
A Cost Calculus for Parallel FunctionalProgrammingD.B. Skillicorn�Department of Computing and Information ScienceQueen's University, Kingston, Canadaskill@qucis.queensu.caW. CaiSchool of Applied ScienceNanyang Technological UniversitySingapore 2263aswtcai@ntu.ac.sgAugust 23, 1994AbstractBuilding a cost calculus for a parallel program development environment is di�cultbecause of the many degrees of freedom available in parallel implementations, and be-cause of di�culties with compositionality. We present a strategy for building cost calculifor skeleton-based programming languages which can be used for derivational software de-velopment and which deals in a pragmatic way with the di�culties of composition. Theapproach is illustrated for the Bird-Meertens theory of lists, a parallel functional languagewith an associated equational transformation system.Keywords: functional programming, parallel programming, program transformation,cost calculus, equational theories, architecture independence, Bird-Meertens formalism.1 IntroductionThe calculational approach to software development uses a set of transformation or re-�nement rules to derive an e�cient, executable speci�cation (that is, a program) from a�This work was supported by the Natural Sciences and Engineering Research Council of Canada.1

naive but obviously correct speci�cation. The transformation rules are constructed to becorrectness-preserving. Thus there is no post hoc veri�cation requirement, provided thatall of the transformations used during a derivation are correctly applied. Derivations arebroken up into small steps, usually the application of a single rule, and therefore require (atleast in theory) fewer large insights and more small insights or routine steps. Derivationsalso make the choice points in each design explicit and generate documentation of choicesas a side-e�ect. The collection of transformation rules for a particular context is called aprogramming calculus.The calculational approach is becoming deservedly popular for sequential software de-velopment [6, 24]; and seems essential for parallel software development because of the extracomplexity involved. Verifying a massively parallel program after it has been written seemstoo complex to be a practical approach.One aspect of calculational software development to which little attention has been paidis the provision of cost information at intermediate stages in a derivation. At points wherechoices must be made between algorithms, such information can be used to guide the deriva-tion towards e�cient programs. In what follows, we take cost to mean parallel executiontime, but other costs such as memory or processor requirements can also be considered.An ideal cost system should have the following three properties:� It should abstract from the details of implementations su�ciently to allow costs to becomputed from only small amounts of information.� It should be compositional, that is the cost of a program constructed from smallerpieces should depend in a simple way on the cost of the pieces. For this to be possible,the cost of each program fragment should depend only on what that fragment doesand not on the context in which it occurs.� It should be related to the programming calculus, so that transformation rules can beannotated with their e�ects on costs. The e�ect of using a rule at some point in thederivation can then be determined before using it.The �rst property requires identifying those parameters of programs, compilers, and archi-tectures that are critical to performance. The second two properties require that the costsystem be a calculus, coupled with and parallel to the programming calculus.It is harder to build a useful cost system for parallel computation than for sequentialcomputation because there are many more degrees of freedom. One way to characterise costsystems is to ask what factors must be known in order to compute costs. The fewer factorsrequired, the more abstract and useful the cost system becomes. Some important factorsare:� Details of the structure of the program;� The size of the input (or the size of the problem);2

� The extent to which the work to be done depends on values of the input, rather thantheir number and sizes;� The way in which the program is decomposed into threads that can execute on di�erent(virtual) processors;� The way in which communication between threads and the synchronization rules as-sociated with it are arranged;� The way in which the threads are mapped to physical processors (which usually involvesmultiplexing many threads on each processor and therefore introducing contention);� The mapping of communication actions to the target processor's interconnect (whichagain involves sharing and hence contention);� The extent to which the computation exhibits dynamic behaviour;The range of choices involved here makes a general cost system problematic. At present, theonly known way to build cost systems is to restrict the possible choices dramatically.This paper makes two contributions. The �rst is a method for getting compositionalityat the expense of limited inaccuracy, by providing implementation information indirectly toprogrammers via annotations to equations. There are two views of programs. Programmerssee programs as compositions of second-order functions whose costs are additive (that is thecost of a composition of two functions is the sum of their individual costs). This level ofabstraction is exactly what is needed for cost-based program derivation. Implementers viewprograms as compositions of monolithic, parameterised implementations of a set of basicoperations. Because of the existence of parameterised implementations, realistic costs, in-cluding a proper accounting for communication, can be expressed as functions of argumentsize and number of processors available, but independent of target architecture class. Infor-mation about the relative costs of di�erent implementations of the same function is conveyedby labelling or annotating equations with a cost-reducing direction. Equations are functionaltautologies, but implementation inequalities. Such annotation conveys cost information toprogrammers without violating the abstraction they see. Situations where the costs of im-plementations violate the simple additive view that programmers have are �xed by addingannotated equations to the software development transformation system.The second contribution is to work out such a cost system for a particular functionalprogramming language, the Bird-Meertens theory of lists. The approach works for thislanguage because:� all list homomorphisms can be expressed as compositions of two basic second-orderoperations, maps and reductions, so the initial set of operations for which implemen-tations must be built is small;� there is a rich equational theory that provides, at several points, help with �ndingimplementations of more complex list operations;3

� the topological requirements of list homomorphisms are mild, so that architectureindependent implementations can be built for a wide range of realistic architectures.As a side-e�ect, we produce a set of novel parallel implementations of common list operations,and their complexities.In the next section we brie
y survey existing approaches to computing the cost of pro-grams, particularly in a parallel setting. Not a great deal has so far been done. In Section 3we present the general strategy for handling costs so that the abstraction of compositionalityis maintained for programmers. Section 4 reviews the Bird-Meertens theory of lists. Section5 de�nes a notation that captures information about the size of arguments (which is neededto reason about the cost of operations, at least in the implementation view). Sections 6and 7 give details of the implementation and costs of typical operations for the simple casewhere the size of the argument list matches the number of processors available on the targetarchitecture. Section 8 repeats this for the harder, general case where list size and targetprocessors do not match. Section 9 shows how the implementation view is used to directequations to convey cost information indirectly to the software development level. Section10 shows how a programmer would use the equational system, by deriving a new parallelversion of the maximum segment sum problem.2 Existing Parallel Cost SystemsFor sequential computation, several cost systems have been developed. The RAM (RandomAccess Memory) model is the standard cost system for sequential imperative programming.Basic instructions are assumed to take unit time, memory references to take zero time, andspace used to be the maximum number of named locations in use at any step during thecomputation. Only program loops and recursions can a�ect the order of the execution timederived using this accounting, so it is straightforward to compute. Furthermore, the timescomputed are (up to a constant factor) the times programs take on real machines becausethe cost system is an accurate representation of real costs.For functional programming, this cost system does not work, because the programmingmodel abstracts from
ow of control and, in the presence of non-strictness, from whethersome parts of the program are executed at all. The standard functional cost model is tocount function calls as a surrogate for execution time. Techniques for doing this, whichcan be largely automated, have been investigated by Le M�etayer [19], and Sands [28, 29],who also deals with non-strictness. Bellegarde [2] has investigated using cost information toreduce redundant steps in programs in FP.Cost information is also used informally in programming calculi to argue about the im-provements in e�ciency that result from derivations. Examples may be found in the work ofBird [3, 6], especially in the derivation of the Knuth-Morris-Pratt algorithm [7], and in theRe�nement Calculus of Morgan [24].There are �ve main existing approaches to parallel cost systems: complete analysis,4

the PRAM model used in complexity theory, Valiant's Bulk Synchronous Parallelism, thepolytope model, and non-standard interpretations of functional languages.If all of the decisions listed at the end of the previous section are made explicitly aspart of the programming task, then cost measures are possible since, at a low enough level,program execution is deterministic. There are three reasons why this is not practical foreven moderately sized programs:� Programmers do not want to (and probably cannot) work at this level of detail;� The amount of detail that has to be used to work out costs is too large, especially formassive parallelism;� The complexity of �nding the optimal solution to even a part of the problem, themapping of a logical program structure to a physical system (the Mapping Problem),is known to be exponential.Also such cost systems can only be applied when programs have been completely developed,and so can play no role in calculational development.The PRAM model is used as the basis of the complexity theory of parallel algorithms. Inthe PRAM (Parallel Random Access Machine) model, the execution of basic instructions andaccess by a processor to a shared memory are assumed to take unit time. Communicationbetween threads is modelled by having the �rst thread write to a preagreed location andthe second thread read from it. Thus inter-thread communication is counted as taking O(1)time. The cost of a computation is given by stating the number of processors it uses andthe number of (parallel) unit time steps it requires.Computation of cost in the PRAM model requires knowing the complete structure of theprogram, and its decomposition into threads, but does not depend on mapping of data tomemory (since all parts of memory are assumed to have the same latency). The problem withthe PRAM model is that communication in the real world cannot be realized in constanttime, ultimately because of the �nite speed of light. PRAM costs underestimate the realcosts of execution but, worse, do so in an unpredictable way. Algorithm A and AlgorithmB may have the same PRAM cost but their real costs may di�er by orders of magnitudebecause one's communication demands are higher than the other's. Worse still, AlgorithmA may appear cheaper than Algorithm B in the PRAM framework, while Algorithm B ischeaper than Algorithm A on some useful set of parallel architectures. Examples wherethis occurs are found in [8, 25, 32]. While the PRAM model has been used extensively byalgorithm designers, its use in practice is problematic.The Bulk Synchronous Parallelism model of Valiant [22, 33{35] achieves a workable par-allel cost system by assuming uniform communication, that is the use of randomizationtechniques to bound the message delivery time across communication networks, even in thepresence of a bounded number of competing messages [23, 33]. This is more realistic thanthe PRAM model since it accounts for the true cost of communication, and is accurate fornew machines that provide the abstraction of uniform communication.5

