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ABSTRACT
Most large, commercial buildings contain thousands of sen-
sors that are manually deployed and managed. These sen-
sors are used by software and firmware processes to ana-
lyze and control building operations. Many such processes
rely on sensor placement information in order to perform
correctly. However, as buildings evolve and building sub-
systems grow and change, managing placement information
becomes burdensome and error-prone. An automatic verifi-
cation process is needed. We investigate empirical methods
to automate spatial verification. We find that a spatial clus-
tering algorithm is able to classify relative sensor locations
– for 15 sensors, spread across five rooms in a building –
with 93.3% accuracy, 13% better than a k-means clustering-
based baseline method. Analysis on the raw time series data
has a classification accuracy of only 53%. By decomposing
the signal into intrinsic modes and performing correlation
analysis, an observable, statistical boundary emerges that
corresponds to a physical one. These results may suggest
that automatic verification of placement information is pos-
sible.

Categories and Subject Descriptors
C.3 [Special-Purpose And Application-Based Systems]:
Real-time and embedded systems

General Terms
Performance, Experimentation, Verification

Keywords
Sensor Placement, Empirical Mode Decomposition, Corre-
lation Coefficient, Clustering

1. INTRODUCTION
Buildings have become a prime target for cyber-physical

systems research, as they consume 40% of the energy in the
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U.S. [4], are poorly understood, and offer a rich sensing in-
frastructure. Thousands of sensors are embedded through-
out the building and produce periodic physical measure-
ments. In order to interpret the information, metadata de-
scribing the placement of sensors is recorded. However, de-
ployments and their metadata are configured manually. As
such, they are prone to human error. Moreover, over time
sensors are replaced and the physical configuration of the
building changes – walls removed, new offices set up – but
the metadata describing the new locations are not. This
leads to analytical errors in processes that rely on the meta-
data when interpretting sensor feeds. For example, model-
predictive control processes rely on the sensors in a specific
room or floor [16]. Because of the size and distributed nature
of the deployment, it is cumbersome, error-prone, and im-
practical to maintain accurate metadata about sensor place-
ment over time. An automatic processes is needed.

Typically, placement information is embedded in the name
or associated metadata for each sensor in the building. These
are used to group sensors by location. For example, in
our building data, all sensors that contain the string ‘410’
in their name are in room 410. Processes typically group
streams in this fashion: using regular-expression matching or
field-matching queries on the characters in the sensor name
or metadata. If these are not updated to reflect changes then
such group-by query results will not accurately represent
true spatial relationships. Fontugne et al. [6] observe that
spatial associations can be derived empirically. We start
with this approach in our work and explore, more deeply, the
extent to which it can be used as a verification tool for cor-
roborating the groups constructed from character-matching
queries. We refer to this process as spatial verification.

Prior work [6] makes use of a technique called Empiri-
cal Mode Decomposition (EMD) [10] to statistically cluster
correlated usage patterns. Sensors close to each other show
strong statistical correlations while sensors further apart
show weaker correlations. The main parameter in their ap-
proach, the correlation threshold, is explored to demonstrate
how it relates to characteristic spatial patterns in the sensor
feeds. However, they do not characterize the threshold as it
relates to physical configuration. Fontugne et al. [7] expand
the work by applying EMD to uncover functional device pat-
terns. They develop an unsupervised learning method to
model normal usage patterns and apply an anomaly detec-
tion algorithm to alert when patterns have deviated from
the norm. The methodology used in their work divides raw
signals into four separate frequency bands and shows the
medium band to carry the most spatial information.



In this paper, we explore the threshold parameter in [6]
more deeply, in order to move towards automatic spatial
clustering, to be used as a form of verification. We use
EMD and the intrinsic mode function (IMF) re-aggregation
methodology described in [7], with some modifications, to
statistically analyze the threshold parameter and its rela-
tionship to spatial separation in a building. We explore the
hypothesis that a statistical boundary, analogous to a phys-
ical one, exists and is empirically discoverable. We conduct
an empirical analysis on the data collected from 15 sensors
in 5 rooms over a one-month period. Our study makes the
following contributions:

• We corroborate the results in [6], verifying the spatial
correlation pattern in a very different building.

