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Abstract. We introduce a framework for reducing the number of element compari-
sons performed in priority-queue operations. In particular, we give a priority queue
which guarantees the worst-case cost of O(1) per minimum finding and insertion,
and the worst-case cost of O(log n) with at most log n + O(1) element comparisons
per minimum deletion and deletion, improving the bound of 2 log n + O(1) on the
number of element comparisons known for binomial queues. Here, n denotes the
number of elements stored in the data structure prior to the operation in question,
and log n equals max {1, log

2
n}. We also give a priority queue that provides, in

addition to the above-mentioned methods, the priority-decrease (or decrease-key)
method. This priority queue achieves the worst-case cost of O(1) per minimum
finding, insertion, and priority decrease; and the worst-case cost of O(log n) with at
most log n + O(log log n) element comparisons per minimum deletion and deletion.
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Storage Representations]: Linked representations; F.2.2 [Analysis of Algorithms
and Problem Complexity]: sorting and searching
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1. Introduction

One of the major research issues in the field of theoretical computer science
is the comparison complexity of computational problems. In this paper,
we consider priority queues (called heaps in some texts) that guarantee a
cost of O(1) for insert, with an attempt to reduce the number of element
comparisons involved in delete-min. Binary heaps [29] are therefore ex-
cluded, following from the fact that log log n ± O(1) element comparisons
are necessary and sufficient for inserting an element into a heap of size n
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[15]. Gonnet and Munro [15] (corrected by Carlsson [4]) also showed that
log n + log∗ n ± O(1) element comparisons are necessary and sufficient for
deleting a minimum element from a binary heap.

In the literature several priority queues have been proposed that achieve
a cost of O(1) per find-min and insert, and a cost of O(log n) per delete-min
and delete. Examples of priority queues that achieve these bounds, in the
amortized sense, are binomial queues [1, 27] and pairing heaps [12, 17, 25].
The same efficiency can be achieved in the worst case with a special imple-
mentation of a binomial queue (see, for example, [5] or [8, Section 3]). If the
decrease (often called decrease-key) method is to be supported, Fibonacci
heaps [13] and thin heaps [18] achieve, in the amortized sense, a cost of O(1)
per find-min, insert, and decrease; and a cost of O(log n) per delete-min and
delete. Run-relaxed heaps [8], fat heaps [18], and meldable priority queues
described in [2] achieve these bounds in the worst case.

For all the aforementioned priority queues guaranteeing a cost of O(1)
per insert, 2 log n − O(1) is a lower bound, even in the amortized sense, on
the number of element comparisons performed by delete-min and delete (a
derivation of this lower bound for binomial queues is given in Section 2).
The upper bound of 2 log n + O(1) is known to hold for binomial queues in
the worst case (see Section 2).

In all our data structures we use various forms of binomial trees as the
basic building blocks. Therefore, in Section 2 we review how binomial trees
are employed in binomial queues (called binomial heaps in [7]). In Section 3,
we present our two-tier framework for structuring priority queues. We apply
the framework in three different ways to reduce the number of element com-
parisons performed in priority-queue operations. In Section 8, we discuss
which other data structures could be used in our framework as a substitute
for binomial trees.

The results of this paper are as follows. In Section 4, we give a structure,
called a two-tier binomial queue, that guarantees the worst-case cost of O(1)
per find-min and insert, and the worst-case cost of O(log n) with at most
log n + O(log log n) element comparisons per delete-min and delete. In Sec-
tion 5, we describe a refined priority queue, called a multipartite binomial

queue, by which the better bound of at most log n + O(1) element compari-
sons per delete-min and delete is achieved. In Section 6, we show as an
application of the framework that, by using a multipartite binomial queue
in adaptive heapsort [21], a sorting algorithm is obtained that is optimally
adaptive with respect to the inversion measure of disorder, and that sorts a
sequence having n elements and I inversions with at most n log(I/n)+O(n)
element comparisons. This is the first priority-queue-based sorting algorithm
having these properties. Both in Section 5 and in Section 6 the results pre-
sented are stronger than those presented in the conference version of this
paper [9].

In Section 7, we present a priority queue, called a multipartite relaxed bi-

nomial queue, that provides the decrease method in addition to the above-
mentioned methods. The data structure is built upon run-relaxed binomial
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queues (called run-relaxed heaps in [8]). A multipartite relaxed binomial
queue guarantees the worst-case cost of O(1) per insert, find-min, and de-
crease; and the worst-case cost of O(log n) with at most log n + O(log log n)
element comparisons per delete-min and delete. During the course of this
work we perceived an interesting taxonomy between different building blocks
that can be used in our framework. In the conference version of this paper
[9], it was outlined that with structures similar to thin binomial trees [18]
a priority queue is obtained that guarantees, in the amortized sense, a cost
of O(1) per insert, find-min, and decrease; and a cost of O(log n) with at
most 1.44 log n+O(log log n) element comparisons per delete-min and delete.
With fat binomial trees [18] the same costs can be achieved in the worst case
and the number of element comparisons performed per delete-min and delete
can be reduced to 1.27 log n + O(log log n). Finally, with relaxed binomial
trees [8] the same worst-case bounds are achieved, except that the constant
factor in the logarithm term in the bound on the number of element com-
parisons performed by delete-min and delete can be reduced to one.

2. Binomial queues

In a generic form, a priority queue is a data structure which depends on four
type parameters: E , C, F , and A. E is the type of the elements manipulated;
C is the type of the compartments used for storing the elements, one element
per compartment; and F is the type of the ordering function used in element
comparisons. A compartment may also contain satellite data, like references
to other compartments. We assume that the elements can only be moved
and compared, both operations having a cost of O(1). Furthermore, we
assume that it is possible to get any datum stored at a compartment at
a cost of O(1). A is the type of the allocator which provides methods for
allocating new compartments and deallocating old compartments. We omit
the details concerning memory management, and simply assume that both
allocation and deallocation have a cost of O(1).

Any priority queue Q 〈E , C,F ,A〉 should provide the following methods:

E find-min(). Return a minimum element stored in Q. The minimum is
taken with respect to F . Requirement. The data structure is not
empty. The element returned is passed by reference.

C insert(E e). Insert element e into Q and return its compartment for later
use. Requirement. There is space available to accomplish this oper-
ation. Both e and the returned compartment are passed by reference.

void delete-min(). Remove a minimum element and its compartment from
Q. Requirement. The data structure is not empty.

void delete(C x). Remove both the element stored at compartment x and
compartment x from Q. Requirement. x is a valid compartment. x
is passed by reference.

Another method that may be considered is:
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void decrease(C x, E e). Replace the element stored at compartment x
with element e. Requirement. x is a valid compartment. e is no
greater than the old element stored at x. Both x and e are passed by
reference.

Some additional methods — like a constructor, a destructor, and a set of
methods for examining the number of elements stored in Q — are neces-
sary to make the data structure useful, but these are computationally less
interesting and therefore not considered here.

We would like to point out that, after inserting an element, the reference
to the compartment where it is stored should remain the same so that pos-
sible later references made by delete and decrease operations are valid. In
some sources this problem is not acknowledged, meaning that the proposed
algorithms are actually incorrect. Our solution to this potential problem is
simple: we do not move the elements after they have been inserted into the
data structure. For other solutions, we refer to a longer discussion in [16].

In a tree its nodes are used as compartments for storing the elements.
A binomial tree [1, 24, 27] is a rooted, ordered tree defined recursively as
follows. A binomial tree of rank 0 is a single node. For r > 0, a binomial
tree of rank r comprises the root and its r binomial subtrees of rank 0, 1,
. . . , r − 1 in this order. We call the root of the subtree of rank 0 the oldest

child and the root of the subtree of rank r− 1 the youngest child. It follows
directly from the definition that the size of a binomial tree is always a power
of two, and that the rank of a tree of size 2r is r.

A binomial tree can be implemented using the child-sibling representation,
where every node has three pointers, one pointing to its youngest child, one
to its closest younger sibling, and one to its closest older sibling. The children
of a node are kept in a circular, doubly-linked list, called the child list, so one
of the sibling pointers of the youngest child points to the oldest child, and
vice versa. Unused child pointers have the value null. In addition, each node
should store the rank of the maximal subtree rooted at it. To facilitate the
delete method, every node should have space for a parent pointer, but the
parent pointer is set only if the node is the youngest child of its parent. To
distinguish the root from the other nodes, its parent pointer is set to point
to a fixed sentinel; for other nodes the parent pointer points to another node
or has the value null.

The children of a node can be sequentially accessed by traversing the child
list from the youngest to the oldest, or vice versa if the oldest child is first
accessed via the youngest child. It should be pointed out that with respect
to the parent pointers our representation is nonstandard. An argument, why
one parent pointer per child list is enough and why we can afford to visit all
younger siblings of a node to get to its parent, is given in Lemma 1. In our
representation each node has a constant number of pointers pointing to it,
and it knows from which nodes those pointers come. Because of this, it is
possible to detach any node by updating only a constant number of pointers.