A BSP program is a parallel program consisting of a number of phases or supersteps.At the beginning of each superstep, each thread may issue a global memory operation. Forthe remainder of the superstep it computes with values held local to it. After the end ofthe superstep, the global memory operations become e�ective locally, ready for the nextsuperstep. Thus a read from a remote memory must be requested in the superstep beforethe one in which the value is required.The performance of a BSP program can be computed based on two program properties,the problem size and the duration of supersteps, and three architectural properties, the num-ber of processors used, the ratio of computation time to communication time, and the latencyof communication across the machine. This is an attractive level of abstraction, requiringlimited knowledge of program structure, and only a handful of architectural parameters.The weakness of the BSP approach is that it forms a cost system but not a cost calculus.Having determined the cost of a program, there is no obvious way to use that informationto improve the program should the cost be unsatisfactory. Costs can also only be computedwhen the whole program has been developed, so the BSP cost system does not provideguidance during development.Another practical cost system is the polytope model [20] which computes the costs ofa restricted class of programs: perfectly nested for loop programs with constant time loopbodies in which the bounds of each loop are linear expressions in the indices of the enclosingloops. Alternatively, the class of programs can be viewed as a restricted class of recurrenceequations. Such computations can be regarded as forming a �nite convex set with
atsurfaces (a polytope) with dependencies that are regular and local. Linear programmingtechniques are used to schedule the computations in ways that minimize execution time, ornumber of processors used. This is used in the design of systolic arrays and in compile-timetransformations for loops in imperative programming languages [1].Roe, in his thesis [26], explored the parallel implementation of a higher-order functionallanguage. He concluded that a parallel constructor was needed to explicitly describe op-portunities for parallelism. He also analysed several parallel operations, at a number oflevels of detail, and noted a number of examples of places where poor analysis of programsor mistaken assumptions led to programs with poor parallel performance. There are otherexamples of the problems caused by mismatches between the cost system apparent to theprogrammer and the real costs of programs in [32]. A number of others have taken the lineof using non-standard interpretations of functional languages as an approach to obtainingcosts [17]. Linear logic is another approach that o�ers some hope of a general approach.As these examples show, it is possible to get useful cost information from programs as longas both the program structure and the possible implementations are su�ciently restricted.However, these approaches all depend on computing the cost of an entire program, and cantherefore not be used during modular developments. Developing a cost system in which thecost of pieces can be used to compute the cost of the whole, and which can therefore beapplied modularly, is more di�cult. 6

3 A Strategy for a Parallel Cost CalculusThe central problem in building a cost system is to provide the right level of abstraction |one that hides much of the underlying complexity, but that reveals enough for useful decisionsabout one choice of algorithm over another. There are two parts to this abstraction. The �rstis to reduce the amount of detail required to a manageable level. This involves restrictingthe form of programs, the
exibility of the compiler to map computations, and the formof target architectures modelled. We have seen several examples of such restrictions in theprevious sections.Unfortunately the details that are hidden by the cost system are precisely those that areneeded when designing programs. So the second part of the abstraction involves �nding away of making relative cost information available to programmers without requiring absolutecost information (which needs too much detail).The Bird-Meertens theory of lists is a useful starting place because the form of programsand their mapping to processors is restricted. The theory is based on list data structures andhomomorphic operations on them (called catamorphisms). These catamorphisms are higherorder functions, parameterised by list constructors and sets of functions cognate to them.Every catamorphism can be evaluated using a single standard recursive (and potentiallyparallel) schema. Thus all programs can be evaluated using a single skeleton.There are two specialised forms of this schema that are of particular importance | mapsand reductions. Every catamorphism can be expressed as the composition of a map and areduction, so that these two specialised operations form a basic set in which every programcan be written. The computation and communication patterns of maps and reductions arestraightforward, and versions of them suitable for restricted parallelism can easily be derived.Few basic implementations are therefore required.This might seem, at �rst glance, to be quite a restricted programming language. However,the class of catamorphisms includes all injective functions on lists, and many other listfunctions turn out to be simple extensions. So the class of the functions that can be computedwithin the framework is large | more restricted than the BSP model, but less restricted thanthe polytope model. Models of parallel computation based on sets of skeleton operationssuch as these are becoming popular [10, 14{16, 31].Having restricted the programming language to the composition of a �xed set of second-order functions or skeletons, the approach consists of two steps: choosing implementationsfor the basic operations, and solving the problems of composition.Any implementation for the basic operations is acceptable, provided the work it doesis equivalent to the work of the PRAM implementation. These implementations must beparameterized by the number of processors used, since we cannot in general expect thevirtual parallelism of an operation to match the physical parallelism of an implementingarchitecture.Composition introduces problems into any parallel cost calculus. To be useful, a costcalculus must have the property that the cost of g � f should be computable from the cost of7

g and the cost of f , preferably in some simple way independent of architectural properties.The obvious choice is that the cost of a sequential composition should be the sum of thecosts of its components. Without some simple compositionality property, we cannot usemodularity within a derivational setting, because there is not enough information availableto derive each piece without knowledge of the derivations of all of the other pieces. Theadditivity of costs can fail in two ways:� There is the possibility of beginning the computation of g before f has been completelyevaluated, overlapping processor usage on the two computations. Simply summing thecosts of g and f will overestimate the cost of g � f .� The function g �f may be equal to another composition, say s �r , and the new algorithmthis composition represents may be cheaper.The failure of additivity is fundamental | to �nd the optimal algorithm to compute some-thing, it is necessary to check the costs of all other compositions computing the same function,and this will be expensive.We propose the following general approach. Equations within the transformation systemare initially assumed to be cost-neutral from the programmer's point of view. Situationsin which implementers discover that the additive view of costs that programmers maintainis wrong (because it overestimates costs) are �xed by annotating equations involving thatcomposition to indicate which expression implies the cheaper implementation. The equationsexpress functional equalities, but are now understood to express implementation inequalities(that is, two sides of an equation may be implemented di�erently, with di�erent costs).Annotations are done by implementers, who understand architectures in detail, rather thanby programmers who would rather not.When the composition of two operations has an implementation, involving overlapping,whose cost is lower than the sum of the costs of its components, a new operation representingthe composite is de�ned, a de�ning equation is added, and this equation is labelled as cost-reducing. Thus, for the example above, we would add an equationnewop b= g � fand an annotation to indicate that it is cost-reducing right to left.When there are di�erent compositions that compute the same function, we annotate theequation connecting them to indicate which side is the cheaper. This induces a preorder onthe di�erent representations that compute the same function and allows the equations ex-pressing their functional equality to be used as cost-reducing rewrite rules. If the annotationsof enough equations are known, this can be used as the basis for an automated optimizer.The e�ect of these two enhancements is to separate the views that programmers andimplementers have of composition. From the perspective of the programmer, compositionsin programs are regarded as barrier synchronizations of the corresponding computations.Although newop and g � f are equivalent as functions, they have di�erent behaviours {8

