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Abstract— We propose a novel monocular visual inertial
odometry algorithm that combines the advantages of EKF-
based approaches with those of direct photometric error mini-
mization methods. The method is based on sparse, very small
patches and incorporates the minimization of photometric error
directly into the EKF measurement model so that inertial data
and vision-based surface measurements are used simultaneously
during camera pose estimation. We fuse vision-based and
inertial measurements almost at the raw-sensor level, allowing
the estimated system state to constrain and guide image-
space measurements. Our formulation allows for an efficient
implementation that runs in real-time on a standard CPU
and has several appealing and unique characteristics such as
being robust to fast camera motion, in particular rotation,
and not depending on the presence of corner-like features in
the scene. We experimentally demonstrate robust and accurate
performance compared to ground truth and show that our
method works on scenes containing only non-intersecting lines.

I. INTRODUCTION

The problem of estimating the motion of a camera relative
to a known 3D scene from a set of images or RGB-D (RGB
and depth) frames is one of the fundamental problems in
computer vision and robotics. Estimating camera motion en-
ables applications such as vehicle or robot localization [18],
3D reconstruction [23] and augmented reality [22]. Recently
a number of approaches have leveraged dense RGB-D data,
available in real-time from depth sensing cameras such as
the Kinect [26], in combination with ICP-like algorithms for
pose estimation [6], [8], [16].

Similar in philosophy but using monocular images only,
methods for camera pose estimation using dense surface
measurements have been demonstrated [12], [17], [25].
These methods use all data available for pose estimation
and hence promise high tracking accuracy and robustness.
However, they are computationally expensive and typically
require powerful GPUs for real-time performance, prohibit-
ing use in mobile and compute restricted setups.

Direct methods, minimizing photometric error for pose
estimation, have recently been adapted to sparse formulations
[3], [4] with great success. These methods offer higher
precision and robustness than traditional feature extraction
and tracking based methods [9] and, in the sparse variant,
have comparable or better runtime performance.

Being purely vision based, these methods struggle under
fast motion, in particular rotation [3], when the camera is
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moving along it’s focal axis, and in scenes with few corner-
like features [4]. Most direct photometric approaches are
formulated as energy minimization problem and leverage
Gauss-Newton like methods to solve for camera pose. There-
fore, tightly coupling IMU and vision data is non-trivial in
these frameworks.

On the other hand filter-based approaches to VIO [2], [10],
[5] tightly couple inertial measurements with visual data and
have demonstrated robustness to fast rotation, partial loss of
visual tracking and relatively little drift over time. However,
we are not aware of exisiting methods to incorporate direct
methods (i.e., photometric error minimization) directly in the
measurement model of the EKF framework.

In this paper we propose, to our best knowledge, for
the first time an algorithm that combines the use of direct
photometric error minimization in an extended kalman filter
(EKF) framework. Allowing us to fuse vision and inertial
data tightly, almost at the raw sensor level. Both signal
sources measure the same motion but have different, comple-
mentary sensor characteristics which can provide additional
constraints during the optimization camera pose. Fusing the
complementary data sources at the lowest possible level
allows the estimated system state to constrain and guide the
image-space measurements, enforcing consistency between
image-space feature positions and 6DOF camera motion. Our
approach works with very few (10-20) and very small (as
small as 3 × 3) image-patches. This sparsity allows for an
efficient and fast implementation. Furthermore, the method
can handle scenes that do not have any corner-like features
and hence is suitable for scenarios in which other methods
fail.

A. Related Work

1) Dense methods: Dense direct methods operate on
surface measurements directly, either depth estimates of a
stereo camera or a RGB-D sensor [8], [16], and do not
extract sets of features from this data. These approaches
require heavy GPU parallelization due to computational cost
and tend to have restricted working ranges, due to sensor
working principles. Dense monocular methods do not have
special sensor requirements but have similar computational
costs because they require the build-up of an explicit cost
volume[17] or on computing constrained scene flow [15].

