
Abstract 

Research has shown that answers do not exist in 
biomedical corpora for many questions posed by 
physicians. We have therefore developed a 
question filtering component that determines 
whether or not a posed question is answerable. 
Using 200 clinical questions that have been 
annotated by physicians to be answerable or 
unanswerable, we have explored the use of 
supervised machine-learning algorithms to 
automatically classify questions into one of these 
two categories. We also have incorporated 
semantic features from a large biomedical 
knowledge terminology. Our results show that 
incorporating semantic features in general 
enhances the performance of question 
classification and the best system is a 
probabilistic indexing system that achieves an 
80.5% accuracy. Our analysis also shows that 
stop words may play an important role for 
separating Answerable from Unanswerable. 

1 Introduction 

Chinese myth has long portrayed a powerful god 

Erlang Shen, who has a magical third eye in the 

middle of his forehead that sees truth. The real world 

mixes truth and falsehood and questions may be 

answerable or unanswerable. In the field of automatic 

question answering (QA), most QA systems 

implicitly assume that all questions are answerable. 

This study presents what we believe is the first 

attempt to separate answerable questions from 

unanswerable ones.  We are essentially aiming to 

create the keen third eye to filter out unanswerable 

questions. The answerable questions can then be 

further processed for answer extraction and 

generation; the unanswerable questions may be 

further analyzed to determine the user’s intentions. 

 

Automatic question answering applies artificial 

intelligence and natural language processing 

techniques to extract information from corpora or 

databases in order to answer a user’s question. Since 

no corpora or databases, no matter how large, can 

incorporate the entire universe of knowledge, they 

will not contain answers to certain questions. For 

example, research (Jacquemart and Zweigenbaum 

2003) has found that the largest text collection, the 

World Wide Web, is not a good source for answering 

medical, domain-specific questions. On the other 

hand, biomedical literature and reputed online 

medical databases are useful for this task (Sackett et 

al. 2000, Straus and Sackett 1999). However, these 

same biomedical resources can not answer the 

question “What is causing her hives?”; this question 

was posed by a family physician (Ely et al. 2002). 

This study explores the use of supervised machine-

learning approaches to automatically identify whether 

or not a question is answerable using biomedical 

corpora and databases. 

 

Determining whether or not a question is answerable 

is a first step towards question answering. A question 

answering system needs first to identify a user’s 

intentions, and then to generate a useful answer. 

Previously, studies have proposed models to offer 

explanations for failed queries or the results of the 

queries that are “unknown” (Chalupsky and Russ 

2002). In this application, when a question is not 

answerable, the question answering system may 

further evaluate the question. For example, if the 

unanswerable question is not related to the medical 

domain, a system might return the question to user 

Being Erlang Shen: Identifying Answerable Questions 
 

Hong Yu 
Columbia University 

Department of Biomedical Informatics 
622 West, 168th Street, VC-5, NY, NY 10032 

yuh9001@dbmi.columbia.edu 
 

Carl Sable 
Cooper Union 

Department of Electrical and Computer Engineering 
51 Astor Place, NY, NY 10003 

sable2@cooper.edu 
 

Topics: language processing, reasoning aspects, knowledge representation and integration 
 



and provide the justification that the system only 

handles medical questions. If the unanswerable 

question is ambiguous, a system could use 

disambiguation to generate a list of non-ambiguous 

questions, from which the user can identify one or 

more according to his/her intentions. The efforts on 

identifying a user’s intentions have been addresses in 

earlier work (Chalupsky and Russ 2002, Harabagiu et 

al. 2004, Gaasterland et. al. 1994, Grice 1975). 

