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Future space-based sensors have more complex data processing requirements and thus
need more efficient sensor management tools to ensure their effective operation. More-
over, the dynamic, real-time nature of the domain requires a solution capable of adaptive
scheduling. Here, we propose a market based approach to optimize the detection and track-
ing of resident space objects that encompasses the sensor system as a whole, including the
network resources and computational power that support sensor tasks. Our market-based
optimization approach applies solutions from economic theory, particularly game theory,
to the resource allocation problem by creating an artificial market for sensor information
and computational resources. Intelligent agents are the buyers and sellers in this market,
and they represent all the elements of the sensor network, from sensors to sensor platforms
to computational resources. These agents interact based on a negotiation mechanism that
determines their bidding strategies. This negotiation mechanism and the agents bidding
strategies are based on game theory, and they are designed so that the aggregate result of
the multi-agent negotiation process is a market in competitive equilibrium, which guaran-
tees an optimal allocation of resources throughout the sensor network. This approach was
chosen in large part for its superior computational efficiency, based on the mathematical
foundations of economic theory.

I. Introduction

The Air Force is currently developing Space Radar capable of tracking resident space objects (RSOs)
and searching space for unknown objects and activity. The main challenge there is to develop more effective
tasking algorithms that can perform mission objectives in such a dynamic, complex domain with multiple
constraints. The communications and resource constraints present in this domain will increase as space
systems and missions evolve.

Two characteristics distinguish all of these systems from the ground- and air-based platforms they sup-
plement: first, they contain far more components and subcomponents that must be coordinated in order to
function properly; and second, this added complexity adds a great deal of new data processing requirements,
just as network bandwidth and computational power is becoming relatively more scarce due to limited satel-
lite payloads. These challenges will only become more difficult as large constellations of microsatellites are
deployed as part of future sensor systems.

Many current approaches to dynamic sensor management simply repackage traditional optimization tools
such as linear programming and apply them to the real-time domain. These approaches have two main
problems. First, they perform poorly in dynamic environments, because they lack true adaptive capabilities.
Extensions and modifications of these algorithms have attempted to deal with this, but such a patchwork
approach is inferior to an algorithm designed specifically for adaptation. Second, current approaches are
computationally inefficient, so even if they have the algorithmic capability to adapt to changing conditions,
they are not fast enough to do so effectively.

Our approach, a market-based optimization protocol that we describe below, treats sensor systems as
true systems, looking not just at individual sensor assignments but also at the underlying resources such as
network bandwidth and signal processing power that are necessary to support the increased data processing
loads of newly-developed space-based sensor systems. Ours is a holistic approach that goes beyond mere
task assignment and takes account of all resources and assets in a sensor system. Only by simultaneously
optimizing all parts of the sensor system can resources be used efficiently, particular with the growth of
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distributed sensor systems with many nodes. Our approach develops a computationally adaptive approach
to both optimization and the sensor modeling that supports it, to ensure that optimization maximizes the
use of available computational resources.

Our approach applies solutions from economic theory, particularly game theory, to the resource allocation
problem by creating an artificial market for sensor information, computational resources, and communications
bandwidth. Intelligent agents are the buyers and sellers in this market, and they represent all the elements
of the sensor network, from sensors to sensor platforms to computational resources. They provide support
for heterogeneous sensors, modes, and search patterns, and their goal is to distribute resources in a way that
minimizes the sum of target objects’ covariances, weighted by object priority. These market agents interact
based on a negotiation mechanism that determines their bidding strategies. This negotiation mechanism and
the agents’ bidding strategies are based on game theory, and they are designed so that the aggregate result
of the multi-agent negotiation process is a market in competitive equilibrium, which guarantees an optimal
allocation of resources throughout the sensor network. Negotiation works continuously, providing dynamic
adaptation to changes in the mission environment. Negotiation is designed to minimize communication
resource requirements, ensuring that the system scales well to more complex sensor networks. Economic
theory provides a mathematical infrastructure that can be used to prove the computational efficiency of our
approach, and we assess this efficiency using both formal mathematical methods and computational testing.