2) Semi-dense direct methods: Recently [3] proposed to
estimate depth only for pixels in textured image areas and
introduce an efficient epipolar search, enabling real-time
visual odometry and semi-dense point cloud reconstruction
on a standard CPU and even on mobile platforms [22].
Photometric alignment on sparse, known 3D points has been



Fig. 1. The left image shows the pixel patches selected for odometry computation on the current camera image. The middle two images show a selection of
the pixel patches in the current image and the respective reference patches. The algorithm is optimizing the camera pose and the patch depth by minimizing
the intensity residual. The rightmost image shows the intensity residuals with an arrow illustrating the patch motion that is needed to align both patches
resulting from the image gradient of the current image.

used by [4] to improve accuracy and robustness of the
standard SLAM pipeline of [9]. Most of these approaches
either do not use inertial data or treat both data sources
mostly independently and only fuse the two at the camera
pose level. For example, to estimate metric scale on top of
vision based camera pose [24].

3) Visual Inertial Odometry: The EKF framework has
been used for vision only camera tracking and structure from
motion [2]. It allows for straight forward sensor fusion and
hence it is very popular for algorithms designed with mobile
platforms in mind, which predominantly are shipped with
cameras and IMUs [5], [10]. However, to make the problem
computationally tractable typically EKF approaches operate
on sets of image-space features. As outlined above this comes
with certain issues. In the filtering context a further issue
is that they are uncoupled from the estimated system. It
is only possible to use predicted locations to support the
feature correlation or matching but the correlation itself is
completely unconstrained by the overall system state. This
requires costly outlier rejection (e.g., RANSAC) to detect
features that where not matched or tracked correctly.

To improve feature correlation results, early SLAM ap-
proaches have used photometric error and patch-wise nor-
mal estimation [13] to improve feature correlation but this
was done separately from the standard EKF-SLAM steps.
Instead of externally optimizing the homography between
filter updates, [7] estimates the patch normal inside the EKF
framework. The drawback with these methods is that the
local patches have to be reasonably large (25 × 25 pixel or
larger) for the normal to be estimated robustly. This increases
computational cost and introduce problems with patches near
depth discontinuities, where the texture in a patch would not
change consistently with camera motion.

B. Contribution Statement

In this paper we propose a method that based on sparse,
very small patches and incorporates the minimization of
photometric error directly into the EKF measurement model
so that inertial data and vision-based surface measurements

are used simultaneously during camera pose estimation. Our
formulation allows for an efficient implementation that runs
in real-time on a standard CPU and could be implemented
on mobile platforms as well. The tight integration of direct
surface measurements and inertial data allows to track image
regions that are difficult to tackle with approaches that rely
on feature trackers like KLT for example line-like structures
in images.

C. System Overview

Our technique is a visual-inertial odometry (VIO) ap-
proach, this means that camera pose is estimated only from
currently visible regions of the observed 3D scene and we
do not maintain a global map of previously extracted feature
points, we remove all features from the state space as soon
as they leave the field of view of the camera. Note that the
proposed approach could easily be extended with standard
mapping back-end as for example in [9]. Following the
approach in [14] We reformulate the EKF framework which
has been used successfully for structure from motion [2] into
an Error State Extended Kalman Filter ErKF.

Fig. 1 illustrates our approach. A small number of small
patches were extracted in previous frames and the corner
locations of the patches are projected into a predicted camera
pose based on IMU data. An affine warp for the whole
patch is computed (cf. Fig. 3). The algorithm then jointly
optimizes the camera pose and the patch depth by minimizing
the intensity residual. One advantage of this approach is
that we do not rely on the extraction of features of a
specific type (e.g., corners) but can use any patches with
sufficient gradient. In particular, patches which lie on lines
(see highlighted region in Fig. 1) or they can be placed in
image areas with good texture, similar to the pixel selection
in (semi-)dense approaches [3]. Furthermore, we use an
inverse depth parametrization for the patch depth which
allows us to start tracking without a special initialization
sequence as it is necessary with other approaches [4], [9].



II. ERROR STATE FILTER DESIGN

A. Statespace structure

The camera state xc = [p, qwc, v, oa, oω, td]
T ∈ R16

contains the current camera position p, orientation quaternion
qwc, linear velocity v, the accelerometer and gyroscope
offsets oa and oω and td is the time delay between IMU
and camera measurements [11]. The point state vector xm
contains the states for the tracked patches. The whole state is
then x = [xc, xm]. We use a error state formulation x̃ = x−x̂
which is defined as the difference between the true state x
and the estimated state x̂. The error state vector is defined as
xc = [p̃, θ̃, ṽ, õa, õω, t̃d]

T ∈ R15, see [14] for more details.
We used a static calibration for the transformation between
camera and the IMU, we want to point out that it is possible
to include online camera-IMU calibration by following [10].

