A Networ k Communication Protocol for Distributed
Virtual Environment Systems

G. Drew Kessler and Larry F. Hodges
Graphics, Visualization, and Usability Center
College of Computing, Georgia Institute of Technology
Atlanta, GA 30332 USA
{drew, hodges}@cc.gatech.edu
(To appear in the Virtual Reality Annual International Symposium, 1996, Santa Clara, CA)

Abstract From our experience with distributed VE systems, we
have categorized communication between tasks of a VE

different tasks, including interfacing with input and output appllgatlon Into thre((ej typest: state updatEe m(issages, com-
devices, providing responsive user interaction, and simuy-Mand messages, and event messages. Event messages con-

lating a dynamic environment. The variety and number ofVey information which cannot be discarded. Command

tasks lends the application to a distributed computing sys[nessages are similar to event messages, but require a

tem, where different tasks are performed by different com[?ptly' Sftate l;)pd?tef ;Eessr?gez, hovx_/ever cotnv:y tthte cur(;e?t
puting resources. A critical issue that arises from such a state ot a subset ot Ine shared environment. A state update

design is how information is communicated between taskgstsesage da?tic?r:;:zaozsieteer?gr(:\teegtr%?et?mlés Sg;een sa k?:g;’
In particular, for virtual environments, how information is nlessuzn ovent or (?omlmzfnd has occurred since theu Iast,
communicateg@romptlyis the critical issue. In this work, u v u :

we describe a pattern of communication common betweeﬁtate update, or t_he_receiver requires a complete history_ of
VE tasks which is not addressed by other communicationState changes. Distributed VE systems generally transmit a

protocols, namely the communication of state informationd"®at deal of state update messages between tasks, and

that continuously changes. We describe a new protocol usually require only the most recent state available. In
based on ampdatable queuabstraction which allows fact, old state information is not only useless in most

obsolete state information to be discarded, and compare gasctahs, It |shha|:jmful. A task can ant afford to ;penbdl t':mi S'ftt'h
prototype implementation of that abstraction with a stan- Ing through old messages, and may never be able to “catc

dard communication protocol. u!o” tg read the most recent state update. Existing commu-
nication protocols, however, do not support the concept of
message obsolescence.
1. Introduction We present here a message passing abstraction called
anupdatable queuwhich allows for messages to become
Virtual environment (VE) applications usually consist gpsplete when possible, reducing considerably the effort
of many different tasks that modify or examine a share¢eeded to obtain the latest state information, while sup-
environment. The tasks vary considerably in computingborting any combination of state update, event, and com-
requirements, from obtaining tracking and hand iNpUinand communication. Using a protocol based on this
information through continuous communication Wwith gpstraction, we describe a prototype implementation in
external devices, to rendering processes that requiigser space, and present a performance comparison to

graphics intensive computation, to processes that perforghother implementation using a standard protocol (TCP).
collision detection between entities of the environment

and simulate movement and behaviors for those entities,

processes that produce audio output. Clearly, VE syste Related Work

benefit from a distributed computing design, allowing Communication in current distributed VE systems usu-
tasks to be performed by the computing resources that beglty involves one-to-one communication with processes
match the task. The issue that arises from such a designtisat interface external devices, or one-to-many communi-
how information is communicated between tasks. cation among processes that share a common state. Com-

Virtual environment (VE) applications involve many
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munication with processes that interface with external
devices is usually done using a client-server connection

In this work, we are less concerned with the topology
sed for a set of processes that make up a VE application

using the TCP/IP protocol, as in the RubberRocks applicahen we are with the underlying communication protocol

tion[7] and the MR toolkit[10]. u

sed between these processes. Systems such as PVM[14]

Systems that maintain a common state are organized and ISL[13] provide frameworks for distributed and paral-
a client-server topology, in which the servers are conlel computation, but do not address the particular needs of
nected to client task, as in the MR toolkit's EM sys-VE applications, for which a more relaxed reliability

tem[15], BrickNet[11], and the RING system[8];
connected peer to peer (fully connected), as in the DIVE

or requirement is desired to maintain responsiveness.

