
GIT-GVU-96-03 1

 Abstract
Virtual environment (VE) applications involve many

different tasks, including interfacing with input and output
devices, providing responsive user interaction, and simu-
lating a dynamic environment. The variety and number of
tasks lends the application to a distributed computing sys-
tem, where different tasks are performed by different com-
puting resources. A critical issue that arises from such a
design is how information is communicated between tasks.
In particular, for virtual environments, how information is
communicatedpromptly is the critical issue. In this work,
we describe a pattern of communication common between
VE tasks which is not addressed by other communication
protocols, namely the communication of state information
that continuously changes. We describe a new protocol
based on anupdatable queue abstraction which allows
obsolete state information to be discarded, and compare a
prototype implementation of that abstraction with a stan-
dard communication protocol.

1. Introduction
Virtual environment (VE) applications usually consist

of many different tasks that modify or examine a shared
environment. The tasks vary considerably in computing
requirements, from obtaining tracking and hand input
information through continuous communication with
external devices, to rendering processes that require
graphics intensive computation, to processes that perform
collision detection between entities of the environment
and simulate movement and behaviors for those entities, to
processes that produce audio output. Clearly, VE systems
benefit from a distributed computing design, allowing
tasks to be performed by the computing resources that best
match the task. The issue that arises from such a design is
how information is communicated between tasks.

From our experience with distributed VE systems, we
have categorized communication between tasks of a VE
application into three types: state update messages, com-
mand messages, and event messages. Event messages con-
vey information which cannot be discarded. Command
messages are similar to event messages, but require a
reply. State update messages, however convey the current
state of a subset of the shared environment. A state update
message becomes obsolete and extraneous when a new
state update message is generated for the same subset,
unless an event or command has occurred since the last
state update, or the receiver requires a complete history of
state changes. Distributed VE systems generally transmit a
great deal of state update messages between tasks, and
usually require only the most recent state available. In
fact, old state information is not only useless in most
cases, it is harmful. A task cannot afford to spend time sift-
ing through old messages, and may never be able to “catch
up” to read the most recent state update. Existing commu-
nication protocols, however, do not support the concept of
message obsolescence.

We present here a message passing abstraction called
anupdatable queue which allows for messages to become
obsolete when possible, reducing considerably the effort
needed to obtain the latest state information, while sup-
porting any combination of state update, event, and com-
mand communication. Using a protocol based on this
abstraction, we describe a prototype implementation in
user space, and present a performance comparison to
another implementation using a standard protocol (TCP).

2. Related Work
Communication in current distributed VE systems usu-

ally involves one-to-one communication with processes
that interface external devices, or one-to-many communi-
cation among processes that share a common state. Com-

A Network Communication Protocol for Distributed
Virtual Environment Systems

G. Drew Kessler and Larry F. Hodges
Graphics, Visualization, and Usability Center

College of Computing, Georgia Institute of Technology
Atlanta, GA 30332 USA

{drew, hodges}@cc.gatech.edu
(To appear in the Virtual Reality Annual International Symposium, 1996, Santa Clara, CA)

GIT-GVU-96-03 A Network Communication Protocol for Distributed Virtual Environment Systems 2

munication with processes that interface with external
devices is usually done using a client-server connection
using the TCP/IP protocol, as in the RubberRocks applica-
tion[7] and the MR toolkit[10].

Systems that maintain a common state are organized in
a client-server topology, in which the servers are con-
nected to client task, as in the MR toolkit’s EM sys-
tem[15], BrickNet[11], and the RING system[8]; or
connected peer to peer (fully connected), as in the DIVE
system[5], and the systems based on the Distributed Inter-
active Simulation (DIS) protocol: SIMNET[4], VERN[3],
and NPSNET[9]. These systems have addressed two main
issues, consistency and message traffic, but rely on stan-
dard available protocols.

Most of these systems maintain consistency by identi-
fying one process as the “owner” of an entity of the shared
state, which is the only process that may change that
entity. The DIVE system utilizes another communication
package, the ISIS system[1], to guarantee consistency
between peers. Others have argued, however, that systems
such as ISIS that provide causally and totally ordered
communication do not know enough about the application
level semantic consistency requirements to be efficient or
complete, since they are based on message traffic alone[6].