In its standard form, a binomial queue is a forest of binomial trees with at
most one tree of any given rank. In addition, the trees are kept heap ordered,
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i.e. the element stored at every node is no greater than the elements stored
at the children of that node. The sibling pointers of the roots are reused to
keep the trees in a circular, doubly-linked list, called the root list, where the
binomial trees appear in increasing order of rank.

Two binomial trees of the same rank can be linked together by making
the root of the tree that stores the greater element the youngest child of the
other root. Later on, we refer to this as a join. A split is the inverse of a
join, where the subtree rooted at the youngest child of the root is unlinked
from the given tree. A join involves a single element comparison, and both
a join and a split have a cost of O(1).

Let B be a binomial queue. The priority-queue operations for B can be
implemented as follows:

B.find-min(). The root storing a minimum element is accessed and that
element is returned. The other operations are given the obligation to
maintain a pointer to the location of the current minimum.

B.insert(e). A new node storing element e is constructed and then added
to the forest as a tree of rank 0. If this results in two trees of rank 0,
successive joins are performed until no two trees have the same rank.
Furthermore, the pointer to the location of the current minimum is
updated if necessary.

B.delete-min(). The root storing an overall minimum element is removed,
thus leaving all the subtrees of that node as independent trees. In the
set of trees containing the new trees and the previous trees held in the
binomial queue, all trees of equal ranks are joined until no two trees
of the same rank remain. The root storing a new minimum element
is then found by scanning the current roots and the pointer to the
location of the current minimum is updated accordingly.

B.delete(x). The binomial tree containing node x is traversed upwards
starting from x, the current node is swapped with its parent, and this is
repeated until the root of the tree is reached. Note carefully that nodes
are swapped by detaching them from their corresponding child lists
and attaching them back in each others place. Since whole nodes are
swapped, pointers to the nodes from the outside remain valid. Lastly,
the root is removed as in a delete-min operation.

B.decrease(x, e). The element stored at node x is replaced with element e
and node x is repeatedly swapped with its parent until the heap order is
reestablished. Also, the pointer to the location of the current minimum
is updated if necessary.

For a binomial queue storing n elements, the worst-case cost per find-min
is O(1) and that per insert, delete-min, delete, and decrease is O(log n). The
amortized bound on the number of element comparisons is two per insert
and 2 log n + O(1) per delete-min. To see that the bound is tight for delete-
min (and delete), consider a binomial queue of size n which is one less than
a power of two, an operation sequence which consists of pairs of delete-min
and insert, and a situation where the element to be deleted is always stored
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at the root of the tree of the largest rank. Every delete-min operation in
such a sequence needs blog nc element comparisons for joining the trees of
equal ranks and blog nc element comparisons for finding the root that stores
a new minimum element.

To get the worst-case cost of O(1) for an insert operation, all the necessary
joins cannot be performed at once. Instead, a constant number of joins can
be done in connection with each insertion, and the execution of the other
joins can be delayed for forthcoming insert operations. To facilitate this, a
logarithmic number of pointers to joins in process is maintained on a stack.
More closely, each pointer points to a root in the root list; the rank of the
tree pointed to should be the same as the rank of its neighbour. In one join

step, the pointer at the top of the stack is popped, the two roots are removed
from the root list, the corresponding trees are joined, and the root of the
resulting tree is put in the place of the two. If there exists another tree of
the same rank as the resulting tree, a pointer indicating this pair is pushed
onto the stack. Thereby a preference is given for joins involving small trees.

In an insert operation a new node is created and added to the root list.
If the given element is smaller than the current minimum, the pointer indi-
cating the location of a minimum element is updated to point to the newly
created node. If there exists another tree of rank 0, a pointer to this pair
of trees is pushed on the stack. After this a constant number of join steps
is executed. If one join is done in connection with every insert operation,
the on-going joins are already disjoint and there are always space for new
elements (for a similar treatment, see [5] or [6, p. 53 ff.]). Analogously with
an observation made in [5], the size of the stack can be reduced dramati-
cally if two join steps are executed in connection with every insert operation,
instead of one.

Since there are at most two trees of any given rank, the number of element
comparisons performed by a delete-min and delete operation is never larger
than 3 log n. In fact, a tighter analysis shows that the number of trees is
bounded by blog nc+1. The argument is that insert, delete-min, and delete
operations can be shown to maintain the invariant that any rank occupying
two trees is preceded by a rank occupying no tree, possibly having a sequence
of ranks occupying one tree in between. That is, the number of element
comparisons is only at most 2 log n + O(1) per delete-min and delete. An
alternative way of achieving the worst-case bounds, two element comparisons
per insert and 2 log n + O(1) element comparisons per delete-min/delete, is
described in [8, Section 3].

3. Two-tier framework

For the binomial queues there are two major tasks that contribute to the
multiplicative factor of two in the bound on the number of element com-
parisons for delete-min. The first is the join of trees of equal ranks, and
the second is the maintenance of the pointer to the location of a minimum
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element. The key idea of our framework is to reduce the number of element
comparisons involved in finding a new minimum element after the joins.

To realize this idea we compose a priority queue using the following three
components, which themselves are priority queues:

1. The lower store is a priority queue which stores at least half of all of the
n elements. This store is implemented as a collection of separate struc-
tures, the size of each of which is an exact power of two. Each element
is stored only once, and there is no relation between elements held in
different structures. A special requirement for delete-min and delete
is that they only modify one of the structures and at the same time
retain the size of that structure. In addition to the normal priority-
queue methods, structure borrowing should be supported in which an
arbitrary structure can be released from the lower store (and moved
to the reservoir if this becomes empty). As to the complexity require-
ments, find-min and insert should have a cost of O(1), and delete-min
and delete a cost of O(log n). Moreover, structure borrowing should
have a cost of O(1).

2. The upper store is a priority queue which stores pointers to the m
structures in the lower store, each giving one minimum candidate. In
pointer comparisons, the candidates referred to are compared. The
main purpose of the upper store is to provide fast access to an overall
minimum element in the lower store. The requirement is that find-min
and insert should have a cost of O(1), and delete-min and delete a cost
of O(log m).

3. The reservoir is a special priority queue which supports find-min,
delete-min, and delete, but not insert. It contains the elements that
are not in the lower store. Whenever a compartment together with
the associated element is deleted from the lower store, as a result of
a delete-min or delete operation, a compartment is borrowed from the
reservoir. Using this borrowed compartment, the structure that lost a
compartment can be readjusted to gain the same properties as before
the deletion. Again, find-min should have a cost of O(1), and delete-
min and delete a cost of O(log n), where n is the number of all elements
stored. In other words, the cost need only be logarithmic in the size
of the reservoir at the time when the reservoir is refilled by borrowing
a structure from the lower store. Moreover, compartment borrowing
should have a cost of O(1).

To get from the lower store to the upper store and from the upper store to
the lower store, we assume that each structure in the lower store is linked
to the corresponding pointer in the upper store, and vice versa. Moreover,
to distinguish whether a compartment is in the reservoir or not, we assume
that each structure has extra information indicating the component in which
the structure is held, and that this information can easily be reached from
each compartment.

Let I be an implementation-independent framework interface for a priority
queue. Using the priority-queue operations provided for the components, the
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priority-queue operations for I can be realized as follows:

I.find-min(). A minimum element is either in the lower store or in the
reservoir, so it can be found by lower-store find-min — which relies on
upper-store find-min — or by reservoir find-min. The smaller of these
two elements is returned.

I.insert(e). The given element e is inserted into the lower store using lower-
store insert, which may invoke the operations provided for the upper
store.

I.delete-min(). First, if the reservoir is empty, a group of elements is
moved from the lower store to the reservoir using structure borrow-
ing. Second, lower-store find-min and reservoir find-min are invoked to
determine in which component an overall minimum element lies. De-
pending on the outcome, lower-store delete-min or reservoir delete-min
is invoked. If an element is to be removed from the lower store, an-
other element is borrowed from the reservoir to retain the size of the
modified lower-store structure. Depending on the changes made in the
lower store, it may be necessary to update the upper store as well.

I.delete(x). It is first made sure that the reservoir is not empty; if it is,
it is refilled by borrowing a structure from the lower store. The extra
information, associated with the structure in which the given compart-
ment x is stored, is accessed. If the compartment is in the reservoir,
reservoir delete is invoked; otherwise, lower-store delete is invoked. In
lower-store delete, a compartment is borrowed from the reservoir to
retain the size of the modified structure. If necessary, the upper store
is updated as well.