Most protocols, including TCP, do not allow messages

system[5], and the systems based on the Distributed Intete be deliberately dropped. Protocols that do drop mes-

active Simulation (DIS) protocol: SIMNET[4], VERN[3],

sages, such as UDP, generally do not allow the application

and NPSNET][9]. These systems have addressed two mdim decide which messages are dropped. The communica-
issues, consistency and message traffic, but rely on statien protocol described in [9] does provides control over

dard available protocols.

message reliability by using unguaranteed message pass-

Most of these systems maintain consistency by identing and allowing theeceiverto decide if a lost message
fying one process as the “owner” of an entity of the share(bnce it is detected) needs to be resent. This method
state, which is the only process that may change thaequires the use of “heartbeat” messages to ensure mes-
entity. The DIVE system utilizes another communicationsage loss detection, and message log processes to assist in
package, the ISIS system[l], to guarantee consistenayessage recovery. The protocol presented here allows the
between peers. Others have argued, however, that systesenderto decide which messages need to be resent at any

such as ISIS that provide causally and totally ordereg
communication do not know enough about the applicatio®
level semantic consistency requirements to be efficient or
complete, since they are based on message traffic alone[

oint in time, and does not allow old messages to be buff-
red at the receiver where they could become obsolete.

§] Communication in Virtual Environments

Systems that maintain a common state through a client- Communication between tasks in a VE application can
server topology address the issue of message traffic by fihe categorized into three types: state update, events, and
tering messages that pass through the server on their waymmands (Figure 1). A particular task may require each
to another client so that clients only receive the messages these categories of communication operating in tandem,
they need (based on geographic information, as in ther just one.We discuss communication as being from one

RING system, or semantic information, as in BrickNet).p
The NPSNET system utilizes separate Multicast groups te

rocess to one process, but our description could be
xtended to one-to-many communication, and our imple-

divide the peers such that only geographically close peefaentation could be extended to take advantage of multi-

receive messages from each other.

cast communication.
The systems based on the DIS protocol address the

message traffic issue by using UDP broadcast or Multicast
messages (avoiding each peer sending one message
every other peer), and by simulating other peers through 4
dead reckoningalgorithm. Because this algorithm simu-
lates state changes locally, a peer need only broadcast if
state when it has changed within a threshold error from
what other processes will simulate. The DIS protocol does
not send obsolete messages because it does not provig
guaranteed message passing (although obsolete messages
could resided in the receiver's message buffer). It over-
comes lost messages by broadcasting an entity’s state 3

timed intervals (nominally 5 sec.). This protocol, however,
is not a general solution to communication between VE
tasks, as event and command communication requirg
ordered, guaranteed message passing, and the receivg
should not have to wait 5 sec. to receive the latest staté
information if the first send was unsuccessful. In addition,

when a task stops transmitting state information, the asso
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3.1. State Update to another, such as audio commands (play sound, stop

State update communication involves a stream of stat%ound' Increase V(_)Iume, _etc.) and hardwgre dewc_e com-
descriptions, each of which describe a subset of a comm ands (open tracking device, change tracking hemisphere,

state andeplaceprevious descriptions for that subset. TheCIOS(_a ”f:c"”f‘g t(:]e\tnce). They ddlff(;—:-r from tStt? te updat(ta) Colnl'
position and orientation of a head tracking device wouldnunication in that:a command does not become obso'ete,
be an example of a state which is shared between 1as least not at the communication level. The communica-

tracker device interface process and a task that maintaif}g" protocol that carries co_mmand_ messages, therefore,
the current viewpoint. Using a continuous stream of stat ust guarantee delivery in First-In-First-Out (FIFO) order.

updates ensures that when the model maintainer or rend ?Ehaddlr??r?’ command messagesl reqtﬂ|dre a“ response,
ing task requires the tracking information, the latest possf’-i é)ug edresponse may asbS|mp %?S t;)tm'e. inf
ble information will be available from the communication -ommand messages can be use“ 00 "aln.state infor-
channel. The DIS protocol discussed above, whose sta ation from another task through “polling” (Figure 2).

includes entity position, velocity, etc., can be categorize ne task:‘ the Cl,,'em’. sendsmll cor_nmand o aqother
as utilizing state update communication. task, the “server,” which responds with the state informa-

