into memory.

� Likewise, whenever a trigram probability P (wkjwi; wj) is needed, and it is not in
memory, all trigram followers of wi; wj are read and cached in memory. Further-
more, all bigram followers of wi are also read from disk and cached in memory,
if not already there.

� To avoid a continual growth in the amount of cached language model data, it is
necessary to garbage collect them periodically. Since the decoder processes input
speech one sentence at a time (which are at the most a few tens of seconds long),
the cached data are ushed as follows. At the end of each utterance, we simply
free the memory space for those cached entries which were not accessed during
the utterance. This ensures that we recycle the memory occupied by relatively
rare words, but retain copies of frequently occurring words such as function
words (A, THE, IS, etc.). The \cache lines" associated with the functions words
are also relatively large, and hence more expensive to read from disk.

All the benchmark evaluations with the lexical tree decoder have been carried
out using the disk-based language model with the above caching scheme. We have
measured the number of bigrams and trigrams resident in memory during all of our
benchmark evaluations. In both the 20K and 58K tasks, only about 15-25% of bigrams
and about 2-5% of all trigrams are resident in memory on average, depending on the
utterance.

The impact of the disk-based language model on elapsed time is minimal, implying
that the caching scheme is highly e�ective in avoiding disk access latency. Measuring
elapsed time is tricky because it is a�ected by factors beyond our control, such as other

100 CHAPTER 5. MEMORY SIZE REDUCTION

processes contending for the CPU, and network delays. However, on at least some
experimental runs on entire benchmark test sets, the di�erence between the CPU
usage and elapsed time is no more than if the entire language model is completely
memory-resident. The elapsed time exceeds the CPU usage by less than 5%, and it
is the existence proof for the e�ectiveness of the caching policy.

5.3 Summary of Experiments on Memory Size

We have presented two simple schemes for reducing the memory sizes of large acoustic
and language models, respectively. The former is compressed by simply truncating
the representation from 32 to 8 bits. This granularity appears to be quite su�cient
in terms of retaining the original recognition accuracy, sentence for sentence.

The memory-resident size of the language model is reduced by maintaining it
on disk, with an e�ective caching policy for eliminating disk access latency. The
fraction of bigrams in memory is reduced by a factor of between 4 and 6, and that of
trigrams by a factor of almost 20-50. Clearly, there is no question of loss of recognition
accuracy, since there is no change in the data representation.

We believe that several other implementations use 8-bit representations for acous-
tic models, although the literature hasn't discussed their e�ect on recognition, to
our knowledge. We do not know of any work dealing with the language model in
the way described here. Other approaches for reducing the size of language models
include various forms of clustering, for example into class-based language models,
and eliminating potentially useless bigrams and trigrams from the model [58]. These
approaches generally su�er from some loss of accuracy. The advantage of simple word
bigram and trigram grammars is that they are easy to generate from large volumes
of training data.

Chapter 6

Small Vocabulary Systems

6.1 General Issues

Although we have mainly concentrated on large vocabulary speech recognition in
this thesis, it is interesting to consider how the techniques developed here extend
to smaller vocabulary tasks. There are two cases: tiny vocabulary tasks of a few
tens to a hundred words, and medium vocabulary of a few thousands of words. The
former are typical of command and control type applications with highly constrained
vocabularies. The latter are representative of applications in constrained domains,
such as queries to a �nancial database system.

For a really small vocabulary of a few tens of words, search complexity is not a
major issue. In a Viterbi beam search implementation, at most a few hundred HMMs
may be active during each frame. Similarly there may be at most a few hundred
cross-word transitions. (These are the two most prominent subcomponents of search
in large vocabulary recognition, and our main focus.) The acoustic output probability
computation, and questions of recognition accuracy are much more dominant issues
in such small vocabulary tasks. The nature of the problem also allows the use of ad
hoc techniques, such as word HMM models for improving recognition accuracy. The
wide range of options in the extremely small vocabulary domain makes the e�ciency
measures for large vocabulary recognition less relevant.

Secondly, as the vocabulary size decreases, words tend to have fewer common
pronunciation pre�xes. For example, the triphone lexical tree for the digits lexicon
in Section 3.1.2 is not a tree at all. It is completely at. The tree structure is largely
irrelevant in such cases. We do not consider extremely small vocabulary tasks any
further.

Even when the vocabulary is increased to a few thousands of words, the cost of
search does not dominate as in the case of large vocabulary tasks. The computation
of HMM state output probabilities is about equally costly. Hence, even an in�nite

101

102 CHAPTER 6. SMALL VOCABULARY SYSTEMS

speedup of the search algorithm produces an overall speedup of only a small factor.

In this chapter we compare the baseline Sphinx-II system and the lexical tree
search system on the speech recognition component of the ATIS (Airline Travel In-
formation Service) task1 [45, 46], which has a vocabulary of about 3K words.

Section 6.2 contains the details of the performance of the baseline Sphinx-II system
and the lexical tree decoder on the ATIS task.

6.2 Performance on ATIS

6.2.1 Baseline System Performance

ATIS is a small-vocabulary task in which the utterances are mainly queries to an
air travel database regarding ight and other travel-related information. The test
conditions for the ATIS task are as follows:

� 3000 word vocabulary, including several compound words, such as I_WANT,
WHAT_IS, etc.

� 10,000 senone semi-continuous acoustic models trained for ATIS from both the
large vocabulary Wall Street Journal and ATIS data.

� Word bigram language model, with about 560,000 bigrams. It is a fairly con-
strained grammar with a much lower perplexity than the large vocabulary ones.

� Test set consisting of 1001 sentences, 9075 words.

The style of speaking in ATIS is a little more conversational than in the large vocab-
ulary test sets from the previous chapters.

The performance of the baseline Sphinx-II system on the ATIS task is summarized
in Table 6.1. The noteworthy aspects of this test are the following (we focus mainly
on the forward Viterbi pass):

� The cost of output probability computation (VQ and senone evaluation) is
almost half of the total execution time of the forward Viterbi search. Hence
speeding up the other half, i.e. search alone, by an order of magnitude has
much less impact on the overall speed.

� The number of HMMs evaluated per frame is still su�ciently large that it is
not worth while computing the senone output probabilities on demand. It is
less expensive to compute all of them in each frame.

1The overall ATIS task has other components to it, such as natural language understanding of
the spoken sentence. We ignore them in this discussion.

6.2. PERFORMANCE ON ATIS 103

Fwd. Vit. Fwd/Bwd/A*
%Word Error Rate 5.11% 4.95 %
x RealTime 8.66 10.73

(a) Word Error Rates, Execution Times (x RealTime).

VQ+Senone HMM Word
Evaluation Evaluation Transition

x RealTime 4.06 2.88 1.54
%Forward Pass 46.9% 33.3% 17.8%

(b) Breakdown of Forward Pass Execution Times.

Table 6.1: Baseline System Performance on ATIS.

� Cross word transitions are only half as computationally costly as HMM evalua-
tion, whereas in the large vocabulary tasks they are about evenly balanced (Ta-
ble 3.4). Part of the reason is that the ATIS language model provides stronger
constraints on word sequences, so that fewer cross-word transitions have to be
attempted. The pruning behaviour of the language model is signi�cant in this
case.