• We characterize the correlation coefficient (corrcoeff)
distribution of sensors in the same room and different
rooms and validate our existence hypothesis for this
preliminary sample.

• We demonstrate that the statistical boundary between
sensors in various rooms converges to a similar value
and this value generalizes across rooms in this study.

• We show the tradeoff between the true and false posi-
tive rate inherent to threshold selection. We also show
that our method improves the classification accuracy
from 80% to 93.3%.

Our results are promising yet preliminary. We are able to
find a statistical separation across a small number of rooms,
quite well. Our study, however, does not explore the extent
to which the physical separation affects the results. Cer-
tainly for rooms that are far apart we observe a statistical
distinction using our methodology. However, we also find
that in some cases, our approach does not work as well. We
discuss the approach and results in the rest of the paper,
followed by a short discussion and future work.

2. RELATED WORK
There has been much research work on sensor stream clus-

tering and trace analysis. Chen and Tu [2] investigate how
to cluster data streams in real-time using a density-based
approach with a two-tiered framework. The first tier cap-
tures the dynamics of a data stream with a density decaying
technique and then maps it to a grid. The second tier com-
putes a grid density based on how it clusters the grid. Their
approach differs from ours in that they focus on decreasing
algorithm complexity for real-time sensor stream clustering.
We run our analysis on historical traces and use correlation
analysis in our clustering algorithm.

Kapitanova et al. [13] describe a technique to monitor sen-
sor operations in the home and identify sensor failures. The
classifier is trained on historical sensor data to obtain the
relationship between sensors, assuming the number and lo-
cation of sensors is known. When a failure or removal of
a sensor occurs, the classifier’s behavior deviates and the
event is captured. Our method does not require any prior
knowledge and instead tries to cluster feeds to discover their
relative placement.

Lu and Whitehouse [15] formulate a new algorithm, par-
ticularly leveraging the semantic constraints interpreted from
sensor data to determine sensor locations. The algorithm

identifies how many rooms are present using motion sensors
and determines room position based on physical constraints.
Finally, it maps each sensor into the associated room. Our
efforts focus on using intrinsic patterns typically pre-existing
in building system sensor feeds to uncover physical relation-
ships.

Fontugne et al. [6] propose a new method to decompose
sensor signals with EMD. They extract the intrinsic usage
pattern from the raw traces and show that sensors close
to each other have higher intrinsic correlation. However,
they do not explore the observation more deeply by answer-
ing whether there is a statistically discoverable boundary
between sensor clusters in different rooms, or if there is a
uniform threshold in the correlation coefficients able to be
generalized to different rooms.

Fontugne et al. [7] carry on the work and propose an un-
supervised method to monitor sensor behavior in buildings.
They constructed a reference model out of the underlying
pattens, obtained with EMD, and use it to compare future
activity against it. They report an anomaly whenever a de-
vice deviates from the reference. This work exploits EMD as
a method to detrend the signals and capture the inter-device
relationships.

Much work utilizes EMD on medical data [1], speech anal-
ysis [8], image processing [17] and climate analysis [14]. Our
method adopts EMD to determine whether a discoverable
statistical boundary exists in sensors traces from sensors in
different rooms and whether such a boundary can be gener-
alized across rooms with various kinds of sensors.

3. METHODOLOGY
We start our analysis by extending the methodology used

in SBS [7], based on empirical mode decomposition (EMD).
In our analysis, we collect traces from several sensors and
run EMD on them. This produces a set of constituent sub-
signals called “intrinsic mode functions” (IMF), which we
separate by frequency range and re-aggregate into distinct
bands. Then, we inspect the relationship between the sen-
sors by computing the corrcoeff within a particular band,
which gives us the spatial information we are interested in.
Finally, we separate the result set into sub-sets, and closely
examine their statistical characteristics. Before describing
our methodology in detail, we introduce some definitions
and notation.