In practice, there are problems with sending a new stafon- ]:rh's method of (r:]ommunlcatlgg state mformqﬂon q
description every time the state changes (which occurs fr&=€S ewerr] messages than s]Eate update cor.r;)rlnun;'catwn an
quently, for tracking information and quickly moving enti- '€C€Ives the most current information possible. However,

ties). If the communication channel guarantees th(I:‘he client task must block and wait for a response.

delivery of every state description message, then the _
. . . Send Receive
receiving task will need to read all of the obsolete infor- Wait

mation before obtaining the latest state information (which Client —

will most likely not be what was the latest state informa- Server Poll Response
tion when the task began to read messages from the chan
nel). Implementing some type of flow control will Send-and-Wait Polling
alleviate the problem, but will increase the averkage
time (delay between sending and receiving a message), a
the state descriptions will be sent less frequently. Send Receive
If the communication protocol does not guarantee Clien Other Work
delivery of messages, as is the case for the DIS protocol, Poll /i—
the same overflow problem occurs, but less severely, as Server Response
oI_d messages yvill be automatically dropped if not received Event Polling
within a certain amount of time. Increasing the time
between sending messages by having the receiver simulate Figure 2: Polling Communication
the sender’s state between messages, as in the dead reck-
oning algorithm, will prevent the receiver from being
bogged down. This method works well for predictable3'3' Events
behaviors (such as tank movements), but it is unclear that Event messages communicate the occurrence of events,
it works well for unpredictable behaviors (such as usesuch as key-presses, button presses, or object collisions. In
head movements). In addition, using unguaranteed meaddition, commands that do not require a response can be
sage passing introduces a new problem for state updatepresented as events. Events could occur frequently, but
communication when the stream of state descriptions ke commands, are unique, do not become obsolete, and
too slow to overcome the rate at which messages are lostherefore require guaranteed, FIFO delivery. When pro-
The protocol described here uses unguaranteed mesessing events, a task often needs the context, or state, at
sages, which are re-sent until acknowledged as receivethe time of the event. As a result, the last state update mes-
or until a new state update of that type is to be sent (atages before the event cannot become obsolete until after
which point, the message being re-sent is obsolete). Thhe event has been processed.
receiving task will, therefore, receive the latest state Like command messages, event messages can also be
update message even if the state hasn’'t changed foruaed to obtain state information from another task through
while because the last state update message will be re-sg@alling. In this case, thpoll andresponsemessages are
until it is received. event messages. This method has an advantage over using
command messages in that the client does not need to
3.2. Commands block for a response (the communication is asynchro-
Command messages convey instructions from one tastous). The disadvantage is that the response may arrive

\/

"2
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early, and the information will become old. If the messagé. | mplementation
travel time and time spent by the client doing other work is To allow for communication between tasks of a VE
known, then the response could be timed to arrive when gpplication which are being performed by separate pro-
is needed. In general, however, these times are difficult tgesses on the same machine or on different networked
predict. machines, we designed a prototype implementation of
4. Updatable Queue Abstraction updatable queue pairs,_ which we have nam(_ad the Inter-
) Process Queue (IPQ) library. Using the IPQ library, each
A useful abstraction for one-way, guaranteed, FIFQ,qy can send state update, event, and command messages.
communication is a queue. Itis easy to see that event comy aqgition, a task can read the latest command, event, or
munication can be represented as a queue. Communicatigp, e update without waiting, if none has arrived. The
of command messages could also use the queue absiiaicrions to perform these tasks are the same for connec-
tion by using a pair of queues, an outgoing one for thg,ns petween processes on the same machine, or pro-

request, and an incoming queue for the response (pairingsses on separate machines, although the message
command and response by unique ID values). Event ar}ﬁjassing is implemented differently.

command communication can be combined by using the 5 implementation uses one-to-one communication
outgoing queue for both events and command requests. gither through shared memory (when the two processes
The communication of state upo!ate messages, howevef,a o1 the same physical machine) or UDP messages
has special requirements that a simple queue cannot pr@yhen the processes are on separate physical machines).
vide. Therefore, we construct apdatable queuabstrac-  \ye have chosen not to utilize an IP-Multicast protocol due
tion, which storegeyeddata. Information that is placed in {5 the added complexity of providing guaranteed, FIFO

the queue with a particular key will overwrite the lastagsage delivery. Future implementations may utilize this
information stored with that key (Figure 3), with two cave-protocol to reduce message traffic between processes.
ats. Information stored with a special key (0 in our imple-