II. Market Based Optimization

The application of economic theory, and game theory in particular, to computer science problems such
as resource allocation has grown into a mature field of research over the past two decades.1 The problem
of allocating scarce resources among a set of distributed agents is the very problem faced by a market
economy. A very large body of economic research exists on the functioning of markets, so they are well
understood. A central result of economic theory is that, given proper conditions, a market will produce an
optimal distribution of resources with a minimum of transaction costs, which are analogous to communication
resources in the computational problem.2

In adapting this work to the problem of optimizing resources in a sensor network, we can exploit the
results of economic theory in order to design multi-agent systems that produce optimal resource allocations.
Markets have buyers and sellers of goods and services, so we must formulate the sensor resource optimization
problem in these terms in order to take advantage of market-based solutions. This is easily done using the
multi-agent framework described in the previous section. Agents represent both the buyers and the sellers
in our artificial economy, and the goods and services for sale are the assets controlled by those agents, which
include computational resources and information collected by sensors. Our multi-agent system simulates
a marketplace where these agents exchange their services. By finding the competitive equilibrium of this
artificial economy, we can solve the resource allocation problem and ensure optimal usage of our sensor
resource system.

Market-based optimization, using a particular negotiation/bidding mechanism, allows the agents to reach
this equilibrium. The negotiation mechanism, or protocol, defines the rules used by agents in conducting
transactions. It determines how agents make bids for the services of other agents as well as how agents
communicate with one another. In addition to following these rules for negotiation, each agent uses a
negotiation strategy that determines how that agent bids. Negotiation strategies are based on the results of
game theory. Game theory examines how individuals make decisions when they know that their actions affect
other individuals and when they assume that other individuals also take this into account. For example,
if two agents are bidding on the use of a shared antenna, they will formulate their bids not only based on
how they value that antenna but also on how they think the other agent values that antenna. They do this
because, in order to win the bidding war, they do not necessarily have to bid as high as they believe use
of the antenna is worth; they must only bid higher than the other agent who is also bidding. The results
of game theory allow bidders to maximize their own utility in a competitive marketplace; when everyone
follows these strategies, the market as a whole is optimized.2,3

In our implementation, each agent has the ability to calculate the utility a of its possible actions. System
agents can calculate the utility of buying information from sensors, sensor agents can calculate the utility
of buying computational resources and of selling sensor information, and resource agents can calculate the
utility of selling computational resources. Using these utility calculations, agents carry out strategies for

a”Utility” is the economic term for the value of an action or situation.
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formulating and accepting bids. By using the results of game theory, these strategies can be optimized in
order to produce the best possible aggregate outcome. Charles River’s in-house GRADE tool for building
intelligent, multi-agent systems provides every agent with capabilities for reasoning based on Bayesian belief
networks and on rule-based expert systems. Both of these approaches are appropriate for encoding optimal
negotiation strategies, so one task of future work will be to determine which of these options is better suited
to reasoning in negotiation.

Market-based mechanisms using negotiation for resource allocation have been used to solve problems in
a variety of domains. A number of efforts have used this approach to allocate computational resources for
distributed computing.4–7 Others have used the method for information retrieval from digital networks.1,8, 9

More recently, the technique has become widespread in solving just-in-time manufacturing control prob-
lems.10 Finally, negotiation has been successfully applied to the military collection management domain for
multi-sensor multi-target tracking.11 The success of negotiation in these fields, all of which share significant
similarities with the real-time sensor optimization problem under examination here, leads us to believe that
we can achieve the same degree of success in the detection and tracking of RSOs.

As mentioned above, if the negotiation mechanism is designed properly, it will produce optimal resource
allocations. One major assumption on which this rests is that agents can accurately calculate the utility
of their actions. In the case of sensor network optimization, this means accurately calculating the value of
the information that sensors can provide. In a way, this is a question of properly prioritizing sensor tasks,
because the greater a tasks priority, the greater should be its utility. The promise of negotiation as a means
of optimization is that, as long as this step is correct, it guarantees that the results will be optimal. Utility
functions may be as simple or complex as is necessary in order to be accurate. Thus, they could range
from simple mathematical functions to complex chains of reasoning. Again, GRADE agent technology is
helpful here, because it provides both Bayesian belief networks and rule-based expert systems that can be
used for more complex modeling of utility functions. Moreover, the communication interface available to
each agent allows it to obtain feedback from signal processing algorithms to aid in calculating the value of
various sensor tasks. Another important part of our future work will thus be to examine alternative methods
of augmenting utility calculations and determining which provides the best way of calculating the value of
the available sensor information. This includes exploring the use of libraries of utility functions that use
situation assessment (guided by belief networks and/or expert systems) to dynamically select appropriate
methods of utility evaluation, based on the current situation and particular information requirements.