3.1 Correlation
We make extensive use of the correlation coefficient func-

tion defined as:

r(X,Y ) = rX,Y =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2

where X, Y are separate sets of values, n is the total
number of sample points in each set, and X is the mean
value of X (same for Y and Y). For each pair of sensors, we
compute the corrcoeff to ascertain the relationship between
them.

3.2 EMD Basics
Non-stationary signals refer to those whose frequencies

change over time. The data generated in buildings is natu-
rally non-stationary, since physical readings are highly influ-
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Figure 1: (a) EMD decomposes a signal and exposes intrinsic oscillatory components; (b) Aggregation of IMFs within a pre-
defined frequency range makes seemingly similar signals from different locations more distinguishable; (c) IMF aggregation
makes seemingly distinct signals of different sensors in the same room show high correlation.

enced by the dynamics of physical properties in the immedi-
ate surroundings of the sensor. Empirical mode decomposi-
tion [10] is a method designed for non-linear, non-stationary
signal analysis. We use it to detrend our sensor data and
re-aggregate output components within a specific frequency
band, based on the SBS methodology [7]. We give a quick
overview of EMD and present observations from our data
analysis to show a threshold for discovering the boundary
between sensor feeds.

Algorithm 1: Empirical Mode Decomposition

Give signal X(t):
while the # of maxima in X(t) >3 do

(1) identify all the local extrema in X(t);
(2) perform a cubic spline interpolation of maxima
to get the upper envelope;
(3) repeat (2) on minima to get the lower envelope;
(4) h(t) = X(t)−mean((2), (3)) ;
(5) repeat (2)-(4) until h(t) is an IMF;
(6) X(t) = X(t)− h(t), and return the IMF;

end

EMD is similar to Fourier transform (FT). However, for
FT to be useful the system (or signal) must be linear and
the data must be strictly periodic or stationary. In contrast,
EMD directly extracts components associated with different
energy from the signal and generates a collection of intrinsic
mode functions at different time scales. IMFs are extracted
locally and normalized to fluctuate around zero. An IMF is

a function with equal number of extrema and zero crossings
(or differ by one at most), with its envelopes being symmet-
ric with respect to zero. A summary of the process of EMD
is depicted in Algorithm 1 and the reader is referred to [10]
for further reading on EMD. The number of IMFs depends
on the original signal and is automatically determined by a
pre-determined stoppage criteria.

3.3 Re-aggregation
In Figure 1a, we present example of IMFs extracted us-

ing EMD. The original data is generated by a thermometer
during a week deployed in a classroom in our testbed build-
ing. The graphs following show the result of the decom-
position and re-aggregation methodology in SBS [7] on this
signal. EMD is able to extract the predominant diurnal pat-
tern (IMF12), induced by occupant activity, from the signal
and separate distinct flows (IMF9) from other components.
EMD yields distinct components in different time scales and
we compute the instantaneous frequencies [11] of IMFs us-
ing Generalized Zero-Crossing [9]. We break the time scales
into four frequency bands:

• High Frequency: a time scale smaller than 30 min-
utes, mainly reflecting the operation characteristics of
devices and noise in system.

• Medium Frequency: a time scale between 30 minutes
and 6 hours, which is within the time span of daily
activities inside a building.

• Low Frequency: a time scale between 6 hours and 7
days.



• Residue: everything has a time scale longer than 7
days and shows long-term patterns, such as seasonal
changes.

Figure 1b shows a comparison of two temperature sensor
feeds from different rooms and their respective decomposi-
tion. Despite strong correlation in the raw time series, the
medium frequency IMF shows little correlation. Only the
low frequency diurnal pattern is correlated. Alternatively,
Figure 1c shows a CO2 trace and a humidity trace.

While the raw signals appear to be very different, and in-
deed have modest correlation, the medium frequency com-
ponents are strongly correlated. We conjecture that the
medium frequency band “records” local activity. Occupants
and movement in the space affect the levels of various phys-
ical phenomenon, namely temperature, humidity, CO2 lev-
els, etc. Over shorter time spans, noise in the system hides
the effects of local activity. Longer time-spans capture long-
term trends related to weather or building operation sched-
ules. The medium frequency band captures activities such
as meetings and office occupation times. These examples
illustrate the basis for an automated process. By isolating
a particular component of the signal we seek to strip away
common diurnal factors and also eliminate differences in the
response of various sensors to environmental factors. We
combine this observation with a simple classifier to derive
colocation.