Assume now that the given complexity requirements are fulfilled. Since
a lower-store find-min operation and a reservoir find-min operation have a
cost of O(1), a find-min operation has a cost of O(1). The efficiency of an
insert operation is directly related to that of a lower-store insert operation,
i.e. the cost is O(1). In a delete-min operation the cost of the find-min
and insert operations invoked is only O(1). Also, compartment borrowing
and structure borrowing have a cost of O(1). Let n denote the number of
elements stored, and let D`(n), Du(n), and Dr(n) be the functions express-
ing the complexity of lower-store delete-min, upper-store delete-min, and
reservoir delete-min, respectively. Hence, the complexity of a delete-min
operation is bounded above by max {D`(n) + Du(n), Dr(n)} + O(1). As to
the efficiency of a delete operation, there is a similar dependency on the
efficiency of lower-store delete, upper-store delete, and reservoir delete. The
number of element comparisons performed can be analysed after the actual
realization of the components is detailed.

4. Two-tier binomial queues

In our first realization of the framework we use binomial trees as the basic
structures, and utilize binomial queues in the form described in Section 2.
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Therefore, we call the data structure two-tier binomial queue. Its compo-
nents are the following:

1. The lower store is implemented as a binomial queue storing the major
part of the elements.

2. The upper store is implemented as another binomial queue that stores
pointers to the roots of the binomial trees held in the lower store, but
the upper store may also store pointers to earlier roots of the lower
store that are currently either in the reservoir or inner nodes in the
lower store.

3. The reservoir consists of a single tree, which is binomial at the time of
its creation.

The form of the nodes is identical in the lower store and the reservoir,
and each node is linked to the corresponding node in the upper store; if no
counterpart in the upper store exists, the link has the value null. Also, we
use the convention that the parent pointer of the root of the reservoir points
to a reservoir sentinel, whereas for the trees held in the lower store the parent
pointers of the roots point to a lower-store sentinel. This way we can easily
distinguish the origin of a root. Instead of compartments and structures,
nodes and subtrees are borrowed by exchanging references to these objects.
We refer to these operations as node borrowing and tree borrowing.

If there are n elements in total, the size of the upper store is O(log n).
Therefore, at the upper store, delete-min and delete require O(log log n)
element comparisons. The challenge is to maintain the upper store and
to implement the priority-queue operations for the lower store such that
the work done in the upper store is reduced. If in the lower store the
removal of a root is implemented in the standard way, there might be a
logarithmic number of new subtrees that need to be inserted into the upper
store. Possibly, some of the new subtrees have to be joined with the existing
trees, which again may cascade a high number of deletions to the upper
store. Hence, as required, a new implementation of the removal of a root is
introduced that alters only one of the lower-store trees.

Next, we show how different priority-queue operations may be handled.
We describe and analyse the operations for the reservoir, the upper store,
and the lower store in this order.

4.1 Reservoir operations

To borrow a node from the tree of the reservoir, the oldest child of the
root is detached (or the root itself if it does not have any children), making
the children of the detached node the oldest children of the root in the
same order. Due to the circularity of the child list, the oldest child and
its neighbouring nodes can be accessed by following a few pointers. So the
oldest child can be detached from the child list at a cost of O(1). Similarly,
two child lists can be appended at a cost of O(1). To sum up, the total cost
of node borrowing is O(1).
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A find-min operation simply returns the element stored at the root of the
tree held in the reservoir. That is, the worst-case cost of a find-min operation
is O(1).

In a delete-min operation, the root of the tree of the reservoir is removed
and the subtrees rooted at its children are repeatedly joined by processing
the children of the root from the oldest to the youngest. In other words,
every subtree is joined with the tree which results from the joins of the
subtrees rooted at the older children. In a delete operation, the given node
is repeatedly swapped with its parent until the root is reached, the root is
removed, and the subtrees of the removed root are repeatedly joined. In
both delete-min and delete, when the removed node has a counterpart in
the upper store, the counterpart is deleted as well.

For the analysis, the invariants proved in the following lemmas are crucial.
For a node x in a rooted tree, let Ax be the set of ancestors of x, including
x itself; let Cx be the number of all the siblings of x that are younger than
x, including x; and let Dx be

∑

y∈Ax

Cy.
Lemma 1. For any node x in a binomial tree of rank r, Dx ≤ r + 1.
Proof. The proof is by induction. Clearly, the claim is true for a tree
consisting of a single node. Assume that the claim is true for two trees T1

and T2 of rank r − 1. Without loss of generality, assume that the root of T2

becomes the root after T1 and T2 are joined together. For every node x in
T1, Dx increases by one due to the new root. For every node y in T2, except
the root, Dy increases by one because the only ancestor of y that gets a new
younger sibling is the child of the new root. Now the claim follows from the
induction assumption. 2

Lemma 2. Consider any node x of the tree held in the reservoir. Starting

with a binomial tree of rank r, Dx never gets larger than r + 1 during the

life-span of this tree.

Proof. By Lemma 1, the initial tree fulfils the claim. Node borrowing
modifies the tree in the reservoir by removing the oldest child of the root and
moving all its children one level up. For every node x in any of the subtrees
rooted at the children of the oldest child of the root, Dx will decrease by
one. For all other nodes the value remains the same. Hence, if the claim
was true before borrowing, it must also be true after the modifications.

Each delete-min and delete operation removes the root of the tree in the
reservoir and repeatedly joins the resulting subtrees. Due to the removal
of the root, for every node x, Dx decreases by one. Moreover, since the
subtrees are made separate, if there are j subtrees in all, for any node y
in the subtree rooted at the ith oldest child (or simply the ith subtree),
i ∈ {1, . . . , j}, Dy decreases by j − i. A join increases Dx by one for every
node x in the subtrees involved, except that the value remains the same for
the root. Therefore, since a node x in the ith subtree is involved in j − i+1
joins, Dx may increase at most by j − i + 1. To sum up, for every node x,
Dx may only decrease or stay the same. Hence, if the claim was true before
the root removal, it must also be valid after all the modifications. 2
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Corollary 3. During the life-span of the tree held in the reservoir, starting

with a binomial tree of rank r, the root of the tree has at most r children.

Proof. For a node x, let dx denote the number of children of x. Let y be
the root of the tree held in the reservoir and z the oldest child of y. Clearly,
Dz = dy + 1. By Lemma 2, Dz ≤ r + 1 all the time, and thus, dy ≤ r. 2

The complexity of a delete-min and delete operation is directly related to
the number of children of the root, and the complexity of a delete operation
is also related to the length of the Dx-path for the node x being deleted.
If the rank of the tree in the reservoir was initially r, by Corollary 3 the
number of children of the root is always smaller than or equal to r, and
by Lemma 2 the length of the Dx-path is bounded by r. During the life-
span of the tree held in the reservoir, there is another binomial tree in the
lower store whose rank is at least r (see Section 4.3). Thus, if n denotes
the number of elements stored, r < log n. The update of the upper store,
if at all necessary, has an extra cost of O(log log n), including O(log log n)
element comparisons. Hence, the worst-case cost of a delete-min and delete
operation is O(log n) and the number of element comparisons performed is
at most log n + O(log log n).

4.2 Upper-store operations

The upper store is a worst-case efficient binomial queue storing pointers to
the nodes held in the other two components. In addition to the standard
priority-queue methods, it supports lazy deletions where nodes are marked to
be deleted instead of being removed immediately. It should also be possible
to unmark a node if the node pointed to by the stored pointer becomes a
root later on. The invariant maintained by the algorithms is that for each
marked node, whose pointer refers to a node y in the lower store or in the
reservoir, there is another node x such that the element stored at x is no
greater than the element stored at y.

To provide worst-case efficient lazy deletions, we use the global-rebuilding
technique adopted from [23]. When the number of unmarked nodes becomes
equal to m0/2, where m0 is the current size of the upper store, we start
building a new upper store. The work is distributed over the forthcoming
m0/4 upper-store operations. In spite of the reorganization, both the old
structure and the new structure are kept operational and used in parallel.
All new nodes are inserted into the new structure, and all old nodes being
deleted are removed from their respective structures. Since the old structure
does not need to handle insertions, the trees there can be emptied as in the
reservoir by detaching the oldest child of the root in question, or the root
itself if it does not have any children. If there are several trees left, if possible,
a tree whose root does not contain the current minimum is selected as the
target of each detachment.

In connection with each of the next at most m0/4 upper-store operations,
four nodes are detached from the old structure; if a node is unmarked,
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it is inserted into the new structure; otherwise, it is released and in its
counterpart in the lower store the pointer to the upper store is given the
value null. When the old structure becomes empty, it is dismissed and
thereafter the new structure is used alone. During the m0/4 operations at
most m0/4 nodes can be deleted or marked to be deleted, and since there
were m0/2 unmarked nodes in the beginning, at least half of the nodes are
unmarked in the new structure. Therefore, at any point in time, we are
constructing at most one new structure. We emphasize that each node can
only exist in one structure and whole nodes are moved from one structure
to the other, so that pointers from the outside remain valid.