The other major assumption of the negotiation mechanism is that, in order to generate an optimal allo-
cation of resources, the mechanism itself must have sufficient computational resources with which to execute
in order to maintain competitive equilibrium in the face of real-time changes in the mission environment. In
order to accomplish this, our negotiation algorithm must be as efficient as possible. Game theory allows us
to minimize the communication overhead needed for negotiation by designing bidding protocols that resolve
the negotiation in as few steps as possible. A variety of such protocols already exist and have been tested in
a number of application areas.12 We have tried to design algorithms that maximize the efficiency with which
they use available computational resources so that the system is fast enough to maintain optimal allocation
in real-time.

There are a number of alternative methods of implementing this multi-agent negotiation system across
the sensor network. Choosing among these options is important for realistically simulating the deployment of
our optimization strategies. There are two obvious alternatives: One is to implement it as a truly distributed
system, where the agents reside with and directly control the physical entities they represent. The other is
to maintain the agents on a centralized system that sends tasking orders out to the sensor network itself.
The first approach relies more heavily on on-board processing, while the second relies more heavily on
communication, so there are certainly tradeoffs in these approaches. The best approach might be a hybrid
combination of these two methods. However, regardless of what type of implementation is ultimately required
for deployment, the flexible, modular nature of market based optimization and its ability to function over
networks of sensors allow it to work without modification in any of these contexts. This is a major source of
value in our distributed approach to optimization.

II.A. Agent Roles Within the Market

Charles River’s market based solution constructs a set of agents that represent all the elements of a sensor
network, using three different agent types:
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• Sensor agents represent sensors themselves as well as the platforms that carry them. Examples include
passive sensors such as IR and UV sensors, active sensors such as LADAR, and sensor platforms such
as satellites. The main purpose of sensor agents is to collect information. In order to do this, they
must obtain access to the computational resources needed to carry out their tasks and in some cases
they must cooperate with the agents representing the platforms on which they reside. They respond
to requests for information from engagement systems (e.g. command and control) and other external
systems.

• Resource agents represent computational resources including processing nodes and communication
resources such as network bandwidth. Resource agents provide the computational power that sensors
and other components in the sensor network need to complete their tasks. They respond to requests
from sensor and system agents and at times they must also coordinate among themselves in order to
ensure optimal resource allocation.

• System agents represent engagement systems as well as other external systems that might require data
from the sensor network. System agents work on behalf of these systems to obtain the requested
information from sensor agents. They must also interact with resource agents when they need to carry
out tasks such as signal processing.

Figure 1: Screenshot of our prototype executing an RSO tracking mission. The display provides a 3D view
of the mission space, along with a variety of market diagnostics to monitor performance.

As an example to illustrate our approach, take the situation where a resident space object (RSO) ma-
neuver has been detected by space-based surveillance (see Figure 1). This RSO, which previously was a
relatively low priority, is categorized by the 1st Space Control Squadron (1SPCS) as a category 3 RSO which
means that it has recently maneuvered and can no longer be associated with its cataloged position. This
update from 1SPCS is sent to ground-based operations in the form of tasking. This tasking is used by buyer
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agents to update their utility calculations which determine the price they will pay for satellite operations
within the market. In this case, a notional agent representing the recategorized RSO will negotiate within
the market for self-observations and pay a higher price than lower categorized RSOs or other buyer agents.
In the context of our approach, these are called system agents and they represent the initiating agents which
trigger top-level purchases in the market.

Sensors on the satellite platform are represented by sensor agents, which sell their product (observations)
within the market. Satellites have limited communication capacity and opportunities so time and band-
width must be managed. In some cases, the satellite capable of performing the final surveillance task may be
unable to communicate directly with ground control. Agents representing computational resources such as
processing nodes and network communication resources are represented by resource agents. Here, a resource
agent might provide relay services between ground control and the ultimate observing agent. Computational
resources such as processing nodes or relay operations are more resource intensive than direct ground control
to satellite tasking but this may be desirable for emergent tactical situations. Indeed, the shared and coop-
erative behaviors provided by agent based negotiation provides multiple benefits. Satellite assets can share
resources and distribute operational load as system resources (communications, sensors, satellite platforms)
malfunction, become upgraded, or are simply added by operators.