3.4 Distribution
Let tsij,t be a time-series for sensor j in room i observed

over some time interval t. For simplicity, we ignore t in
defining subsequent functions and re-introduce it where nec-
essary. For each trace we run EMD and obtain a set of n
IMFs, denoted as follows:

Φi
j = EMD(tsij) = {IMF1∼n}

IMFs are traces themselves, so we divide and re-aggregate
them into the four bands, B, further described in Section 3.3.

B = {H(igh),M(edium), L(ow), R(esidue)}

Let the re-aggregation of the bands be denoted as:

Aggr(Φi
j) =

{
IMF i

f,j

}
where f ∈ B. We pick the medium frequency band (M)

to compute the pairwise corrcoeff of the sensor traces. In
order to understand and characterize the boundary between
sensors we consider two sets of corrcoeffs for each room; the
“intra”-room set and “inter”-room set, as defined:

Ri
intra,t =

{
r(IMF i

M,j,t, IMF i
M,k,t)

}
, s.t.∀j, k ∈ Si

The intra set only contains pairs of sensors in the same
room, so both tsij,t and tsik,t are traces from sensors in room
i.

Ri
inter,t =

{
r(IMF i

M,j,t, IMF i′
M,k,t)

}
,

s.t.∀j ∈ Si, ∀k ∈ S′i, i 6= i′

By contrast, the inter set contains pairs across rooms,
meaning tsj,t is a trace from a sensor in room i and tsk,t
is a sensor trace from some other room i′. Note the use of
t in the definitions. We re-introduce t here to denote that

the construction of each set is performed with respect to a
specific time interval.

Finally, we examine populations, Ri
intra and Ri

inter, across
multiple time intervals (in days):

Ri
intra =

⋃
∀t

Ri
intra,t, s.t. t ∈ {1, 3, 5, 7, 14, 21, 28}

Ri
inter =

⋃
∀t

Ri
inter,t, s.t. t ∈ {1, 3, 5, 7, 14, 21, 28}

We generate a CDF for each of the two populations with
respect to each room. This allows us to closely examine the
statistical characteristics of the relationship between sensors
in the same space and those in different spaces. Each room
offers a potentially different perspective on this relationship.

3.5 Threshold Analysis
In order to understand the statistical properties, we gen-

erate two corrcoeff distributions by computing the corrcoeff
between pairs of traces within and across each room, as de-
tailed in the previous section. Figure 4 shows how we divide
the corrcoeff values into two sets. The figure shows two in-
tra and two inter sets. Specifically, we examine how a choice
in cut-off threshold affects the ability to separate the sets,
when their separation is not known a priori, relative to each
room. Our hypothesis is that there exists a computable,
statistical boundary between sensors in different rooms.

To test our hypothesis, we choose a threshold value rela-
tive to the distribution of corrcoeffs. All pairs with a cor-
rcoeff larger than the threshold will be classified as being in
the same room. To closely analyze the threshold parame-
ter, we generate a receiver operating characteristic (ROC)
curve by varying the threshold value. Then, we look for
a good tradeoff point between the true-positive and false-
positive rate; one that maximizes the difference between
TPR and FPR. We compare the ROCs generated for our
“medium” frequency band IMFs against raw-signal, cross-
correlation values, in order to ascertain the extent to which
the SBS [7] methodology is advantageous for discovering a
statistical separation, analogous to a physical one. We also
examine whether there is a uniform boundary between clus-
ters across all the rooms.

4. EXPERIMENTAL RESULTS
We conduct two sets of experiments. First, we quantify

the sensitivity of our method for different threshold values
and examine the effect of different time spans on the thresh-
old. We then cluster the traces based on our threshold anal-
ysis and compare it with a baseline approach using multidi-
mensional scaling and k-means.