Since the cost of each detachment and insertion is O(1), the reorganization
only adds an additive term O(1) to the cost of all upper-store operations. A
find-min operation, which is a normal binomial-queue operation, may need
to consult both the old and the new upper stores, so its worst-case cost
is still O(1). The actual cost of marking and unmarking is clearly O(1),
even if they take part in reorganizations. If m denotes the total number of
unmarked nodes currently stored, at any point in time, the total number of
nodes stored is Θ(m), and during a reorganization m0 = Θ(m). According
to our earlier analysis, in the old structure the efficiency of delete-min and
delete operations depends on the original size m0. In the new structure their
efficiency depends on the current size m. Therefore, since delete-min and
delete operations are handled normally, except that they may take part in
reorganizations, each of them has the worst-case cost of O(log m) and may
perform at most 2 log m + O(1) element comparisons.

4.3 Lower-store operations

A find-min operation simply invokes upper-store find-min and then follows
the received pointer to the root storing a minimum element. Clearly, the
worst-case cost of a find-min operation is O(1).

An insert operation is accomplished, in a worst-case efficient manner, as
described in Section 2. As a result of joins, some roots of the trees in the
lower store are linked to other roots, so the corresponding pointers should
be deleted from the upper store. Instead of using upper-store delete, lazy
deletion is applied. The worst-case cost of each join is O(1) and the worst-
case cost of each lazy deletion is also O(1). Since each insert operation only
performs a constant number of joins and lazy deletions, its worst-case cost
is O(1).

Prior to each delete-min and delete operation, it is checked whether a
reservoir refill is necessary. If the reservoir is empty, a tree of the highest
rank is taken from the lower store. If the tree is of rank 0, it is moved to
the reservoir and the corresponding pointer is deleted from the upper store.
This special case when n = 1 can be handled at a cost of O(1). In the normal
case, the tree taken is split into two halves, and the subtree rooted at the
youngest child is moved to the reservoir. The other half is kept in the lower
store. However, if after the split the lower store contains another tree of the
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same rank as the remaining half, the two trees are joined and the pointer
to the root of the loser tree is to be deleted from the upper store. Again,
lazy deletion is applied. A join has a cost of O(1) and involves one element
comparison. As shown, each lazy deletion has a cost of O(1), including also
some element comparisons. That is, the total cost of tree borrowing is O(1).

In a delete-min operation, after a possible reservoir refill the root storing
a minimum element is removed, a node from the reservoir is borrowed, and
the borrowed node — seen as a tree of rank 0 — is repeatedly joined with
the subtrees of the removed root. This results in a new binomial tree with
the same structure as before the deletion. In the upper store, a pointer to
the new root of the resulting tree is inserted and the pointer to the old root
is deleted. However, if the pointer to the root already exists in the upper
store, the upper-store node containing that pointer is simply unmarked. In
a delete operation, after a possible reservoir refill the given node is swapped
to the root as in a delete operation for a binomial queue, after which the
root is deleted as in a delete-min operation.

As analysed earlier, tree borrowing and node borrowing have the worst-
case cost of O(1). Also, the removal of a root has the worst-case cost of O(1).
The at most blog nc joins executed have the worst-case cost of O(log n), and
the number of element comparisons performed is at most log n. The upper-
store update has an additional cost of O(log log n), including O(log log n)
element comparisons. To summarize, the worst-case cost of a delete-min
operation is O(log n) and the number of element comparisons performed is
at most log n+O(log log n). As to a delete operation, since in a binomial tree
of size n the length of any Dx-path is never longer than log n, node swapping
has the worst-case cost of O(log n), but involves no element comparisons.
Therefore, the complexity of a delete operation is the same as that of a
delete-min operation.

4.4 Summing up the results

Using the components described and the complexity bounds derived, the
efficiency of the priority-queue operations supported by the framework in-
terface can be summed up as follows:

Theorem 4. Let n be the number of elements stored in the data structure

prior to each priority-queue operation. A two-tier binomial queue guarantees

the worst-case cost of O(1) per find-min and insert, and the worst-case cost

of O(log n) with at most log n+O(log log n) element comparisons per delete-

min and delete.

The bound on the number of element comparisons for delete-min and
delete can be further reduced. Instead of having two levels of priority queues,
we can have several levels. At each level, except the highest one, delete-min
and delete operations are carried out as in our earlier lower store relying on a
reservoir; and at each level, except the lowest one, lazy deletions are carried
out as in our earlier upper store. Except for the highest level, the constant
factor in the logarithm term expressing the number of element comparisons
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performed per delete-min or delete is one. Therefore the total number of
element comparisons performed in all levels is at most log n+log log n+. . .+
O(log(k) n), where log(k) denotes the logarithm function applied k times and
k is a constant representing the number of levels. An insertion of a new
element would result in a constant number of insertions and lazy deletions
per level. Hence, the number of levels should be a fixed constant to achieve
a constant cost for insertions.

5. Multipartite binomial queues

In this section we present a refinement of a two-tier binomial queue, called
a multipartite binomial queue. To refine the previous construction, the fol-
lowing modifications are significant:

1. The lower store is divided into three components: main store, insert
buffer, and floating tree. The main store is maintained as the lower
store in our earlier construction. However, all insert operations are
directed to the insert buffer which is a binomial queue maintained in
a worst-case efficient manner. When the insert buffer becomes too
large, a subtree is cut off from one of its trees and used as a cutting
for the floating tree. The floating tree is incrementally united with
the existing trees in the main store in connection with each modifying
operation. That is, joins make the floating tree larger, and when uniting
is complete, the floating tree becomes part of the main store. At any
point in time, we ensure that the size of the insert buffer is logarithmic
in the total number of elements stored. We also ensure that uniting
will be finished before it will be necessary to create a new floating tree.

2. The upper store is implemented as a circular, doubly-linked list; there
is one node per tree held in the main store. Each node contains a
pointer to the root of the tree which stores a minimum element among
the elements stored in the trees having a lower rank, including the tree
itself. We call these pointers the prefix-minimum pointers.

3. A reservoir is still in use and all the reservoir operations are performed
as previously described, but to refill it a subtree is borrowed from the
insert buffer and if the insert buffer is empty from the main store.
Borrowing is never necessary from the floating tree since during the
whole uniting process the insert buffer will be large enough to service
the refills which may be needed.

The nodes in the main store, insert buffer, floating tree, and reservoir may
be moved from one component to another, so the form of the nodes must
be identical in all four components.

In the improved construction the key idea is to balance the work done in
the main store and the upper store. After using r + O(1) element compari-
sons to readjust a tree of rank r in the main store, only log n − r + O(1)
element comparisons are used for the maintenance of the upper store. An-
other important idea is to unite the floating tree to the main store such that



A Framework for Speeding Up Priority-Queue Operations 15

all the involved components, the main store, insert buffer, floating tree, and
reservoir, are fully operational during the uniting operation.

5.1 Description of the components

An upper-store find-min operation provides a minimum element in the main
store by following the prefix-minimum pointer for the tree of the highest
rank. Thus, a find-min operation has the worst-case cost of O(1). To delete
a pointer corresponding to a tree of rank r from the upper store, the node
in question is found by a sequential scan and thereafter removed, and the
prefix-minimum pointers are updated for all trees having a rank higher than
r. The total cost is proportional to log n and one element comparison per
higher-rank tree is necessary, meaning at most log n − r + O(1) element
comparisons. When the element stored at the root of a tree of rank r is
changed, the prefix-minimum pointers can be updated in a similar manner.
The complexity of such a change is the same as that of a delete operation.
To insert a pointer corresponding to a tree of rank r, as done in the uniting
process, a sequential scan has to be done to find the correct insertion point.
It may happen that there already exists a tree of the same rank. Therefore,
these trees must be joined and this join may propagate to all the higher
ranks. In addition, the prefix-minimum pointers must be updated, but this
can be done simultaneously with the joins, if at all necessary, so that each of
the higher-rank trees is considered only once. Hence, the worst-case cost of
an insert operation is proportional to log n, and at most 2(log n− r) + O(1)
element comparisons are performed.

The main store is a binomial queue that is maintained as our earlier lower
store, except that the main store and the upper store interact in another
way. Tree borrowing is done almost as before. First, the tree of the highest
rank is taken from the main store, the tree is split, one half of it is moved to
the reservoir, and the other half is kept in the main store; the latter half is
then joined with another tree of the same rank if there is any. Second, the
prefix-minimum pointers for the trees of the two highest ranks are updated.
The total cost of all these modifications is O(1). From this and our earlier
analysis, it follows that the worst-case cost of tree borrowing is O(1).

Since no normal insertions are done in the main store, no lazy deletions are
forwarded to the upper store. Because of node borrowing, only one tree need
to be modified in a delete-min or delete operation. If the rank of the modified
tree is r, both main-store operations have the worst-case cost of O(r) and
require at most r + O(1) element comparisons. After the adjustment in
the main store, the prefix-minimum pointers need to be updated in the
upper store for all trees having a rank higher than or equal to r. This
has an additional cost proportional to log n, and log n − r + O(1) element
comparisons may be necessary. To summarize, the worst-case cost of a
delete-min and delete operation is O(log n) and never more than log n+O(1)
element comparisons are performed.