B. Point Parametrization

The estimated points are parametrized as anchored inverse
depth bundles [19]. For every time step where new patches
are initialized, the point state vector xm is augmented with
xnew = [pk, qk, ρinit, ..., ρinit]

T where pk and qk are the
current camera pose and ρinit the inverse depths which are
set to an arbitrary value. In addition to the point state vector
the location of each patch in normalized image coordinates
in the anchor frame is stored statically in a vector m. The
3D position of a point can be computed as follows:

pi = pf +
mi

ρi
R(qf ) ∈ R3 (1)

where pf is the position and R(qf ) the orientation of the
according anchor frame and ρi the inverse depth of the point.

C. Continuous Time Model

The nonlinear process model follows the standard formu-
lation of [14].

˙̃p
˙̃q
˙̃v
˙̃oω
˙̃oa


︸ ︷︷ ︸
xck+1

=


vk

qk × q(zω − oωk + qω)
Rwc(qk)(za − oa + qa)

qoω
qoa


︸ ︷︷ ︸

f(xk,qk,uk)

(2)

with q = [qa, qω, qoω , qoa ] the process noise.
The jacobians of the process model used in the EKF are

given as

F =
∂f

∂x

∣∣∣∣
x̂k|k,zω,za

, G =
∂f

∂q

∣∣∣∣
x̂k|k,zω,za

. (3)

The 3D points are modelled as static scene points assum-
ing that they do not move in the 3D space. Therefore, the
feature space dynamics are given as ˙̃pfi = 0, ˙̃qfi = 0 and
[ ˙̃ρ1 . . . ˙̃ρN ] = 0.
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1
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Fig. 3. Estimating per-pixel intensity differences. Given a reference camera
pose Rwfi |rwfi at time i and predicted camera pose Rwck |rwck the center
location uri of a patch in the reference view is projected into 3D world
coordinates and re-projected into the current view. We compute an affine
warp to transform the pixel coordinates of all pixels in the small patch
around the point location in the current camera view into the reference view.
The per-pixel intensity value differences form the residual to minimize.

D. Prediction

Following the continuous-discrete hybrid approach sug-
gested in [21] we perform a 4th order Runga-Kutta integra-
tion of the continuous motion equations given in II-C. The
error covariance P =

[
PCC PCM

PMC PMM

]
is propagated by:

Pk+1|k =

[
PCCk+1|k Φ(tk+1, tk)PCMk|k

PMCk|kΦ(tk+1, tk)
> PMMk|k

]
(4)

The camera error covariance is numerically integrated by

ṖCC = FPCC + PCCF> + GQG> (5)

where Q represents the process noise and Φ(tk+1, tk) is
integrated by

Φ̇(tk + τ, tk) = FΦ(tk + τ, tk), τ ∈ [0, T ]. (6)

III. PHOTOMETRIC UPDATE

The photometric update is different from standard visual
odometry approaches that use 2D image positions from an
external feature tracker or matcher. In our case the measure-
ment model h(x) is used to directly predict the appearance
of a pixel patch (the 1 dimensional intensity values of the
pixels) of a reference view given the pixel values in the
current camera view (see Figure 3).

More specifically, for every pixel patch the current esti-
mate of the 3D location of the center pixel is transformed
into the current camera frame:

hc(x) = RickRcwk
(ρi(rwfi − rwck) +Rwfiπ

−1(uri)) + rci ,
(7)

where hc is a vector from the predicted current camera center
towards the 3D location of the patch center, Rwfi , rwfi are
the rotation and position of the reference view, Rwck , rwck
the predicted rotation and position of the current camera,
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Fig. 2. The optimal pyramid level for pixel patch alignment is selected based on the estimated variance of the projected point location
in pixel space. If the camera motion is fast, higher levels are used, if there is low variance on the camera pose lower levels are used for
higher precision.

