
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fast and Efficient Compression of Floating-Point Data

Peter Lindstrom, Member, IEEE, and Martin Isenburg

Abstract—Large scale scientific simulation codes typically run on a cluster of CPUs that write/read time steps to/from a single
file system. As data sets are constantly growing in size, this increasingly leads to I/O bottlenecks. When the rate at which data
is produced exceeds the available I/O bandwidth, the simulation stalls and the CPUs are idle. Data compression can alleviate this
problem by using some CPU cycles to reduce the amount of data needed to be transfered. Most compression schemes, however,
are designed to operate offline and seek to maximize compression, not throughput. Furthermore, they often require quantizing
floating-point values onto a uniform integer grid, which disqualifies their use in applications where exact values must be retained.
We propose a simple scheme for lossless, online compression of floating-point data that transparently integrates into the I/O of
many applications. A plug-in scheme for data-dependent prediction makes our scheme applicable to a wide variety of data used in
visualization, such as unstructured meshes, point sets, images, and voxel grids. We achieve state-of-the-art compression rates and
speeds, the latter in part due to an improved entropy coder. We demonstrate that this significantly accelerates I/O throughput in
real simulation runs. Unlike previous schemes, our method also adapts well to variable-precision floating-point and integer data.

Index Terms—High throughput, lossless compression, file compaction for I/O efficiency, fast entropy coding, range coder, predictive
coding, large scale simulation and visualization.

F

1 Introduction

Data sets from scientific simulation and scanning devices are
growing in size at an exponential rate, placing great demands
on memory and storage availability. Storing such data uncom-
pressed results in large files that are slow to read from and write
to disk, often causing I/O bottlenecks in simulation, data pro-
cessing, and visualization that stall the application. With disk
performance lagging increasingly behind the frequent doubling
in CPU speed, this problem is expected to become even more
urgent over the coming years.

A large scale simulation may run on a cluster of hundreds
to thousands of supercomputer nodes that write the results of
each time step to a shared file system for subsequent analy-
sis and visualization [24]. Typically this involves storing large
amounts of single- or double-precision floating-point numbers
that represent one or more variables of simulation state per
vertex/cell. When the CPU speed with which the simulation
can be updated exceeds the available I/O bandwidth, the sim-
ulation stalls and the CPUs are idle.

Data compression strategies have the potential to combat
this problem. By making use of excess CPU cycles, data can be
compressed and uncompressed to reduce the number of bytes
that need to be transferred between memory and disk or across
file systems, effectively boosting I/O performance at little or
no cost while reducing storage requirements.

The visualization community has developed compression
schemes for unstructured data such as point sets [6, 3], trian-
gular [27, 18], polygonal [19, 13], tetrahedral [11, 2], and hexa-
hedral [14] meshes, and for structured data such as images and
voxel grids [8,12]. However, most of these schemes are designed
to maximize compression rate rather than data throughput.
They are commonly applied as an offline process after the raw,
uncompressed data has already been stored on disk. In order to
maximize effective throughput, one must consider how to best
balance compression speed and available I/O bandwidth, and

• Peter Lindstrom is with the Lawrence Livermore National
Laboratory, E-mail: pl@llnl.gov.

• Martin Isenburg is with the University of California, Berkeley,
E-mail: isenburg@cs.berkeley.edu.

Manuscript received 31 March 2006; accepted 1 August 2006;
posted online 6 November 2006.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

at the same time support sufficiently efficient decompression.
While higher compression rates improve effective bandwidth,
this gain often comes at the expense of a slow and complex
coding scheme.

Furthermore, prior methods often expect that vertex posi-
tions and field values can be quantized onto a uniform inte-
ger grid for efficient (but lossy) predictive compression. This
alters the original data as the non-linear precision of floating-
point numbers generally cannot be preserved during quantiza-
tion. In many science and engineering applications, however,
exact values must be retained, e.g. for checkpoint dumps of
simulation state and for accurate analysis and computation of
derived quantities such as magnitudes, curls, fluxes, critical
points, etc. The use of uniform quantization is also prohibited
for data sets that exploit the non-linearity of the floating-point
representation to allocate more precision to important features
by specifically aligning them with the origin. Quantization can
also change geometric relationships in the data (e.g. triangle
orientation, Delaunay properties). Finally, scientists are often
particular about their data and will simply refrain from using a
compression scheme that does not exactly preserve their data.

To address these needs, we propose a novel and surpris-
ingly simple scheme for fast, lossless, online compression of
floating-point data based on predictive coding. Our method
provides a well balanced trade-off between computation speed
and data reduction and can be integrated almost transparently
with standard I/O. Our scheme furthermore makes no assump-
tion on the nature of data to be compressed, but relies on a
plug-in scheme for computing data-dependent predictions. It
is hence applicable to a wide variety of data sets used in vi-
sualization, such as unstructured meshes, point sets, images,
and voxel grids. In contrast to many previous schemes, our
method naturally extends to compression of adaptively quan-
tized floating-point values and to coding of integer data.

We present results of lossless and lossy floating-point com-
pression for scalar values of structured 2D and 3D grids, fields
defined over point sets, and for geometry coding of unstruc-
tured meshes. We compare our results with recent floating-
point compression schemes to show that we achieve both state-
of-the-art compression rates and speeds. The high compression
speed can be attributed in part to the use of an optimized,
high-speed entropy coder, described here. As a result, our com-
pressor is able to produce substantial increases in effective I/O
rate for data-heavy applications such as large scale scientific
simulations.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

2 Related Work

This paper is primarily concerned with lossless floating-point
compression and we now discuss prior work in this area. While
our scheme extends to lossy compression of quantized float-
point data and integer coding, covering the extensive work done
in these areas is beyond the scope of this paper.