6.2.2 Performance of Lexical Tree Based System

In this section we evaluate the lexical tree search and the associated postprocessing
steps on the ATIS task. First of all, we compare the number of root nodes in the
triphone lexical tree in the ATIS task with the other large vocabulary tasks. Table 6.2
shows these �gures. (There are multiple alternative pronunciations for certain words,
which increase the total number of lexical entries over the vocabulary size.) Clearly,

ATIS 20K task 58K task
No. words 3200 21500 61000
No. root HMMs 450 650 850
Ratio(%) 14.1 3.0 1.4
(root HMMs/words)

Table 6.2: Ratio of Number of Root HMMs in Lexical Tree and Words in Lexicon
(approximate).

the degree of sharing at the root of the tree structure decreases as the vocabulary size

104 CHAPTER 6. SMALL VOCABULARY SYSTEMS

decreases. Hence, we may expect that the lexical tree structure will give a smaller
improvement in recognition speed compared to large vocabulary situations.

Recognition Speed

The recognition speed for various con�gurations of the experimental decoder is re-
ported in Table 6.3. The phonetic fast match heuristic in this case is based on
context-independent HMM state scores. (We have observed in Section 4.5.4 that it
is advantageous to do so for smaller vocabulary systems.) As expected, the overall
speedup is less compared to the large vocabulary case (Figure 4.15).

T TB TRB FTRB
x RealTime 2.50 2.55 2.89 1.57
Speedup Over 3.46 3.40 3.00 5.52
Baseline Viterbi

(T=Tree Search, B=Bestpath, R=Rescoring, F=Phonetic Fastmatch)

Table 6.3: Execution Times on ATIS.

The main reason for the limited speedup over the baseline system is clearly the
cost of acoustic probability computation, which is nearly 50% of the total in the
baseline system. The tree search algorithm is primarily aimed at reducing the cost of
the search component, and not at the acoustic model evaluation. Secondly, as noted
earlier in Table 6.2, there is less sharing in the ATIS lexical tree than in the larger
vocabulary tasks. Hence, even the potential speedup in search is limited.

Let us �rst consider the situation in further detail without the phonetic fast match
heuristic. Table 6.4 summarizes the breakdown of the lexical tree search execution
time on the ATIS task when the fast match step is not employed. Comparing these

VQ+Senone HMM Leaf Node Word
Evaluation Evaluation Transition Transition

x RealTime 1.30 0.72 0.39 0.08
%Tree Search 52.0 28.8 15.6 3.2

Table 6.4: Breakdown of Tree Search Execution Times on ATIS (Without Phonetic
Fast Match).

�gures to Table 4.3 for the large vocabulary case, we see the relative dominance of
the cost of acoustic model evaluation.

6.2. PERFORMANCE ON ATIS 105

In spite of the large cost of acoustic model evaluation, we are still able to obtain a
speedup of over a factor of 3 for two reasons. First, the fewer number of active HMMs
in the tree search, compared to the baseline system, allows us to scan for and evaluate
just the active senones, instead of all of them. Second, the reduction in the precision
of senone mixture weights allows us to implement some of the output probability
computation with simple table-lookup operations, as discussed in Section 5.1. Hence,
the larger than expected gain in speedup is only partly owing to improvement in
search.

The phonetic fast match heuristic, however, is as e�ective as before. When the
heuristic is included in the lexical tree search, it reduces the number of HMMs eval-
uated. Since it is based only on context-independent state scores, the reduction in
the number of active HMMs also translates to a reduction in the number of active
context-dependent senones. In other words, this technique helps both the search and
acoustic model evaluation components. As a result, we are able to further reduce the
total execution time by about 45%.

Recognition Accuracy

Table 6.5 lists the recognition accuracy of various con�gurations of the experimental
decoder. As noted earlier, the phonetic fast match heuristic is based on context-
independent HMM state scores. As in the case of the large vocabulary tasks, the

T TB TRB FTRB
%Word Error Rate 6.31 5.70 5.27 5.34
%Degradation w.r.t. 23.5 11.5 3.1 4.5
Baseline Viterbi
%Degradation w.r.t. 27.5 17.2 6.5 7.9
Baseline A*

(T=Tree Search, B=Bestpath, R=Rescoring, F=Phonetic Fastmatch)

Table 6.5: Recognition Accuracy on ATIS.

rescoring and global best path searches are able to recover the loss in accuracy from
the lexical tree search. There is still a resultant loss of about 3-5% relative to the
forward search of the baseline system. It is probably due to a larger degree of pruning
errors in the tree search. Since the lexical tree is searched without the bene�t of prior
language model probabilities, a word must survive acoustic mismatches until the leaf
node. There is a greater likelihood of poor acoustic matches in the ATIS task because
of its more conversational nature and associated uent speech phenomena.

106 CHAPTER 6. SMALL VOCABULARY SYSTEMS

Memory Size

As in the case of large vocabulary systems, truncating senone mixture weights down
to 8 bit representation has no e�ect on recognition accuracy. The language model
size, while not a major issue at 560K bigrams, is also signi�cantly reduced by the
disk-based implementation outlined in Section 5.2. The average number of bigrams
in memory is reduced to about 10% of the total. Once again, the caching strategy
e�ectively eliminates the cost of disk access latency.

6.3 Small Vocabulary Systems Summary

Recognition speed and memory size are typically not a serious issue in the case of
extremely small vocabulary tasks of a few tens or hundreds of words. They are
dominated by concerns of modelling for high accuracy. The lexical tree structure is
entirely irrelevant because of the limited amount of sharing in the pronunciation of
individual words.

In the case of medium vocabulary tasks consisting of a few thousand words, the
cost of search does become an issue, but the cost of acoustic model evaluation is an
equally important concern.

The techniques described in this thesis are together able to improve the speed of
recognition on the 3K word ATIS task by a factor of about 5.5, with a 4.5% relative
increase in word error rate over the forward Viterbi result of the baseline Sphinx-II
system. The speedup in search is limited by the relative dominance of the acoustic
output probability computation in the small vocabulary environment. Furthermore,
the lesser degree of sharing in the lexical tree structure reduces the e�ectiveness of
the tree search algorithm. Hence, it is also necessary to speed up the acoustic model
evaluation.

The smaller number of active HMMs per frame allows us to compute only the
active senones per frame. This is not useful in the baseline system as the reduction
in computing active senones is o�set by the need to scan a large number of active
HMMs to determine the set of active senones. Clearly, there is a tradeo�, depending
on the relative costs of the two operations.

The phonetic fast match heuristic is able to provide a speedup comparable to
that in the large vocabulary situation, demonstrating the e�ectiveness and power of
the heuristic. When it is based on context-independent state scores, it is e�ective in
reducing both the search and context-dependent acoustic model evaluation times.

Chapter 7

Conclusion

This thesis work has focussed on the problems relating to the computational e�ciency
of large vocabulary, continuous speech recognition. The foremost concern addressed
in this thesis is that of dealing with the large search space associated with this task.
This space is so large that brute force approaches can be several orders of magnitude
slower than real-time. The beam search heuristic is able to narrow down the search
space dramatically by searching only the most likely states at any time. However,
searching even this reduced space requires several tens of times real time on current
computers. A reduction in the computational load must come from algorithmic and
heuristic improvements.

The second issue addressed in this thesis is e�ciency of memory usage. In partic-
ular, the acoustic and language models are the largest contributors to memory size
in modern speech recognition systems.

In order to translate the gains made by research systems in recognition accuracy
into practical use, it is necessary to improve the computational and memory e�ciency
of speech recognition systems. It is relatively easy to improve recognition speed
and reduce memory requirements while trading away some accuracy, for example by
using tighter beamwidths for most drastic pruning, and by using simpler or more
constrained acoustic and language models. But it is much harder to improve both
the recognition speed and reduce main memory requirements while preserving the
original accuracy.