Rick , rcik the camera-IMU transformation, uri is the stored
center pixel of the tracked patch in the reference frame, ρi
the inverse depth and π−1 is the camera back-projection
function. Then the point is projected into image space
with the precalibrated camera parameters. The measurement
function h(x) is then used to compute the appearance of
the reference pixels given the current state estimates and the
current camera image:

h(x) = Ik(π(hc)) . (8)

Here, the measurement model equation h(x) is given for
a single pixel. In order to increase robustness we extend the
single measurement to a patch around this point. In doing so
we make the assumption that the scene around this point is
planar because only the depth of the single point is modeled.
However, since we are using small patches (3×3pixels), the
assumption of a locally flat scene can be made similar to
[4]. To further reduce the degrees of freedom, we assume
the patch normal to be orthogonal to the image plane in
the anchor frame. This assumptions allows us to model the
appearance of the pixels surrounding the center point via an
affine warp A, encoding in-plane rotation of the patch, the
depth dependent size of the patch and some shear caused by
a camera observing the patch from a different angle.

The residual ri, recursively minimized during camera pose
estimation by the Kalman filter, is the photometric error
between all the pixels in the reference patch and the pixels
in the warped patch, extracted from the current camera view:

ri = Ir(uri)− Ik(A(Rwfirwfi , Rwckrwck , uri , ρi)) , (9)

with Ik the current image, Ir the reference image, Rwfirwfi
and Rwckrwck the [R|t] rotation and translations of the
reference and the current view, uri the location of the center
pixel and ρi the inverse depth of the point. This residual is
computed for all points that are currently in the state space.

Finally, the Kalman filter update step requires the lin-
earization of the measurement function H , computed as the
derivative of h(x) with respect to the states x:

H =
∂h(x)

∂x
= ∇Ik

∂π(hc)

∂hc(x)

∂hc(x)

∂x
, (10)

with ∇Ik being the image gradient of the warped patch
extracted from the current frame, ∂π(hc)

∂hc(x)
is the 2× 3 camera

projection derivate matrix.

Assuming familiarity with the EKF framework, the equa-
tions given here and in the previous sections should be
sufficient to implement the proposed algorithm. However,
there are a number of details that can be taken into consid-
eration in order to increase robustness in real-world settings
and improve performance. We briefly discuss these in the
following subsections.

A. Patch extraction
The patches can be selected using many different methods

and in particular there is no requirement for patches to
be centered on corners. In the experimental section we
demonstrate the performance of our technique using only
patches that are centered on single, non-intersecting lines.
A simple implementation could just extract FAST keypoints
[20] on an uniform grid. However, we noticed that selecting
image areas based on the Shi-Tomasi score that are stable
over the whole scale space of the image pyramid leads to
better and more stable results.

B. Image Pyramid Level Selection
In our method we attain predictions and associated un-

certainties for all state variables and their covariances. This
can be used to compute the variance on the point location in
image space and consequently allows to select the optimal
level in the image pyramid such that convergence is guar-
anteed (see Fig. 2). Compared to the standard approach of
iterating through the whole image pyramid starting from the
highest level, this approach saves computation time while
still offering the advantage of a larger convergence radius
of the higher pyramid levels and the precision of the lower
levels. In addition as the method selects the lowest possible
level for convergence, it also reduces the risk of converging
towards a wrong local minimum if the optimization on higher
levels would not converge towards the correct image location.

The error covariance can be computed by omitting the im-
age gradient when taking the derivative of the measurement
function ∂h

∂x :

Hπ =
∂π

∂hc

∂hc
∂x

, (11)

Sπ = HπPk−1|k−1H
>
π . (12)

The major axis of the error ellipsoid in image space is then
the largest Eigenvalue of the 2× 2 matrix Sπ . To guarantee



convergence the length of this axis should be smaller than 1
pixel at the respective pyramid level. These calculations can
be done while computing the derivate H during the update
step before the image gradient of the pixel patch is computed.
The only overhead is the computation of the 2× 2 matrix S
and its Eigenvalues.

C. Iterated Sequential Update

Inherently our formulation requires the processing of many
measurements for each update step (every pixel is a measure-
ment). Unfortunately this impacts runtime performance. The
size of the Jacobian ∂h

∂x and as consequence, the size of the
innovation covariance matrix S will be ns× ns, where n is
the number of patches and s the patch size in pixels. Because
S needs to be inverted during every EKF update step, the
size of S directly impacts the runtime.

In the case of the linear Kalman filter, sequential up-
dates [1] can be utilized to alleviate this situation. We
observed that if one iteratively re-linearizes the measurement
matrix H = ∂h

∂xseq
around each updated estimated state

sequentially, the algorithm produces very good estimates
in practice (see Alg. 1). The sequential update reduces
the computations to n inversions of a s × s matrix which
drastically enhances runtime performance.