 

2   Related Work 
 

Research on identifying a user’s intentions starts with 

maxims of cooperative conversation (Grice 1975). A 

review is given by (Gaasterland et. al. 1994), who 

have analyzed cooperative answering as a specific 

application of Grice's maxims of cooperative 

conversation. According to these maxims, answers 

(and other contributions to a conversation) should not 

only be correct, but in addition, they should be 

useful, they should not be misleading, and they 

should not contain too much information. The 

overview provided by Gaasterland and his colleagues 

discusses how these maxims might be applied to 

query/answer systems, which they define to include 

not only question answering systems as defined in 

this paper, but also database systems and deductive 

databases that accept logical queries. 

 

One interesting discussion in the work of Gaasterland 

and his colleagues involve general categories of 

reasons that a query or question might fail to have an 

answer. For example, the wording of a question 

might contain a false presupposition. An example in 

the medical domain might be, “What drug can fight 

the disease blindness?” The response “None” would 

be incorrect, since it seems to validate the false 

presupposition that blindness is a disease. A good 

response might be “Blindness is not a disease.” 

Another interesting case involves questions with 

misconceptions, which are more general than false 

presuppositions. Questions with misconceptions can 

have correct answers that are still misleading. An 

example in the medical domain might be “What drug 

can a therapist prescribe to fight depression?” In this 

case, the answer “None” would technically be correct 

but misleading; a better response would be 

“Therapists can not prescribe drugs.” 

 

Chalupsky and Russ (2002) propose to provide a list 

of plausible answers or explanations when exact 

answers cannot be found in a database in response to 

a user’s query. Possible explanations deal with 

missing knowledge, limitations of resources, user 

misconceptions, and bugs in the system. Chalupsky 

and Russ have created a system called WhyNot, 

which accepts queries to the general knowledge base 

Cyc, and attempts to provide what they call partial 

proofs for failed queries. An example provided by the 

authors involves the question, “Is it true that anthrax 

lethally infects animals?” The answer, according to 

the system, is unknown, but WhyNot also determines 

that the answer would be known if an animal is a 

kind of mammal. WhyNot was built on a relational 

database and does not handle ad hoc questions. 

 

Harabagiu and her associates (2004) have proposed 

methods to combine semantic and syntactic features 

for identifying a user’s intentions. As stated in their 

paper, if a user asks “Will Primer Minister Mori 

survive the crisis?”, the method detects the user’s 

belief that the position of the Prime Minister is in 

jeopardy, since the concept DANGER is associated 

with the words “survive” and “crisis”. In addition, 

they propose that the predicate-argument structures 

of a question can be used to coerce a user’s intention 

when there exist questions with known intentions. 

The work discussed in (Harabagiu et al. 2004) 

derives intentions only from the questions, and does 

not involve human-computer dialogue.  

 

Many research groups have developed either rule-

based (Hughes 1986) or machine-learning approaches 

(Hermjakob 2001, Zhang and Lee 2003) to 

automatically classify questions into predefined 

question types (e.g., definitional questions such as 

“What is X”?) for the purpose of answer generation. 

However, they all assume that all questions can be 

answered. Our study presents a different dimension 

that demonstrates that not all questions can be 

answered, and that unanswerable questions can be 

automatically identified.   

 

This study is a part of our ongoing effort involving 

the development of a domain-specific QA system, 

BioMedQA, which will automatically generate 

answers to questions posed by physicians and 

biomedical researchers. In the following sections, we 

first describe QA in general, as well as particular 

considerations relevant to the development of a 

domain-specific QA system. Next we describe our 

question collection and our approaches of classifying 

questions as Answerable or Unanswerable. We then 

present and evaluate our results. We close our paper 

with discussion, conclusions, and future work. 