One approach to lossless float compression is to expand the
non-linear floating-point representation to a wider linear inte-
ger representation, and to use standard compression schemes
for uniformly quantized data. Usevitch [29] proposes expand-
ing single-precision floats to large, 278-bit integers scaled by
a least common exponent for coding JPEG2000 floating-point
images. Similarly, Trott et al. [28] suggest expanding single-
precision floats to common-exponent double-precision numbers
whose 52-bit mantissas are assumed to be sufficient for rep-
resenting the range of the single-precision data. Liebchen et
al. [20] take a hybrid approach by choosing a suitable quantiza-
tion level for MPEG audio data, applying integer compression
on the quantized data, and compressing floating-point quanti-
zation residuals using Lempel-Ziv coding. The audio compres-
sor by Ghido [10] makes a similar analysis pass over the data
to discover its range and intrinsic precision to eliminate redun-
dant bits, which due to limited sampling accuracy often occur
in audio data. Gamito and Dias [9] propose a lossless wavelet
coding scheme for use in JPEG2000 that separates sign, expo-
nent, and mantissa, and that identifies regions of constant sign
and exponent for efficient mantissa compression.

2.1 Streaming Floating-Point Compression

The latter three approaches [20, 10, 9] are not applicable in
a streaming I/O setting as they require multiple passes over
the data. Streaming compression, where data is compressed
as it is written, avoids excessive delay due to buffering, is
memory efficient and therefore scalable, and integrates eas-
ily with applications that produce (and consume) streams of
data. Recent techniques for streaming compression of geomet-
ric data [12,17,15] compress vertex coordinates and field values
using predictive coding. To operate losslessly on floating-point
data these schemes need compatible predictive coders. We here
review three floating-point compression schemes that are suit-
able for streaming compression. Later, we will compare our
new compressor with these methods.

RKB2006 [22] The scheme by Ratanaworabhan et al. is
noteworthy for its generality and independence of a geometric
structure. This method compresses any linear stream of data
by constructing a hash key from the last few sample differences
in an attempt to find recurring patterns in the data. This
allows geometry-free prediction, which works well if the data is
traversed in a coherent manner so as to expose patterns, but
it is not clear how well this scheme generalizes to coding of
unstructured data (e.g. meshes) that has no natural traversal
order. Prediction residuals are computed via an exclusive or
operation, and are encoded using a fixed-width leading-zero
count followed by raw transmission of all trailing bits, which
makes for efficient I/O.

EFF2000 [7] The main difference in the method by Engel-
son et al. lies in the predictor used. Instead of hashing, val-
ues in time-varying data are predicted using 1D polynomial
extrapolation of corresponding values in previous time steps.
As in [22], residuals are computed by treating the binary rep-
resentation of actual and predicted floats as integers. Two’s
complement integer subtraction results in a compressible run
of leading zeros or ones. The drawback of both techniques is
that they can not exploit the non-uniform distribution of lead-
ing bit counts, and that they are wasteful when the number of
bits of precision is not a power of two.

ILS2005 [16] Our previous scheme for single-precision
floating-point compression tends to give the best compression
rates compared to other schemes at the expense of higher com-
putational complexity. The idea is to separate and compress
in sequence the difference in sign, exponent, and mantissa be-
tween a float and its prediction using context-based arithmetic
coding [31]. A successful prediction of the exponent, for exam-
ple, is used as context for coding of mantissa differences. While
effective at eliminating redundancy in the data, the implemen-
tation is riddled with conditionals and overly complicated bit
manipulations, requires entropy coding of 3–5 symbols per float
(even though many of these symbols are incompressible), uses
up to 500 different contexts, and maintains probabilities for
as many as 20,000 distinct symbols. Moreover, extending this
scheme to double- and variable-precision floating-point num-
bers and integer data would require careful design decisions.

By contrast, the new algorithm presented here is more gen-
eral in the sense that it compresses floating-point and inte-
ger values of any precision, and is also much simpler in the
sense that it requires fewer operations per compressed value
and fewer lines of code. As a result it is significantly faster and
more memory efficient while yielding comparable compression
rates. We now describe our method in detail and will return
to comparisons with prior methods in Section 5.

3 Floating-Point Compression Algorithm

Our compressor has been designed for IEEE floating-point
numbers [1], although it should be easily generalizable to simi-
lar formats. An IEEE single (double) precision number is made
up of a sign bit s, an ne = 8 (11) bit exponent e, and a nm = 23
(52) bit mantissa m that generally represent the number

(−1)s2e−2ne−1−nm+1(2nm + m) (1)

From here on, we will use the term “float” to generically refer
to single- or double-precision floating-point numbers.

Our float compressor is not dependent on a particular pre-
diction scheme or data type. To give this discussion context
and focus, we will assume that the data to be compressed is
a 3D regular grid of single- or double-precision floating-point
scalar values; compression of other data types is discussed in
Section 5. For completeness, we here also describe a prediction
scheme for use with structured data.