The main contributions of this thesis are an 8-fold speedup and a 4-fold reduction
in the memory size of the CMU Sphinx-II system. We have used the Sphinx-II system
as a baseline for comparison purposes since it has been extensively used in the yearly
ARPA evaluations. It is also one of the premier systems, in terms of recognition
accuracy, of its kind. On large vocabulary tasks the system requires several tens
of times real time and 100-200MB of main memory to perform its function. The
experiments have been performend on several commonly used benchmark test sets
and two di�erent vocabulary sizes of about 20K and 58K words.

107

108 CHAPTER 7. CONCLUSION

We �rst present a brief description of the lessons learnt from this work, followed
by a summary of its contributions, concluding with some directions for future work
based on this research.

7.1 Summary of Results

The results in this thesis are based on benchmark tests carried out on theWall Street
Journal and North American Business News development and test sets from the Nov.
1993 and Nov. 1994 ARPA evaluations. They consist of read speech in a clean
environment using high quality, close-talking microphones, and are widely used in
the ARPA speech community. The experiments are carried out using two di�erent
vocabulary sizes, of 20,000 words and 58,000 words, respectively. We now summarize
the main results from this thesis below.

� The lexical tree search algorithm is about 5 times faster than the baseline
Sphinx-II system. The search component alone, excluding the computation of
acoustic output probabilities of senones, is over 7 times faster than the baseline
system.

� During the lexical tree search, deferring the computation of language model
probabilities until the leaves of the lexical reduces the cost of such accesses by
about an order of magnitude, compared to the baseline system. It also leads to
an optimization whereby about half of these computations in a given frame can
be eliminated by reusing results from an earlier frame.

� The lattice error rate of the word lattice produced by the lexical tree search is
about 2% (excluding out of vocabulary words), and is highly compact. This
makes it an ideal input for postprocessing steps using more detailed models and
search algorithms. The number of entries in the word lattice for a 10sec sentence
is typically about 1000. The word lattice size and error rate are comparable to
that of the baseline system.

� Even though the lexical tree search su�ers an increase in word error rate of
about 20% relative to the baseline system, the loss can be largely recovered
from the word lattice. The best path algorithm presented in this thesis �nds a
globally optimum path through the word lattice and brings the word error rate
down to within 7% relative to the baseline system. The computational cost of
the best path search is negligible.

� The compact word lattice produced by the tree search can be e�ciently postpro-
cessed using detailed acoustic models and/or search algorithms. By applying
the forward Viterbi search algorithm of the baseline system to the word lat-
tice, followed by the best path search, we equal the recognition accuracy of the

7.2. CONTRIBUTIONS 109

baseline system. The overall increase in computation with the addition of the
postprocessing step is about 15%.

� The phonetic fast match heuristic improves recognition speed by identifying a
limited set of candidate phones to be activated at each frame. Incorporating this
step into the lexical tree search leads to a further speedup in overall execution
time by a factor of about 1.8 with less than 2% relative increase in word error
rate.

� It is possible to reduce the precision of representation of the statistical databases,
and thus reduce their memory requirement, with no signi�cant e�ect on recog-
nition accuracy. Thus, a reduction in the precision of senone weight values from
32 bits to 8 bits reduces the acoustic model size from about 40MB to about
10MB. This result has also been observed by several other sites such as IBM,
BBN and Microsoft.

� The compact representation of senone weights in 8 bits enables the computa-
tion of senone output probabilities to be implemented by simple table look up
operations. This speeds up the computation by about a factor of 2.

� A disk-based language model, coupled with a simple software caching scheme to
load bigrams and trigrams into memory on demand leads to a reduction in its
memory requirements by over a factor of 5. The fraction of bigrams resident in
memory is reduced to around 15-25% of the total, and that of trigrams to 2-5%
of the total number, on average. The caching scheme is e�ective in neutralizing
the cost of disk access latencies. Since there is no change in data representation,
there is no loss of accuracy.

In summary, it is possible to reduce the computation time of the Sphinx-II recog-
nizer by nearly an order of magnitude and the memory size requirements by a factor
of about 4 for large vocabulary continuous speech recognition, with very little loss of
accuracy. Appendix B contains a summary of the results of signi�cance tests on the
di�erences between the recognition accuracies of the various systems.

As an additional benchmark result, we note that the techniques described in this
thesis are su�ciently robust that the lexical tree based recognizer was used by CMU
during the Nov. 1995 ARPA evaluations.

7.2 Contributions

One of the main contributions of this thesis is in providing a comprehensive account
of the design of a high-performance speech recognition system in its various aspects
of accuracy, speed, and memory usage. One of the underlying questions concerning

110 CHAPTER 7. CONCLUSION

research systems that focus mainly on accuracy, and require large amounts of com-
putational power is whether the approaches taken will ever be of practical use. This
work suggests that concerns of accuracy and e�ciency are indeed separable compo-
nents of speech recognition technology, and lends validity to the ongoing e�ort in
improving accuracy.

The second major contribution of the thesis is the presentation an overall or-
ganization of a speech recognition system for large vocabulary, continuous speech
recognition. We contend that a fast but detailed search, such as that provided by
the lexical tree search described in this thesis, is the key step in obtaining a highly
compact and accurate word lattice. The lattice can be searched using more detailed
and sophisticated models and search algorithms e�ciently. The use of multi-pass
systems is not new. Most current speech recognition systems are of that nature
[41, 65, 5, 15, 19, 38]. Many reports cite the savings to be had by postprocessing a
word lattice [65, 38] instead of the entire vocabulary. However, the task of actually
producing such lattices e�ciently has been relatively unexplored. This is necessary
for the practical application of accurate, large vocabulary speech recognition and it
is addressed in this thesis.

Technically, the thesis presents several other contributions:

� The design and implementation of search using lexical trees. It analyzes the
technique of deferring the application of language model probabilities until the
leaves of the lexical tree in an e�cient way, and reduces the cost of computing
these probabilities by an order of magnitude. Other tree-based searches [39,
43, 65, 66, 40] attempt to overcome the problem by creating bigram copies of
the search tree. This has three problems: the search space is increased, the
cost of language model access is still substantial, and the physical memory size
requirements also increase. Though the lexical tree search presented in this
thesis su�ers some loss of accuracy, the loss is recovered by postprocessing the
word lattice output, which can be done e�ciently since the lattice is highly
compact.

� A best path search for global optimization of word lattices. This technique
searches the word graph formed from word segmentations and scores produced
by an earlier pass. It �nds a globally optimum path through the graph, which
can be accomplished by any textbook shortest path algorithm. When applied to
the word lattice produced by the lexical tree search, it brings the �nal accuracy
much closer to that of the baseline system, largely overcoming the degradation
in accuracy incurred by the lexical tree search. Furthermore, it operates in a
small fraction of real time and its cost is negligible. Word lattice searches have
been proposed in [65, 39], for example, but they are directed more towards using
the lattice for driving later search passes with more detailed models.