The technology here is innovative for three reasons. First, it takes a holistic approach to sensor man-
agement, optimizing not just sensor tasking but also the resources (network communications and processing
power) needed to support those tasks. Second, it relies on our past work that extended market-based opti-
mization to work with heterogeneous assets, in a way uniquely suited to the dynamic environment found in
the sensor management domain. Third, our approach is computationally adaptive, both in optimization and
sensor modeling, meaning that it adapts its mechanism to the complexity of the given problem, to ensure
maximum computational efficiency.

The scenario presented above is only one (simplistic) example of a chain of transactions within the multi-
agent sensor network, but game theory guarantees that, with properly designed negotiation mechanisms,
the result for the system as a whole will be an optimal allocation of resources. Moreover, the negotiation
process happens continuously, even as conditions change, which makes the approach perfectly suited for
solving the real-time allocation problem unique to sensor planning. New objects might be detected, new
sensor information might be needed, or sensor resources and computational resources might fail. The sensor
network using this scheme seamlessly adapts to all of these kinds of circumstances. Moreover, because the
system takes a multi-agent approach, it is highly flexible and extensible, so it can maintain optimal resource
allocation under any configuration of sensors and network interfaces, including the addition of new sensor
types.

III. Mapping a Market to the Space Search Domain

Integrating Charles River’s market framework with the space search simulation was a straightforward
process. Search sectors and RSOs are represented by notional buyer agents submit self-search tasks to the
market. Satellite sensors are represented by seller agents that maximize profit by competing for search tasks.

III.A. Search Sectors as Buyer Agents

A buyer agent is created for each search sector in the geo-synchronous belt. This agent calculates a reserve
price based upon its last search time. A recently searched sector agent has a lower reserve price than a
not-recently searched sector. Each search sector buyer creates a task within the market to compete for
searches against other search sectors and possibly RSOs.

III.B. RSOs as Buyer Agents

A buyer agent is created for each RSO within the simulation. RSO buyer agents purchase observations
of its constituent domain object. The reserved price is a function of its category (see Table 1), which
in an operational setting would be established by the 1st Command and Control Squadron (1CACS) in
Cheyenne Mountain Colorado. RSO observation tasks with a lower category have a higher reserve prices,
thus ’Attention’ categorized buyer agents will pay more for observations than ’Corrupted’ ones.
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Table 1: Resident Space Objects are prioritized according to the following categories. A lower number
indicates a higher priority.

Category Name Definition
1 Lost An RSO that has not been tracked by

an SSN within the last thirty days.
2 Attention An RSO that has not been tracked

within at least five days, but is not of-
ficially a Lost object.

3 Maneuvered An RSO that has recently maneuvered
and can no longer be associated with its
cataloged position.

4 New Launch An RSO that was recently placed into
orbit but for which no element set has
been established

5 Corrupted An element set in the catalog that is
seemingly miss associated with another
object.

6 Uncataloged An RSO that has never been previously
cataloged

III.C. Satellite Assets as Seller Agents

A seller agent is created for each satellite asset. This seller agent knows its constituent satellite’s current
state, capabilities, operating parameters and task queue. The satellite’s capabilities for a given resource
period are a function of:

• Location

• Attitude

• Slew Rate

• Field of View (FOV)

• Committed Tasks - tasks it has begun executing

Sector search and RSO observation tasks which can be accomplished are bid on by the satellite’s seller
agent. The Seller’s reserve price is a function of any intersecting tasks or task bundles under contract, but
not yet committed.

III.D. Description of Tracking and Detection Scenarios

Multiple scenarios were generated to validate our general approach of using the market algorithm to task
space based sensors. The scenarios ranged from a single LEO satellite searching geo-synchronous space to
multiple LEO satellites searching the geo-synchronous space and tracking multiple RSOs. On any given run
of a scenario, users can select which algorithm to perform the tasking optimizations. This allowed for easy
comparison between identical scenarios. During execution all data would be routed to a data collection point
(in our case, a database) for later retrieval to perform comparison calculations.

For each scenario, satellites were positioned in LEO where they could search the geosynchronous space
and track RSOs. The MSX13 satellite, part of the SBV project, provided a model for our satellites and
their operational characteristics. The MSX satellite is equipped with passive visible sensors with a field of
view that is 6.6 by 1.4 degrees. It has attitude rates of up to 1.6 deg/sec with accelerations of 0.03 deg/sec.
The scenarios were run with increasing numbers of satellite assets starting with one and ending at seven.
The Global Star satellite ephemerids, the orbits of a constellation of actual LEO satellites, were used as the
orbits for our simulated MSX-like satellites.
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Our prototype implementation models real satellites using RSO data from NASA’s Navigation and An-
cillary Information Facility (NAIF), using their SPICE toolkit. We demonstrate the performance of our
approach in a variety of RSO tracking and detection scenarios.