Systems that maintain a common state through a client-
server topology address the issue of message traffic by fil-
tering messages that pass through the server on their way
to another client so that clients only receive the messages
they need (based on geographic information, as in the
RING system, or semantic information, as in BrickNet).
The NPSNET system utilizes separate Multicast groups to
divide the peers such that only geographically close peers
receive messages from each other.

The systems based on the DIS protocol address the
message traffic issue by using UDP broadcast or Multicast
messages (avoiding each peer sending one message to
every other peer), and by simulating other peers through a
dead reckoningalgorithm. Because this algorithm simu-
lates state changes locally, a peer need only broadcast its
state when it has changed within a threshold error from
what other processes will simulate. The DIS protocol does
not send obsolete messages because it does not provide
guaranteed message passing (although obsolete messages
could resided in the receiver’s message buffer). It over-
comes lost messages by broadcasting an entity’s state at
timed intervals (nominally 5 sec.). This protocol, however,
is not a general solution to communication between VE
tasks, as event and command communication require
ordered, guaranteed message passing, and the receiver
should not have to wait 5 sec. to receive the latest state
information if the first send was unsuccessful. In addition,
when a task stops transmitting state information, the asso-
ciated state information at other tasks may be inconsistent.

In this work, we are less concerned with the topology
used for a set of processes that make up a VE application
then we are with the underlying communication protocol
used between these processes. Systems such as PVM[14]
and ISL[13] provide frameworks for distributed and paral-
lel computation, but do not address the particular needs of
VE applications, for which a more relaxed reliability
requirement is desired to maintain responsiveness.

Most protocols, including TCP, do not allow messages
to be deliberately dropped. Protocols that do drop mes-
sages, such as UDP, generally do not allow the application
to decide which messages are dropped. The communica-
tion protocol described in [9] does provides control over
message reliability by using unguaranteed message pass-
ing and allowing thereceiver to decide if a lost message
(once it is detected) needs to be resent. This method
requires the use of “heartbeat” messages to ensure mes-
sage loss detection, and message log processes to assist in
message recovery. The protocol presented here allows the
sender to decide which messages need to be resent at any
point in time, and does not allow old messages to be buff-
ered at the receiver where they could become obsolete.

3. Communication in Virtual Environments
Communication between tasks in a VE application can

be categorized into three types: state update, events, and
commands (Figure 1). A particular task may require each
of these categories of communication operating in tandem,
or just one.We discuss communication as being from one
process to one process, but our description could be
extended to one-to-many communication, and our imple-
mentation could be extended to take advantage of multi-
cast communication.

Sender

Receiver

Messages

Sender

Receiver

Messages

State Update Communication

Event Communication

Sender

Receiver
Messages

Command Communication

Waiting (blocked)

Figure 1: Communication categories

GIT-GVU-96-03 A Network Communication Protocol for Distributed Virtual Environment Systems 3

3.1. State Update

State update communication involves a stream of state
descriptions, each of which describe a subset of a common
state andreplace previous descriptions for that subset. The
position and orientation of a head tracking device would
be an example of a state which is shared between the
tracker device interface process and a task that maintains
the current viewpoint. Using a continuous stream of state
updates ensures that when the model maintainer or render-
ing task requires the tracking information, the latest possi-
ble information will be available from the communication
channel. The DIS protocol discussed above, whose state
includes entity position, velocity, etc., can be categorized
as utilizing state update communication.

In practice, there are problems with sending a new state
description every time the state changes (which occurs fre-
quently, for tracking information and quickly moving enti-
ties). If the communication channel guarantees the
delivery of every state description message, then the
receiving task will need to read all of the obsolete infor-
mation before obtaining the latest state information (which
will most likely not be what was the latest state informa-
tion when the task began to read messages from the chan-
nel). Implementing some type of flow control will
alleviate the problem, but will increase the averagelag
time (delay between sending and receiving a message), as
the state descriptions will be sent less frequently.