� Use of HMM state output probabilities as a fast match to produce candidate

7.3. FUTURE WORK ON EFFICIENT SPEECH RECOGNITION 111

list of active phones to be searched. This heuristic has the potential to reduce
the active search space substantially, depending on the sharpness of the under-
lying acoustic models. We have tried two di�erent approaches for determining
the set of active phones: based on all HMM states, and based on only the
context-independent states. The former leads to better phone prediction and
more e�ective search pruning, but incurs a �xed cost of evaluating all HMM
state probabilities. The latter does not have this limitation but is somewhat
less accurate in predicting active phones. It is more appropriate for smaller
vocabularies since senone evaluation does not become a bottleneck.

� Precision of representation of statistical models is largely irrelevant for recogni-
tion accuracy. Substantial savings in memory space can be obtained by quantiz-
ing, clustering, or truncating probability values into few bits. When probability
values are represented in this compact fashion, it is sometimes possible to imple-
ment complex operations on them by means of simple table-lookup operations.
The space reduction is not speci�c to the lexical tree search algorithm. It has
been implemented in the baseline Sphinx-II system as well, with similar results.

� Use of disk-based language models in reducing memory requirements. Bigrams
and trigrams are read into memory on demand, but a simple software caching
policy e�ectively hides long disk access latencies. The technique is not speci�c
to the lexical tree search algorithm. It has been implemented in the baseline
Sphinx-II system as well, and has proven to be as e�ective.

7.3 Future Work on E�cient Speech Recognition

The e�ciency of speech recognition is ultimately judged by the end application.
Transforming today's laboratory versions of speech recognition systems into practical
applications requires solutions to many other problems. The resource requirements of
current systems|CPU power and memory|are still beyond the capabilities of com-
monly available platforms for medium and large vocabulary applications. Further-
more, the notion of \performance" extends beyond accuracy, speed and memory size.
These factors include, for example, robustness in the presence of noise, adaptation
to varying speaking styles and accents, design issues dealing with human-computer
interfaces that are appropriate for speech-based interaction, speech understanding,
etc. We consider how research on the following might be useful in this respect.

Combining Word-Level Fast Match With Lexical Tree Search

The speed of recognition systems could be improved by a combination of a word-
level fast match algorithm and a lexical tree search. The former typically reduces
the number of candidate words to be searched by at least an order of magnitude.

112 CHAPTER 7. CONCLUSION

Furthermore, the candidates produced at a given instant are likely to be phonetically
closely related, which can be exploited e�ectively by the lexical tree search algorithm.
We do not know of any detailed report on a system that takes advantage of the two
together. It is worthwhile studying this problem further. The results presented in
this thesis provide a baseline for comparison purposes.

Robustness to Noise Using Phone Lattices

Normal speech is often interrupted or overshadowed by noise, and recognition during
such periods is highly unreliable. The need for con�dence measures attached to recog-
nition results has often been felt. The phone lattices produced by the phonetic fast
match heuristic described in Section 4.5 could be adapted for this purpose. During
clean speech, there is a distinct separation between the leading active phones and
the remaining inactive ones. Few phones fall within the beam and they are generally
closely related or readily confusable. Also there is a good correlation between neigh-
bouring frames. In the presence of noise, especially non-speech noise, the number of
active phones within the beamwidth increases signi�cantly. The reason is that the un-
derlying acoustic models are unable to classify the noisy speech with any con�dence.
There is a much greater degree of confusability within a frame, and little correlation
among active phones between neighbouring frames. One could use these measures to
detect regions where the recognition is potentially unreliable. The advantage of this
approach is that it is inexpensive to compute.

Postprocessing Word Lattices Using Multiple Language Models

This technique pertains to good user interface design. Several practical applications
of speech recognition deal with the handling of a number of well-de�ned but distinct
tasks. For example, in a dictation task text input through speech might be inter-
spersed with spoken commands to manipulate the document being edited, such as
\scroll-up", \previous paragraph", etc. However, it is cumbersome for the user to
constantly have to indicate to the system the type of command or speech that is
forthcoming. It is desirable for the system to make that decision after the fact. Such
a task can be accomplished by searching the word lattice output of the lexical tree
search using multiple language models. The dictation task would use two language
models, a general purpose one, and a restricted one for editing commands. Initial
speech recognition is always carried out using the general purpose model. Once a
sentence is recognized and the word lattice is built, it can be searched again, this
time using the constrained language model. If a path through the word lattice is
found, the sentence can be interpreted as an editing command. The compact nature
of the word lattice allows such searches to be carried out rapidly.

7.3. FUTURE WORK ON EFFICIENT SPEECH RECOGNITION 113

Rescoring Word Lattices Using Prosodic Models

Word lattices often contain alternative paths that are phonetically identical. Rescor-
ing these using conventional acoustic models, however detailed, is unlikely to resolve
them. However, word or context-dependent prosodic models applied to longer units
such as syllables can help discriminate between the alternatives. Once again, the com-
pact nature of the lattices enables such postprocessing to be performed e�ciently.

Disk-Based Acoustic Models

With the emergence of continuous HMMs for acoustic modelling, demands on CPU
power and memory capacities increase. The availability of compact lattices that can
be rescored with detailed acoustic models alleviates the CPU power problem. It also
implies that fewer HMM states are active at any given instant. Furthermore, once
a state becomes active, it remains active for a few more frames. Thus, it may be
possible to use disk-based acoustic models to reduce their memory requirements as
well. One needs to explore caching mechanisms and their e�ectiveness in overcoming
disk access latencies for this purpose.

Design of Scalable Systems

It is important to consider the problem of designing a speech application on a speci�c
platform with given resource constraints. The main criteria are that the application
should perform in real time within the CPU and memory capacities of the system.
Therefore, it is generally necessary to make trade-o�s regarding the level of sophisti-
cation of modelling and search that may be employed. The memory size problem can
be attacked by using less detailed models during the initial search to create a word
lattice, as well as using disk-based mechanisms. The cost of search can be reduced
by increasing the degree of sharing in the lexical tree, for example, by using diphone
or even monophone models instead of triphones. The word lattice output may have
to be larger in order to provide an acceptably low lattice error rate, and hence the
postprocessing costs also increase. It is worth investigating the tradeo�s that are
possible in this respect.

114 CHAPTER 7. CONCLUSION

Appendix A

The Sphinx-II Phone Set

Phone Example Phone Example Phone Example

AA odd EY ate P pee
AE at F fee PD lip
AH hut G green R read
AO ought GD bag S sea
AW cow HH he SH she
AX abide IH it T tea
AXR user IX acid TD lit
AY hide IY eat TH theta
B be JH gee TS bits
BD dub K key UH hood
CH cheese KD lick UW two
D dee L lee V vee
DD dud M me W we
DH thee N knee Y yield
DX matter NG ping Z zee
EH Ed OW oat ZH seizure
ER hurt OY toy

Table A.1: The Sphinx-II Phone Set.

115

Appendix B

Statistical Signi�cance Tests

We have conducted statistical signi�cance tests using the scoring and stats packages
from NIST. They were run on recognition results from all test sets put together. We
have reproduced the results from these signi�cance tests on the 20K and 58K tasks
below1. In these tables, �ve di�erent systems are identi�ed:

� f6p1.m: Baseline system; forward Viterbi pass.

� f6p3.m: Baseline system; all three passes.

� f8p1.m: Lexical tree search.

� f8p2.m: Lexical tree search and global best path search.

� f8p3.m: Lexical tree, rescoring, and global best path search.

The conclusion from these tests is that the new system with three passes (lexical
tree search, rescoring, and best path search) is essentially identical to the baseline
Viterbi search in recognition accuracy.

1The recognition accuracy results are a little bit better here from the �gures reported in the main
thesis sections because of small di�erences in the scoring packages used in the two cases.