3 Question Answering 

Question answering is an advanced form of 
information retrieval in which focused answers are 
generated for either user queries or ad hoc questions. 
Most research development in the area is in the 
context of open-domain, collection-based or web-



based QA. Largely driven by the Text REtrieval 
Conference (TREC) QA track1, technologies have 
been developed for generating short answers to 
factual questions (e.g., “Who is the president of the 
United States?”). Recently, the Advanced Research 
and Development Activity (ARDA)’s Advanced 
Question & Answering for Intelligence (AQUAINT) 
program2 has supported QA techniques that generate 
long answers for scenario questions (e.g., opinion 
questions such as “What does X think about Y?” (Yu 
and Hatzivassiloglou 2003)). Most QA systems 
leverage techniques from several fields including 
information retrieval (Rigsbergen 1979), which 
generates query terms relevant to a question and 
selects documents that are likely candidates to 
contain answers; information extraction, which 
locates portions of a document (e.g., phrases, 
sentences, or paragraphs) that contain the specific 
answers; and summarization and natural language 
generation, which are used to generate coherent, 
readable answers. 
 
Recently there has been growing interest in domain-
specific question answering. For example, ACL 2004 
dedicated a workshop to QA within restricted 
domains. Domain-specific, biomedical QA can differ 
from open-domain QA in at least two important 
ways. For one, it might be possible to have a list of 
question types that are likely to occur, and separate 
answer strategies might be developed for each one. 
Secondly, domain-specific resources such as 
knowledge bases and tools exist with a level of detail 
that might allow a deeper processing of questions 
than is not possible for open-domain questions. 

4 Question Collection and Annotation 

Ely and his colleagues (Ely et al. 1999, Ely et al. 
2000) have collected thousands of clinical questions 
from more than one hundred family doctors. They 
have excluded requests for facts that could be 
obtained from the medical records (e.g., “What was 
her blood potassium concentration?”) or from the 
patient (e.g., “How long have you been coughing?”). 
The National Library of Medicine has made available 
a total of 4,653 clinical questions3 over different 
studies (Alper et al. 2001, D'Alessandro et al. 2004, 
Ely et al. 1999, Ely et al. 2000, Gorman et al. 1994, 
Niu et al. 2003).  
 
Although physicians tend to ask many questions 
when caring for patients, studies have found that 
many physicians cannot find satisfactory answers for 
their questions. Ely and his colleagues have identified 

                                                 
1 http://trec.nist.gov/ 
2 http://www.informedia.cs.cmu.edu/aquaint/ 
3 http://clinques.nlm.nih.gov/JitSearch.html 

59 obstacles that prevent physicians from finding 
answers to some of those questions (Ely et al. 2002). 
They found that the most common class of obstacle 
preventing physicians from getting answers to their 
clinical questions is that the information resources do 
not always contain the answers. For example, 
biomedical information resources can not answer 
non-clinical questions such as “How do you stop 
somebody with five problems, when their 
appointment is only long enough for one?”  
 
In addition, in the medical domain, physicians are 
urged to practice Evidence Based Medicine when 
faced with questions about how to care for their 
patients (Gorman et al. 1994, Straus and Sackett 
1999, Bergus et al. 2000).  Evidence based medicine 
refers to the use of the best evidence from scientific 
and medical research to make decisions about the 
care of individual patients. The needs of evidence 
based medicine have also driven biomedical 
researchers to provide evidence in their research 
reports. With this in mind, Ely and his colleagues 
have created an “evidence taxonomy” to organize 
medical questions into five hierarchical categories 
(shown in Figure 1). 
 
In addition, Ely and his colleagues have manually 
annotated 200 clinical questions, placing them into 
the five leaf categories shown in Figure 1. Those 200 
questions were randomly selected from the thousands 
that they collected (Ely et al. 2002). After searching 
for answers to these questions in biomedical literature 
and online medical databases, Ely and his colleagues 
have concluded that the Non-clinical, Specific, and 
Non-evidence questions are not answerable, while 
both subcategories of Evidence (i.e., Intervention and 
No-intervention questions) are potentially answerable 
with evidence. Non-clinical questions do not deal 
with the specific domain, Specific questions require 
information from a patient’s record, and Non-
evidence questions are questions for which the 
answer is generally unknown. This results in a total 
of 83 unanswerable questions and 117 answerable 
questions. These 200 questions have been used in our 

Figure 1: “Evidence taxonomy” created by Ely and 

his colleagues (Ely et al. 2002) with examples. 