The insert buffer is implemented as a worst-case efficient binomial queue.
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Hence, an insert operation has the worst-case cost of O(1). To reduce the
size of the insert buffer or to refill the reservoir, tree borrowing is used as
for the main store. Observe that after tree borrowing no change to the
pointer indicating the location of the current minimum of the insert buffer
is necessary. As will be shown, the invariants maintained guarantee that the
insert buffer will never become larger than c1 log n + c2 for some constants
c1 and c2. Therefore, a delete-min and delete operation has the worst-case
cost of O(log log n) and performs at most 2 log(c1 log n + c2) + O(1) element
comparisons, which is bounded by log n + O(1) for all n ≥ 0.

The floating tree is maintained as the trees in our earlier lower store. The
main point is that delete-min and delete operations should retain the size
of this tree. Therefore, when a root is removed, a node from the reservoir is
borrowed. Our earlier analysis implies that the worst-case cost of a delete-
min and delete operation is O(log n), and the number of element comparisons
performed is at most log n + O(1).

5.2 Interactions between the components

We let the priority-queue operations change the data structure in phases.
Let n0 denote the total number of elements at the beginning of a phase. All
operations are made aware of the current phase using n0, blog n0c, and a
single counter. To avoid the usage of the whole-number logarithm function,
blog n0c can be calculated by maintaining the interval [2k . . 2k+1) in which
n0 lies. When n0 moves outside the interval, the logarithm and the interval
are updated accordingly.

When performing the priority-queue operations the following invariants
are maintained:

1. In a phase, exactly blog n0c modifying operations — insert, delete-min,
or delete — are executed.

2. The number of elements in the floating tree is no smaller than log n0

if the tree exists, i.e. at least log n0 elements are extracted from the
insert buffer if an extraction is done.

3. At the beginning of the phase, the insert buffer contains no more than
max {24, 9 log n0} elements, i.e. the insert buffer never gets too large.

4. At the beginning of the phase, there is no floating tree, i.e. the floating
tree from the previous phase, if any, has been successfully united to the
main store.

The first invariant is forced by the protocol used for handling the priority-
queue operations. Initially, the other invariants are valid since all the com-
ponents are empty. The first and third invariants imply that, for all n ≥ 0,
the insert buffer never gets larger than c1 log n + c2 for some constants c1

and c2.
At the beginning of a phase, the first modifying operation executes a

preprocessing step prior to its actual task in order to make the insert buffer
smaller, if necessary. If the size of the insert buffer is larger than 8 log n0,
half of a tree of the highest rank is borrowed and used to form a new floating
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tree. On the other hand, if the size of the insert buffer is smaller than or
equal to 8 log n0, no changes are made to the insert buffer and no floating
tree is created. Next we analyse the consequences of the preprocessing step.

Let us assume that, when a tree is borrowed in the preprocessing step, in
the insert buffer a tree of the highest rank is of size 2k. This tree would be
the smallest possible if, for all i ∈ {0, 1, . . . , k}, there existed two trees of
size 2i. Then the number of elements stored in the insert buffer would be
2k+2 − 2. Since in the insert buffer there are at least d8 log n0e− 1 elements,
d8 log n0e − 1 ≤ 2k+2 − 2, from which it follows that dlog n0e ≤ 2k−1. Since
the size of the borrowed tree is 2k−1, the size of the floating tree must be
at least dlog n0e at the time of its creation. During the uniting process, the
floating tree can only become larger, so the second invariant is established.

Assume that a phase involves i0 insertions, 0 ≤ i0 ≤ blog n0c, and d0

deletions, 0 ≤ d0 ≤ blog n0c. Let b0 denote the number of elements stored in
the insert buffer at the beginning of the phase, and n1 the total number of
elements at the end of the phase. To analyse the effect of the preprocessing
step on the size of the insert buffer, we consider five cases:

Case 1. n0 ≤ 24. Since b0 ≤ n0, b0 < 8 log n0 for all 0 ≤ b0 ≤ n0 ≤ 24.
Thus, b0 + blog n0c < 9 log n0. If n1 > n0, we are done. Otherwise, if
n1 ≤ n0, then n1 ≤ 24 and hence the size of the insert buffer is less
than 24 at the end of the phase.

Case 2. n0 > 24, i0 ≥ d0, and b0 ≤ 8 log n0. Since i0 ≥ d0, n1 ≥ n0. If
b0 ≤ 8 log n0, the size of the insert buffer must be bounded by 9 log n0 ≤
9 log n1 at the end of the phase.

Case 3. n0 > 24, i0 ≥ d0, and b0 > 8 log n0. Since b0 > 8 log n0, at least
log n0 elements must have been extracted from the insert buffer in the
preprocessing step. Therefore, at the end of the phase the insert buffer
cannot be larger than b0. Since i0 ≥ d0, it must be that n1 ≥ n0. So if
b0 ≤ 9 log n0 at the beginning of the phase, the size of the insert buffer
must be bounded by 9 log n1 at the end of the phase.

Case 4. n0 > 24, i0 < d0, and b0 ≤ 8 log n0. Since i0 < d0, at most half of
the modifying operations have been insertions. Moreover, it must be
true that n1 ≥ n0 − blog n0c. Since 8.5 log n0 ≤ 9 log(n0 − blog n0c) for
all n0 > 24, the insert buffer cannot be larger than 9 log n1 at the end
of the phase. The above-mentioned inequality is easy to verify for n0

larger than 218. We used a computer to verify it for all integers in the
range

{

25, 26, . . . , 218
}

.

Case 5. n0 > 24, i0 < d0, and b0 > 8 log n0. Again, since i0 < d0, at
most half of the modifying operations involved in the phase have been
insertions. Since b0 > 8 log n0, at least log n0 elements must have been
extracted from the insert buffer in the preprocessing step. Thus, the
insert buffer cannot be larger than b0− log n0+(1/2)blog n0c at the end
of the phase. This means that its size must be bounded by 8.5 log n0.
As in Case 4, n1 ≥ n0−blog n0c. So by the same argument as in Case 4,
the input buffer cannot be larger than 9 log n1 at the end of the phase.
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In particular, note that reservoir refills only make the insert buffer smaller,
so these cannot cause any harm. In conclusion, if the insert buffer was
not larger than max {24, 9 log n0} at the beginning of the phase, it cannot
be larger than max {24, 9 log n1} at the end of the phase. Thus, the third
invariant is established.

Basically, to unite the floating tree and the main store a normal insert op-
eration for binomial queues is executed, except that the insertion starts from
a rank higher than 0. In the worst case, uniting may involve logarithmically
many joins so it is done incrementally. This means that the prefix-minimum
pointers are not necessarily valid for trees whose rank is higher than the
rank of the tree up to which the uniting process has advanced. To solve the
problem, each find-min operation should consult two trees; one referred to
by the prefix-minimum pointer for the tree up to which the uniting process
has advanced and the other referred to by the prefix-minimum pointer for
the tree of the highest rank.

The main store can have at most dlog(n0 − b8 log n0c)e trees when a new
floating tree is created, so this is the highest rank before uniting. Of course,
the trees having a rank lower than the rank of the given tree can be skipped.
Since dlog(n0 − b8 log n0c)e ≤ blog n0c for all positive n0, at most one
tree need to be visited in connection with each modifying operation. At
each visit, one join step is executed and the corresponding prefix-minimum
pointer updated. At this speed, the uniting process will be finished before
the end of the phase is reached, which establishes the fourth invariant.

Now that we have proved the correctness of the invariants, we can analyse
the efficiency of the priority-queue operations. The overhead caused by the
phase management and the preprocessing step is only O(1) per modifying
operation. Also, incremental uniting will only increase the cost of modifying
operations by an additive constant.

In a find-min operation, the four components storing elements — main
store, reservoir, floating tree, and insert buffer — need to be consulted.
Since all these components support a find-min operation at the worst-case
cost of O(1), the worst-case cost of a find-min operation is O(1). Insertions
only involve the insert buffer so, from the bound derived for worst-case
efficient binomial queues and the fact that the extra overhead per insert is
O(1), the worst-case cost of O(1) directly follows.

Each delete-min operation refills the reservoir if necessary, determines in
which component an overall minimum element is stored, and thereafter in-
vokes the corresponding delete-min operation provided for that component.
According to our earlier analysis, each of the components storing elements
supports a delete-min operation at the worst-case cost of O(log n), including
at most log n + O(1) element comparisons. Even with other overheads, the
bounds are the same.

In a delete operation, the root is consulted to determine which of the
delete operations provided for the components storing elements should be
invoked. The traversal to the root has the worst-case cost of O(log n), but
even with this and other overheads, a delete operation has the worst-case
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cost of O(log n) and performs at most log n + O(1) element comparisons as
shown earlier.