116

B.1. 20K TASK 117

B.1 20K Task

COMPARISON MATRIX: FOR THE MATCHED PAIRS TEST

PECENTAGES ARE MEAN PCT ERROR/SEGMENT. FIRST # IS LEFT SYSTEM

STATS from std_stats

Minimum Number of Correct Boundary words 2

|---|

| | f6p1.m | f6p3.m | f8p1.m | f8p2.m | f8p3.m |

|--------+--------+--------+--------+--------+--------|

| f6p1.m | | f6p3.m | f6p1.m | f6p1.m | same |

|--------+--------+--------+--------+--------+--------|

| f6p3.m | | | f6p3.m | f6p3.m | f6p3.m |

|--------+--------+--------+--------+--------+--------|

| f8p1.m | | | | f8p2.m | f8p3.m |

|--------+--------+--------+--------+--------+--------|

| f8p2.m | | | | | f8p3.m |

|--------+--------+--------+--------+--------+--------|

118 APPENDIX B. STATISTICAL SIGNIFICANCE TESTS

COMPARISON MATRIX: McNEMAR'S TEST ON CORRECT SENTENCES FOR THE TEST:

STATS from std_stats

For all systems

|---|

| | f6p1.m(209)| f6p3.m(228)| f8p1.m(157)| f8p2.m(202)| f8p3.m(215)|

|------------+------------+------------+------------+------------+------------|

| f6p1.m(209)| | D=(19) | D=(52) | D=(7) | D=(6) |

| | | f6p3.m | f6p1.m | same | same |

|------------+------------+------------+------------+------------+------------|

| f6p3.m(228)| | | D=(71) | D=(26) | D=(13) |

| | | | f6p3.m | f6p3.m | same |

|------------+------------+------------+------------+------------+------------|

| f8p1.m(157)| | | | D=(45) | D=(58) |

| | | | | f8p2.m | f8p3.m |

|------------+------------+------------+------------+------------+------------|

| f8p2.m(202)| | | | | D=(13) |

| | | | | | same |

|------------+------------+------------+------------+------------+------------|

Comparison Matrix for the Sign Test

Using the Speaker Word Accuracy Rate (%) Percentage per Speaker

as the Comparison Metric

|---|

| | f6p1.m | f6p3.m | f8p1.m | f8p2.m | f8p3.m |

|--------+--------+--------+--------+--------+--------|

| f6p1.m | | f6p3.m | f6p1.m | f6p1.m | same |

|--------+--------+--------+--------+--------+--------|

| f6p3.m | | | f6p3.m | f6p3.m | f6p3.m |

|--------+--------+--------+--------+--------+--------|

| f8p1.m | | | | f8p2.m | f8p3.m |

|--------+--------+--------+--------+--------+--------|

| f8p2.m | | | | | f8p3.m |

|--------+--------+--------+--------+--------+--------|

Comparison Matrix for the Wilcoxon Test

Using the Speaker Word Accuracy Rate (%) Percentage per Speaker

as the Comparison Metric

|---|

| | f6p1.m | f6p3.m | f8p1.m | f8p2.m | f8p3.m |

|--------+--------+--------+--------+--------+--------|

| f6p1.m | | f6p3.m | f6p1.m | f6p1.m | same |

|--------+--------+--------+--------+--------+--------|

| f6p3.m | | | f6p3.m | f6p3.m | f6p3.m |

|--------+--------+--------+--------+--------+--------|

| f8p1.m | | | | f8p2.m | f8p3.m |

|--------+--------+--------+--------+--------+--------|

| f8p2.m | | | | | f8p3.m |

|--------+--------+--------+--------+--------+--------|

B.1. 20K TASK 119

RANGE ANALYSIS ACROSS RECOGNITION SYSTEMS FOR THE TEST:

STATS from std_stats

by Speaker Word Accuracy Rate (%)

|---|

| SYS | high | low || std dev | mean |

|--------+--------+--------++---------+---------|

| f6p3.m | 95.1 | 50.3 || 8.0 | 84.5 |

| f6p1.m | 94.9 | 48.5 || 8.3 | 83.8 |

| f8p3.m | 95.4 | 46.6 || 8.5 | 83.8 |

| f8p2.m | 95.4 | 46.3 || 8.8 | 82.9 |

| f8p1.m | 94.1 | 45.1 || 8.7 | 80.9 |

|---|

|--|

| | PERCENTAGES |

|--------+---|

| |0 10 20 30 40 50 60 70 80 90 100|

| SYS || | | | | | | | | | ||

|--------+---|

| f6p3.m | ------------+---|---+- |

| f6p1.m | -------------+---|---+- |

| f8p3.m | --------------+---|---+- |

| f8p2.m | -------------+---|----+- |

| f8p1.m | -------------+---|----+-- |

|--|

| -> shows the mean

+ -> shows plus or minus one standard deviation

120 APPENDIX B. STATISTICAL SIGNIFICANCE TESTS

Composite Report of All Significance Tests

For the STATS from std_stats Test

Test Name Abbrev.

-- -------

Matched Pair Sentence Segment (Word Error) Test MP

Signed Paired Comparison (Speaker Word Accuracy Rate (%)) Test SI

Wilcoxon Signed Rank (Speaker Word Accuracy Rate (%)) Test WI

McNemar (Sentence Error) Test MN

|---|

| | f6p1.m | f6p3.m | f8p1.m | f8p2.m | f8p3.m |

|-----------+-----------+-----------+-----------+-----------+-----------|

| f6p1.m | | MP f6p3.m | MP f6p1.m | MP f6p1.m | MP same |

| | | SI f6p3.m | SI f6p1.m | SI f6p1.m | SI same |

| | | WI f6p3.m | WI f6p1.m | WI f6p1.m | WI same |

| | | MN f6p3.m | MN f6p1.m | MN same | MN same |

|-----------+-----------+-----------+-----------+-----------+-----------|

| f6p3.m | | | MP f6p3.m | MP f6p3.m | MP f6p3.m |

| | | | SI f6p3.m | SI f6p3.m | SI f6p3.m |

| | | | WI f6p3.m | WI f6p3.m | WI f6p3.m |

| | | | MN f6p3.m | MN f6p3.m | MN same |

|-----------+-----------+-----------+-----------+-----------+-----------|

| f8p1.m | | | | MP f8p2.m | MP f8p3.m |

| | | | | SI f8p2.m | SI f8p3.m |

| | | | | WI f8p2.m | WI f8p3.m |

| | | | | MN f8p2.m | MN f8p3.m |

|-----------+-----------+-----------+-----------+-----------+-----------|

| f8p2.m | | | | | MP f8p3.m |

| | | | | | SI f8p3.m |

| | | | | | WI f8p3.m |

| | | | | | MN same |

|-----------+-----------+-----------+-----------+-----------+-----------|

B.2. 58K TASK 121

B.2 58K Task

COMPARISON MATRIX: FOR THE MATCHED PAIRS TEST

PECENTAGES ARE MEAN PCT ERROR/SEGMENT. FIRST # IS LEFT SYSTEM

STATS from std_stats

Minimum Number of Correct Boundary words 2

|---|

| | f6p1.m | f6p3.m | f8p1.m | f8p2.m | f8p3.m |

|--------+--------+--------+--------+--------+--------|

| f6p1.m | | f6p3.m | f6p1.m | f6p1.m | same |

|--------+--------+--------+--------+--------+--------|

| f6p3.m | | | f6p3.m | f6p3.m | f6p3.m |

|--------+--------+--------+--------+--------+--------|

| f8p1.m | | | | f8p2.m | f8p3.m |

|--------+--------+--------+--------+--------+--------|

| f8p2.m | | | | | f8p3.m |

|--------+--------+--------+--------+--------+--------|

122 APPENDIX B. STATISTICAL SIGNIFICANCE TESTS

COMPARISON MATRIX: McNEMAR'S TEST ON CORRECT SENTENCES FOR THE TEST:

STATS from std_stats

For all systems

|---|

| | f6p1.m(220)| f6p3.m(256)| f8p1.m(155)| f8p2.m(213)| f8p3.m(230)|

|------------+------------+------------+------------+------------+------------|

| f6p1.m(220)| | D=(36) | D=(65) | D=(7) | D=(10) |

| | | f6p3.m | f6p1.m | same | same |

|------------+------------+------------+------------+------------+------------|

| f6p3.m(256)| | | D=(101) | D=(43) | D=(26) |

| | | | f6p3.m | f6p3.m | f6p3.m |

|------------+------------+------------+------------+------------+------------|

| f8p1.m(155)| | | | D=(58) | D=(75) |

| | | | | f8p2.m | f8p3.m |

|------------+------------+------------+------------+------------+------------|

| f8p2.m(213)| | | | | D=(17) |

| | | | | | f8p3.m |

|------------+------------+------------+------------+------------+------------|

Comparison Matrix for the Sign Test

Using the Speaker Word Accuracy Rate (%) Percentage per Speaker

as the Comparison Metric

|---|

| | f6p1.m | f6p3.m | f8p1.m | f8p2.m | f8p3.m |

|--------+--------+--------+--------+--------+--------|

| f6p1.m | | f6p3.m | f6p1.m | f6p1.m | same |

|--------+--------+--------+--------+--------+--------|

| f6p3.m | | | f6p3.m | f6p3.m | f6p3.m |

|--------+--------+--------+--------+--------+--------|

| f8p1.m | | | | f8p2.m | f8p3.m |

|--------+--------+--------+--------+--------+--------|

| f8p2.m | | | | | f8p3.m |

|--------+--------+--------+--------+--------+--------|

Comparison Matrix for the Wilcoxon Test

Using the Speaker Word Accuracy Rate (%) Percentage per Speaker

as the Comparison Metric

|---|

| | f6p1.m | f6p3.m | f8p1.m | f8p2.m | f8p3.m |

|--------+--------+--------+--------+--------+--------|

| f6p1.m | | f6p3.m | f6p1.m | f6p1.m | same |

|--------+--------+--------+--------+--------+--------|

| f6p3.m | | | f6p3.m | f6p3.m | f6p3.m |

|--------+--------+--------+--------+--------+--------|

| f8p1.m | | | | f8p2.m | f8p3.m |

|--------+--------+--------+--------+--------+--------|

| f8p2.m | | | | | f8p3.m |

|--------+--------+--------+--------+--------+--------|

B.2. 58K TASK 123

RANGE ANALYSIS ACROSS RECOGNITION SYSTEMS FOR THE TEST:

STATS from std_stats

by Speaker Word Accuracy Rate (%)

|---|

| SYS | high | low || std dev | mean |

|--------+--------+--------++---------+---------|

| f6p3.m | 96.7 | 41.4 || 9.1 | 86.2 |

| f6p1.m | 96.2 | 47.2 || 8.2 | 85.5 |

| f8p3.m | 96.7 | 47.2 || 8.4 | 85.4 |

| f8p2.m | 95.9 | 43.3 || 8.9 | 84.4 |

| f8p1.m | 94.4 | 39.6 || 9.3 | 82.2 |

|---|

|--|

| | PERCENTAGES |

|--------+---|

| |0 10 20 30 40 50 60 70 80 90 100|

| SYS || | | | | | | | | | ||

|--------+---|

| f6p3.m | ------------------+---|----+ |

| f6p1.m | ---------------+---|---+- |

| f8p3.m | ---------------+---|---+- |

| f8p2.m | ----------------+---|----+ |

| f8p1.m | ----------------+----|----+- |

|--|

| -> shows the mean

+ -> shows plus or minus one standard deviation

124 APPENDIX B. STATISTICAL SIGNIFICANCE TESTS

Composite Report of All Significance Tests

For the STATS from std_stats Test

Test Name Abbrev.

-- -------

Matched Pair Sentence Segment (Word Error) Test MP

Signed Paired Comparison (Speaker Word Accuracy Rate (%)) Test SI

Wilcoxon Signed Rank (Speaker Word Accuracy Rate (%)) Test WI

McNemar (Sentence Error) Test MN

|---|

| | f6p1.m | f6p3.m | f8p1.m | f8p2.m | f8p3.m |

|-----------+-----------+-----------+-----------+-----------+-----------|

| f6p1.m | | MP f6p3.m | MP f6p1.m | MP f6p1.m | MP same |

| | | SI f6p3.m | SI f6p1.m | SI f6p1.m | SI same |

| | | WI f6p3.m | WI f6p1.m | WI f6p1.m | WI same |

| | | MN f6p3.m | MN f6p1.m | MN same | MN same |

|-----------+-----------+-----------+-----------+-----------+-----------|

| f6p3.m | | | MP f6p3.m | MP f6p3.m | MP f6p3.m |

| | | | SI f6p3.m | SI f6p3.m | SI f6p3.m |

| | | | WI f6p3.m | WI f6p3.m | WI f6p3.m |

| | | | MN f6p3.m | MN f6p3.m | MN f6p3.m |

|-----------+-----------+-----------+-----------+-----------+-----------|

| f8p1.m | | | | MP f8p2.m | MP f8p3.m |

| | | | | SI f8p2.m | SI f8p3.m |

| | | | | WI f8p2.m | WI f8p3.m |

| | | | | MN f8p2.m | MN f8p3.m |

|-----------+-----------+-----------+-----------+-----------+-----------|

| f8p2.m | | | | | MP f8p3.m |

| | | | | | SI f8p3.m |

| | | | | | WI f8p3.m |

| | | | | | MN f8p3.m |

|-----------+-----------+-----------+-----------+-----------+-----------|

Bibliography

[1] Alleva, F., Hon, H., Hwang, M., Rosenfeld, R. and Weide, R. Applying
SPHINX-II to the DARPA Wall Street Journal CSR Task. In Proceed-
ings of Speech and Natural Language Workshop, Feb. 1992, pp
393-398.

[2] Alleva, F., Huang, X., and Hwang, M. An Improved Search Algorithm for
Continuous Speech Recognition. In IEEE International Conference on

Acoustics, Speech, and Signal Processing, 1993.

[3] Antoniol, G., Brugnara, F., Cettolo, M. and Federico, M. Language Model
Representation for Beam-Search Decoding. In IEEE International Con-

ference on Acoustics, Speech, and Signal Processing, May 1995, pp
588-591.

[4] Bahl, L.R., Bakis, R., Cohen, P.S., Cole, A.G., Jelinek, F., Lewis, B.L. and
Mercer, R.L. Further Results on the Recognition of a Continuously Read
Natural Corpus. In IEEE International Conference on Acoustics,

Speech, and Signal Processing, Apr. 1980, pp 872-876.