If the communication protocol does not guarantee
delivery of messages, as is the case for the DIS protocol,
the same overflow problem occurs, but less severely, as
old messages will be automatically dropped if not received
within a certain amount of time. Increasing the time
between sending messages by having the receiver simulate
the sender’s state between messages, as in the dead reck-
oning algorithm, will prevent the receiver from being
bogged down. This method works well for predictable
behaviors (such as tank movements), but it is unclear that
it works well for unpredictable behaviors (such as user
head movements). In addition, using unguaranteed mes-
sage passing introduces a new problem for state update
communication when the stream of state descriptions is
too slow to overcome the rate at which messages are lost.

The protocol described here uses unguaranteed mes-
sages, which are re-sent until acknowledged as received,
or until a new state update of that type is to be sent (at
which point, the message being re-sent is obsolete). The
receiving task will, therefore, receive the latest state
update message even if the state hasn’t changed for a
while because the last state update message will be re-sent
until it is received.

3.2. Commands

Command messages convey instructions from one task

to another, such as audio commands (play sound, stop
sound, increase volume, etc.) and hardware device com-
mands (open tracking device, change tracking hemisphere,
close tracking device). They differ from state update com-
munication in that a command does not become obsolete,
as least not at the communication level. The communica-
tion protocol that carries command messages, therefore,
must guarantee delivery in First-In-First-Out (FIFO) order.
In addition, command messages require a response,
although the response may as simple as “done.”

Command messages can be used to obtain state infor-
mation from another task through “polling” (Figure 2).
One task, the “client,” sends apoll command to another
task, the “server,” which responds with the state informa-
tion. This method of communicating state information
uses fewer messages than state update communication and
receives the most current information possible. However,
the client task must block and wait for a response.

3.3. Events

Event messages communicate the occurrence of events,
such as key-presses, button presses, or object collisions. In
addition, commands that do not require a response can be
represented as events. Events could occur frequently, but
like commands, are unique, do not become obsolete, and
therefore require guaranteed, FIFO delivery. When pro-
cessing events, a task often needs the context, or state, at
the time of the event. As a result, the last state update mes-
sages before the event cannot become obsolete until after
the event has been processed.

Like command messages, event messages can also be
used to obtain state information from another task through
polling. In this case, thepoll and response messages are
event messages. This method has an advantage over using
command messages in that the client does not need to
block for a response (the communication is asynchro-
nous). The disadvantage is that the response may arrive

Poll
Response

Poll
Response

Figure 2: Polling Communication

Wait
Receive

Other Work

Receive

Send

Send

Client

Server

Client

Server

Event Polling

Send-and-Wait Polling

GIT-GVU-96-03 A Network Communication Protocol for Distributed Virtual Environment Systems 4

early, and the information will become old. If the message
travel time and time spent by the client doing other work is
known, then the response could be timed to arrive when it
is needed. In general, however, these times are difficult to
predict.

4. Updatable Queue Abstraction
A useful abstraction for one-way, guaranteed, FIFO

communication is a queue. It is easy to see that event com-
munication can be represented as a queue. Communication
of command messages could also use the queue abstrac-
tion by using a pair of queues, an outgoing one for the
request, and an incoming queue for the response (pairing
command and response by unique ID values). Event and
command communication can be combined by using the
outgoing queue for both events and command requests.

The communication of state update messages, however,
has special requirements that a simple queue cannot pro-
vide. Therefore, we construct anupdatable queue abstrac-
tion, which storeskeyed data. Information that is placed in
the queue with a particular key will overwrite the last
information stored with that key (Figure 3), with two cave-
ats. Information stored with a special key (0 in our imple-
mentation) will not overwrite any other information, and
any information stored before the information with the
special key (i.e. earlier in the queue) cannot be overwritten
(Figure 4). These restrictions allow events and commands
to co-exist in the same queue as state updates by assigning
events and commands the special key. Placing an event or
command on the updatable queue essentially archives the
state updates stored before the event or command, until the
state updates are removed from the queue (Figure 5).