newop is a single schedulable operation, while g � f is the execution of an operation f , uponwhose termination another operation g is executed. For the programmer, this means thatcosts behave additively.The extent to which the cost that the programmer computes is accurate is determinedby how many equations have been labelled. There is always the potential that some long,hitherto unconsidered, composition of functions has a cheap implementation, and so theprocess of annotating equations does not terminate. However, the programmer's cost calculusand real execution costs can be brought into arbitrarily close agreement by considering longerand longer compositions.Implementers regard composition as a statement about a data dependency between theentire result object of one operation and the argument of the next. This may be an oppor-tunity to �nd a cheaper implementation for the composite if possible.Thus there are e�ectively two views of operations and equations. Programmers viewoperations as monolithic operations on some data type, and composition as barrier synchro-nization. Equations are true equalities but they are labelled with a direction, revealing thatone side is cheaper to implement than the other.Implementers, on the other hand, view equations as detailed schedules of simple steps ona set of processors, with de�ned communication between the actions on di�erent processors.Composition is an opportunity to overlap the execution of successive operations. Equationsare functional identities but behavioural inequalities. Implementers may choose to add extraequations to the programming calculus for the purpose of labelling them, so making theprogrammers' view of costs more accurate. New named operations, and new equations,provide a way for relative cost information to be conveyed to programmers without breachingthe architecture- and processor-independent view of costs that programmers must maintain.This two-level approach seems to be a good pragmatic approach to a theoretically in-tractable problem: providing programmers with an abstraction of costs without forcing themto become aware of implementation details. It applies to any parallel programming calculusbased on skeletons for which there is a deterministic solution to the mapping problem. Thiscertainly includes language such as Parallel SETL [18], scan vectors [9], P3L [14] and otherskeleton-based languages [13, 16].In subsequent sections we show the working out of this approach in the context of theBird-Meertens theory of lists.4 Bird-Meertens BackgroundThe Bird-Meertens model of parallel computation is based on a �xed set of second-orderoperations for computing with each data type. These operations are generated, along witha program transformation system, by a categorical construction [21]. All programs arecompositions of these second-order operations, and are thus single-threaded, that is, fromthe programmer's point of view, there is only a single function being evaluated at any giventime. 9

We concentrate on the theory of join or concatenation lists. Join lists have three con-structors. The �rst makes an empty list, the second converts a scalar value to a list of lengthone, and the third, concatenation or ++, joins two lists to give a new list. Concatenationis associative. Although lists might seem a trivial data type, experience with data-parallellanguages suggests that many computations can be reasonably expressed within this frame-work [9]. We will ignore lists constructed with cons or snoc since these do not give anyopportunity for parallelism (although they do permit pipelining).A homomorphism on lists is a function that respects the list structure. A function h isa homomorphism if h(a ++ b) = h(a)) h(b)for some associative binary operation) andh([]) = ewhere e is the identity of). (If a and b are themselves lists, this equation applies recur-sively; since the computations of h on the right hand side are independent, homomorphismsnaturally create opportunities for parallelism.) By a result known as the First Homomor-phism Theorem [4], any homomorphism on lists can be expressed as the composition of amap followed by a reduction. Thus maps and reductions are the basic skeleton operations onlists. Because there are only a �xed set of these operations, it is possible to use only a �xedset of communication and computation patterns. Thus the mapping problem need only besolved for a few cases.The union of the communication patterns required by the second-order operations de�nesthe total communication needs of any Bird-Meertens list program of any size. We call thisunion the standard topology for the data type. The mapping problem now becomes theproblem of embedding the standard topology in the topology of a set of target machineswithout dilation, that is without implementing single-edge communication in the standardtopology by non-constant path length communication in the target interconnect. This willnot always be possible for every target architecture, but is possible for many reasonableones and, more importantly, for some architectures of all classes [30]. The mapping of thestandard topology to each new target is done once by a system implementer. For lists, thestandard topology is a binary tree.Once the standard topology has been embedded, all single-edge communication is imple-mented by constant length paths and therefore takes constant time. Thus we can act as ifcommunication is free, much as the PRAM model does, but with better justi�cation.Each of the second-order operations is strict and recursion is encapsulated within themas necessary so that issues relating to dynamic behaviour and non-termination do not arise.The �rst basic operation is the map of a function f and is written f �. It is of typeList(�)! List(�). Its e�ect isf �[a1; a2; : : : ; an] = [fa1; fa2; : : : ; fan]10

A variant of the map operation that lifts a binary operation is called zip and is de�ned by[a1; a2; : : : ; an] 1([b1; b2; : : : ; bn] = [a1 (b1; a2 (b2; : : : ; an (bn]The second basic operation, reduce, is written (= (where (is the operation of somemonoid with carrier � and e is its identity), has type List(�) ! �, and computes(= [a1; a2; : : : ; an] = a1 (a2 (: : :(an(= [] = eWith only these two second-order operations we can construct all homomorphisms on lists.Many other, apparently necessary, operations are expressible in terms of these two.The basic operations on lists can be implemented on any architecture into which thestandard topology can be embedded. This includes (of course) sequential uniprocessors andvector architectures, SIMD machines (since the same operation takes place on each step ineach processor), shared memory multiprocessors, and distributed memory multiprocessorswhose interconnect contains a logarithmic depth spanning tree, such a hypercubes and cube-connected-cycles [30].Other homomorphic list operations arise su�ciently often in applications that they havebeen given their own names. We will show that these operations also have more e�cientdirect implementations than their implementations as compositions of maps and reductions.We suspect that, in general, operations added because they have e�cient implementationswill turn out to be operations that are natural units in which to think about programming.In other words, good implementations and natural more-abstract operations tend to coincide.The operation inits computes the initial segments of a list, that isinits [a1; a2; : : : ; an] = [[a1]; [a1; a2]; [a1; a2; a3]; : : : ; [a1; a2; : : : ; an]]A corresponding operation, tails, computes the �nal segments of a list.The operation pre�x (sometimes called scan), written (==, applied to a list is de�ned by(==[a1; a2; : : : ; an] = [a1; a1 (a2; a1 (a2 (a3; : : : ; a1 (a2 (: : :(an]The operation recur-reduce (written) =b0(), given coe�cients a1; :::; an and b1; :::; bn,computes the nth value generated by a linear recurrence function xi+1 = xi) ai+1 (bi+1where x0 = b0,) and (are associative, and) distributes over (:[a1; :::; an]) =b0([b1; :::; bn] = b0) a1) :::) an (b1) a2) :::) an (:::(bn�1) an (bnThis operation is of practical importance because linear recurrences occur in many scienti�ccomputations and because it isn't obvious that a fast parallel implementation exists for anoperation that appears so sequentially dependent. Details of the use of this operation aspart of the Bird-Meertens theory of lists are found in [11]. The operation is de�ned with11

a seed b0 so that it takes arguments of the same length. This greatly simpli�es checkingconformance conditions in derivations.A related operation is recur-pre�x (written)==b0(), which computes all values generatedby the same linear recurrence:[a1; : : : ; an]) ==b0([b1; : : : ; bn] = [b0; b0) a1 (b1; :::; b0) a1) :::) an (:::(bn�1) an (bn]5 Shape VectorsWe need a notation to describe the nested structure of a list when argument size is an issue.We use a shape vector, that is a list of the maximum size of subobjects at each level ofnesting. Thus a shape vector of the form [n;m; p] describes a list of n elements, the largestof which is a list of length m, where the largest element of any sublist is of size p. The lastelement of a shape vector describes the size of any remaining substructure in the list | thesame list could be described by a shape vector [n;mp] if we do not care about the size of thesecond nesting level structure. Thus a list with shape vector [n] is equivalent to one withshape vector [n; 1].Since costs depend on the size of list arguments, we must record the size of the result ofeach operation as a function of the sizes of its arguments. We do this by labelling operations(and programs) with the sizes of their arguments and results whenever it is necessary tocompute costs. For example, if f is a function that takes arguments of size m and producesresults of size p then an application of f � is labelled[n;p]f �[n;m]This accurately describes what happens even if f is some complex function applied to adeeply nested list structure.Figure 1 illustrates the e�ect on shape vectors of some common list operations. Thesee�ects are determined from the de�nitions of these operations in the previous section. Notethat each element of a shape vector is the maximum size of the element at that nesting level,so will tend to overestimate the amount of work to be done. There seems no straightforwardway to avoid this. Also, if the work to be done depends on the values of the list elements,rather than their sizes, our cost system will be unable to take that into account. Fortunately,most of the operations of the theory of lists are oblivious (that is, the control
ow does notdepend on the values of the data), because most of the second-order operations are strict.12