4.1 Experimental Setup
We perform an empirical study on sensor data collected

from 15 sensors across 5 rooms on 4 different floors of a large
building, as detailed in Table 1. Each room has three sen-
sors: a temperature sensor, a CO2 sensor, and a humidity
sensor. The data from these is reported to an sMAP [3]
archiver. The data set used comes from a deployment [18]
lasting over 6 months on several floors in Sutardja Dai Hall
(SDH) at UC Berkeley, where one sensor box – which con-
tains a thermometer, a humidity sensor and a CO2 sensor
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(b) Correlating the re-aggregated IMFs in the“medium”frequency
band.

Figure 2: The ROC curves depict the sensitivity of the raw signal and mid-frequency IMFs to the threshold value. We choose
the 0.2 FPR point as the boundary threshold for each room.

Figure 3: We collect data from 15 sensors in 5 rooms sitting
on 4 different floors. This is a map of a section of the 3rd
floor in Sutardja Dai Hall.

– is placed in each room. The box reports data over 6Low-
PAN [12] to a sMAP archiver every 15 seconds. Due to
intermittent data loss, we pick a time span without inter-
ruption, starting in January until mid-Feburary, 2013, for
evaluation.

Table 1: Room Specs

Room# Orientation Floor Type

A West 2 Computer Lab
B South 4 Conference Room
C No Window 2 Classroom
D North 7 Conference Room
E South 5 Conference Room

4.2 Baseline and Metrics
As a baseline, after we generate the two distributions de-

scribed previously, we apply multidimensional scaling (MDS)
to the corrcoeff matrix, in order to transform the original
high-dimensional relative space to a 3-D space with an ab-
solute origin, and run the k-means clustering algorithm. We
choose the true-positive rate (TPR, also known as recall
rate) and false-positive rate (FPR) as metrics to evaluate

the performance of our method versus the naive approach,
which correlates the raw traces. A true-positive (TP) is
when a sensor pair in a room is classified as being co-located
while a false-positive (FP) is when a sensor that is not in
room is classified as being so.

Room 2Room 1
Sensor

Inter

Intra

Figure 4: Two populations are examined for our threshold
analysis. A solid line connects sensors in the same room
while a dotted line connects to a pairs in different rooms.

4.3 Characterizing the Boundary
To corroborate our boundary-existence hypothesis, we first

need to characterize the boundary between sensors in differ-
ent rooms. We compute the pairwise correlation coefficients
(corrcoeffs) between sensor traces in both of populations de-
picted in Figure 4, over different time spans – ranging from
one day to one month. After generating points over different
time spans for each room, we accumulate the corrcoeffs to
obtain distributions as shown in Figure 5, for each of the
five rooms.

The dashed vertical lines in Figure 5 represent an arbi-
trary threshold that partitions the distribution into two sets.
Pairs of sensors to the right of the line are classified as being
in the same room. Pairs of sensors to the left are classified
as being in different rooms. The CDFs on the left column
show the distribution of corrcoeffs for pairs known to be in
the same room and the CDFs on the right show the distri-
bution of corrcoeffs in different rooms. Note in the figure,
we set the threshold to the same value to both the left and
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Figure 5: CDF of correlation coefficients between IMFs of
sensor feeds: the dotted lines point to some threshold which
divides the distribution and produces a TPR and FPR.

right side, in order to observe the effect of the true/false
positive rates. By adjusting the threshold, we get differ-
ent TPRs/FPRs parameterized by the threshold. Figure 2
captures the range tradeoff in a corresponding ROC curve.

Figure 2 illustrates the TPR/FPR sensitivity to different
threshold values for our method and the naive approach.
A good cluster achieves a high TPR and a low FPR. As
we vary the threshold, we see that our approach achieves a
TPR between 52%–93% and a FPR between 5%–59%. We
can see that the average TPR for the ROC graph on the
right is higher than the ROC graph on the left. Moreover,
the corresponding average FPR is lower on the right than on
the left. In general, as the TPR rises, the FPR also goes up –
a tradeoff exists between maximizing TPR and maintaining
a lower FPR.