2
x

1
b

2
y

2
y

1
b

Key

Data

Figure 3: Adding (2, y) to Updatable Queue

2
x

1
b

0
a

2
x

1
b

0
a

Figure 4: Adding (0, a) to Updatable Queue

0
a

2
x

2
z

0
a

2
x

2
z

Figure 5: Adding (2, z) to Updatable Queue

5. Implementation
To allow for communication between tasks of a VE

application which are being performed by separate pro-
cesses on the same machine or on different, networked
machines, we designed a prototype implementation of
updatable queue pairs, which we have named the Inter-
Process Queue (IPQ) library. Using the IPQ library, each
task can send state update, event, and command messages.
In addition, a task can read the latest command, event, or
state update without waiting, if none has arrived. The
functions to perform these tasks are the same for connec-
tions between processes on the same machine, or pro-
cesses on separate machines, although the message
passing is implemented differently.

Our implementation uses one-to-one communication
either through shared memory (when the two processes
are on the same physical machine) or UDP messages
(when the processes are on separate physical machines).
We have chosen not to utilize an IP-Multicast protocol due
to the added complexity of providing guaranteed, FIFO
message delivery. Future implementations may utilize this
protocol to reduce message traffic between processes.

5.1. Making a Connection

A client-server model is used to establish a connection
between two tasks, although once a connection is estab-
lished, there is no distinction between the two tasks (either
task can send or receive messages to or from the other
task). The task which is to be the “server” end of the con-
nection advertises that it is ready to be connected to by
storing a name and a UDP listening port in a database con-
tained in shared memory. The task which is to be the “cli-
ent” discovers which port to connect to by querying the
local database (if the connection will be between two local
processes), or by querying a “name server” process on a
remote machine. The sole purpose of the name server is to
listen to a known port for address requests, and clean up
when all advertised services on the machine are closed.
This connection method is similar to an RPC implementa-
tion described in [2].

A process advertises a service with the
IPQ_advertiseService() function. Note that the task
specifies how large the outgoing queue should be to allow
for efficient use of resources.

IPQ_service IPQ_advertiseService(char
*serviceName, int serviceType, int
outsize);

Using the returned service structure, the task can ask
for a requested connection from another task using the
IPQ_getNewConnection() function. If no task has
requested to connect to that service andwait is FALSE,
then no connection will be returned, otherwise the process

GIT-GVU-96-03 A Network Communication Protocol for Distributed Virtual Environment Systems 5

will be blocked until a connection is requested.
IPQ_channel IPQ_getNewConnection(

IPQ_service service, int wait);

The task which is to be the “client” end of the connec-
tion requests that a connection be established by giving the
appropriate service name and machine location to
IPQ_openConnection(). Note that the client task can
also specify how large the outgoing queue should be.

IPQ_connect IPQ_openConnection(char
*serviceName, int serviceType, char
*machine, int outSize);

Once a connection has been established, the two pro-
cesses can construct packets to send to each other, com-
plete with the key value that indicates if a message is a
command or event (0) or a state update (>0), and can
receive and de-construct packets from the other task.

5.2. Communication Companion Process

For communication between tasks, we use UDP mes-
sages on top of Berkeley Sockets. We do this because we
will not always need guaranteed delivery (state update
messages that become obsolete no longer need to be guar-
anteed), and a task may require many open sockets. The
common, guaranteed message passing protocol on top of
Berkeley Sockets, TCP, is limited by the resources made
available to it by the kernel, and therefore does not scale
well to many simultaneous socket connections[1]. One of
the factors that affects the reliability of UDP message
passing is how long a received message has to wait before
actually being read by the recipient. The longer the wait,
the more likely the message will be dropped to make room
for other arriving messages, or other resource needs.

Our implementation, therefore, creates a separate pro-
cess for each task process which deals solely with incom-
ing and outgoing UDP messages, freeing the job of
message communication from the task process, and
increasing the reliability of message passing. This method
can also be found in BrickNet [11], the EM system of the
MR toolkit[15], and PVM[14]. Communication between
the task process and its companion communication pro-
cess is done through Unix pipes and pairs of bounded,
updatable queues in shared memory. The communication
process waits for an incoming remote message or a mes-
sage from the task precess using theselect() command,
thereby avoiding busy-waiting.