6 Basic OperationsIn this section we build implementations for the basic operations of map and reduction forthe easy case when the size of the argument list matches the number of processors availableto compute the required function. These implementations become the building blocks oflater, more complex, implementations. We also compute the parallel time complexities ofthese basic implementations.6.1 ImplementationsWe begin with implementations for our basic operations, maps and reductions, implemen-tations for some ancillary operations, and the de�nition of some combinators for combiningimplementations in parallel and sequentially. We use lower case names to denote functions orprograms, and upper case names to denote atomic implementations of functions or programs.Implementations are imperative, that is they are schedules for the application of functionson particular processors and for communication actions. Nevertheless, transformations onfunctions are useful preliminary steps in building implementations.Let PARpf denote p parallel applications of f to adjacent list elements. This correspondsto the doall or forall loop constructor common to several parallel programming languages.Let REPmf denote m sequential applications of f to adjacent list elements. This correspondsto the ordinary sequential loop constructor. These combinators satisfy the follow equalities:PARpg � PARpf = PARp(g � f)REPpg � REPpf = REPp(g � f)REPm(REPnf) = REPmn fPARp(PARq f) = PARpq fthat is, each side of an equation denotes a di�erent implementation of the same function.We now give implementations of the basic operations, under the assumption that a sin-gle top-level list element is allocated to each processor (other assumptions are possible; wediscuss this issue in more depth later). Such implementations must use only local commu-nication in the target processor's topology. We use the notation fn for the application of fto a list whose top-level length is n, that is whose shape vector is of the form [n; : : :].We denote a basic (atomic) parallel implementation of f using p processors byPARIMPLp(f)and a basic sequential implementation of f bySEQIMPL(f)PARIMPL and SEQIMPL denote particular atomic implementations that have been chosen13

to be useful and e�cient and which might be used in implementing more complex functions.These implementations have the status of \the best algorithm known in the absence of lowerbounds", that is they are regarded as �xed over the medium term, but might change withadvances in understanding.We use implp(f)to denote the function that maps functions or programs f to implementations on an ar-bitrary number of processors, p. For some functions, implp will be recursively de�ned interms of implementations of simpler functions; for others implp will map functions to atomicimplementations.The implementation of a map is expressed in terms of simpler implementations asimpln(f �n) = PARn fin which f is evaluated at each processor independently of the others. There is no commu-nication required.The implementation of a reduction is slightly more complex. Reduction requires comput-ing subexpressions of the result; since (is associative, these subexpressions can be computedin any order, or concurrently. The optimal parallel way to do so is to compute (applied toadjacent pairs on the �rst step, then (applied to the results of adjacent �rst step operationsand so on. This computes the �nal result in time logarithmic in the length of the list andrequires a communication topology that is a binary tree. We use PARIMPLn((=) to denotethis implementation.An implementation primitive that occurs often in implementing complex operations, butis not part of the Bird-Meertens language is the operation shiftright, which shifts the membersof a list one place to the right in a mapping to processors. We use SHIFTRIGHTn to denoteits implementation.6.2 CostsWe use the notation tp to denote the parallel time required for a computation on p processors,and n to denote the (top-level) length of a list.The cost of a second-order operation depends on the cost of the �rst order operation(s)that it executes in parallel. Since the costs of �rst order operations are multiplicative inthe total cost, they can be factored into a cost computation at any time. At �rst, we willbe careful to mention these costs explicitly. Later it will be convenient to assume that �rstorder operations take unit time, unless we say otherwise.We begin with the relationship between costs and combinators:t1(g � f) = t1(g) + t1(f) (1)tn(PARn f) = t1(f) (2)14

t1(REPnf) = n � t1(f) (3)Map. The cost of a parallel map istn(f �n) = tn(PARn f)= t1(f)while the cost of a sequential map ist1(f �n) = REPn(f)= n � t1(f)Reduction. The cost of a parallel reduction with constant-sized partial results istn((= n) = tn(PARIMPLn((=))= log nwhile the corresponding cost of a sequential reduction ist1((= n) = n � 1Including the cost of subsidiary operations multiplicatively does not work if the �rst orderoperations (such as f and () produce results of di�erent size from their arguments. Whenthis happens, the separation between time and size properties breaks down. A cost systemin which both time and size are treated explicitly quickly becomes unmanageably complex.Costs are the solutions of recursive equations in both cost and size, while sizes are themselvesdetermined by recursive equations. Finding closed form solutions in any but the simplestand most regular case is di�cult. Instead, we use di�erent execution time equations for�rst order operations with di�erent e�ects on sizes. Practically, there seem only to be a fewnatural ways in which operations produce results of di�erent size from their arguments; andit is only the reduction operation and others that are built from it that exhibit the problem.Let us now examine the behaviour of reduction when it is applied to an operator whoseresults are of a di�erent size from its operands. The most obvious example is concatenation,for the concatenation of two lists of length n results in a list of length 2n. The implementationof reduction as a binary tree still works, but we must take into account the communicationtime required to move the larger and larger results, and this communication time dominatesthe computation. On the �rst step, an element of size 1 is moved between processors, on thesecond step, a list of length 2, on the third step, a list of length 4 and so on. Thus the totalparallel time for ++= (assuming that the concatenation takes constant time) istn(++= n) = (20 + 21 + : : :+ 2logn�1) � t1(++)15

= (n � 1) � t1(++)which is also the time for the corresponding sequential reduction.Concatenation can reasonably be assumed to take constant time, but operators thatproduce results larger than their operands may take longer in general (for example, multi-plication of variable length values).7 More Complex OperationsMany of the standard operations of the theory of lists are examples of operations for which amore e�cient implementation exists than that implied by their expression as the compositionof a map and a reduction. In this section we examine several such operations.7.1 ImplementationsPre�x. Recall that the operation (== applied to a list is de�ned by(==[a1; a2; : : : ; an] = [a1; a1 (a2; a1 (a2 (a3; : : : ; a1 (a2 (: : :(an]Pre�x is a homomorphism and so can be computed by composing a map with a reduction (seeSection 8.2 for details). However, the following two-phase implementation is more e�cient[9]. The upsweep phase of the algorithm computes a reduction over the argument list. Thedownsweep phase passes global information back to be merged with values computed on theupsweep. Consider a list of length n, and number the positions in the list beginning at 0.The data
ow of the algorithm computing+==[3; 1; 2; 1; 4; 1; 1; 3]is shown in Figure 2, where the lists in the Figure show the data held at each processor, andthe arrows indicate the communication between processors.On the �rst step, the value of all even-numbered elements of the list are passed to odd-numbered elements. During the upsweep phase, the operation carried out at the nodes isshown in Figure 3(a). The value received from the left is kept, and the (operator appliedto it and the value calculated at the last step. The result of this reduction operation is thenpassed right.For the downsweep, the operations performed at each node are illustrated in Figure 3(b).The values passed from the right are copied to the left, and that value and the value at thebeginning of the list at that node are added. One value is transmitted on the �rst step, threevalues on the second, and so on, with all but one processor active on the last step. Call thisimplementation PARIMPLn((==). 16

Inits. The inits operation is another complex operation for which an e�cient direct im-plementation exists. Consider the computation of the initial segments of a list of length n,stored with one element on each processor. If list elements are copied and shifted repeatedlyto the right (with the empty list inserted at the left hand end), then prepending each valueto those already present in each processor computes the required list. This is expressed asimpln(initsn x) isxs := [�]� x ;ys := xs;REPnfys := SHIFTRIGHTnys; xs := ys 1++ xsgCall this implementation PARIMPLn(inits). Note that it requires adding a path throughthe leaves to the standard topology (see Section 8.2 for further details).7.2 CostsWe now consider the complexity of the pre�x operation. First we assume that partial resultsare the same size as operands. The time taken for the upsweep istn((==n)upsweep = (log n) � t1(()as we have already seen, since it is a slight variant on the reduction computation. The timefor the downsweep is also tn ((==n)downsweep = (log n) � t1(()so the total execution time for pre�x istn((==n) = (2 log n) � t1(()Pre�x is an operation, like reduce, whose complexity changes when it is applied to a �rstorder function whose results is larger than its arguments. Consider the implementation of++== as shown in Figure 4. The analysis of the upsweep is exactly the same as for ++= so thetime for the upsweep is tn(++==n)upsweep = (n � 1) � t1(++)Consider the data
ow on the down sweep. The amount of information required by therightmost processor is large, all of the list elements. On the other hand, this information hasaccumulated in the last processor during the upsweep. The second-to-last processor needsless information, but it takes longer to get it since some of it must be transmitted by thelast processor.Divide the processors into groups, depending on their distance in the tree from the last17

processor { thus the last processor is in group 0, the second last processor in group 1, thenext two processors preceding it in group 2, and so on. Then the time taken to correctlydeliver the required data to a processor in group i istn = (n � 2i)(i)where the term n � 2i is the volume of data to be sent to a processor in group i , and i isthe distance the data must travel from the last processor. This quantity is maximised when2i = n=2, that is the most expensive processor to reach is the one holding the initial elementsof the second half of the list. Thus the time for the downsweep is obtained by substitutingin the equation above to give tn (++==n)downsweep = n2 (log n � 1)and the time for both phases is tn(++==n) = n2 (log n + 1) � 1The cost of inits is obtained by summing the steps of the corresponding implementationand so is tn(initsn) = 1 + 2n8 Unmatched Size ImplementationsWe now consider implementations parameterised by the number of processors in the targetarchitecture. Eventually we will show that equations can be directed independently of thisparameter, and so it can be factored out of considerations of (relative) cost.Suppose that the argument list length (at the top level) is n and the number of processorsin the target architecture is p. There are two di�erent dimensions along which allocationchoices can be made:1. Allocate list objects to processors in a round robin fashion; or2. Allocate list objects to processors by segments, so that the �rst n=p of them are placedin the �rst processor, the next n=p in the second processor and so on.The second dimension is:a. allocate top level objects, that is if the list has shape vector [n;m; q], allocate n objectseach of size up to qm; orb. allocate bottom level objects, that is allocate nmq distinct objects18