Questions 

Non-clinical Clinical 

Specific General 

No evidence Evidence 

How do you stop somebody with five 

problems, when their appointment is 

only long enough for one? 

What is causing  

her anemia? 

What is the name of that rash 

that diabetics get on their legs? 

Intervention No intervention 

What is the drug of choice 

for epididymitis? 

How common is depression after 

infectious mononucleosis? 



study to automatically classify a question as either 
Answerable or Unanswerable. 

5 Supervised Machine-Learning  

Separating Answerable from Unanswerable is a task 
of document categorization. We have explored 
supervised machine-learning approaches to 
automatically classify a question into one of these 
two categories. In the following subsections, we will 
describe the machine-learning systems, the learning 
features, the cross-validation methodology, and the 
evaluation metrics used for our classification. 

5.1 Systems 

We have applied seven text categorization systems 
using a variety of approaches. Five of the seven 
systems comprise the publicly available Rainbow 
package (McCallum 1996). The approaches used by 
these systems are Rocchio/TF*IDF, K-nearest 
neighbors (kNN), maximum entropy, probabilistic 
indexing, and naïve Bayes. All of these approaches 
have been used successfully for text categorization 
tasks (Sebastiani 2002). We have also applied 
support vector machines4 because it has shown to be 
successful for text categorization tasks (Yang and Liu 
1999, Sebastiani 2002). Additionally, we have 
explored the machine-learning system, BINS (Sable 
and Church 2001), which is a generalization of Naive 
Bayes. Brief descriptions of these approaches are 
given in the following subsections; see (Sable 2003) 
for more detailed descriptions of these machine-
learning algorithms. 

Rocchio/TF*IDF 
A Rocchio/TF*IDF system (Rocchio 1971) adopts 
TF*IDF, the vector space model typically used for 
information retrieval, for text categorization tasks. 
Rocchio/TF*IDF represents every document and 
category as a normalized vector of TF*IDF values. 
The term frequency (TF) of a token (typically a 
word) is the number of times that the token appears 
in the document or category, and the inverse 
document frequency (IDF) of a token is a measure of 
the token's rarity (usually calculated based on the 
training set). For test documents, scores are assigned 
to each potential category by computing the 
similarity between the document to be labeled and 
the category, often computed to be the cosine 
measure between the document vector and the 
category vector; the category with the highest score is 
than chosen. 

K-Nearest Neighbors (kNN) 
A K-nearest neighbors system determines which 
training questions are the most similar to each test 

                                                 
4 We have applied Libsvm, which is available at 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

question, and then uses the known labels of these 
similar training questions to predict a label for the 
test question. The similarity between two questions 
can be computed as the number of overlapping 
features between them, as the inverse of the 
Euclidean Distance between feature vectors, or 
according to some other measure. The kNN approach 
has been successfully applied to a variety of text 
categorization tasks (Sebastiani 2002, Yang and Liu 
1999). 

Naïve Bayes 
The naïve Bayes approach is commonly used for 
machine learning and text categorization tasks. Naïve 
Bayes is based on Bayes' Law and assumes 
conditional independence of features. For text 
categorization, this “naive” assumption amounts to 
the assumption that the probability of seeing one 
word in a document is independent of the probability 
of seeing any other word in a document, given a 
specific category. Although this is clearly not true in 
reality, Naive Bayes has been useful for many text 
classification and other information retrieval tasks 
(Lewis 1998). The label of a question is the category 
that has the highest probability given the “bag of 
words” in the document. To be computationally 
feasible, log likelihood is generally maximized 
instead of probability. 