To conclude, we have proved the following theorem.

Theorem 5. Let n be the number of elements stored in the data structure

prior to each priority-queue operation. A multipartite binomial queue guar-

antees the worst-case cost of O(1) per find-min and insert, and the worst-

case cost of O(log n) with at most log n + O(1) element comparisons per

delete-min and delete.

6. Application: adaptive heapsort

A sorting algorithm is adaptive if it can sort all input sequences and per-
forms particularly well for sequences having a high degree of existing order.
The cost consumed is allowed to increase with the amount of disorder in
the input. In the literature many adaptive sorting algorithms have been
proposed and many measures of disorder considered (for a survey, see [11]
or [22]). In this section we consider adaptive heapsort, introduced by Lev-
copoulos and Petersson [21], which is one of the simplest adaptive sorting
algorithms. As in [21], we assume that all input elements are distinct.

At the commencement of adaptive heapsort a Cartesian tree is built from
the input sequence. Given a sequence X = 〈x1, . . . , xn〉, the correspond-
ing Cartesian tree [28] is a binary tree whose root stores element xi =
min {x1, . . . , xn}, the left subtree of the root is the Cartesian tree for se-
quence 〈x1, . . . , xi−1〉, and the right subtree is the Cartesian tree for se-
quence 〈xi+1, . . . , xn〉. After building the Cartesian tree, a priority queue is
initialized by inserting the element stored at the root of the Cartesian tree
into it. In each of the following n iterations, a minimum element stored in
the priority queue is output and thereafter deleted, the elements stored at
the children of the node that contained the deleted element are retrieved
from the Cartesian tree, and the retrieved elements are inserted into the
priority queue.

The total cost of the algorithm is dominated by the cost of the n insertions
and n minimum deletions; the cost involved in building [14] and querying the
Cartesian tree is linear. The basic idea of the algorithm is that only those
elements that can be the minimum of the remaining elements are kept in
the priority queue, not all elements. Levcopoulos and Petersson [21] showed
that, when element xi is deleted, the number of elements in the priority
queue is no greater than b|Cross(xi)|/2c + 2, where

Cross(xi) = {j | j ∈ {1, . . . , n} and min {xj , xj+1} < xi < max {xj , xj+1} }.

Levcopoulos and Petersson [21, Corollary 20] showed that adaptive heap-
sort is optimally adaptive with respect to Osc, Inv , and several other mea-
sures of disorder. For a sequence X = 〈x1, x2, . . . , xn〉 of length n, the
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measures Osc and Inv are defined as follows:

Osc(X) =
n

∑

i=1

|Cross(xi)|

Inv(X) = |{(i, j) | i ∈ {1, 2, . . . , n − 1}, j ∈ {i + 1, . . . , n}, and xi > xj}|.
The optimality with respect to the Inv measure, which measures the number
of pairs of elements that are in wrong order, follows from the fact that
Osc(X) ≤ 4Inv(X) for any sequence X [21].

Implicitly, Levcopoulos and Petersson showed that using an advanced im-
plementation of binary-heap operations the cost of adaptive heapsort is pro-
portional to

n
∑

i=1

( log |Cross(xi)| + 2 log log |Cross(xi)|) + O(n)

and that this is an upper bound on the number of element comparisons
performed. Using a multipartite binomial queue, instead of a binary heap,
we get rid of the log log term and achieve the bound

n
∑

i=1

log |Cross(xi)| + O(n).

Because the geometric mean is never larger than the arithmetic mean, it
follows that our version is optimally adaptive with respect to the measure
Osc, and performs no more than n log (Osc(X)/n)+O(n) element compari-
sons when sorting a sequence X of length n. From this, the bounds for
the measure Inv immediately follow: the cost is O(n log (Inv(X)/n)) and
the number of element comparisons performed is n log (Inv(X)/n) + O(n).
Other adaptive sorting algorithms that guarantee the same bounds are either
based on insertionsort or mergesort [10].

7. Multipartite relaxed binomial queues

In this section, our main goal is to extend the repertoire of priority-queue
methods to include the decrease method. There are two alternative ways
of relaxing the definition of a binomial queue to support a fast decrease
operation. In run-relaxed heaps [8], heap-order violations are allowed and a
separate structure is maintained to keep track of all violations. In Fibonacci
heaps [13] and thin heaps [18], structural violations are allowed; in general,
some nodes may have lost some of their children. We tried both approaches;
with the former approach we were able to achieve better bounds even though
for the best realizations in both categories the difference was only in the
lower-order terms.

We use relaxed binomial trees, as defined in [8], as our basic building
blocks. Our third priority queue has multiple components and the interac-
tions between the components are similar to those in a multipartite binomial
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queue. The main difference is that there is no separate reservoir, but the
insert buffer is kept nonempty so it can support node borrowing. Since all
components are implemented as run-relaxed binomial queues [8] with some
minor variations, we call the resulting data structure a multipartite relaxed

binomial queue. We describe the data structure in three parts. First, we
recall the details of run-relaxed binomial queues, but we still assume that
the reader is familiar with the original paper by Driscoll et al. [8], where
the data structure was introduced. Second, we show how the upper store is
maintained. Third, we explain how the insert buffer and the main store are
organized.

The following theorem summarizes the main result of this section.

Theorem 6. Let n be the number of elements stored in the data structure

prior to each priority-queue operation. A multipartite relaxed binomial queue

guarantees the worst-case cost of O(1) per find-min, insert, and decrease,

and the worst-case cost of O(log n) with at most log n+O(log log n) element

comparisons per delete-min and delete.

7.1 Run-relaxed binomial queues

A relaxed binomial tree [8] is an almost heap-ordered binomial tree where
some nodes are denoted to be active, indicating that the element stored
at that node may be smaller than the element stored at the parent of that
node. Nodes are made active by a decrease operation if the replaced element
causes a heap-order violation between the accessed node and its parent.
Even though a later priority-queue operation may repair the heap-order
violation, the node can still be active. A node remains active until the
heap-order violation is explicitly removed. From the definition, it directly
follows that a root cannot be active. A singleton is an active node whose
immediate siblings are not active. A run is a maximal sequence of two or
more active nodes that are consecutive siblings.

Let τ denote the number of trees in any collection of relaxed binomial
trees, and let λ denote the number of active nodes in these trees, i.e. in the
entire collection of trees. A run-relaxed binomial queue (called a run-relaxed
heap in [8]) is a collection of relaxed binomial trees where τ ≤ blog nc + 1
and λ ≤ blog nc, n denoting the number of elements stored.

To keep track of the trees in a run-relaxed binomial queue, the roots
are doubly linked together as in a binomial queue. To keep track of the
active nodes, a run-singleton structure is maintained as described in [8]. All
singletons are kept in a singleton table, which is a resizable array accessed
by rank. In particular, this table must be implemented in such a way that
growing and shrinking at the tail is possible at the worst-case cost of O(1),
which is achievable, for example, by doubling, halving, and incremental
copying (see also [3, 19]). Singletons of the same rank are kept in a list.
Each entry of the singleton table has a counterpart in a pair list if there are
more than one singleton of that rank. The youngest active node of each run
is kept in a run list. All lists are doubly linked, and each active node should
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have a pointer to its occurrence in a list (if any). The bookkeeping details
are quite straightforward so we will not repeat them here, but refer to [8].
The fundamental operations supported are an addition of a new active node,
a removal of a given active node, and a removal of at least one arbitrary
active node if λ is larger than blog nc. The cost of each of these operations
is O(1) in the worst case.

As to the transformations needed for reducing the number of active nodes,
we again refer to the original description given in [8]. The rationale behind
the transformations is that, when there are more than blog nc active nodes,
there must be at least one pair of active nodes that root a subtree of the
same rank or there is a run of two or more neighbouring active nodes. In that
case, it is possible to apply at least one of the transformations — singleton
transformations or run transformations — to reduce the number of active
nodes by at least one. The cost of performing any of the transformations
is O(1) in the worst case. Later on, one application of the transformations
together with all necessary changes to the run-singleton structure is referred
to as a λ-reduction.

Each tree in a run-relaxed binomial queue can be represented in the same
way as a normal binomial tree, but to support the transformations used
for reducing the number of active nodes some additional data need to be
stored at the nodes. In addition to sibling pointers, a child pointer, and a
rank, each node should contain a pointer to its parent and a pointer to its
occurrence in the run-singleton structure. The occurrence pointer of every
nonactive node has the value null; for a node that is active and in a run, but
not the last in the run, the pointer is set to point to a fixed run sentinel;
and for all other nodes the pointer gives the occurrence in the run-singleton
structure. To support our framework, each node should store yet another
pointer to its counterpart in the upper store, and vice versa.

Let us now consider how the priority-queue methods can be implemented.
A reader familiar with the original paper by Driscoll et al. [8] should be
aware that we have made some minor modifications to the find-min, insert,
delete-min, and delete methods to adapt them for our purposes.