Alternative (2) is better than alternative (1) because it reduces the interconnect tra�c duringoperations where adjacency in the list is important (which includes reductions). Choosingalternative (a) is better than (b) because our list operations work from the outer level of liststructure inwards, and this arrangement spreads the top level uniformly across the availableprocessors. We therefore assume this embedding of the standard topology of the program inthe standard topology of the target architecture.We must now give implementations for the two basic operations assuming this embedding.Since more than one element of a list is held by each processor, processors must carry outsteps related to more than one list element.We assume that the number of processors used is less than or equal to the length ofthe outermost level of the list. It is not di�cult to avoid this assumption but it does makeexplanations more complicated. For simplicity, we also assume that p divides n.The implementation of a function actually has a di�erent type from the function itself,because the implementation acts on a list that has been evenly spread across processors. Forexample, if f � is applied to a list with shape [n] ++ s then its implementation is applied to alist whose shape is [p;n=p] ++ s. Thus we must convert a program expecting a list as inputinto a program expecting a list of lists.We begin by de�ning an operation distributep which takes a list and breaks it up intop segments, by implication distributing them to p processors. An implementation fordistributep is shown in Figure 5; we use DISTp to denote this implementation. The par-allel time to distribute a list depends on the communication associated with each step in theFigure, that is m2 + m4 + : : :+ mp = m log pXi=1 12i= m(1� 1p)This distribution operation must of course occur once at the beginning of each program, andwe can arguably not include its cost in the cost of the program. In the �rst place, its cost ishidden in the cost of loading the program. In the second place, as disk arrays become morecommon, the argument list(s) may already be stored in segments local to each processor.A corresponding operation is required to reassemble the result list into a list of the propertype. No new operation is required for this { it is just ++= for, when applied to a list withshape [p;n=p] ++ s, ++= returns a list of shape [n] ++ s. Furthermore, ++= is a postinverseto distribute, that is ++ = � distribute = id (4)(The usefulness of this identity was pointed out by Paul Roe in [27].)Thus a program of the form S3 � S2 � S119

is equivalent to(++= � distributep) � S3 � (++= � distributep) � S2 � (++= � distributep) � S1 � (++= � distributep)or, rearranging parentheses,++= � (distributep � S3 �++=) � (distributep � S2 �++=) � (distributep � S1 �++=) � distributepThis form suggests that, rather than implementing f , we should implementdistributep � f �++=A program then becomes a composition of these implementations, preceded by a distributionstep at the beginning of each program, and ending with a collection step. The implemen-tation of each operation assumes that its argument has already been distributed across theprocessors and is responsible for ensuring that its result is similarly distributed.If h is an arbitrary homomorphism then an implementation must de�ne a function thatcan be applied to the argument spread over the set of processors. There must be a functionh 0 which depends on h and whose e�ect on a part of the argument is like the e�ect of h. Thetheory of lists provides some help with �nding such a specialisation of h, further support forthe argument that skeleton-based languages should be de�ned mathematically rather thanas ad hoc collections of operations.An important result of the theory of lists, called the Promotion Theorem, is expressed bythe following identity (5). Suppose that h is a list homomorphism. We have already notedthat h can be expressed as the composition of a map and a reduction, sayh = g= � f �Then the Promotion Theorem is the identityh �++= = g= � h� (5)Thus an implementation of h can instead be an implementation of the right hand side ofthis equation: distributep � h �++= = distributep � g= � h� (6)which applies h in parallel p times (so each application of h is sequential), followed by areduction with g (which depends on h), followed by a redistribution of the result of thisreduction. Thus any list homomorphism can be implemented by applying it to sublists, thenjoining the results of this application together using a gluing function, g, that depends onthe homomorphism, and then redistributing. This gives an immediate implementation forall list homomorphisms.This reassures us that highly parallel implementations always exist and gives us a tech-20

nique for building a distributed implementation of an arbitrary list homomorphism. Noticethat the form of identity (5) ends with a reduction step. This will tend to collect the resultin a single processor, necessitating an expensive distribute to spread list elements across theprocessors again. This makes such simple implementations expensive and leads us to lookfor implementations that leave list segments in place.Two particular instances of equation (5) that are of interest to us are given by thefollowing equations f � �++= = ++= � f ��(= �++= = (= � ((=)�A special case of the second equation, namely++ = �++= = ++= � (++=)� (7)will be of particular use in building implementations in Section 9.Some examples will illustrate the use of the identity (5). We assume that f and (mapoperands of size q to size q. In each case we transform a program into a form that can bedirectly implemented.[n;q]f � �[n;q] ((=)�[n;m;q]= f � �++= � distributep � ((=) � �++ = � distributep= f � �++= � distributep �++= � ((=)�� � distributep= f � �++= � ((=)�� � distributep= [n;q] ++ = �[p;n=p;q] f �� �[p;n=p;q] ((=)�� �[p;n=p;m;q] distribute [n;m;q]pHere each map operation is implemented by a nested map operation. The ++= moves to theend of the program, where it becomes the �nal collection step. Note that we discover thatone of the inserted copies of the identity (4) turned out to be redundant and was removed.The next example illustrates the use of an extra insertion of the identity to redistributea list that has been collected into a single processor. After the reduction the list of shape[m] exists in a single processor. It is necessary to redistribute this new smaller list acrossthe available processors to make parallelism available for the following map operation.[m]f � �[m] (+=)[n;m]= f � �++= � distributep � (+=) �++= � distributep= [m] ++ = �[p;m=p] f �� �[p;m=p] distributep �[m] (+=) �[p;m] (+=)� �[p;n=p;m] distribute [n;m]pObserve that the term distributep �++=21

although not an identity in general, is one when the shapes match. So we have[p;n=p]distributep �[n] ++= [p;n=p] = idunder these particular circumstances. We will make use of this identity to remove redundantdata movement operations in the analysis that follows.8.1 Basic OperationsFor maps we have that implp(distributep � f �n �++= p)= implp(distributep �++= p � f �n=p�p)= PARp(REPn=pf1)so tp(f �n) = t1(REPn=p f1) by equation 2= np � t1(f1)For reductions in which the size of partial results is the same as the size of arguments,we have implp(distributep �(= n �++= p)= implp(distributep �(= p � ((= n=p)�p)= DISTp � PARIMPLp((=) � PARp(SEQIMPLn=p((=))from which we computetp((= n) = log p � t1(() + t1(SEQIMPLn=p((=))= (log p + (np � 1)) � t1(()to which the cost of DISTp is added if necessary.For reductions in which the �rst order operation increases the size of partial results, thecost on p processors is made up of the cost of doing sequential reductions on segments ofthe list of length n=p; this takes time n=p � 1 and produces partial results of size n=p. Theparallel reduction then takes time (p�1)n=p for p processors on operands of initial size n=p.Thus the total execution time istp(~= n) = (p � 1)np + (np � 1)22

= n � 1There is one interesting special case for an operation of this kind:[n] ++ = [p;n=p]can reasonably be assigned a cost of zero, since it requires no data movement, but simply adi�erent view of the data present in each processor.Note that we are using explicit constants in the cost computations. These constants areobviously not of any practical interest since implementations will conceal constants that areoften of greater magnitude. However, making constant values explicit often makes it easierto see how a cost formula was computed and so we leave them in.8.2 More Complex OperationsWe now turn to implementations on p processors of the more complex operations we havealready examined.Pre�x. Pre�x is expressed as a homomorphism like this:-==(x ++ y) = (-==x) ((-==y)where u (v = u ++ ((last u) -)�vSince pre�x applied to a singleton list computes a list with a single singleton element, it iseasy to see that -== = (= � ([�])�This immediately gives us an implementation of pre�x in terms of the implementations ofmaps and reductions. However, the reduction with (is an expensive one, for two reasons:�rst it contains a reduction with ++, which we have already seen takes linear time even inparallel, and second, it leaves its result in a single processor so that it would have to befollowed by an expensive distribution operation.If we are willing to make a small addition to the standard topology, namely addingthe requirement that there is a path through the leaves of the spanning tree, then a betterimplementation of this and other operations can be constructed. This additional requirementis not a strong one |most topologies of practical interest (hypercube, cube-connected-cycles)already contain such a cycle.A better implementation for pre�x is computed by:� computing a sequential pre�x in each processor on the segment of length n=p it con-tains; 23