mentation) will not overwrite any other information, and 5.1. Making a Connection

any information stored before the information with the A ¢jient-server model is used to establish a connection
sp.ecial key (i.e. earlier'inlthe queue) cannot be overwrittefanveen two tasks, although once a connection is estab-
(Figure 4). These restrictions allow events and commandged, there is no distinction between the two tasks (either
to co-exist in the same queue as state updates by assigniagy can send or receive messages to or from the other
events and commands the special key. Placing an event @iy The task which is to be the “server” end of the con-
command on the updatable queue essentially archives thgqtion advertises that it is ready to be connected to by
state updates stored before the event or command, until tgﬁ)ring a name and a UDP listening port in a database con-
state updates are removed from the queue (Figure 5).  tained in shared memory. The task which is to be the “cli-
ent” discovers which port to connect to by querying the

Key local database (if the connection will be between two local
— )2( % . @ — )2/ % — processes), or by querying a “name server” process on a
Data remote machine. The sole purpose of the name server is to

listen to a known port for address requests, and clean up
when all advertised services on the machine are closed.
This connection method is similar to an RPC implementa-
tion described in [2].

A process advertises a service with the

: | 2] L] | PQ adverti seService() function. Note that the task

specifies how large the outgoing queue should be to allow

Figure 4: Adding (0, a) to Updatable Queue for efficient use of resources.
| PQ _service | PQ adverti seService(char

*serviceNanme, int serviceType, int

out si ze) ;

a2 R Using the returned service structure, the task can ask
for a requested connection from another task using the
| PQ get NewConnection() function. If no task has
requested to connect to that service amit is FALSE,
then no connection will be returned, otherwise the process

Figure 3: Adding (2, y) to Updatable Queue

DO
N

His

Figure 5: Adding (2, z) to Updatable Queue
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will be blocked until a connection is requested. one for outgoing messages, and one for incoming mes-
| PQ_channel | PQ_get NewConnect i on( sages, which reside in shared memory blocks. If the two
| PQ service service, int wait); task processes reside on the same machine, the updatable
The task which is to be the “client” end of the connecqueues are direct connections between the task processes
tion requests that a connection be established by giving tHEigure 6). If the task processes reside on separate
appropriate service name and machine location tdhachines, the queues actually connect the task process to
| PQ openConnection(). Note that the client task can itS communication process (Figure 7). Messages to the
also specify how large the outgoing queue should be.  other task process are read from the shared memory queue

| PQ_connect | PQ openConnect i on( char and sent from the task’s communication process to the
*servi ceName, int serviceType, char communication process of the other task, which forwards
*machi ne, int outSize); it to the task process. Messages received from the other

Once a connection has been established, the two prE2Sk's communication process are placed on the task's
cesses can construct packets to send to each other, coRfz0ming queue by the task’s communication process.
plete with the key value that indicates if a message is a Shared memory is utilized for communication between
command or event (0) or a state update (>0), and cafOCe€SSes on the same machine for two reasons. First, data

receive and de-construct packets from the other task. ~ Passed through shared memory does not need to pass
through the kernel, which would slow down the transfer.

5.2. Communication Companion Process Second, messages sent through the shared memory updat-

For communication between tasks, we use UDP medible queues are inherently guaranteed, as the queue is one
sages on top of Berkeley Sockets. We do this because WY (0nly one process entering data), and flags are used
will not always need guaranteed delivery (state updatéor mutual exclusion.
messages that become obsolete no longer need to be guarUDP messages, however, are not guaranteed. Our
anteed), and a task may require many open sockets. THBplementation provides guaranteed message passing with
common, guaranteed message passing protocol on top PP messages by using sequence numbers, and a stop and
Berkeley Sockets, TCP, is limited by the resources mad@ait method with an adaptive time-out and an exponential
available to it by the kernel, and therefore does not scaRack off. This method, called Jacobson’s algorithm, is
well to many simultaneous socket connections[1]. One off€scribed in [12]. In our implementation, the method is
the factors that affects the reliability of UDP messagelightly mod|f|ed_ SO thatllf a message fails to be acknowl-
passing is how long a received message has to wait befd?89€d, and the information in the message becomes obso-
actually being read by the recipient. The longer the wait€t¢ (because it is of the state update type, and new
the more likely the message will be dropped to make roorfiformation has arrived), theme give up on the obsolete
for other arriving messages, or other resource needs. ~ information and continue trying with the new information