Probabilistic Indexing 
This is another probabilistic approach that chooses 
the category with the maximum probability given the 
words in a document. Probabilistic indexing stems 
from Fuhr’s probabilistic indexing paradigm (Fuhr 
1988), which was originally intended for relevance 
feedback and was generalized for text categorization 
by Joachims (Joachims 1997), who considered it a 
probabilistic version of a TF*IDF classifier, although 
it more closely resembles naïve Bayes. Unlike naïve 
Bayes, the number of times that a word occurs in a 
document comes into play, because the probability of 
choosing each specific word, if a word were to be 
randomly selected from the document in question, is 
used in the probabilistic calculation. Although this 
approach is less common in the text categorization 
literature, one author of this paper has seen that it is 
very competitive for many text categorization tasks 
(Sable 2003). 

Maximum Entropy 
This is another probabilistic approach that has been 
successfully applied to text categorization (Nigam et. 
al. 1999). A maximum entropy system starts with the 
initial assumption that all categories are equally 
likely. It then iterates through a process known as 
improved iterative scaling that updates the estimated 
probabilities until some stopping criterion is met. 
After the process is complete, the category with the 
highest probability is selected. 



Support Vector Machines (SVMs) 
A support vector machine system is a binary 
classifier that learns a hyperplane in a feature space 
that acts as an optimal linear separator which 
separates (or nearly separates) a set of positive 
examples from a set of negative examples with the 
maximum possible margin (the margin is defined as 
the distance from the hyperplane to the closest of the 
positive and negative examples). SVMs have been 
widely tested to be one of the best machine-learning 
classifiers, and previous studies have shown that 
SVMs outperform other machine learning algorithms 
for open-domain sentence classification (Zhang and 
Lee 2003) and other text categorization tasks (Yang 
and Liu 1999, Sebastiani 2002). 

BINS 
The BINS system (Sable and Church 2001) uses a 
generalization of Naive Bayes. BINS places words 
that share common features into a single bin. 
Estimated probabilities of a token appearing in a 
document of a specific category are then calculated 
for bins instead of individual words, and this acts as a 
method of smoothing which can be especially 
important for words with scarce evidence. BINS has 
proven to be very competitive for many text 
categorization tasks (Sable 2003, Yu and Sable 
2005). 

5.2 Learning Features 

We have explored bag of words as learning features. 

Since our collection consists of biomedical, domain-

specific questions, we have also incorporated 

concepts and semantic types from the largest 

biomedical knowledge resource Unified Medical 

Language System (UMLS), as additional learning 

features for question classification. Including the 

UMLS features represents a method of class-based 

smoothing (Resnik, 1993) where the probabilities of 

individual or sparse words are smoothed by the 

probabilities of larger or less sparse semantic classes. 

In the following subsection, we will describe UMLS 

concepts and semantic types. 

5.3 The Unified Medical Language System 

The National Library of Medicine (NLM) has created 
the Unified Medical Language System (UMLS)5 
(Humphreys and Lindberg 1993) to aid in the 
development of computer systems that process text in 
the biomedical domain. The UMLS includes the 
Metathesaurus, a large database that incorporates 
more than one million biomedical concepts plus 
synonyms and concept relations. For example, the 
UMLS links the following synonymous terms as a 
single concept: Achondroplasia, Chondrodystrophia, 

                                                 
5 http://www.nlm.nih.gov/research/umls/ 

Chondrodystrophia fetalis, and Osteosclerosis 
congenita. 
 
 The UMLS also consists of the Semantic Network, 
which contains 135 semantic types; each semantic 
type represents a more general category to which 
certain specific UMLS concepts can be mapped via 
is-a relationships (e.g., Pharmacologic Substance). 
The Semantic Network also describes a total of 54 
types of semantic relationships (e.g., hierarchical is-a 
and part-of relationships). Each specific UMLS 
concept in the Metathesaurus is assigned one or more 
semantic types. For example, Arthritis is assigned to 
one semantic type, Disease or Syndrome; 
Achondroplasia is assigned to two semantic types, 
Disease or Syndrome and Congenital Abnormality. 
 