In brief, our method works as follows. The data is traversed
in some coherent order, e.g. row-by-row, and each visited data
value is first predicted from a subset of the already encoded
data, i.e. the data available to the decompressor. The predicted
and actual values are transformed to an integer representation
during which the least significant bits are optionally truncated
if lossy compression is desired. Residuals are then computed
and partitioned into entropy codes and raw bits, which are
transmitted by the fast entropy coder discussed in Section 4.

Although the main steps of our algorithm are quite sim-
ple, efficient implementation requires some care. Therefore,
we include source code to document each step. We begin by
discussing the predictor used in our regular grid compressor.

3.1 Prediction

For regular grids we use the Lorenzo predictor [12], which gen-
eralizes the well-known parallelogram predictor [27] to arbi-
trary dimensions. The Lorenzo predictor estimates a hyper-
cube corner sample from its other, previously encoded corners
by adding those samples reached via an odd number of edges
and subtracting those that are an even number of edges away.
As only immediate neighbors are needed for prediction, the
compressor (and decompressor) must not keep track of more
than an (n−1)-dimensional front (slice) from the n-dimensional
data [12]. Previously encoded samples fx−i,y−j,z−k relative to
the current sample fx,y,z are indexed as f(i, j, k) in List-
ing 1 by representing the front as a circular array.

LINDSTROM et al.: FAST AND EFFICIENT COMPRESSION OF FLOATING-POINT DATA

// compress 3D array of scalars

void compress(const FLOAT * data, front& f, int nx, int ny, int nz)

{

f.advance (0, 0, 1); for (int z = 0; z < nz; z++) {

f.advance (0, 1, 0); for (int y = 0; y < ny; y++) {

f.advance (1, 0, 0); for (int x = 0; x < nx; x++) {

FLOAT pred = f(1, 0, 0) - f(0, 1, 1) + // Lorenzo prediction

f(0, 1, 0) - f(1, 0, 1) +

f(0, 0, 1) - f(1, 1, 0) +

f(1, 1, 1);

FLOAT real = * data ++; // fetch actual value

real = encode(real, pred); // encode difference

f.push(real); // put on front

}

}

}

}

Listing 1. Data prediction and compression loop for 3D grids.

To bootstrap the predictor and allow boundary samples to
be predicted, one usually lowers the dimension of the Lorenzo
predictor, so that the first layer is predicted using 2D predic-
tion and the first row using 1D prediction. The first sample
encoded is predicted as zero. For 3D data this results in eight
different predictors and hence eight conditionals in the inner
loop, which degrade performance. We make the observation
that (n− 1)-dimensional Lorenzo prediction is equivalent to n-
dimensional prediction with the nth dimension samples set to
zero. Hence, by padding the data set with one layer of zeros in
each dimension, a single n-dimensional predictor can be used
for all samples. Instead of copying and padding the entire data
set, this padding can be done efficiently only to the front. The
calls f.advance in Listing 1 apply this padding and advance
the front by one layer, row, or column. In case of lossy compres-
sion, where we allow truncation of the floats, we must update
the front (the f.push call) with the lossily encoded samples
since those are the only ones available to the decompressor.

By default our compressor performs prediction using
floating-point arithmetic. The order of operations and the pre-
cision used must match exactly between compressor and de-
compressor. This may be difficult to achieve due to compiler
optimizations, roundoff policies, availability of extended preci-
sion (as on Intel architectures), and other platform dependent
differences in floating-point arithmetic. In such cases, one may
perform predictions using integer arithmetic at a small cost in
compression rate by first mapping the floats to their binary
representation. This mapping, which is applied to both pre-
dicted and actual samples regardless of how prediction is done,
will be discussed next.

3.2 Mapping to Integer

We could compute prediction residuals via floating-point sub-
traction, however this might cause underflow with irreversible
loss of information that precludes reconstruction of the actual
value. Instead, as in [7, 22], we map the predicted and actual
floats p and f to their sign-magnitude binary integer repre-
sentation. On platforms implementing sign-magnitude integer
arithmetic, we could now simply compute integer residuals via
subtraction, however most current platforms implement two’s
complement arithmetic. To address this, we map the sign-
magnitude representation to unsigned integers by flipping ei-
ther the most significant bit (for positive floats) or all bits (for
negative floats). The result is a monotonic mapping of floats
to unsigned integers that preserves ordering and even linearity
of differences for floats with the same sign and exponent. This
approach is also similar to [16], however we benefit by allowing
a carry to propagate from mantissa to exponent in case p and f
are close but separated by an exponent boundary, which would
be signaled as a large misprediction in [16].

In case lossy compression is desired, we discard some of the
least significant bits during the mapping stage. This can be
thought of as logarithmic rather than uniform quantization,
which in our experience is the quantization preferred by sci-
entists. They often describe the precision of their data as the
number of decimal digits in scientific notation.

// encode actual number ‘real’ given prediction ‘pred’

FLOAT encode(FLOAT real, FLOAT pred)

{

UINT r = forward(real); // monotonically map floats to their ...

UINT p = forward(pred); // ... unsigned binary representation

if (p < r) { // case 1: underprediction

UINT d = r - p; // absolute difference

unsigned k = msb(d); // find most significant bit k

encode(zero + (k + 1), model); // entropy code k

encode(d - (1 << k), k); // code remaining k bits verbatim

}

else if (p > r) { // case 2: overprediction

UINT d = p - r; // absolute difference

unsigned k = msb(d); // find most significant bit k

encode(zero - (k + 1), model); // entropy code k

encode(d - (1 << k), k); // code remaining k bits verbatim

}

else // case 3: perfect prediction

encode(zero, model); // entropy code zero symbol

return inverse(r); // return possibly quantized value

}

Listing 2. Predictive floating-point coding scheme.