5.3. Process to Process Communication

In addition to handling all communication from a task
process to processes on separate machines, the communi-
cation process also assists in making the connection
between two task processes, whether they are on the same
machine or on separate machines. After the connection is
made, the task process will have two updatable queues,

one for outgoing messages, and one for incoming mes-
sages, which reside in shared memory blocks. If the two
task processes reside on the same machine, the updatable
queues are direct connections between the task processes
(Figure 6). If the task processes reside on separate
machines, the queues actually connect the task process to
its communication process (Figure 7). Messages to the
other task process are read from the shared memory queue
and sent from the task’s communication process to the
communication process of the other task, which forwards
it to the task process. Messages received from the other
task’s communication process are placed on the task’s
incoming queue by the task’s communication process.

Shared memory is utilized for communication between
processes on the same machine for two reasons. First, data
passed through shared memory does not need to pass
through the kernel, which would slow down the transfer.
Second, messages sent through the shared memory updat-
able queues are inherently guaranteed, as the queue is one
way (only one process entering data), and flags are used
for mutual exclusion.

UDP messages, however, are not guaranteed. Our
implementation provides guaranteed message passing with
UDP messages by using sequence numbers, and a stop and
wait method with an adaptive time-out and an exponential
back off. This method, called Jacobson’s algorithm, is
described in [12]. In our implementation, the method is
slightly modified so that if a message fails to be acknowl-
edged, and the information in the message becomes obso-
lete (because it is of the state update type, and new
information has arrived), thenwe give up on the obsolete
information, and continue trying with the new information
instead. In addition, if a send does not succeed, it is not
immediately re-sent if there are other messages waiting to
be sent to different destinations. The other waiting mes-
sages are sent first to prevent a bad connection from com-
pletely stopping transmission through other connections.

6. Performance
In order to judge the performance of the protocol

described here, we created a benchmark application which
we implemented using the IPQ library and using the TCP/
IP Internet protocol. The benchmark application consists
of two processes, one which sends a stream of 1000 mes-
sages, and one which receives the messages. Each mes-
sage contains the (machine local) time the message was
sent, an ID value, and an array of 16 floating point num-
bers. This benchmark simulates a pair of processes, in
which one process informs the other of a 3D position and
orientation of an entity (a common VE task). The pro-
cesses were run on SparcStation 2 workstations connected
via 10Mb/s Ethernet.

We have, in fact, three different implementations. One

GIT-GVU-96-03 A Network Communication Protocol for Distributed Virtual Environment Systems 6

implementation uses TCP messages, which guarantees
message delivery in FIFO order. Another implementation
uses the IPQ library and sends each message as a “unique”
(or event) message, meaning that it cannot be discarded.
These two implementations perform practically the same
steps. The third implementation also uses the IPQ library,
but sends each message as an “updatable” (orstate
update) message, meaning that the creation of a new mes-
sage makes any old messages obsolete.

We used one additional independent variable to repre-
sent processes which spend different amounts of time
working on other problems than communication. The vari-
able represents a delay in seconds that the receiving pro-
cess has between examining the incoming data. Obviously,
if the messages are guaranteed, the receiver will fall more
and more behind if it only reads one message between
delays. On the other hand, the receiver cannot spend all of
its time clearing the incoming queue of messages. Our
implementation compromises by only reading up to 10
messages between delays. The delay times, 0, 0.033, 0.05,
and 0.1 secs., were chosen to represent standard frame
rates (30, 20, and 10 frames/sec).

We ran each implementation four times for each delay
time using two cases: one in which two processes were on
the same physical machine (local), and one in which the
processes were on different physical machines (remote).
The results are given in Figure 8, where the given lines
cross through the average of the four measurement values.
Figures 8a and 8b show the lag (delay) time between the
time the last message was sent and when it was actually
read and processed. Note that for theremote case, the lag
time can only be used for comparative purposes, as there is
no guarantee that the two machine clocks are in synch.
Figures 8c and 8d show the amount of time spent by the
sender process in sending the 1000 messages.