[5] Bahl, L.R., Balakrishnan-Aiyer, S., Franz, M., Gopalakrishnan, P.S.,
Gopinath, R., Novak, M., Padmanabhan, M. and Roukos, S. The IBM
Large Vocabulary Continuous Speech Recognition System for the ARPA
NAB News Task. In Proceedings of ARPA Spoken Language Sys-

tem Technology Workshop, Jan. 1995, pp 121-126.

[6] Bahl, L.R., Brown, P.F., DeSouza, P.V. and Mercer, R.L. Obtaining Candidate
Words by Polling in a Large Vocabulary Speech Recognition System. In
IEEE International Conference on Acoustics, Speech, and Signal

Processing, 1988.

[7] Bahl, L.R., De Gennaro, V., Gopalakrishnan, P.S. and Mercer, R.L.A Fast Ap-
proximate Acoustic Match for Large Vocabulary Speech Recognition. IEEE
Transactions on Speech and Audio Processing, Vol. 1, No. 1, Jan
1993, pp 59-67.

125

126 Bibliography

[8] Bahl, L.R., DeSouza, P.V., Gopalakrishnan, P.S., Nahamoo, D. and Pich-
eney, M.A Fast Match for Continuous Speech Recognition Using Allophonic
Models. In IEEE International Conference on Acoustics, Speech,

and Signal Processing, 1992, vol.I, pp. I-17 { I-21.

[9] Bahl, L.R., Jelinek, F. and Mercer, R. A Maximum Likelihood Approach
to Continuous Speech Recognition. In IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. PAMI-5, No. 2, Mar. 1983,
pp. 179-190.

[10] Baker, J.K. The DRAGON System{An Overview. In IEEE Transactions on

Acoustics, Speech, and Signal Processing, ASSP-23(1), Feb. 1975,
pp. 24-29.

[11] Baum, L.E. An Inequality and Associated Maximization Technique in Statis-
tical Estimation of Probabilistic Functions of Markov Processes. Inequal-
ities 3:1-8, 1972.

[12] Bellegarda, J. and Nahamoo, D. Tied Mixture Continuous Parameter Modeling
for Speech Recognition. In IEEE Transactions on Acoustics, Speech,

and Signal Processing, Dec. 1990, pp 2033-2045.

[13] Bisiani, R. and Ravishankar, M PLUS: A Distributed Shared-Memory System.
17th International Symposium on Computer Architecture, May 1990, pp.
115-124.

[14] Bisiani, R. and Ravishankar, M Design and Implementation of the PLUS Mul-
tiprocessor Internal report, School of Computer Science, Carnegie Mellon
University, Pittsburgh, Jan. 1991.

[15] Chase, L., Rosenfeld, R., Hauptmann, A., Ravishankar, M., Thayer, E., Place-
way, P., Weide, R. and Lu, C. Improvements in Language, Lexical, and
Phonetic Modeling in Sphinx-II. InProceedings of ARPA Spoken Lan-

guage Systems Technology Workshop, Jan. 1995, pp. 60-65.

[16] Cooper, E.C. and Draves, R.P. C Threads. Technical Report, School of Com-
puter Science, Carnegie Mellon University, Nov. 1990.

[17] Coremen, T.H., Leiserson, C.E. and Rivest, R.L. Introduction to Algo-

rithms, The MIT Press, Cambridge, Massachusetts, 1992.

[18] Gauvain, J.L., Lamel, L.F., Adda, G., and Adda-Decker, M. The LIMSI Nov93
WSJ System. In Proceedings of ARPA Speech and Natural Lan-

guage Workshop, Mar. 1994, pp 125-128.

Bibliography 127

[19] Gauvain, J.L., Lamel, L. and Adda-Decker, M. Developments in Large Vo-
cabulary Dictation: The LIMSI Nov94 NAB System. In Proceedings

of ARPA Spoken Language Systems Technology Workshop, Jan.
1995, pp. 131-138.

[20] Gillick, L.S. and Roth, R. A Rapid Match Algorithm for Continuous Speech
Recognition. In Proceedings of DARPA Speech and Natural Lan-

guage Workshop, Jun. 1990, pp. 170-172.

[21] Gopalakrishnan, P.S., Bahl, L.R., and Mercer, R.L. A Tree Search Strategy
for Large-Vocabulary Continuous Speech Recognition. In IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing,
May 1995, pp 572-575.

[22] Gopalakrishnan, P.S., Nahamoo, D., Padmanabhan, M. and Picheny, M.A. A
Channel-Bank-Based Phone Detection Strategy. In IEEE International

Conference on Acoustics, Speech, and Signal Processing, April
1994, Vol II, pp 161-164.

[23] Gopinath, R. et al. The IBM continuous speech recognition system on demon-
stration. ARPA Spoken Language Systems Technology Workshop,
Jan. 1995.

[24] Hauptmann, A. et al. The News-on-Demand demonstration. In ARPA

Speech Recognition Workshop, Feb. 1996.

[25] Huang, X., Acero, A., Alleva, F., Beeferman, D., Hwang, M. and Mahajan,
M. From CMU Sphinx-II to Microsoft Whisper{Making Speech Recognition
Usable. In Automatic Speech and Speaker Recognition{Advanced

Topics, Lee, Paliwal, and Soong, editors, Kluwer Publishers, 1994.

[26] Huang, X., Acero, A., Alleva, F., Hwang, M., Jiang, L. and Mahajan, M. Mi-
crosoft Windows Highly Intelligent Speech Recognizer: Whisper. In IEEE
International Conference on Acoustics, Speech, and Signal Pro-

cessing, May 1995, Vol. 1, pp. 93-96.

[27] Hwang, Mei-Yuh. Subphonetic Acoustic Modeling for Speaker-Independent
Continuous Speech Recognition. Ph.D. thesis, Tech Report No. CMU-CS-
93-230, Computer Science Department, Carnegie Mellon University, Dec.
1993.

[28] Hwang, M. and Huang X. Shared-Distribution Hidden Markov Models for
Speech Recognition. In IEEE Transactions on Speech and Audio Pro-

cessing, Oct. 1993, pp 414-420.

128 Bibliography

[29] Jelinek, F. Continuous Speech Recognition by Statistical Methods. InProceed-
ings of the IEEE, Vol. 64, No. 4, Apr. 1976, pp. 532-556.

[30] Katz, S.M. Estimation of Probabilities from Sparse Data for the Language
Model Component of a Speech Recognizer. In IEEE Transactions on

Acoustics, Speech and Signal Processing, vol. ASSP-35, Mar. 87, pp.
400-401.

[31] Kershaw, D.J., Robinson, A.J., and Renals, S.J. The 1995 ABBOT Hy-
brid Connectionist-HMM Large-Vocabulary Recognition System. In ARPA
Speech Recognition Workshop, Feb. 1996.

[32] Lee, K. Large Vocabulary Speaker-Independent Continuous Speech Recogni-
tion: The SPHINX System. Ph.D. thesis, Computer Science Department,
Carnegie Mellon University, April 1988.

[33] Lee, K. Context-Dependent Phonetic Hidden Markov Models for Continuous
Speech Recognition. In IEEE Transactions on Acoustics, Speech, and

Signal Processing, Apr. 1990, pp 599-609.

[34] Lee, K. Context-Dependent Phonetic Hidden Markov Models for Speaker-
Independent Continuous Speech Recognition. In Readings in Speech

Recognition, ed. Waibel, A. and Lee, K. Morgan Kaufmann Publishers,
San Mateo, CA, 1990, pp. 347-365.