3.3 Residual Computation and Coding

Once the actual and predicted values f and p have been
mapped to integers, we apply a two-level compression scheme

to the integer residual d̂ (Listing 2). Using one symbol (and
probability) per residual is not practical in our scheme for
two reasons. First, because of the potentially large range
(−2n, +2n) of residuals for n-bit data, the probability tables
would become prohibitively large. Second, because there are
generally many more possible residuals than actual floats in a
data stream, most residuals are expected to appear only once,
making probability modeling unreliable at best. To address
this problem, we use a two-level scheme that groups residuals
into a small set of intervals. A residual can then be represented
by interval number and position within the interval. We con-
sidered using the optimal two-level scheme by Chen et al. [4],
which partitions a distribution so as to minimize the coding
cost, but opted for a static and simpler scheme. Observing that
most residual distributions are geometric and highly peaked

around d̂ = 0, grouping residuals into variable-size intervals
±[2k, 2k+1) makes for both a simple and effective scheme. This
approach, equivalent to coding the number of leading zeros of

|d̂|, is essentially the one taken by [7,22], although our scheme
differs in one important aspect: the manner in which the first-
level intervals are coded.

Formally, we define the integer residual d̂ as:

d̂ = f̂ − p̂ = s(2k + m) (2)

where s ∈ {−1, 0, +1} encodes the sign of d̂, 0 ≤ k < n is

the position of the most significant bit of |d̂|, and m is a k-bit
number. k can be computed quickly either by repeated right
shifting or using the bsr Intel assembly instruction. Whereas
both [7,22] would encode the tuple 〈s, k〉 using a fixed number
of bits, we exploit the non-uniform distribution of k and use

entropy coding. If d̂ = 0, we entropy code only a single symbol
g = 0. Otherwise, we first entropy code g = s(k + 1), followed
by transmitting verbatim the remaining k bits representing m.

(Note that k may be zero, e.g. when d̂ = 1, in which case no
additional bits are transmitted.) Whereas we could fold 〈s, k〉
into n distinct symbols via modular arithmetic, as in [7, 16],
or using exclusive-or differencing, as in [22], we use all 2n + 1
symbols and rely on the range coder to (nearly) eliminate the
cost of coding large, infrequent residuals. As we shall see later,
using entropy coding to compress g can considerably improve
the overall compression rate at little or no expense in speed.

While the raw bit stream M could be transmitted indepen-
dently of the symbol stream G, interleaving and synchronizing
the two streams is a non-trivial problem as the stream G pro-
duced by our range coder contains symbols of “fractional” bit
length. Moreover, our range coder is sufficiently fast that cod-
ing raw bits does not pose a significant overhead. In general,
these raw bits do not have much regularity that could be ex-
ploited for further compression. One notable exception is when

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

the data has less than full precision, in which case additional
entropy coding can remove redundant bits [10,16].

4 Fast Entropy Coding

Range coding [21] is an efficient variation on arithmetic cod-
ing [31] that outputs data in byte increments. As in arithmetic
coding, an interval [l, l + r) is maintained that uniquely repre-
sents a string of encoded symbols. During encoding of one of
a set of possible symbols, the interval is partitioned such that
symbols are assigned non-overlapping portions of the interval
in proportion to their probability, and the interval is then nar-
rowed to the sub-interval corresponding to the encoded symbol.
The process repeats for the next symbol. Any number within
the final near-infinite-precision interval then encodes an entire
symbol sequence.

In practice, fixed-point integer arithmetic is used to repre-
sent a subset of [0, 1). To avoid working with infinite precision,
the most significant bits of the interval can be output when-
ever they agree in both l and l + r. One problem arises when
r becomes small but l and l + r straddle a bit (or byte, in
case of range coding) boundary. To avoid running out of finite
precision for r, two solutions have been proposed: (1) Out-
put a zero bit and later correct it once it is determined that a
carry would have turned this bit into a one. This may in the
worst case require buffering many bits. This approach is imple-
mented in Schindler’s range coder [23], which was used in our
previous compressor [16]. (2) Since encoder and decoder are
synchronized and agree on the value of r, they can both detect
this condition and handle it by simply reducing r just enough
that a carry can no longer occur. This computationally more
efficient method was first proposed by Subbotin [26], and is the
one used in our new compressor. We improve upon Subbotin’s
implementation by splitting the two conditions for outputting
a byte and reducing the range r, and by making the observa-
tion that if no bytes can be output and the integer r < 216, the
subsequent reduction of r implies that the top two bytes, and
only the top two bytes, can always be output. Because these
tests are performed for every encoded symbol, whether entropy
coded or transmitted raw, this seemingly trivial improvement
can have a measurable impact.

The code for our range coder is shown in Listing 3. Not
included here is the code for probability modeling, which is
done by the quasistatic probability modeler from [23].