The main result of our comparison is that, as the
receiver spends more time doing other computation, the
TCP implementation has a lag time and a send time that
increases linearly, while the IPQ-Update implementation
(where every message can become obsolete) shows an
approximately constant lag time and send time. Recall that
the lag time is for thelast of 1000 messages. If more mes-
sages are sent, the lag time will increase linearly for the
TCP and IPQ-Unique cases. We observed, however, that

Name
Server

Task A Task A Comm.
ProcessProcess

Task B Task B Comm.
ProcessProcess

Updatable
Queue

Process

Name
Server

Name
Server

Task A Task A Comm.
 ProcessProcess

Task BTask B Comm.
 Process Process

UDP message channel

Figure 6: Communication between tasks on the same machine.

Figure 7: Communication between tasks on different machines.

(Used only to establish
the connection)

G
IT

-G
V

U
-9

6
-0

3
 A

 N
e

tw
o

rk C
o

m
m

u
n

ica
tio

n
 P

ro
to

co
l fo

r D
istrib

u
te

d
 V

irtu
a

l E
n

viro
n

m
e

n
t S

yste
m

s
7

Figure 8a: Message lag for local processes given that the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.02 0.04 0.06 0.08 0.1

M
es

sa
ge

 la
g

(s
ec

s)

Receiver delay (secs)

TCP Lag
IPQ-Update Lag
IPQ-Unique Lag

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.02 0.04 0.06 0.08 0.1

M
es

sa
ge

 la
g

(s
ec

s)

Receiver delay (secs)

TCP Lag
IPQ-Update Lag
IPQ-Unique Lag

Figure 8b: Message lag for remote processes given that the
receiver spends time doing other things (the delay time) receiver spends time doing other things (the delay time)

0

2

4

6

8

10

12

14

16

18

0 0.02 0.04 0.06 0.08 0.1

T
ot

al
 s

en
d

tim
e

(s
ec

s)

Receiver delay (secs)

TCP Send time
IPQ-Update Send time
IPQ-Unique Send time

Figure 8c: Time spent by the sender sending 1000 messages
to a local process given that the receiver spends time doing
other things (the delay time)

0

2

4

6

8

10

12

14

16

18

0 0.02 0.04 0.06 0.08 0.1

T
ot

al
 s

en
d

tim
e

(s
ec

s)

Receiver delay (secs)

TCP Send time
IPQ-Update Send time
IPQ-Unique Send time

Figure 8d: Time spent by the sender sending 1000 messages
to a remote process given that the receiver spends time
doing other things (the delay time)

GIT-GVU-96-03 A Network Communication Protocol for Distributed Virtual Environment Systems 8

the better performance for the IPQ-Update implementation
comes at the cost of throughput. In our runs of the IPQ-
Update case, only 1-2% of the messages sent were actually
read. The lost messages, though, are precisely the ones
that the receiver is not interested in, as they have become
obsolete due to the inability of the receiver to keep up.

Another significant result from our performance tests
was the effect the delay had on the amount of time
required for the sender to send 1000 messages. Once
again, the TCP and IPQ-Unique implementations show
worse performance for higher delay times, and the IPQ-
Update implementation has an approximately constant
performance. This can be attributed to the sender having to
block and wait because the receiver’s buffer is full. The
sender can only continue when the receiver reads from its
buffer, freeing buffer space.

When we compare the TCP implementation with the
IPQ-Unique implementation, in which no messages can be
discarded, we see that when the processes are local, the
IPQ implementation introduces less lag. This supports the
claim that avoiding passing data through the kernel (by
using shared memory) produces an improved transfer rate.
We also see that, in the other cases, the TCP implementa-
tion performs considerably better for small delays in the
receiving process, and somewhat better with larger delays.
This result is expected as TCP is implemented in kernel
space and has been optimized to perform guaranteed mes-
sage communication. The poor send times for the IPQ-
Unique implementation with no delay can be attributed, in
part, to contention for the shared memory queues.