� computing the parallel pre�x of the last value in each processor in a parallel way, usingthe tree algorithm, and then shifting the resulting values to the right (inserting zeroat the left and discarding the rightmost value).� adding the shifted value at each processor to each of the values in that processorsequentially.This is illustrated on the following list, stored in four processors. The initial value of the listis P0 P1 P2 P31 4 7 102 5 8 113 6 9 12After the �rst sequential pre�x, the values areP0 P1 P2 P31 4 7 103 9 15 216 15 24 33A parallel pre�x is computed for the values [6; 15; 24; 33] which are then shifted right to getP0 P1 P2 P30 6 21 451 4 7 103 9 15 216 15 24 33and these values are added to the values below them to giveP0 P1 P2 P31 10 28 553 15 36 666 21 45 78The implementation becomesimplp(distributep �(==n �++=) isxs := PARp(SEQIMPL((==)n=p);ys := PARIMPLp((==) � last �p xs;zs := SHIFTRIGHTpys;ts := zs 1~ xs;where a ~ bs = (a() � bs24

Notice that this implementation absorbs both the
atten and the distribute operations, thatis it assumes its argument is distributed over processors and it leaves its results distributedin the same way. The resulting costs aretp(xs) = nptp(ys) = 2 log p + 1tp(zs) = 1tp(ts) = t1(z ~ x) = nptp((==n) = 2(np + log p + 1)Since a pre�x computation generates n values, its execution time is bounded below by n=p;since one of these values depends on all the other values in the list, and hence requirescommunication from all the other processors, its execution time is also bounded below bylog p. Hence the time derived for the implementation above is (up to constants) as good aswe can do.Inits. Recall that the operation inits computes the initial segments of a list, that isinits [a1; a2; : : : ; an] = [[a1]; [a1; a2]; [a1; a2; a3]; : : : ; [a1; a2; : : : ; an]]The inits function is expressed as a homomorphism like this:inits(x ++ y) = (inits x)((inits y)where u (v = u ++ ((last u) ++)� v(Note the similarity to the computation of pre�x.) Thus we can express inits asinits = (= � ([�])�from which we can immediately get an implementation. It has the same
aws as the imple-mentation of pre�x | it moves too many values, and it leaves them in a single processor.A better way to implement this operation is by circulating values along the path addedto the standard topology, with each processor accumulating the values it needs to form itssegments. On the initial step each processor computes the local initial segments of the partof the list it contains. The concatenation of its local part is then passed to the processorimmediately to its right, where it is prepended to each of the partial initial segments heldby that processor. When the values from the �rst processor have reached the last processor25

(after p steps) the computation is complete. The process is illustrated below.P0 P1 P2 P3a1 a3 a5 a7a2 a4 a6 a8After the �rst step, each processor has computed the following partial initial segments:P0 P1 P2 P3a1 a3 a5 a7a1a2 a3a4 a5a6 a7a8Each processor then passes its sublist to its right neighbour, where it is prepended to give:P0 P1 P2 P3a1 a1a2a3 a3a4a5 a5a6a7a1a2 a1a2a3a4 a3a4a5a6 a5a6a7a8The same values are then passed on a further step to a neighbour two steps from theiroriginal processor and the prepending repeated, for a total of p steps. We can write this asimplp(initsn xs) isys := initsn=p�p xs;zs := last� ys;REPpfzs := SHIFTRIGHTnzs; fys := zs 1~ ys; where a ~ bs = (a++) � bsggThe total cost is tp = p np + 1! np + n2p (np + 1)because the cost of computing the zs is overlapped with shifting them right, ortp = n2p + n + n22p2 + n2pSince inits requires the computation of about n2 values, it is clear that its execution time isbounded below by n2=p. Thus the implementation above is of the right order. The analogue,tails has the same cost.Recur-reduce. Recall that recur-reduce (written)=b0(), is de�ned by[a1; :::; an]) =b0([b1; :::; bn] = b0) a1) :::) an (b1) a2) :::) an (:::(bn�1) an (bn26

Recur-reduce is expressed as a reduction as follows:x) =b0(y = (b0; if #x (= #y) = 0b0) �1A(�2A; if #x (= #y) 6= 0where A = += (x 1, y);a , b = (a; b);(a; b)+ (c; d) = (a) c; b) c (d);�1(a; b) = a; and �2(a; b) = bThis set of equations immediately gives an implementation from which we compute, usingthe cost of implementation of reduction, thattp(x) =b0(y) = 4 + tp(A)tp(A) = tp(+=) + tp(x 1, y)= 3(log p + np � 1) + npThus the total cost is tp = 4 + 3(log p + np � 1) + np= 1 + 3 log p + 4n=pRecur-pre�x. Recall that recur-pre�x (written)==b0(), is de�ned by[a1; :::; an]) ==b0([b1; : : : ; bn] = [b0; b0) a1 (b1; :::; b0) a1) :::) an (:::(bn�1) an (bn]Recur-pre�x is expressed as a pre�x as follows:x) ==b0(y = ([b0]; if #x (= #y) = 0[b0] ++ (b0~)�(+==(x 1, y)); if #x (= #y) 6= 0where a , b = (a; b);(a; b)+ (c; d) = (a) c; b) c (d);b0 ~ (a; b) = b0) a (b27

As before we use the implementation of pre�x and computetp(x) ==b0(y)= np + tp((b0~)�) + tp(+==) + tp(x 1, y)= np + 2np + 3 � 2(np + log p + 1) + np= 10np + 6 log p + 6where appending b0 to the beginning of the list requires shifting the list one place to theright, moving an element of size n=p.For simplicity, when [b1; :::; bn] = [id); :::; id)] and b0 = id), we write[a1; :::; an]) =b0([b1; :::; bn] as)=id)([a1; :::; an][a1; :::; an]) ==b0([b1; :::; bn] as)==id)([a1; :::; an]The complexity of these operations is the same as the general forms except for the �rst stepof each, and the map and concatenation steps at the end of the pre�x computation.By way of summary we give the costs of the operations we have discussed in Figure 6.This will be useful for the subsequent sections.9 Using Costs with EquationsWe now show how cost information is used to direct equations of the theory.Example 1 (f � g)� = f � � g� (8)The cost of the left hand side is given byLHS tp = 2npand the cost of the right hand side byRHS tp = np + npThis equation is cost-neutral, with both sides requiring the same number of operations.(Note, though, that the left hand side is to be preferred on many architectures since itrequires only local synchronizations. See the paper [12] for an extensive discussion of thisand related issues.) 28

Example 2 f � �++= = ++= � f �� (9)To analyse this equation we look at the implementations of each side, omitting the initialdistributep from the beginning of both sides. The left hand side becomesdistributep � f � �++= � distributep �++= �++== [p;nm=p;q]f �� �[p;nm=p;q] distributep �[nm;q] ++= �[p;nm=p;q] (++=) �[p;n=p;m;q]= [p;nm=p;q]f �� �[p;nm=p;q] (++=)�[p;n=p;m;q]Note the use of equation 7 on the �rst step. The cost of this implementation is nmq=p forthe f ��, and (n=p � 1)mq for the (++=)�, sotp(LHS) = 2nmqp �mqThe right hand side implementation becomesdistributep �++= �++= � distributep � f �� �++== [p;nm=p;q](++=) � �[p;n=p;m;q]distributep �[n;m;q] ++= �[p;n=p;m;q] f ���[p;n=p;m;q]= [p;nm=p;q](++=) � �[p;n=p;m;q]f ���[p;n=p;m;q]The cost of this implementation is (n=p � 1)mq for the (++=)�, and n=p �mq for the f ���.The total cost is tp(RHS) = 2nmqp �mqso this identity is cost neutral.Example 3 += � �++= = ++= �+= � � (10)This equation is a special case of the equation above; it is interesting because it illustrateshow the use of a suboperation that reduces argument sizes can a�ect the cost of two di�erentcomputation forms.The implementation of the left hand side is (using Example 2)[p;nm=p;1](+=)�� �[p;nm=p;q] (++=)�[p;n=p;m;q]The cost of this implementation is nm=p(q � 1) for the (+=)�, and (n=p � 1)mq for the(++=)�. The total cost is tp(LHS) = 2nmqp �mq29