A minimum element can be stored at one of the roots or at one of the
active nodes. To facilitate a fast find-min operation, a pointer to the node
storing a minimum element is maintained. When such a pointer is available,
a find-min operation can be accomplished at the worst-case cost of O(1).

An insert operation is performed in the same way as in a worst-case effi-
cient binomial queue. As pointed out in Section 2, even if some of the joins
are delayed, there can never be more than blog nc+1 trees. From our earlier
analysis, it follows that an insert operation has the worst-case cost of O(1)
and requires at most two element comparisons.

In delete-min and delete operations, we rely on the same borrowing tech-
nique as in [8]: the root of a tree of the smallest rank is borrowed to fill in
the hole created by the node being removed. To free a node that can be
borrowed, a tree of the smallest rank is repeatedly split, if necessary, until
the split results in a tree of rank 0. In one split step, if x denotes the root of
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a tree of the smallest rank and y its youngest child, the tree rooted at x is
split, and if y is active, it is made nonactive and its occurrence is removed
from the run-singleton structure. Note that this splitting does not have any
effect on the pointer indicating the location of a minimum element, since no
nodes are removed.

A delete-min operation has two cases depending on whether one of the
roots or one of the active nodes is to be removed. Similarly, a delete oper-
ation has two cases depending on whether the given node is a root or not.
Next, we consider the two forms of deletions, deletion of a root and deletion
of one of the inner nodes, separately.

Let z denote the node being deleted, and assume that z is a root. If the
tree rooted at z has rank 0, z is simply removed and no other structural
changes are done. Otherwise, the tree rooted at z is repeatedly split and,
when the tree rooted at z has rank 0, z is removed. Compared to above, each
split step is modified such that all active children of z are retained active,
but they are temporarily removed from the run-singleton structure (since
the structure of runs may change). Thereafter, the freed tree of rank 0 and
the subtrees rooted at the children of z are repeatedly joined by processing
the trees in increasing order of rank. Finally, the active nodes temporar-
ily removed are added back to the run-singleton structure. The resulting
tree replaces the tree rooted at z in the root list. It would be possible to
handle the tree used for borrowing and the tree rooted at z symmetrically,
with respect to treating the active nodes, but when the delete-min/delete
method is embedded into our two-tier framework, it would be too expensive
to remove all active children of z in the course of a single delete-min/delete
operation.

To complete the operation, all roots and active nodes are scanned to up-
date the pointer indicating the location of a minimum element. Singletons
are found by scanning through all lists in the singleton table. Runs are found
by accessing the youngest nodes via the run list and for each such node by
following the sibling pointers until a nonactive node is reached.

The computational cost of a delete-min/delete operation, when a root is
being deleted, is dominated by the repeated splits, the repeated joins, and
the scan over all minimum candidates. In each of these steps a logarithmic
number of nodes is visited so the total cost of these operations is O(log n).
Splits as well as updates to the run-singleton structure do not involve any
element comparisons. In total, joins may involve at most blog nc element
comparisons. Even though a tree of the smallest rank is split, after the joins
the number of trees is at most blog nc + 1. Since no new active nodes are
created, the number of active nodes is still at most blog nc. To find the
minimum of 2blog nc + 1 elements, at most 2blog nc element comparisons
are to be done. To summarize, this form of a delete-min/delete operation
performs at most 3 log n element comparisons.

Assume now that the node z being deleted is an inner node, and let x
be the node borrowed. Also in this case the tree rooted at z is repeatedly
split, and after removing z the tree of rank 0 rooted at x and the subtrees
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of the children of z are repeatedly joined. The resulting tree is put in the
place of the subtree rooted earlier at z. If z was active and contained the
current minimum, the operation is completed by updating the pointer to the
location of a minimum element. If x is the root of the resulting subtree and
a heap-order violation is introduced, node x is made active and the number
of active nodes is reduced, if necessary, by performing a λ-reduction once or
twice.

Similar to the case of deleting a root, this case has the worst-case cost of
O(log n). If z did not contain the current minimum, only at most blog nc+
O(1) element comparisons are done; at most blog nc due to joins and O(1)
due to λ-reductions. However, if z contained the current minimum, at most
2blog nc additional element comparisons may be necessary. That is, the total
number of element comparisons performed is bounded by 3 log n+O(1). To
sum up, each delete-min/delete operation has the worst-case cost of O(log n)
and requires at most 3 log n + O(1) element comparisons.

A decrease operation is performed as in [8]. After making the element
replacement, it is checked whether the replacement causes a heap-order vi-
olation between the given node and its parent. If there is no violation, the
operation is complete. Otherwise, the given node is made active, an occur-
rence is inserted into the run-singleton structure, and a single λ-reduction
is performed if the number of active nodes is larger than blog nc. If the
given element is smaller than the current minimum, the pointer indicating
the location of a minimum element is corrected to point to the given node.
All these modifications have the worst-case cost of O(1).

7.2 Upper-store operations

The upper store contains pointers to the roots of the trees held in the insert
buffer and in the main store, pointers to all active nodes in the insert buffer
and in the main store, and pointers to some earlier roots and active nodes.
The number of trees in the insert buffer is at most log log n + O(1), the
number of trees in the main store is at most blog nc+ 1, and the number of
active nodes is at most blog nc. The last property follows from the fact that
the insert buffer and the main store share the same run-singleton structure.
At any given point in time only a constant fraction of the nodes in the
upper store can be marked to be deleted. Hence, the number of pointers is
O(log n).

The upper store is implemented as a run-relaxed binomial queue. In ad-
dition to the priority-queue methods find-min, insert, delete-min, delete,
and decrease, which are realized as described earlier, it should be possible
to mark nodes to be deleted and to unmark nodes if they reappear at the
upper store before being deleted. Lazy deletions are necessary at the upper
store when, in the insert buffer or in the main store, a join is done or an ac-
tive node is made nonactive by a λ-reduction. In both situations, a normal
upper-store deletion would be too expensive.

As in Section 4, global rebuilding will be used to get rid of the marked
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nodes when there are too many of them, but for three reasons our earlier
procedure is not applicable for run-relaxed binomial queues:

1. Due to parent pointers the oldest child of a root cannot necessarily be
detached at a cost of O(1), since the parent pointers of the children of
the detached node must be updated as well.

2. The transformations used for reducing the number of active nodes re-
quire that the rank of a node and that of its sibling are consecutive.
To keep the old data structure operational, the binomial structure of
the trees should not be broken.

3. The transformations might constantly swap subtrees of the same size,
so it would be difficult to assure that all nodes have been visited if a
simple tree traversal was done incrementally.

Our solution to these problems is repeated splitting. In one rebuilding

step, if there is no tree of rank 0, a tree of the smallest rank is split into
two halves; also if there is only one tree of rank 0 that contains the current
minimum, but that is not the only tree left in the old structure, a tree of the
smallest rank is split into two halves; otherwise, a tree of rank 0 — other
than a tree of rank 0 which contains the current minimum — is removed
from the old structure and, if not marked to be deleted, inserted into the
new structure. That is, there can simultaneously be three trees of rank
0. This is done in order to keep the pointer to the location of the current
minimum valid. As in a delete-min/delete operation, in one split step the
youngest child of the root is made nonactive if it is active and its occurrence
is removed from the run-singleton structure. With this strategy, a tree of
size m can be emptied by performing 2m− 1 rebuilding steps. Observe also
that this strategy is in harmony with the strategy used in delete-min/delete
operations; in the old structure the splits made by these operations will only
speed up the rebuilding process.

Assume that there are m0 pointers in the upper store when rebuilding
is initiated, and assume that m0/2 of them are marked to be deleted. Re-
building is done piecewise over the forthcoming m0/4 upper-store operations.
More precisely, in connection with each of the following m0/4 upper-store
operations eight rebuilding steps are executed. At this speed, even with
intermixed upper-store operations, the whole old structure will be empty
before it will be necessary to rebuild the new structure.

A tree of rank 0, which does not contain the current minimum or is the
only tree left, can be detached from the old run-relaxed binomial queue at
a cost of O(1). Similarly, a node can be inserted into the new run-relaxed
binomial queue at a cost of O(1). A marked node can also be released
and its counterpart updated at a cost of O(1). Also, a split step has the
worst-case cost of O(1). From these observations and our earlier analysis,
it follows that rebuilding only adds an additive term O(1) to the cost of all
upper-store operations.
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7.3 Insert-buffer and main-store operations

The elements are stored in the insert buffer and in the main store. Both
components are implemented as run-relaxed binomial queues, but they have
a common run-singleton structure. In the main store there can only be one
tree per rank, except perhaps a single rank that may have two trees. All
insertions are directed to the insert buffer, which also provides the nodes
borrowed by insert-buffer and main-store deletions. Minimum finding relies
on the upper store; an overall minimum element is either in one of the roots
or in one of the active nodes, stored either in the insert buffer or in the main
store. The counterparts of the minimum candidates are stored in the upper-
store, so communication between the components storing elements and the
upper store is necessary each time when a root or an active node is added
or removed, but not when an active node is made a root.