The “boundary” is represented as the corrcoeff that pro-
duces a“good”TPR with an“acceptable”FPR. In Figure 2b,
we choose 0.2 FPR as the boundary threshold. This point
represents the largest difference between TPR and FPR –
an acceptable tradeoff point. Looking at Figure 5, the 0.2
FPR corresponds roughly to the 80th-percentile correlation
coefficient, on the “inter” set (the set of CDFs on the right).
The recall rate for each room – using a 80th-percentile cor-
rcoeff threshold value – ranges between 62%-86% and the
threshold value falls into a narrow interval between 0.1 to
0.12. This shows that we are able to choose a uniform value
for all the rooms regardless of the sensor type.

4.4 Convergence over Time
Using the threshold the roughly 80th-percentile corrcoeff

corresponds to in the distribution, we examine how it af-
fects the classification rate across traces that span different
lengths of time. Convergence and consistency across differ-
ent time spans is critical to automate the parameter selection
process. Observe how the threshold values differ quite signif-
icantly in Figure 6. However, the threshold values gradually
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Figure 6: The threshold values all converge to a similar value
and we can derive the optimal value with as minimal as 14
days data.

converge, as the length of training data increases from one
day to one month. The values derived after 14 days of data
are approximately the same as the final convergence value
(around 0.07). In other words, we can determine a threshold
from two weeks of data.

4.5 Clustering Results
We cluster the sensor traces over the entire one-month pe-

riod, and use the roughly 80th percentile corrceff (0.07) as
the boundary threshold. A sensor is classified into the clus-
ter with the largest corrcoeff. The clustering result is shown
in Table 2. A “1” means the sensor is classified as inside the
corresponding room. In general, after obtaining the sensor
clusters, we don’t know which room each cluster corresponds
to without further information such as the metadata of sen-
sors. The labels “A-E” in Table 2 are used to indicate the
ground truth of where each sensor is physically placed since
we have such information. Overall, the classification accu-
racy is 93.3%. We do not cluster on the corrcoeffs obtained
among raw signals because the 80%-percentile corrcoeff val-
ues do not converge across rooms. The reason that we are
able to get such a high accuracy, which is seemingly differ-
ent from the statistics in Figure 5 and Figure 2, is because
the statistics in the two figures are generated out of the
corrcoeffs accumulated over different time spans (the same
intervals in Figure 6) while the clustering here is performed
on the corrcoeffs from the entire one-month period.

To compare with our threshold-based method, we also
cluster using a baseline approach. The pairwise corrcoeff
for sensors in different rooms can be interpreted as a “dis-
tance” between them. A larger coefficient indicates a closer
“distance”, and vice versa. However, since the distances be-
tween pairs is relative, we use multidimensional scaling [5] to
find a common basis in three dimensions, re-map the relative
distance metric (feature vector) into this three-dimensional
grid and use k-means to classify the traces. We set k to
equal the number of rooms, since the goal of the approach is
to verify spatial placement at room-level granularity. Gen-
erally, we believe that k should equal the number of rooms
you wish to classify the sensors into. The clustering results
are shown in Figure 7. Ground truth is shown through dif-
ferent markers (x, o, +, star, box). Each marker stands for
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(a) Clustering on corrcoeffs from our method.
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Figure 7: Clustering with k-means on the corrcoeff matrix after applying multidimensional scaling (MDS): The EMD-based
set achieves an accuracy of 80% while the results with raw-trace is only 53.3% classification accuracy.