5 Results

We evaluated our compressor against our own implementations
of the three streaming schemes [7, 16, 22] and the generic zlib
compressor (the scheme used in Unix gzip). We compressed 2D
and 3D single- and double-precision data sets from the fluid dy-
namics simulation code Miranda [5] and the last time step of
the hurricane Isabel data used in the Visualization 2004 con-
test [30]. We also compressed a large point set from an atom-
istic simulation of shock propagation, as well as the benchmark
triangle meshes lucy and david, laid out in their original tri-
angle order (see [17]), and tetrahedral meshes torso and rbl
in breadth-first order (see [15]). Whereas the original scheme
by Engelson et al. [7] uses 1D temporal prediction, we used
Lorenzo prediction on the grid data for all schemes but [22],
whose main distinguishing feature from [7] is its hash-based
predictor. We did this because we did not have access to multi-
ple time steps for all data sets, and also to factor out the impact
of different data predictors and their dependence on temporal
versus spatial resolution. For all schemes but [22], we used as
predictor the previous sample for the partially coherent point
stream, parallelogram prediction [27] for the triangle meshes,
and the base triangle midpoint [11] for the tetrahedral meshes.
Our experiments were run on a dual 3.2 GHz Intel Xeon with
2 GB of main memory and a Seagate Cheetah 10K.6 Ultra 320
SCSI disk.

// encode a symbol s using probability modeling

void encode(unsigned s, model * m)

{

range /= m->tot; // tot = sum of pmf

low += range * m->cdf[s]; // cdf = cum. distribution function P(x < s)

range *= m->pmf[s]; // pmf = probability mass function P(x = s)

update(s, m); // update probabilities

normalize (); // normalize interval

}

// encode an n-bit number s : 0 <= s < 2^n <= 2^16

void encode(unsigned s, unsigned n)

{

range >>= n; // scale interval

low += range * s; // adjust lower bound

normalize (); // normalize interval

}

// normalize the range and output data

void normalize ()

{

while (((low ^ (low + range)) >> 24) == 0) {

putbyte (); // top 8 bits of interval are fixed ;...

range <<= 8; // ... output them and normalize interval

}

if ((range >> 16) == 0) {

putbyte (); // top 8 bits are not fixed but range ...

putbyte (); // ... is small ; fudge range to avoid ...

range = - low; // ... carry and output top 16 bits

}

}

// output most significant byte

void putbyte ()

{

putchar(low >> 24); // output top 8 bits

low <<= 8; // shift out top 8 bits

}

Listing 3. Fast range coder used in our compressor. The range coder makes use of

an external probability modeler that periodically (e.g. every 1K symbols) updates

the pmf and cdf arrays.

5.1 Compression Rates

Results of lossless compression on several quite different data
sets (Fig. 1) are presented in Table 1 and Fig. 2. The Miranda
Rayleigh-Taylor simulations involve two fluids of different den-
sity that initially are separated into mostly homogeneous re-
gions. Hence the density fields have low entropy and compress
well. Most of the other fields span negative and positive num-
bers, resulting in many different exponents (nearly all 32 re-
spectively 64 bits are used for the single- and double-precision
data). We note that the hurricane data uses the value 1035 to
indicate land at ground level (roughly 0.4% of all values). We
did not specialize the compressors to ignore these values.

As can be seen, our compression rates are comparable to
those of [16] and significantly better than both [7, 22]. We
achieve lossless reductions in the range 1.4–15, and on aver-
age a compressed size of 10.7 bits/float on the Miranda single-
precision data and 18.0 bits/float on the hurricane data. Using
the previous sample to predict the next, our compression re-
sults on the point data are dictated by the geometric coherence
of the data stream. The atom data set is bucketed and roughly
sorted along one axis, but is locally not particularly coherent.
We achieve an average compression of 1.5. More sophisticated
point compression techniques based on local point reordering
and higher-order prediction would likely improve compression
rates. On the double-precision Miranda data, the lossless re-
duction is only 1.4–2.7, with an average size of 40.3 bits/double.

Double-precision floating point data is more challenging to
compress as the increase from 23 to 52 mantissa bits adds 29
low-order bits to each value. It is well known that predictive
coding mainly “predicts away” high-order bits so that the rela-
tive reduction rate decreases as low-order bits are added [13,16].
Of course, it is possible that the low-order bits exhibit some
predictable pattern, e.g. when some or all 29 additional low-
order bits are everywhere zero, as would be the case if single-
precision floating-point numbers were cast to double precision.
A similar situation arises in Marching Cubes isosurface extrac-
tion from regular grids, for which two of three coordinates of
each vertex have much less precision than can be represented in
floating-point, resulting in predictable (though not necessarily
all zero) low-order bits. (Even scanned surfaces such as lucy
and david are typically extracted from a volumetric represen-

LINDSTROM et al.: FAST AND EFFICIENT COMPRESSION OF FLOATING-POINT DATA

(a) 2D Density (b) 2D Vorticity (c) 3D Density (d) 3D Pressure (e) 3D Diffusivity (f) 3D Viscocity

Fig. 1. Visualizations of 2D data (as pseudocolored height fields) and 3D data (volume rendered) used in our experiments.