 The National Library of Medicine makes available 
MMTx6, a programming implementation of MetaMap 
(Aronson 2001), which maps free text to UMLS 
concepts and their associated semantic types. The 
MMTx program first parses text, separating the text 
into noun phrases. Each noun phrase is then mapped 
to a set of possible UMLS concepts, taking into 
account spelling and morphological variations, and 
each concept is weighted, with the highest weight 
representing the most likely mapped concept. The 
UMLS concepts are then mapped to semantic types 
according to definitive rules as described in the 
previous paragraph. MMTx can be used either as a 
standalone application or as an API that allows 
systems to incorporate its functionality. In our study, 
we have applied MMTx to map terms in a question to 
appropriate UMLS concepts and semantic types; we 
have added the resulting concepts and semantic types 
as additional features for question classification. 

5.4 Cross-Validation 

To evaluate the performance of each system, we have 
performed four-fold cross-validation. Specifically, 
we have randomly divided our corpus into four 
subsets of 50 questions each for four-fold cross-
validation experiments; i.e., we train on 150 
questions and test on the other 50, and perform four 
such experiments with each of the text-categorization 
system that we have tested. We have performed these 
experiments using bag of words alone as well as bag 
of words plus combinations of the other features 
discussed in the previous subsection. 

5.5 Evaluation Metrics 

Results are reported according to two metrics. The 
first metric is overall accuracy, which is simply the 
percentage of questions that are categorized correctly 
(i.e., they are correctly labeled as Answerable or 
Unanswerable). A simple baseline system that 
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automatically categorizes all questions as Answerable 
(something that most automatic QA systems assume 
anyway) would achieve an overall accuracy of 
117/200 = 58.5%. 
 
The second metric is the F1 measure (Rigsbergen 
1979) for the Answerable category. The F1 measure 
combines the precision (P) for the category (the 
number of documents correctly placed in the category 
divided by the total number of document placed in 
the category) with the recall (R) for the category (the 
number of documents correctly placed in the category 
divided by the number of documents that actually 
belong to the category). The metric is calculated as 
F1 = (2 * P * R) / (P + R); the result is always in 
between the precision and the recall but closer to the 
lower of the two, thus requiring a good precision and 
recall in order to achieve a good F1 measure. 

 6 Results 

Since we have applied MMTx for identifying 
appropriate UMLS concepts and semantic types for 
each question, which are then included as features for 
question classification, we have evaluated the 
precision of MMTx for this task. One of the authors 
(Dr. Carl Sable) has manually examined the 200 
questions comprising our corpus as described in 
Section 3. MMTx assigns 769 UMLS Concepts and 
924 semantic types to the 200 questions (remember 
that some UMLS concepts are mapped to more than 
one semantic type, as described in Section 5.3). Our 
analysis has indicated that 164 of the UMLS Concept 
labels and 194 of the semantic type labels are wrong; 
this indicates precisions of 78.7% and 79.0%, 
respectively. An example of a case that MMTx gets 
wrong is the abbreviation “pt”, which, in this corpus, 
is often used as an abbreviation for “patient”; MMTx 
typically assigns this to the UMLS concept pint and 
the semantic type Quantitative Concept. Note that 
manually estimating the recall of MMTx would be 
difficult, since it would require an expert that is 
familiar with all possible UMLS concepts and the 
ways to express them. 
 
We have compared the performance of the machine-
learning systems specified in Section 5.1 used to 
label questions as Answerable or Unanswerable with 
feature combinations described in Sections 5.2 and 
5.3. Table 1 shows the results of all systems tested 
using the cross-validation procedure explained in 
Section 5.4. For four of the six feature combinations, 
the system that achieves the best performance is the 
Probabilistic Indexing system; the overall accuracy is 
as high as 80.5% and the F1 measure for the 
Answerable category is as high as 83.0%. We have 
also found that incorporating UMLS concepts or 
semantic types often improves performance 
compared to using bag-of-words only. 