The implementation for the right hand side is[p;nm=p;1](++=) � �[p;n=p;m;1](+=)���p;n=p;m;q]with costs (n=p � 1)m for the (++=)�, and nm=p(q � 1) for the (+=)���, for a total oftp(RHS) = nmqp �mso the right hand side implementation is cheaper. We direct the equation from left to right.Example 4 (= �++= = (= � ((=)� (11)Note again the use of equation 7 on the �rst step. The implementation of the left hand sideisdistributep �(= �++= � distributep �++= � (++=)�= [p;q=p]distributep �[q] (= �[p;q] ((=) � �[p;nm=p;q]distributep �[nm;q] ++= �[p;nm=p;q] (++=) �[p;n=p;m;q]= [p;q=p]distributep �[q] (= �[p;q] ((=) � �[p;nm=p;q](++=) �[p;n=p;m;q]The cost of this implementation, ignoring the �nal redistribution, is q log p for the �nalreduction, (nm=p � 1)q for the ((=)�, and (n=p � 1)mq for the (++=)�, for a total oftp(LHS) = q log p + nmp (q + 1)�mq � 1The implementation of the right hand side isdistributep �(= �++= � distributep � ((=) � �++ == [p;q=p]distributep �[q] (= �[p;q] ((=) � �[p;n=p;q]distributep �[n;q] ++= �[p;n=p;q] ((=)��[p;n=p;m;q]= [p;q=p]distributep �[q] (= �[p;q] ((=) � �[p;n=p;q]((=)��[p;n=p;m;q]The cost of this implementation is q log p for the �nal reduction, (n=p � 1)q for the ((=)�,and n=p(m � 1)q for the ((=)��, for a total oftp(RHS) = nqp (m + 1)� q � nqpThe right hand side implementation is cheaper so we direct the equation from left to right.Example 5 (== = ((=) � � inits30

The cost of the left hand side istp(LHS) = 2(log p + n=p + 1)The implementation of the right hand side isdistributep � ((=) � �++ = � distributep � inits �++== [p;n=p;1]((=)�� �[p;n=p;n] implp(inits)[p;n=p]The cost of this implementation is m=p(n�1) for the ((=)��, and n2=p+n+n2=2p2+n=2pfor the implementation of inits, for a total oftp(RHS) = 2n2p � n2p + n22p2 + nWe direct the equation from right to left.Example 6 inits = ++== � ([�])�The cost of the left hand side istp(LHS) = n2p + n + n22p2 + n2pThe implementation of the right hand side isdistributep �++= � (distributep �++== �++=) � distributep � ([�]) � �++ == [p;n=p;n]implp(++==) �[p;n=p;1] distributep �[n;1] ++= �[p;n=p;1] ([�])��[p;n=p]= [p;n=p;n]implp(++==) �[p;n=p;1] ([�])��[p;n=p]The cost of this implementation isn2 (log p + np + 1)� 1 + np= n log p2 + n22p + np + n2 � 1We direct the equation from right to left.Example 7) =id)(= (= �)= � � tails (12)31

The cost of the left hand side is tp(LHS) = 4np + 3 log p + 1while the implementation of the right hand side is dominated by the cost of computing thetails operation, which has complexity of order n2=p. The left hand side is clearly less costlysince it represents a more direct way of computing the desired result. This equation is thegeneral form of Horner's Rule for evaluating polynomials. We direct the equation from rightto left.Example 8) ==id)(= ()=id)()� � inits (13)The cost of the left hand side isLHS tp = 10np + 6 log p + 6while the cost of the right hand side is dominated by the computation of inits. Again thedirect formulation on the left hand side is less costly. We direct the equation from right toleft. Note the parallel with the equation de�ning pre�x.Figure 7 summarizes the cost-reducing directions of the equations in these examples.It is not necessarily the case that all equations of a theory could be directed in this way.For the Bird-Meertens theory and implementation strategy we have suggested, communica-tion plays little role in costs. Thus operations tend to have costs that increase monotonicallywith the sizes of their arguments, and with outer shapes more important than inner ones.This helps to make costs well behaved.10 An Example DerivationWith this information about equations and their e�ects on costs we are able to illustratea derivation driven by cost minimization. Of course, simply minimizing cost is not enoughto derive all useful programs, so that the existence of a cost system does not immediatelyimply an automated derivation assistant. Experience suggests that most derivations actuallyhave three phases: the �rst increases the cost as compact parts of the given speci�cation are\expanded out", the second rearranges without having much e�ect on the overall cost, whilethe third minimizes cost by reversing \expansions". However, the example of the maximumsegment sum is almost entirely driven by cost minimization.The Maximum Segment Sum problem is: given a list of integers, �nd the greatest sum ofvalues from a contiguous sublist. It is of interest because there are e�cient but non-obviousalgorithms to compute it, both sequentially and in parallel. The derivation of a sequential32

algorithm is given in [5]. Here we derive a new parallel algorithm that uses the recur-reduceand recur-pre�x operations introduced earlier. It begins from an obviously correct solution:compute all of the subsegments, sum the elements of each, and select the largest of the sums.The symbol " represents the binary maximum function.mss = n de�nition o"= �+= � � segs= n by de�nition, segs = ++= � tails � �inits o"= �+= � �++= � tails� � inits= n equation 10, cost-reducing o"= �++= �+= �� � tails� � inits= n equation 11, cost-reducing o"= � "= � �+= �� � tails� � inits= n map promotion, equation 8 , cost-neutral o"= � ("= �+= � � tails)� � inits= n equation 12, cost-reducing o"= � (+=0")� � inits= n equation 13, cost-reducing o"= �+==0"We can compute the change in cost between the initial version and the �nal version. Webegin with the expanded initial version, applied to a list of length n and labelled with theshape vectors of the intermediate results.[1] " = �[n2] += � �[n2;n] ++= �[n;n;n] tails� �[n;n] inits [n]
33

We now sum the costs for each step of this composition beginning from the right.tpinits n2p + n + n22p2 + n2ptails� n(n�1)n2p++= (n � 1)n2+= � n2p n"= np + log p � 1Thus the total cost is tp = O(n3), regardless of p, so that this version of the solution takesat least cubic time no matter how much parallelism is used.For the �nal version we have [1] " = �[n] +==0"[n]so that tp = np + log p � 1 + 6 log p + 10np + 6= 11np + 7 log p + 5a dramatic improvement.It is clear that the cost calculus we have outlined here could be integrated into a transfor-mation assistant and we have begun some steps in this direction. However, most derivationsdo not proceed by strict cost minimization, and it will be interesting to see to what extentcost information can be used to inform the early stages of a derivation.11 ConclusionsA practical cost system for use in calculational style software derivation must abstract fromthe complexities of actual implementations on parallel machines. In particular, the full com-plexity of the mapping problem must be avoided, or else there is no hope of subexponentialcost computations. To be practical it must also be intimately connected to the program-ming calculus so that changes in cost can be computed from the application of re�nementsor transformations rather than computing whole-program costs repeatedly. Because partsof a large program are developed independently, it is also important that a cost system becompositional so that the cost of a piece does not depend on the design of all of the other34

pieces.We have presented an approach to cost calculi which allows costs to be viewed from twoperspectives. In an implementation view, costs are based on full information about mappingand scheduling, from which the execution time of operations is computed, parameterized bythe number of processors used. Operations are designed to implement communication inconstant time and therefore communication can be ignored in cost computation.Compositions of operations can be examined for opportunities to implement the compos-ites more e�ciently than the sum of the component pieces would suggest. Whenever thisoccurs, a new primitive operation is de�ned, and its de�ning equation is annotated with acost-reducing direction in the programming calculus. Since the number of times such dis-crepancies can arise is in�nite, the exact cost system and the costs seen by programmerscannot be brought into precise agreement. However, as a practical matter all of the simplediscrepancies can be repaired; and this is the best that can be done in general. This view ofcosts is only used by implementers, and many of the optimizations are done once, and thenmade available to programmers.Programmers have a di�erent, simpler, and more useful view of costs. Costs are associatedwith basic operations. The cost of a composition is the sum of the costs of each individualpiece. Optimizations found by implementers are made available in this view by annotatingeach equation with its cost-reducing direction.We have illustrated the approach by building a cost calculus for the Bird-Meertens the-ory of lists. The basic operations in this theory arise from a categorical construction whichproduces an equational transformation as a side-e�ect. The use of a standard topology al-lows these operations to be implemented on a wide range of architectures without any lossof e�ciency due to communication. We have shown how several common operations, suchas inits and pre�x, have interesting implementations with costs lower than their de�nitionssuggest, and have shown how this is made explicit to programmers without revealing imple-mentation details. We have also shown how equations of the theory may be labelled withtheir cost-reducing direction, and how this is used in transformational development.There are a number of de�ciencies in the cost calculus presented here. Costs would bemore accurate if they took into account load balancing, the actual sizes of list elements ratherthan the maximum at each depth, and if they could be computed for topologies that do notcontain the standard topology. Including these improvements is technically feasible, butdauntingly complex; and makes preserving compositionality more di�cult. The approachproposed here is a �rst working attempt to build a compositional cost calculus, but the righttrade-o� between accuracy and good composition properties remains something of an openquestion.References[1] D.F. Bacon, S.L. Graham, and O.J. Sharp. Compiler transformations for high-performance computing. ACM Computing Surveys, to appear.35