data set compressed size (MB) and compression time (seconds)

name
unique entropy range

min max
size time

zlib [RKB2006] [EFF2000] [ILS2005]
new

(%) (bits) (bits) (MB) (sec) scheme
m2d density 3.89 3.49 21.83 8.7E−01 1.2E+00 19.6 0.71 1.6 0.86 4.3 0.49 4.4 0.56 1.3 1.08 1.3 0.56
m2d vorticity 99.20 22.25 31.05 -1.4E+02 2.5E+01 19.6 0.71 18.4 2.14 11.8 1.21 15.5 1.29 12.9 2.22 13.8 1.49
m3d density 7.67 5.16 23.60 1.0E+00 3.0E+00 364.5 12.81 50.4 17.55 100.5 9.06 96.3 8.48 35.7 19.03 35.5 9.25
m3d pressure 27.29 23.91 31.06 -3.7E+00 2.3E+03 364.5 12.80 229.2 99.76 95.6 9.31 87.9 8.87 40.1 18.79 40.4 9.96
m3d diffusivity 36.87 23.19 30.02 0.0E+00 6.8E+00 364.5 12.68 297.6 42.90 250.8 19.09 239.3 15.02 198.8 31.92 203.0 18.47
m3d viscocity 50.07 24.86 28.59 8.6E−15 2.9E+00 364.5 12.62 314.0 46.09 249.4 18.95 246.1 14.68 209.2 32.66 207.5 19.45
h3d temp 65.70 23.54 31.56 -7.7E+01 1.0E+35 95.4 3.77 75.8 14.56 59.3 4.64 53.0 4.27 44.1 8.04 44.1 5.06
h3d pressure 81.82 24.13 31.58 -3.4E+03 1.0E+35 95.4 3.78 82.3 12.00 64.3 5.14 52.9 4.87 45.0 7.78 45.2 5.34
h3d x velocity 84.18 24.18 31.55 -5.3E+01 1.0E+35 95.4 3.89 86.1 11.27 67.4 6.22 63.3 4.59 54.5 8.86 55.4 5.44
h3d y velocity 84.32 24.18 31.55 -4.6E+01 1.0E+35 95.4 3.83 84.5 11.42 67.1 5.74 62.3 5.04 53.5 8.64 53.8 5.53
h3d z velocity 86.82 24.24 31.54 -3.2E+00 1.0E+35 95.4 3.87 88.4 10.76 85.6 8.50 76.9 5.29 68.9 9.83 69.1 6.65
M3d density 40.14 18.84 52.59 1.0E+00 3.0E+00 288.0 11.28 136.8 41.91 160.3 11.63 121.6 10.94 - 105.2 11.63
M3d pressure 100.00 25.17 63.00 -2.2E+00 2.2E+00 288.0 11.20 272.6 35.18 237.3 14.91 225.1 16.59 - 208.4 17.20
M3d x velocity 100.00 25.17 63.00 -2.2E+00 2.3E+00 288.0 10.83 275.6 32.30 230.4 14.73 215.1 15.91 - 197.7 16.84
M3d y velocity 100.00 25.17 63.00 -2.1E+00 2.3E+00 288.0 10.54 275.1 32.19 223.1 14.27 215.2 15.16 - 197.7 16.65
M3d z velocity 100.00 25.17 63.00 -5.2E+00 9.0E+00 288.0 10.32 275.5 32.62 226.6 14.74 213.7 16.05 - 196.8 16.14
atom x position 61.10 23.82 31.01 -4.8E−02 4.6E+02 107.7 7.07 84.3 21.18 76.0 7.88 78.8 7.61 67.3 12.88 68.6 9.07
atom y position 45.90 23.32 26.99 3.7E−02 2.1E+03 107.7 7.08 65.9 30.76 60.4 6.97 56.4 6.31 47.0 10.49 46.9 7.73
atom z position 61.68 23.84 27.48 9.1E−05 4.6E+02 107.7 7.46 94.6 19.86 82.6 9.00 86.1 8.25 75.7 13.80 78.2 9.93
atom y velocity 64.65 23.87 30.96 -1.5E−01 1.4E−01 107.7 7.30 95.7 19.88 93.8 10.07 99.1 9.65 84.3 14.93 87.6 9.92
atom temp 64.91 23.94 27.41 3.0E−03 7.1E+03 107.7 6.69 95.7 19.76 91.6 10.27 95.9 8.34 84.6 15.02 84.6 10.31
atom energy 3.45 18.57 21.79 -3.6E+00 -2.7E+00 107.7 7.15 77.9 38.59 74.1 7.98 71.8 7.01 60.8 12.66 60.5 8.30
lucy 61.39 24.38 31.09 -6.1E+02 1.2E+03 160.5 - 137.8 - 99.5 - 90.0 - 73.6 - 77.8 -
david1mm 25.23 17.08 31.11 -4.4E+03 1.8E+03 322.5 - 144.9 - 155.7 - 163.4 - 108.6 - 131.9 -
torso 84.72 18.48 31.08 -2.7E+02 5.8E+02 1.9 - 1.7 - 1.5 - 1.5 - 1.3 - 1.3 -
rbl 71.90 20.14 25.99 1.5E+00 3.6E+02 8.4 - 7.1 - 5.8 - 5.6 - 4.7 - 4.8 -

Table 1. Compression results for the Miranda (m2d, m3d, M3d) and hurricane (h3d) structured grids, the atom point set, the lucy and david triangle meshes, and the

torso and rbl tetrahedral meshes. All data but M3d is represented in single precision. The [ILS2005] scheme operates on single precision only, hence the missing values.