Table 2 lists six questions that are predicted 
incorrectly by the best machine-learning classifier 
(i.e., probabilistic indexing with bag-of-words and 
UMLS concepts as features).  Questions are 
presented exactly as they were expressed by 
physicians, including bad grammar and incorrect 
spellings.  Since we can not control what physicians 
will type, these represent complexities that will have 
to be dealt with by a real-world system. 
 

Answerable: 
1) What is best time to get OB ultrasound for dating 
and to see other things? 
2) What are long-term options for hemorrhagic 
gastritis beyond H2 blockers? 
3) Does Zoloft cause stomach upset? 

Unanswerable:  
4) What is the cause of this patient’s tremor? 
5) What dose the HMO formulary say I can use for 
this patient’s nasal condition? 
6) How long shall I treat knee injury w conservative 
measures before referring? 

Table 2: Three Answerable and three Unanswerable 

questions that the classifier predicts incorrectly.  
 
In order to examine useful features for the 
classification, we have calculated log likelihood 
ratios of word occurrences in each of our two 
categories (i.e., Answerable and Unanswerable). For 
each word/category pair, the level of indication of the 
word for the category is computed as the log 
likelihood of seeing the word in a question of the 
specified category minus the log likelihood of seeing 
the word in the other category. Thus, the strength of 
the word for a category will only be positive if it is 
the more likely category of the two, given the word, 
and the magnitude of the strength will depend on the 
likelihood of the other category.  For each question, 
the strength of all words in the question have been 
computed for both categories based on evidence from 
the other questions (one category will have a positive 
strength and the other category will have a negative 
strength for each word), and the top words for both 
categories have been examined. For example, 
consider the following Answerable question:  
 
"How soon should you ambulate a patient with a deep 
vein thrombosis?" 
 
The top three words indicating the Answerable and 
Unanswerable categories, with scores calculated as 
described above (higher scores representing stronger 
indications of a category), are: 
 
Answerable: you (1.8), should (1.0), how (0.5) 
Unanswerable: a (1.6), patient (0.2), with (-0.2) 
 



Note that the word “with” has a negative weight; this 
means that it is really an indicator of an Answerable 
question.  So this question contains only two words 
that are indicative of an Unanswerable question. 
Note that the words “ambulate” and “thrombosis” are 
infrequent and do not show up in either list; it is 
likely that these words do not occur in any other 
question, in which case there is no evidence for them 
and their scores would be 0 for both categories. 
 
We have observed that many stop words have high 
scores and we have therefore hypothesized that stop 
words may play an important role for this 
classification task. Studies have found that for some 
non-content based categorization tasks, stop words, 
have proven to be useful; one example is authorship 
attribution (Mosteller and Wallace 1963). Table 3 
shows the change in classification performance when 
we remove the stop words from the questions. (These 
results have only been computed for the Rainbow 
systems, which provide a simple mechanism to do 
this.) Our results show that when we exclude stop 
words, this tends to decrease performance, and in 
particular this is true for the naïve Bayes and 
probabilistic indexing systems. These results provide 
evidence that stop words may play an important role 
for classifying a question posed by a physician as 
either Answerable or Unanswerable. 

7    Discussion 

Based on overall accuracy results, all systems beat 
random guessing (50.0%) and the simple baseline 
system that is described in Section 5.5. (58.5%). 
Furthermore, the F1 measure for the Answerable 
category is higher than the overall accuracy for each 
system; this indicates that all systems have a slight 
disposition towards the Answerable category (based 
on the training documents). Compared to typical text 
categorization tasks, our task is more challenging 
because our data set is small (only 150 short 
questions are used for training at one time) which 
leads to a small feature space. Nevertheless, most 

systems achieve reasonable performance with several 
feature combinations, and the probabilistic indexing 
system achieves and overall accuracy that is up to 
22.0% higher than the simple baseline system. 
 