III.D.1. Geo-sync Search Only

The geo-sync only scenario tasked the satellite assets to search the geo-synchronous space. No RSOs were
part of this scenario and the only measure was search coverage. The geosynchronous search space was
arbitrarily divided into 1080 search sectors of 10 by 10 degrees each (longitude and latitude). Notional
buyer agents were created for each search sector which competed against one another within the market for
self-observations. The utility of self-searches increased as search sectors were unobserved. Satellite agents,
who were sellers in the market, calculated their reserve price based on their capability constraints.

III.D.2. Geo-sync Search with Resident Space Objects (RSO)

The second scenario adds resident space object tracking. Notional buyer agents were created for 500 randomly
placed RSOs which compete in the market for self-observations. RSO buyer utilities were based on randomly
assigned priorities which match the categories established by 1CACS. See Table 1 for details.

IV. Results

An efficient optimization algorithm for satellites performing detection and tracking should be able to
search more sectors and track more RSOs as more assets come online. Managing satellite assets inefficiently
increases the likelyhood of overlapped observations or uncoordinated slews, i.e., two satellites leap-frogging
to perform sector search tasks as satellite assets are added to the domain. Mapping space-search domain
assets to buyer and seller agents as participants in Charles River’s market based solution was relatively
straight forward. Given that they are properly incentivized and that they correctly calculate their respective
costs and utilities we should see near linear increases in observation and tracking times as we add assets to
the system.

To test our approach, the geo-synch search scenario was simulated multiple times to record the average
duration that each of the 1080 search sectors was observed. For a satellite to observe a sector of the geo-
synchronous space it could not be slewing. Overlapping observations would not double the observation time.
Our market driven algorithm scales linearly within this basic search scenario as satellites are added. Figure 2
shows that satellites competing within the market are coordinated.

To vet our approach within a more dynamic scenario we added RSOs of various priorities at random spots
within the geosynchronous search space. Observation durations were recorded as before, however, a satellite
asset observing an RSO would not contribute observation time to the RSOs surrounding search sector. This
allowed us to measure the tasking trade-offs made between RSO tracking tasks vs. routine search tasks.
Again, running the scenario with one satellite asset establishes the near optimal performance. One satellite
will never overlap another satellite’s observations. Nor will one satellite be forced to slew excessively or
leap-frog another satellite’s observations to avoid overlap. The results in Figure 3 indicate that a single
satellite observed RSOs for roughly three times the duration that it spent observing search sectors. Also, we
can see that the total coverage for this more complex dynamic scenario was below that of the coverage from
the simpler, search only scenario. This is due to increased slew activity between randomly placed RSOs.
Search sector to search sector slews are never more than 10 degrees whereas RSOs may be further apart.
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Figure 2: Near-perfect scaling of searching coordination as more satellites are added. Perfect scaling here
would show up as exact linear increases in coverage time, mirroring those that appear when the first satellite
is added, suggesting that there is no duplication of effort across satellites. Here the results scale almost exactly
linearly, suggesting our approach provides optimal coordination for detection with a number of satellites.
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Figure 3: Near-perfect scaling of tracking coordination as more satellites are added. Perfect scaling here
would show up as exact linear increases in coverage time, mirroring those that appear when the first satellite is
added, suggesting that there is no duplication of effort across satellites. Here the results scale almost exactly
linearly, suggesting our approach provides optimal coordination for tracking with a number of satellites.
Because RSO tracking has a higher priority than detection, sector search tasks were degraded in order to
service RSO track tasks.
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V. Conclusion

In this paper we have applied Charles River’s market based approach to detection and tracking of RSOs
within a high-level simulation that assumes a future detection and tracking capability employing multiple
LEO MSX-like satellites. We tested our assumption, that a market based approach provides efficient, robust,
multi-objective search and track plans at both an individual satellite and global level and achieved near linear
scaling in both simple and dynamic scenarios. Market based algorithms are robust and combine the best
characteristics of both distributed and centralized solutions. These qualities suit future space-based space-
search detection and tracking missions which, by their very nature, takes place in a distributed, constrained,
and dynamic environment.
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