As in a multipartite binomial queue, the priority-queue operations are ex-
ecuted in phases. If n0 denotes the number of elements at the beginning of a
phase, in one phase blog n0c modifying operations are carried out. Compared
to our earlier construction, the only difference is one additional invariant:

5. At the beginning of the phase, if n0 > 0, the input buffer contains
at least blog n0c elements, i.e. borrowing is always possible even if all
modifying operations in the phase were deletions.

Consider now node borrowing, and assume that the new invariant can be
maintained. Since the insert buffer never becomes empty, it has always at
least one tree and a tree of the smallest rank can be repeatedly split as prior
to a run-relaxed-binomial-queue deletion, after which there is a free tree of
rank 0 that can be borrowed. In each split step, if the youngest child of the
root of the tree being split is active, it is removed from the run-singleton
structure, but it need not be removed from the upper store. However, if
the youngest child is not active, its counterpart has to be inserted into the
upper store or unmarked if already present in the upper store. Since the
size of the insert buffer is bounded by c1 log n+c2 for some constants c1 and
c2, the total cost of all splits is O(log log n); and because of the upper-store
operations O(log log n) element comparisons may be necessary.

Let b0 denote the size of the insert buffer at the beginning of a phase. To
maintain the new invariant, we modify the preprocessing step such that, if
b0 ≤ 2blog n0c, an incremental separating process is initiated, the purpose
of which is to move a small tree from the main store to the insert buffer.
In this process the trees in the main store are visited one by one, starting
from the tree of the highest rank, until the smallest tree, the size of which is
larger than 2blog n0c, is found. Thereafter, this tree is repeatedly split until
a tree is obtained whose size is between 2blog n0c and 4blog n0c. This work
is distributed such that one modifying operation handles one rank. The last
operation in such an operation sequence moves a tree of the required size to
the insert buffer in its proper place. In the insert buffer there can be at most
a constant number of trees that have a higher rank, so this addition has a
constant cost, i.e. it is not too expensive for a single modifying operation.



A Framework for Speeding Up Priority-Queue Operations 27

If no tree of size 2blog n0c or larger exists, which is possible when n0 ≤ 24,
a single operation moves all trees from the main store to the insert buffer
and performs all necessary joins.

Even if all modifying operations in a phase were insertions, at the end of
the phase the size of the insert buffer would be bounded above by 2blog n0c+
4blog n0c+ blog n0c ≤ 7blog n0c or, if n0 ≤ 24, by 24 + blog n0c, i.e. the new
tree cannot make the insert buffer too large. If all modifying operations were
deletions, the size of the insert buffer would be bounded below by blog n0c+
2blog n0c − blog n0c ≥ 2blog n0c, i.e. the insert buffer cannot become too
small either. Note that there can only be one active uniting process, which is
initiated if b0 ≥ 8blog n0c, or one active separating process, which is initiated
if b0 ≤ 2blog n0c, but not both at the same time. When in an active uniting
process a join is done, a lazy deletion is necessary at the upper store; and
when in an active separating process a split is done, an insertion may be
necessary at the upper store. Hence, these incremental processes can only
increase the cost of modifying operations by an additive constant.

An insert operation for a run-relaxed binomial queue requires two modifi-
cations in places where communication between the insert buffer and upper
store is necessary. First, after the creation of a new node its counterpart
must be added to the upper store. Second, in each join the counterpart of
the loser tree must be lazily deleted from the upper store. Even after these
modifications, the worst-case cost of an insert operation is O(1).

In a decrease operation, three modifications will be necessary. First, each
time when a new active node is created, an insert operation has to be done
at the upper store. Second, each time when an active node is removed, the
counterpart must be deleted from the upper store, which can be done lazily
in a λ-reduction. Third, when the node accessed is a root or an active node,
a decrease operation has to be invoked at the upper store. If an active node
is made into a root, no change at the upper store is required. Even after
these modifications, the worst-case cost of a decrease operation is O(1).

A delete-min/delete operation always begins with an invocation of the
procedure that frees a tree of rank 0 to be used for filling in the hole created
by the node being deleted. The two forms of deletions are done otherwise
as described for a run-relaxed binomial queue, but now the update of the
pointer to the location of a minimum element can be avoided. A removal of a
root or an active node will invoke a delete operation at the upper store, and
an insertion of a new root or an active node will invoke an insert operation
at the upper store. A λ-reduction may invoke one or two lazy deletions and
at most one insertion at the upper store. These lazy deletions and insertions
have the worst-case cost of O(1). Node borrowing has the worst-case cost of
O(log log n), including O(log log n) element comparisons. Only at most one
real upper-store deletion will be necessary, which has the worst-case cost of
O(log log n) and includes O(log log n) element comparisons. Therefore, as in
the original form, a delete-min/delete operation has the worst-case cost of
O(log n), but now the number of element comparisons performed is at most
log n + O(log log n).
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8. Concluding remarks

We provided a general framework for improving the efficiency of priority-
queue operations with respect to the number of element comparisons per-
formed. Essentially, we showed that it is possible to get below the 2 log n
barrier on the number of element comparisons performed per delete-min and
delete, while keeping the cost of find-min and insert constant. We showed
that this is possible even when a decrease operation is to be supported at
the worst-case cost of O(1). From the information-theoretic lower bound for
sorting, it follows that the worst-case efficiency of insert and delete-min can-
not be improved much. However, if the worst-case cost of find-min, insert,
and decrease is required to be O(1), we do not know whether the worst-
case bound of log n + O(log log n) on the number of element comparisons
performed per delete-min and delete could be improved.

The primitives, on which our framework relies, are tree joining, tree split-
ting, lazy deleting, and node borrowing; all of which have the worst-case
cost of O(1). However, as already indicated in Section 7, it is not strictly
necessary to support so efficient node borrowing. It would be enough if this
operation had the worst-case cost of O(log n), but included no more than
O(1) element comparisons. All our priority queues could be implemented,
without affecting the complexity bounds derived, to use this weak version
of node borrowing.

We used binomial trees as the basic building blocks in our priority queues.
The main drawback of binomial trees is their high space consumption. Each
node should store four pointers and a rank, in addition to the elements
themselves. Assuming that a pointer and an integer can be stored in one
word, a multipartite binomial queue uses 5n + O(log n) words, in addition
to the n elements. However, if the child list is doubly linked, but not cir-
cular, and if the unused pointer to the younger sibling is reused as a parent
pointer as in [18], weak node borrowing can still be supported, keeping the
efficiency of all other fundamental primitives the same. Therefore, if the
above-mentioned modification relying on weak node borrowing is used, the
space bound could be improved to 4n + O(log n). In order to support lazy
deleting, one extra pointer per node is needed, so a two-tier binomial queue
requires additional n + O(log n) words of storage. A multipartite relaxed
binomial queue needs even more space, 7n + O(log n) words. As proposed
in [8], the space requirement could be reduced by letting each node store a
resizable array of pointers to its children.

These space bounds should be compared to the bound achievable for a
dynamic binary heap which can be realized using Θ(

√
n) extra space [3, 19].

However, a dynamic binary heap does not keep external references valid and,
therefore, cannot support delete or decrease operations. To keep external
references valid, a heap could store pointers to the elements instead, and the
elements could point back to the respective nodes in the heap. Each time a
pointer in the heap is moved, the corresponding pointer from the element to
the heap should be updated as well. The references from the outside can refer
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to the elements themselves which are not moved. With this modification,
the space consumption would be 2n + O(

√
n) words. Recall, however, that

a binary heap cannot support insertions at a cost of O(1).

A navigation pile, proposed by Katajainen and Vitale [20], supports weak
node borrowing (cf. the second-ancestor technique described in the original
paper). All external references can be kept valid if the compartments of
the elements are kept fixed, the leaves store pointers to the elements, and
the elements point back to the leaves. Furthermore, if pointers are used for
expressing parent-child relationships, tree joining and tree splitting become
easy. With the above-mentioned modification relying on weak node borrow-
ing, pointer-based navigation piles could substitute for binomial trees in our
framework. A navigation pile is a binary tree and, thus, three parent-child
pointers per node are required. With the standard trick (see, e.g. [26, Sec-
tion 4.1]), where the parent and children pointers are made circular, only two
pointers per node are needed to indicate parent-child relationships. Taking
into account the single pointer stored at each branch and the two additional
pointers to keep external references valid, the total space consumption would
be 5n + O(log n) words.

It would be interesting to see which data structure performs best in prac-
tice when external references to compartments inside the data structure are
to be supported. In particular, which data structure should be used when
developing an industry-strength priority queue for a program library. It is
too early to make any firm conclusions whether our framework would be
useful for such a task. To unravel the practical utility of our framework,
further investigations would be necessary.
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