A manual inspection of the questions that are 
classified incorrectly reveals the problem of data 
sparseness; for most of these questions, the majority 
of words do not occur in any other question in the 
data set. For example, in Table 2, the word 
“hemorrhagic” in question 2 does not appear in any 
other question. We speculate that a larger training set 
could potentially alleviate this problem and boost our 
results. We have also found that some questions may 
be mislabeled. For example, the question “Would it 
be better to put her on a potassium sparing diuretic or 
just potassium” has been labeled as Answerable, but 
it seems to us that this is a patient-specific question 
that should be labeled as Unanswerble.  
 
Our results show a moderate increase of performance 
when including the UMLS features. We have 
observed that many UMLS concepts in these 
questions, when labeled correctly, represent 
information that was already present in the bag of 
words representation. We also found that some 
semantic types tend to be very general, appearing in 
both Answerable and Unanswerable questions 
commonly. For example, the semantic type Disease 
or Syndrome occurs 44 times in 37 Answerable 
questions and 30 times in 26 Unanswerable 
questions. Therefore, these tokens will not play an 
important role for classification. However, we 
believe that this same information will be 
indispensable for potential future work discussed in 
Section 8. 

8 Conclusions and Future Work 

This paper describes what we believe is the first 
attempt in the field of question answering to 
automatically identify answerable questions, i.e., the 
questions for which answers can be found in the 

Table 1: Percentages for overall accuracy and F1 scores (in parentheses) of  machine-learning systems with different 

combinations of learning features for classifying Answerable versus Unanswerable biomedical questions. 

“*” indicates Rainbow implementation 

“**” indicates libsvm implementation 

Performance Using  Features (C means UMLS Concepts, ST means semantic types) 
ML Approach 

Bag of Words Words+C Words+ST Words+C+ST C only ST only 

*Rocchio/TF*IDF 74.0 (77.4) 72.5 (75.8) 74.5 (77.5) 74.0 (77.2) 67.6 (70.3) 65.0 (68.5) 

*kNN 68.5 (71.7) 69.0 (73.5) 65.5 (69.9) 65.5 (70.1) 65.0 (66.0) 61.5 (61.6) 

*MaxEnt 66.0 (69.6) 68.0 (73.1) 70.5 (76.1) 69.5 (74.9) 65.0 (67.6) 65.5 (70.9) 

*Prob Indexing 78.0 (81.7) 80.5 (83.0) 80.0 (82.9) 79.0 (82.1) 70.0 (70.8) 66.5 (70.0) 

*Naïve Bayes 68.0 (74.8) 74.5 (77.9) 73.5 (77.6) 73.0 (76.7) 71.0 (76.0) 64.0 (69.2) 

**SVMs 67.5 (74.9) 68.0 (74.6) 69.0 (75.4) 67.0 (73.6) 62.5 (70.1) 67.0 (69.8) 

BINS 72.0 (74.5) 72.0 (75.2) 68.5 (72.2) 66.5 (69.1) 66.0 (70.7) 58.5 (64.4) 



available corpora. Our results are promising; the best 
system achieves an 80.5% overall accuracy for 
separating Answerable from Unanswerable questions 
based on a small training set. We consider this result 
to represent an important proof-of-concept. In the 
future, we expect that biomedical QA systems such 
as BioMedQA will be able to accurately distinguish 
Answerable from Unanswerable questions relying on 
more advanced processing described in the following 
paragraph. 
 
We believe that it will eventually be possible to 
automatically decompose biomedical questions 
according to component question types, which are 
described in (Ely et al. 1999); for example, “What are 
the affects of <drug> on <disease>?”. We speculate 
that the recognition of UMLS concepts and semantic 
types using tools such as MMTx will play a key role 
in this type of question classification. If questions can 
be accurately mapped to component question types, 
then the filtering of unanswerable questions will 
become straight-forward; an even greater benefit will 
be that specific answer strategies could be developed 
for each answerable component question type. 
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