[35] Lee, K., Hon, H., and Reddy, R. An Overview of the SPHINX Speech Recogni-
tion System. In IEEE Transactions on Acoustics, Speech, and Signal

Processing, Jan 1990, pp 35-45.

[36] Ljolje, A., Riley, M., Hindle, D. and Pereira, F. The AT&T 60,000 Word
Speech-To-Text System. In Proceedings of ARPA Spoken Language

System Technology Workshop, Jan. 1995, pp. 162-165.

[37] Lowerre, B. The Harpy Speech Understanding System. Ph.D. thesis, Computer
Science Department, Carnegie Mellon University, Apr 1976.

[38] Murveit, H., Butzberger, J., Digalakis, V. and Weintraub, M. Large-
Vocabulary Dictation Using SRI's Decipher Speech Recognition System:
Progressive Search Techniques. In IEEE International Conference on

Acoustics, Speech, and Signal Processing, Apr. 1993, vol.II, pp. II-
319 { II-322.

[39] Murveit, H., Monaco, P., Digalakis, V. and Butzberger, J. Techniques to
Achieve an Accurate Real-Time Large-Vocabulary Speech Recognition Sys-
tem. InProceedings of ARPA Human Language Technology Work-

shop, Mar. 1994, pp 368-373.

Bibliography 129

[40] Ney, H., Haeb-Umbach, R. and Tran, B.-H. Improvements in Beam Search
for 10000-Word Continuous Speech Recognition. In IEEE International

Conference on Acoustics, Speech, and Signal Processing, Mar.
1992, vol.I, pp. I-9 { I-12.

[41] Nguyen, L., Anastasakos, T., Kubala, F., LaPre, C., Makhoul, J., Schwartz,
R., Yuan, N., Zavaliagkos, G. and Zhao, Y. The 1994 BBN/BYBLOS
Speech Recognition System. In Proceedings of ARPA Spoken Lan-

guage Systems Technology Workshop, Jan. 1995, pp. 77-81.

[42] Nilsson, N.J. Problem Solving Methods in Arti�cial Intelligence. McGraw-Hill,
New York, 1971.

[43] Normandin, Y., Bowness, D., Cardin, R., Drouin, C., Lacouture, R. and
Lazarides, A. CRIM's November 94 Continuous Speech Recognition Sys-
tem. In Proceedings of ARPA Speech and Natural Language

Workshop, Jan. 1995, pp 153-155.

[44] Odell, J.J., Valtchev, V., Woodland, P.C. and Young, S.J. A One Pass De-
coder Design for Large Vocabulary Recognition. InProceedings of ARPA
Human Language Technology Workshop, Princeton, 1994.

[45] Pallett, D.S., Fiscus, J.G., Fisher, W.M., Garofolo, J.S., Lund, B.A., and
Przybocki, M.A. 1993 Benchmark Tests for the ARPA Spoken Language
Program. In Proceedings of ARPA Speech and Natural Language

Workshop, Mar. 1994, pp 15-40.

[46] Pallett, D.S., Fiscus, J.G., Fisher, W.M., Garofolo, J.S., Lund, B.A., Martin,
A. and Przybocki, M.A. 1994 Benchmark Tests for the ARPA Spoken Lan-
guage Program. In Proceedings of ARPA Spoken Language Systems

Technology Workshop, Jan. 1995, pp 5-38.

[47] Pallett, D.S., Fiscus, J.G., Fisher, W.M., Garofolo, J.S., Martin, A. and Przy-
bocki, M.A. 1995 HUB-3 NIST Multiple Microphone Corpus Benchmark
Tests. In ARPA Speech Recognition Workshop, Feb. 1996.

[48] Pallett, D.S., Fiscus, J.G., Garofolo, J.S., and Przybocki, M.A. 1995 Hub-
4 \Dry Run" Broadcast Materials Benchmark Tests. In ARPA Speech

Recognition Workshop, Feb. 1996.

[49] Patel, S. A Lower-Complexity Viterbi Algorithm. In IEEE International

Conference on Acoustics, Speech, and Signal Processing, May
1995, Vol. 1, pp. 592-595.

130 Bibliography

[50] Paul, Douglas B. An E�cient A* Stack Decoder Algorithm for Continuous
Speech Recognition with a Stochastic Language Model. In Proceedings of
DARPA Speech and Natural Language Workshop, Feb. 1992, pp
405-409.

[51] Price, P., Fisher, W.M., Bernstein, J. and Pallet, D.S. The DARPA 1000-
Word Resource Management Database for Continuous Speech Recognition.
In IEEE International Conference on Acoustics, Speech, and Sig-

nal Processing, 1988.

[52] Rabiner, L.R. A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition. In Readings in Speech Recognition, ed.Waibel,
A. and Lee, K. Morgan Kaufmann Publishers, San Mateo, CA, 1990, pp.
267-296.

[53] Rabiner, L.R. Applications of Voice Processing to Telecommunications. In
Proceedings of the IEEE, Vol. 82, No. 2, Feb. 1994, pp. 199-228.

[54] Ravishankar, M. Parallel Implementation of Fast Beam Search for Speaker-
Independent Continuous Speech Recognition. Technical report submitted to
Computer Science and Automation, Indian Institute of Science, Bangalore,
India, Apr. 1993.

[55] Ravishankar, M. et al. The CMU continuous speech recognition system demon-
stration. ARPA Spoken Language Technology Workshop, Mar.
1994.

[56] Renals, S. and Hochberg, M. E�cient Search Using Posterior Phone Prob-
ability Estimates. In IEEE International Conference on Acoustics,

Speech, and Signal Processing, May 1995, pp 596-599.

[57] Rosenfeld, R. Adaptive Statistical Language Modeling: A Maximum Entropy
Approach. Ph.D. thesis, School of Computer Science, Carnegie Mellon Uni-
versity, 1994.

[58] Rosenfeld, R. and Seymore, K. Personal communication. School of Computer
Science, Carnegie Mellon University, Mar. 1996.

[59] Schwartz, R. and Chow, Y.L. The Optimal N-Best Algorithm: An E�cient
Procedure for Finding Multiple Sentence Hypotheses. In IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing,
Apr. 1990.

[60] Schwartz, R.M. et al. The BBN continuous speech recognition system demon-
stration. ARPA Spoken Language Technology Workshop, Mar.
1994.

Bibliography 131

[61] Sites, R.L., editor. Alpha Architecture Reference Manual. Digital Press, 1992.

[62] Viterbi, A.J. Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm. In IEEE Transactions on Information

Theory, vol. IT-13, Apr. 1967, pp. 260-269.

[63] Weide, R. Personal communication. School of Computer Science, Carnegie
Mellon University.

[64] Woodland, P.C., Gales, M.J.F., Pye, D., and Valtchev, V. The HTK Large Vo-
cabulary Recognition System for the 1995 ARPA H3 Task. ARPA Speech

Recognition Workshop, Feb. 1996.

[65] Woodland, P.C. Leggetter, C.J., Odell, J.J., Valtchev, V. and Young, S.J.
The Development of the 1994 HTK Large Vocabulary Speech Recognition
System. In Proceedings of ARPA Spoken Language System Tech-

nology Workshop, Jan. 1995, pp 104-109.

[66] Woodland, P.C., Odell, J.J., Valtchev, V. and Young, S.J. The HTK Large
Vocabulary Continuous Speech Recognition System: An Overview. In Pro-
ceedings of ARPA Speech and Natural Language Workshop, Mar.
1994, pp 98-101.

132 Bibliography