[2] F. Bellegarde. Rewriting systems on FP expressions to reduce the number of sequencesyielded. Science of Computer Programming, 6:11{34, 1986.[3] R.S. Bird. A calculus of functions for program derivation. Oxford University Program-ming Research Group Monograph PRG-64, 1987.[4] R.S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of Program-ming and Calculi of Discrete Design, pages 3{42. Springer-Verlag, 1987.[5] R.S. Bird. Lectures on constructive functional programming. Oxford University Pro-gramming Research Group Monograph PRG-69, 1988.[6] R.S. Bird. Algebraic identities for program calculation. The Computer Journal,32(2):122{126, February 1989.[7] R.S. Bird, J. Gibbons, and G. Jones. Formal derivation of a pattern matching algorithm.Science of Computer Programming, 12:93{104, 1989.[8] G. Blelloch. Scans as primitive parallel operations. In Proceedings of the InternationalConference on Parallel Processing, pages 355{362, August 1987.[9] G.E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990.[10] L. Boug�e. The data-parallel programming model: A semantic perspective. TechnicalReport 92{45, Laboratoire de l'Informatique du Parall�elisme, Ecole Normale Sup�erieurede Lyon, 1992.[11] W. Cai and D.B. Skillicorn. Calculating recurrences using the Bird-Meertens Formalism.Parallel Processing Letters, submitted February 1994.[12] S. Chatterjee, G.E. Blelloch, and A.L. Fisher. Size and access interference for data-parallel programs. InACMSIGPLAN '91 Conference on Programming Language Designand Implementation, pages 130{144, June 1991.[13] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.Research Monographs in Parallel and Distributed Computing. Pitman, 1989.[14] M. Danelutto, R. di Meglio, S. Orlando, S. Pelagatti, and M. Vanneschi. A methodologyfor the development and the support of massively parallel programs. Future Genera-tion Computer Systems, 1992. Also appears as \The P3L language: an introduction",Hewlett-Packard Report HPL-PSC-91-29, December 1991.[15] M. Danelutto, R. di Meglio, S. Pelagatti, and M. Vanneschi. High level language con-structs for massively parallel computing. Technical report, Hewlett Packard Pisa ScienceCenter, HPL-PSC-90-19, 1990. 36

[16] J. Darlington, A.J. Field, P.G. Harrison, P.H.J. Kelly, Q. Wu, and R.L. While. Par-allel programming using skeleton functions. In PARLE93, Parallel Architectures andLanguages Europe, June 1993.[17] V. Dornic, P. Jouvelot, and D.K. Gi�ord. Polymorphic time systems for estimatingprogram complexity. ACM Letters on Programming Languages and Systems, pages33{45, March 1992.[18] S. Flynn Hummel and R. Kelly. A rationale for parallel programming with sets. Journalof Programming Languages, 1:187{207, 1993.[19] D. le M�etayer. Mechanical analysis of program complexity. Proceedings of the SIGPLAN'85 Symposium, pages 69{73, July 1985.[20] C. Lengauer. Loop parallelization in the polytope model. In CONCUR '93, SpringerLecture Notes in Computer Science, 1993.[21] G. Malcolm. Algebraic Data Types and Program Transformation. PhD thesis, Rijk-suniversiteit Groningen, September 1990.[22] W.F. McColl. General purpose parallel computing. In A.M. Gibbons and P. Spirakis,editors, Lectures on Parallel Computation, Cambridge International Series on ParallelComputation, pages 337{391. Cambridge University Press, Cambridge, 1993.[23] K. Mehlhorn and U. Vishkin. Randomized and deterministic simulation of PRAMs byparallel machines with restricted granularity of parallel memories. Acta Informatica,21:339{374, 1984.[24] C. Morgan. Programming from Speci�cations. Prentice-Hall International, 1990.[25] A.G. Ranade. Fluent Parallel Computation. PhD thesis, Yale University, 1989.[26] P. Roe. Parallel Programming Using Functional Languages. PhD thesis, Departmentof Computer Science, University of Glasgow, February 1991.[27] P. Roe. Derivation of e�cient data parallel programs. Technical report, QueenslandUniversity of Technology, December 1993.[28] D. Sands. Complexity analysis for a higher-order language. Technical report, Depart-ment of Computing, Imperial College, Technical Report 88/14, London, December 1988.[29] D. Sands. Calculi for Time Analysis of Functional Programs. PhD thesis, ImperialCollege, London, September 1990.[30] D.B. Skillicorn. Architecture-independent parallel computation. IEEE Computer,23(12):38{51, December 1990. 37

[31] D.B. Skillicorn. Models for practical parallel computation. International Journal ofParallel Programming, 20(2):133{158, April 1991. Actually appeared in 1992.[32] L. Snyder. Type architectures, shared memory and the corollary of modest potential.Annual Review of Computer Science 1986, 1:289{317, 1987.[33] L.G. Valiant. Optimally universal parallel computers. Phil. Trans. Royal Society Lond.Series A, 326:373{376, 1988.[34] L.G. Valiant. A bridging model for parallel computation. Communications of the ACM,33(8):103{111, August 1990.[35] L.G. Valiant. General purpose parallel architectures. In J. van Leeuwen, editor, Hand-book of Theoretical Computer Science, Vol. A. Elsevier Science Publishers and MITPress, 1990.

38

if maps argument(s) of size to then maps shapes tof m q f � [n;m] ++ s [n; q] ++ s(m m (= [n;m] ++ s [m] ++ s(m 2m (= [n;m] ++ s [nm] ++ sinits [n] ++ s [n;n] ++ s(m m (== [n;m] ++ s [n;m] ++ s(m 2m (== [n;m] ++ s [n;nm] ++ sFigure 1: E�ects of Operations on Shape Vectors (s is an arbitrary, possibly empty, shapevector)
39

[1]
WD

ProcessorsP2P1 P3 P4 P5 P6 P7 P8[3] [1] [2] [1] [4] [1] [3]3 [3,1] 2 4 [4,1] 1 [1,3]4 5 [5,1,3][2,1][4,2,1] [7,5,1,3]7A 1 11 343 9[12,1,3]7 [13,3]12 [16][13]7 [12][11][4,2,1][6,1][7][6] 4[3,1][4][3]OLFTA [4,1] ! [11,1]Figure 2: Data Flow for Pre�x (using a list of length 8)
(a) (b)[l1] ++ Rl1 R l1 [l1] ++ R RfRf [a1; a2; :::; an] = a1, and s[a1; a2; :::; an] = a2r [a1; a2; :::; an] = [a3; :::; an], and t [a1; a2; :::; an] = [a2; :::; an]ll2l2 R ll1 + l2 l1 + l2 [(fR + SR)] ++ (rR) R ! [(l + fR)] ++ (tR)R is a list, l1 and l2 are list elements, and ! means \change to"Figure 3: Operations Performed at Each Processor40

AD .
ProcessorsP1 P2 P3 P4 P5 P6 P7 P8TAFLOW m m m m2m 2m4m 4m 6m4m2mFigure 4: Data Flow for Concatenation Pre�x (using a list of length 8 where initial elementsare of size m, edge labels are the sizes of data
owing on arcs). Critical path shown bold.mm=2m=4 m=2m=4 m=4m=4Figure 5: The distribute Operation41

Operation tpf � n=p(= log p + n=p � 1++= (n � 1)inits n2=p + n + n2=2p2 + n=2p(== 2(log p + n=p + 1)++== n=2(log p + n=p + 1)� 1)=b0(4n=p + 3 log p + 1)==b0(10n=p + 6 log p + 6Figure 6: Summary of Operation Costs(f � g)� *) f � � g�f � �++ = *) ++= � f ��+= � �++= * ++= �+= � �(= �++= * (= � ((=)�(==) (= � � initsinits) ++== � ([�]) �)=id)() (= �)= � � tails)==id)() ()=id)()� � initsFigure 7: Cost-Reducing Annotations for some Equations42