Algorithm 1 Iterated Sequential EKF Update
Require: Proc. and meas. noise covariances: Q, R

Prediction Step:
1: x̂k|k−1 = f(x̂k−1|k−1, uk−1)
2: Pk|k−1 = FkPk−1|k−1F

T
k +Qk

Update Step:
3: x̂k|k,0 = x̂k|k−1, ˆ̃xk|k,0 = 0 and Pk|k,0 = Pk|k−1
4: for i do
5: Sk,i =

(
Hk|k,i−1Pk|k,i−1H

T
k|k,i−1 +R

)
6: Kk,i = Pk|k,i−1H

T
k|k,i−1S

−1
k,i

7: ˆ̃xk|k,i = ˆ̃xk|k,i−1 +Kk,i

(
zr − h(x̂k|k,i−1)

)
8: x̂k|k,i = x̂k|k,i−1 ⊕ ˆ̃xk|k,i
9: Pk|k,i =

(
I −Kk,iHk|k,i−1

)
Pk|k,i−1

10: end for
11: x̂k|k = x̂k|k,n and Pk|k = Pk|k,n

IV. EXPERIMENTAL RESULTS

We performed a comparison against ground truth acquired
from a Vicon system and two of recently published methods
that use a photometric approach in a semi-dense manner
[3] and patch-based on corner locations [4]. We moved the
camera around a regular office space, see an example image
from the dataset in Figure 4 on the left. The top plot shows
the 3D view of the final positions of the tracked points during
the sequence and the trajectory of our method together with
ground truth. The third plot shows the position in all axes,
as can be seen, our method tracks the camera pose in typical
scenes with equal quality than the compared methods. The
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Fig. 4. Blue: Trajectory from the presented algorithm, Magenta: Semi
Direct Visual Odometry (SVO) [4], Green: Semi-Dense Visual Odometry
(SDVO) [3], Black: Ground Truth (VICON data). The initialization of SDVO
had issues in the selected scene, due to the suboptimal initial map the
performance is not as good as can be expected.

Fig. 5. Thanks to the constraints on the pixel patches, the algorithm is able
to initialize even on this difficult scene consisting only of almost vertical
lines. On the right side the used 3x3 pixel patches are visible.

initialization for [3] was difficult in this particular scene and
its performance did not match the expected level.

The most compelling advantage of our constrained direct
method is that it do not rely on the presence of corner like
features. In particular, our implementation works on scenes
that only contain (non-intersecting) lines. Figure 5 shows a
demonstration of such a scene. It is clear that methods that
rely on external trackers like KLT will fail in this scenario
since the tracker is not able to fix the tracked points at
a position and thus the point will start to randomly slide
along the edge. Since in our implementation the location of
the patches are constrained by the model in the filter, the
algorithm is able to fully initialize with patches that lie on
these kinds of edges even with a patch size of only 3x3
pixels.



Figure 6 shows the results of a challenging dataset with
a camera moving in front of a curtain having almost only
line-like structure in view. Only few patches where placed
on corner-like areas, this was enough to fix the camera pose
from drifting in vertical direction. This demonstrates that
the proposed method can be used to track scenes that are
rather hard for methods that rely on unconstrained feature
correspondences as is the case in many indoor scenes.
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Fig. 6. Visual-Inertial odometry on a scene with lines. Left: patches on
lines. Right: comparison with ground truth (VICON data).

The runtimes for the photometric update in unoptimized
C code from MATLAB on a Core i5 desktop computer is
12 ms, thus already allowing for real-time use. We plan to
implement a fully optimized version for mobile ARM CPUs.

V. CONCLUSION

In this paper we presented a novel, Kalman filter-based
semi-direct visual inertial odometry approach that combines
the advantages of a tightly coupled visual-inertial Kalman
filter and the robustness and precision of direct photometric
methods. We demonstrated how the photometric update can
be built into a standard error-state Kalman filter odometry
algorithm. We proposed an efficient implementation that
reduces the impact of the larger number of measurements
when minimizing the photometric residual error. Finally,
we demonstated that our proposed algorithm matches the
tracking quality of other state of the art approaches, and in
addition, thanks to the rigid scene constraints the proposed
algorithm can work with pixel patches lying only on line-like
structures and is even able to fully initialize without special
procedure in such scenes.
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