7. Conclusions
The goal of most VE applications is to provide a

dynamic environment that is interactive with the user or
users. Meeting these requirements can involve a distrib-
uted design, with communication that reflects the most
current state available. Existing communication protocols,
such as TCP, do not allow messages to become obsolete,
and therefore do not allow for state update messages to
overwrite older state update messages. We have described
an updatable queue abstraction that we use to develop a
protocol thatdoes allow messages to be discarded because
they become obsolete. Using a prototype implementation
of the protocol, we have shown that, when state update
communication is a substantial component of the commu-
nication between tasks of a VE application, our protocol
provides better performance than a traditional TCP mes-
sage passing implementation.

8. Acknowledgment
We would like to acknowledge the extensive discussion

and advice provided by Brad Topol during the develop-
ment of this protocol.

9. References
[1] Birman, K., A. Schiper, and P. Stephenson. Lightweight

Causal and Atomic Group Multicast.ACM Transactions on
Computer Systems, 9, 3, (Aug., 1991), pp. 272-314.

[2] Birrell, A. D. and B. J. Nelson. Implementing Remote Pro-
cedure Calls.ACM Transactions on Computer Systems, 2, 1,
(Feb., 1984), pp. 39-59.

[3] Blau, B., C. E. Hughes, J. M. Moshell, and C. Lisle. Net-
worked Virtual Environments.Symposium on Interactive
3D Graphics (1992), pp. 157-160.

[4] Calvin, J., A. Dickens, B. Gaines, P. Metzger, D. Miller, and
D. Owen. The SIMNET Virtual World Architecture.Proc.
of IEEE VRAIS(Seattle, WA, Sept., 1993), pp. 450-455.

[5] Carlsson, C. and O. Hagsand, DIVE - A Platform for Multi-
user Virtual Environments.Computers & Graphics, 17, 6,
(1993), pp. 663-669.

[6] Cheriton, D. R. and D. Skeen. Understanding the Limita-
tions of Causally and Totally Ordered Communication.
ACM SOSP (Dec., 1993), pp. 44-57.

[7] Codella, C., R. Jalili, L. Koved, J. B. Lewis, D. T. Ling, J. S.
Lipscomb, D. A. Rabenhorst, C. P. Wang. Interactive Simu-
lation in a Multi-Person Virtual World.Proc. of ACM CHI
(May, 1992), pp. 329-334

[8] Funkhouser, T. A. RING: A Client-Server System for Multi-
User Virtual Environments.Symposium on Interactive 3D
Graphics (1995), pp. 85-92.

[9] Holbrook, Hugh W., Sandeep K. Singhal, and David R.
Cheriton. Log-Based Receiver-Reliable Multicast for Dis-
tributed Interactive Simulation.Proc. of ACM SIGCOMM
(Cambridge, MA, Aug. 1995), pp. 328-341.

[10] Macedonia, M. R., M. J. Zyda, D. R. Pratt, D. P. Brutzman,
and P. T. Barham. Exploiting Reality with Multicast
Groups: A Network Architecture for Large-scale Virtual
Environments.Proc. of IEEE VRAIS (RTP, NC, Mar.,
1995), pp. 2-10.

[11] Shaw, C., J. Liang, M. Green, and Y. Sun. The Decoupled
Simulation Model for Virtual Reality Systems.Proc. of
ACM CHI (May, 1992), pp. 321-328.

[12] Singh, G., W. Png, A. Wong, and L. Serra. Networked Vir-
tual Worlds.Proc. of Computer Animation ‘95(Geneva,
Switzerland, Apr., 1995), pp.44-49.

[13] Stevens, W. R.UNIX Network Programming. Englewood
Cliffs, NJ: Prentice-Hall (1990).

[14] Sunderam, V. S. An Inclusive Session Level Protocol for
Distributed Applications.Proc. of ACM SIGCOMM ‘90;
(Special Issue Computer Communication Review), 20, 4,
(Sept., 1990), pp. 307-316.

[15] Sunderam, V. S. PVM: A Framework for Parallel Distrib-
uted Computing.Concurrency: Practice & Experience, 2, 4,
(Dec., 1990), 315-339.

[16] Wang, Q., M. Green, and C. Shaw. EM - An Environment
Manager for Building Networked Virtual Environments.
Proc. of IEEE VRAIS (RTP, NC, Mar., 1995), pp. 11-18.