A B C D E
SensorA1 1 0 0 0 0 X

A2 1 0 0 0 0 X
A3 1 0 0 0 0 X
B1 0 1 0 0 0 X
B2 0 1 0 0 0 X
B3 0 1 0 0 0 X
C1 0 0 1 0 0 X
C2 0 0 1 0 0 X
C3 0 0 1 0 0 X
D1 0 0 0 1 0 X
D2 0 0 0 1 0 X
D3 0 0 1 0 0 ×
E1 0 0 0 0 1 X
E2 0 0 0 0 1 X
E3 0 0 0 0 1 X

Table 2: Clustering result using the thresholding method: a
“1” means the sensor is classified as inside the room. We get
the “X” and “×” by comparing the clustering results with
ground truth.

one room. The cluster each sensor assigned to is denoted
with a number. The classification accuracy of the baseline
approach on corrcoeffs matrix of re-aggregated IMFs is 80%.
For raw traces, the baseline approach achieves an accuracy
of only 53.3%.

4.6 Discussion

Bi-modal Distribution.
From the results illustrated in Figure 5, we observe a bi-

modality in the corrcoeff distribution for the two population
sets. Sensors in the same room correlate to each other more
(typically a corcoeff of 0.4 or higher) than sensors in different
rooms. This bi-modal distribution may provide insight for
us to understand the boundary and search for an effective
discriminator more broadly.

Across Different Sources.
To further validate the effectiveness of the proposed method,

we should consider using data from different sources. For
example, in room B in Sutardja Dai Hall, there are two dif-
ferent sets of temperature sensors reporting data at different
rates and granularities. We demonstrate our ability to clas-
sify sensor streams on the same platform (recall the sensor
box we used to collect data). It would be more convincing
to verify the effectiveness of our method with sensor streams
generated from devices on different systems – since separate
systems are independent. For instance, we can use tempera-
ture data from the second deployment and use the CO2 and
humidity sensor data from the first deployment and compare
the results to what we have gathered.

Generalizability.
In our results, the boundary threshold parameter con-

verges to a narrow interval, as the data set expands over
a longer time range. This may suggest that our method
generalizes across rooms in a building, although further val-
idation in a larger, more representative data set is necessary.
This study looked at 5 different rooms with a large physical
separation from one another. A more representative data
set would consider all the rooms and pay special attention
to rooms that share a common orientation and are separated
by a single wall or floor slab.

Based on this study, and the previous, related one [6],
we conjecture that local activity modulates various types of
physical signals – captured by the various kinds of physical
sensors embedded throughout the building – and that those
signals are attenuated over distance and physical boundaries
(such as walls). We believe that this is what drives our
observations. If the conjecture is true, the effects will be
less pronounced in larger rooms, such as an auditorium or a
large laboratory space.

As our approach performs slightly better than traditional
learning techniques, we must further evaluate its robustness



versus the baseline method; across the entire building and
across multiple buildings. In future work, we will exam-
ine the two approaches across larger intra-building data sets
and compare results across multiple buildings. A key factor
is the variance of classification accuracy – smaller variance
demonstrates robustness.

5. CONCLUSION
We present a new method for spatial placement clustering.

We first characterize the corrcoef distribution of medium fre-
quencies IMFs between sensors in the same/different room(s),
and then we learn the tradeoff between achieving a higher
TPR and maintaining a lower FPR by manipulating a dis-
criminator parameter within these two distributions. For a
preliminary sample of relatively well separated rooms, we
find that there is a clear boundary between sensor clusters
in terms of their spatial placement and the boundary can
be probed statistically. We also find a uniform discrimina-
tor can be learned and generalized across these rooms. For
this initial study, our method is able to classify the sensors
of 93.3% accuracy, which is 13% higher than a tradition k-
means approach, with a TPR between 62%-86% and a FPR
less than 20%.

These results are very encouraging. However, we recog-
nize that they are far from definitive. While the rooms in
the study were picked arbitrarily, they are neither compre-
hensive nor a systematic sampling. While they are clearly
separated by our approach, and not by analyses of the raw
time series, they do differ substantially in placement and us-
age. A key question going forward is, “how well will highly
similar rooms be separated?” - say, adjacent rooms facing
the same side of the building and with similar occupancy.
Will these techniques hold, more powerful techniques be re-
quired, or is further discrimination intractable? In future
work, we will examine how far this method takes us and
explore how it may be used in combination with other tech-
niques to improve the results more generally. Automated
metadata verification is important to include in the lifecycle
of building data management.
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