Our implementation, therefore, creates a separate prg_pstead_. In addition, .|f a send does not succeed, it is not
cess for each task process which deals solely with incomilmediately re-sent if there are other messages waiting to
ing and outgoing UDP messages, freeing the job gbe sent to different destinations. The other waiting mes-
message communication from the task process, arRfdes are sent first to prevent a bad connection from com-
increasing the reliability of message passing. This methoBl€tely stopping transmission through other connections.
can also be found in BrickNet [11], the EM system of the,
MR toolkit[15], and PVM[14]. Communication between 6. Performance
the task process and its companion communication pro- In order to judge the performance of the protocol
cess is done through Unix pipes and pairs of boundedlescribed here, we created a benchmark application which
updatable queues in shared memory. The communicatiode implemented using the IPQ library and using the TCP/
process waits for an incoming remote message or a mel Internet protocol. The benchmark application consists
sage from the task precess using seéect()command, of two processes, one which sends a stream of 1000 mes-

thereby avoiding busy-waiting. sages, and one which receives the messages. Each mes-
o sage contains the (machine local) time the message was
S.3. Process to Process Communication sent, an ID value, and an array of 16 floating point num-

In addition to handling all communication from a taskbers. This benchmark simulates a pair of processes, in
process to processes on separate machines, the commusitich one process informs the other of a 3D position and
cation process also assists in making the connectiodrientation of an entity (a common VE task). The pro-
between two task processes, whether they are on the sag&sses were run on SparcStation 2 workstations connected
machine or on separate machines. After the connection Wa 10Mb/s Ethernet.
made, the task process will have two updatable queues, We have, in fact, three different implementations. One
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Name O Process
Server

Task A Task A Comm

Proces i:— Brocess — o gﬂgﬁtgble

AN

Task B >(Used only to establish
Procesg Z:— Taé‘ﬁo%e%gm Sl the connection)

Figure 6: Communication between tasks on the same machine.

Name
Server
Name
Server
NG
Proces -

A - Task B Comny Task B

Process Proces
Z:—

= ‘ UDP message channel

Figure 7: Communication between tasks on different machines.

implementation uses TCP messages, which guarantees We ran each implementation four times for each delay
message delivery in FIFO order. Another implementatiortime using two cases: one in which two processes were on
uses the IPQ library and sends each message as a “uniqtie¢ same physical machine (local), and one in which the
(or even} message, meaning that it cannot be discardeghrocesses were on different physical machines (remote).
These two implementations perform practically the sam&he results are given in Figure 8, where the given lines
steps. The third implementation also uses the IPQ librargross through the average of the four measurement values.
but sends each message as an “updatable”st@e  Figures 8a and 8b show the lag (delay) time between the
updat§ message, meaning that the creation of a new mesime the last message was sent and when it was actually
sage makes any old messages obsolete. read and processed. Note that for igm@otecase, the lag

We used one additional independent variable to repregime can only be used for comparative purposes, as there is
sent processes which spend different amounts of timeo guarantee that the two machine clocks are in synch.
working on other problems than communication. The varifigures 8c and 8d show the amount of time spent by the
able represents a delay in seconds that the receiving preender process in sending the 1000 messages.
cess has between examining the incoming data. Obviously, The main result of our comparison is that, as the
if the messages are guaranteed, the receiver will fall momeceiver spends more time doing other computation, the
and more behind if it only reads one message betweelCP implementation has a lag time and a send time that
delays. On the other hand, the receiver cannot spend all micreases linearly, while the IPQ-Update implementation
its time clearing the incoming queue of messages. Ouwhere every message can become obsolete) shows an
implementation compromises by only reading up to 1Gpproximately constant lag time and send time. Recall that
messages between delays. The delay times, 0, 0.033, 0.0 lag time is for th&ast of 1000 messages. If more mes-
and 0.1 secs., were chosen to represent standard fraseges are sent, the lag time will increase linearly for the
rates (30, 20, and 10 frames/sec). TCP and IPQ-Unique cases. We observed, however, that
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Figure 8a: Message lag for local processes given that the
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