For the meshes we report only the compressed size of vertex coordinates; timings are dominated by connectivity coding, and are hence excluded. The range measures

(the logarithm of) the number of floating-point values between min and max. Note that the first-order entropy is limited by the number of samples in a data set.

tation.) Arguably such data sets should use an integer rather
than floating-point representation, although for simplicity or
other reasons it is common practice to use floating-point. Con-
trary to [16], which entropy codes all bits of the residual, our
new coder sacrifices such potential compression gains for speed
by storing these repeated low-order bits in raw and uncom-
pressed form. However, the massive data sets from scientific
simulation that motivated our work on high-speed compression,
as well as our tetrahedral meshes, rarely exhibit significant low-
order redundancy, as also evidenced by our results.

5.1.1 Lossy Compression

Fig. 3 shows that our scheme gracefully adapts to decreasing
levels of precision when discarding the least significant man-
tissa (and eventually exponent) bits. For n bits of precision,
the schemes [7, 22] require log2 n bits to code the number of
leading zeros, whereas our scheme exploits the combination of
low entropy in the leading-zero count and the elimination of the
low-order bits that are most difficult to predict and compress.

5.2 Compression Speed

Fig. 4 shows the speed of compressing from memory to disk,
including disk write time. (Because of the simplicity of our
method, its decompression speed is similar to its compression
speed.) We also include the raw I/O performance of dump-
ing the data uncompressed using a single fwrite call. Timings

correspond to the median of five runs. Whereas our compres-
sor is slightly slower than the less effective compressors [7,22],
it is nearly twice as fast as [16] while producing similar com-
pression rates. However, in more I/O-intensive scenarios, such
as in massively parallel simulations dumping data to the same
file system (as is common), the improved compression of our
method over [7,22] results in a net gain in effective throughput.
We integrated our compression code with Miranda’s dump rou-
tines and ran performance tests on 256 nodes of LLNL’s MCR
supercomputer. Achieving on average a lossless reduction of 3.7
on 75 GB of data dumped, the overall dump time was reduced
by a factor of 2.7 over writing the data uncompressed.

5.3 Entropy Coding

We compared the raw throughput of our range coder and
Schindler’s [23] by (1) passing raw bytes through it with no
compression and (2) entropy coding byte sequences. In both
cases, the source data was the uncompressed floating-point
data used in our experiments. Timings show that our coder
is 40% faster for raw transmission and 28% faster for entropy
coding. Meanwhile, the inefficiency of our coder due to loss of
precision and range reduction is only 26 bytes of overhead for
1.5 GB of coded data. Its raw throughput is only 20% less than
an fwrite call, while its entropy coding throughput of 20 MB
per second, which includes probability modeling and I/O time,
compares favorably with state-of-the-art entropy coders [25].

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2d density 2d vorticity 3d density 3d pressure 3d diffusivity 3d viscocity total

co
m

pr
es

se
d

si
ze

zlib [RKB2006] [EFF2000] [ILS2005] new scheme

Fig. 2. Compression rates for the Miranda single-

precision data.

0.01%

0.10%

1.00%

10.00%

100.00%

8 12 16 20 24 28 32

precision (bits)

co
m

pr
es

se
d

si
ze

[EFF2000] 2d density 2d vorticity 3d density 3d viscocity
new scheme 2d density 2d vorticity 3d density 3d viscocity

Fig. 3. Lossy compression rates for our scheme (black)

and [7] (blue). The vertical scale is logarithmic.

0

2

4

6

8

10

12

2d density 2d vorticity 3d density 3d pressure 3d diffusivity 3d viscocity total

sp
ee

d
(m

ill
io

n
flo

at
s/

se
co

nd
)

uncompressed zlib [RKB2006] [EFF2000] [ILS2005] new scheme

Fig. 4. Compression speed for the Miranda single-

precision data.

6 Conclusion

We described a simple method for lossless compression of
floating-point data based on predictive coding. The main char-
acteristics of our method are (1) effective predictive coding
of floating-point data, (2) efficient and robust arithmetic by
mapping floating-point numbers to integers, (3) fast adaptive
range coding of leading zeros in residuals, and (4) transmission
of raw bits whenever we cannot expect compression to result
in much gain. Our scheme provides high compression rates
without sacrificing computational efficiency, thereby delivering
high throughput in typical large scale simulation environments
where I/O bandwidth is an especially precious resource.

We achieve compression rates nearly as good as those of [16],
but at twice the speed and using a much simpler implementa-
tion. Although our compression speeds are slightly slower than
those of [7] and [22], our compression rates are significantly
higher, resulting in higher overall throughput and smaller files
in bandwidth-limited environments.

Our fast range coder may also prove useful in other appli-
cations. It is notably faster than Schindler’s range coder [23],
both when entropy coding for compression and when merely
passing along raw bits in the bit stream. The achieved through-
put for entropy coding, including probability modeling and I/O
time, compares favorably with the state of the art.

Acknowledgements

This work was performed in part under the auspices of the
U.S. DOE by LLNL under contract no. W-7405-Eng-48, and
was funded in part by NSF grant CCF-0430065.

References

[1] IEEE 754: Standard for binary floating-point arithmetic, 1985.
[2] U. Bischoff and J. Rossignac. TetStreamer: Compressed back-

to-front transmission of Delaunay tetrahedra meshes. Data
Compression Conference, 93–102. 2005.

[3] D. Chen, Y.-J. Chiang, and N. Memon. Lossless compression
of point-based 3D models. Pacific Graphics, 124–126. 2005.

[4] D. Chen, Y.-J. Chiang, N. Memon, and X. Wu. Optimal alpha-
bet partitioning for semi-adaptive coding of sources of unknown
sparse distributions. Data Compression Conference. 2003.

[5] A. W. Cook, W. H. Cabot, P. L. Williams, B. J. Miller, B. R.
de Supinski, R. K. Yates, and M. L. Welcome. Tera-scalable al-
gorithms for variable-density elliptic hydrodynamics with spec-
tral accuracy. ACM/IEEE Supercomputing, 60. 2005.

[6] O. Devillers and P.-M. Gandoin. Geometric compression for
interactive transmission. IEEE Visualization, 319–326. 2000.

[7] V. Engelson, D. Fritzson, and P. Fritzson. Lossless compression
of high-volume numerical data from simulations. Data Com-
pression Conference, 574–586. 2000.

[8] J. Fowler and R. Yagel. Lossless compression of volume data.
IEEE Symposium on Volume Visualization, 43–50. 1994.

[9] M. N. Gamito and M. S. Dias. Lossless coding of floating point
data with JPEG 2000 Part 10. Applications of Digital Image
Processing XXVII , 276–287. 2004.

[10] F. Ghido. An efficient algorithm for lossless compression of
IEEE float audio. Data Compression Conference, 429–38. 2004.

[11] S. Gumhold, S. Guthe, and W. Strasser. Tetrahedral mesh
compression with the cut-border machine. IEEE Visualization,
51–58. 1999.

[12] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak. Out-
of-core compression and decompression of large n-dimensional
scalar fields. Eurographics, 343–348. 2003.

[13] M. Isenburg and P. Alliez. Compressing polygon mesh geometry
with parallelogram prediction. IEEE Visualization, 141–146.
2002.

[14] M. Isenburg and P. Alliez. Compressing hexahedral volume
meshes. Graphical Models, 65(4):239–257, 2003.

[15] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Shewchuk.
Streaming compression of tetrahedral volume meshes. Graphics
Interface, 115–121. 2006.

[16] M. Isenburg, P. Lindstrom, and J. Snoeyink. Lossless com-
pression of predicted floating-point geometry. Computer-Aided
Design, 37(8):869–877, 2005.

[17] M. Isenburg, P. Lindstrom, and J. Snoeyink. Streaming com-
pression of triangle meshes. Symposium on Geometry Process-
ing, 111–118. 2005.

[18] F. Kälberer, K. Polthier, U. Reitebuch, and M. Wardetzky.
FreeLence – Coding with free valences. Eurographics, 469–478.
2005.

[19] A. Khodakovsky, P. Alliez, M. Desbrun, and P. Schroeder. Near-
optimal connectivity encoding of 2-manifold polygon meshes.
Graphical Models, 64(3-4):147–168, 2002.

[20] T. Liebchen, T. Moriya, N. Harada, Y. Kamamoto, and Y. A.
Reznik. The MPEG-4 audio lossless coding (ALS) standard –
Technology and applications. 119th Audio Engineering Society
Convention. 2005.

[21] G. N. N. Martin. Range encoding: an algorithm for removing
redundancy from a digitized message. Video and Data Record-
ing Conference. 1979.

[22] P. Ratanaworabhan, J. Ke, and M. Burtscher. Fast lossless
compression of scientific floating-point data. Data Compression
Conference, 133–142. 2006.

[23] M. Schindler. Range Encoder version 1.3, 2000. URL http:
//www.compressconsult.com/rangecoder/.

[24] P. Schwan. Lustre: Building a file system for 1,000-node clus-
ters. Linux Symposium, 401–408. 2003.

[25] J. Senecal, M. Duchaineau, and K. I. Joy. Length-limited
variable-to-variable length codes for high-performance entropy
coding. Data Compression Conference, 389–398. 2004.

[26] D. Subbotin. Carryless Rangecoder, 1999. URL http://search.
cpan.org/src/SALVA/Compress-PPMd-0.10/Coder.hpp.

[27] C. Touma and C. Gotsman. Triangle mesh compression. Graph-
ics Interface, 26–34. 1998.

[28] A. Trott, R. Moorhead, and J. McGinley. Wavelets applied
to lossless compression and progressive transmission of floating
point data in 3-D curvilinear grids. IEEE Visualization, 385–
388. 1996.

[29] B. E. Usevitch. JPEG2000 extensions for bit plane coding of
floating point data. Data Compression Conference, 451. 2003.

[30] Visualization contest data set, 2004. URL http://vis.computer.
org/vis2004contest/data.html.

[31] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding
for data compression. Communications of the ACM , 30(6):520–
540, 1987.

http://www.compressconsult.com/rangecoder/
http://www.compressconsult.com/rangecoder/
http://search.cpan.org/src/SALVA/Compress-PPMd-0.10/Coder.hpp
http://search.cpan.org/src/SALVA/Compress-PPMd-0.10/Coder.hpp
http://vis.computer.org/vis2004contest/data.html
http://vis.computer.org/vis2004contest/data.html

	Introduction
	Related Work
	Streaming Floating-Point Compression

	Floating-Point Compression Algorithm
	Prediction
	Mapping to Integer
	Residual Computation and Coding

	Fast Entropy Coding
	Results
	Compression Rates
	Lossy Compression

	Compression Speed
	Entropy Coding

	Conclusion

