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Abstract—This paper interests in social search over social
networking services, typically in microblogging networks. We
propose a new approach that integrates, within a Bayesian
network model, new relevance factors such as the social
importance of microbloggers and the temporal magnitude of
tweets. In particular, the social importance of a microblogger
is assimilated to his influence on the social network. This
property is evaluated by applying PageRank algorithm on
the social network of retweets and mentions. The temporal
magnitude of microblogs is estimated based on temporal
neighbors that present similar query terms. To validate
our approach, we conducted a series of experiments on
the TREC 2011 Microblog dataset. Results show that the
integration of social and temporal features increases the
retrieval effectiveness.

Keywords-Microblogs; Tweet search; Social network; In-
fluence; Time magnitude

I. I NTRODUCTION

Microblogs are popular networking services that enable
users to broadcast an information. Unlike news headlines
which is generated by mass media, microblogs address
general topics that interest a large public as well as small
communities and close social networks. In addition, mi-
croblogs enrich reported news with valuable information.
For instance, some particular events are covered in real-
time with instant updates and live photos from the event
site. Moreover, microblogs identify the exact source of
information (author) and describe its publishing context
(time, geolocalisation, application, device, etc). Finally,
microblogs extended the informative purpose of message
broadcasting and enable people to express their opinion
about real world events.

With the variety of supported features, microblogging
services emerge as a promising tool to get acquainted
with the latest news. However, seeking for information
over microblogging spaces becomes a challenging task
due the increasing amount of published information. In
the case of Twitter1 microblogging service, which is the
focus of this work, about 340 million2 messages (called
“tweets”) are published every day. A part of these tweets
are useless, ambiguous, redundant or incredible [1]. A new
information retrieval task is therefore created. Its main
purpose is to search for real-time information and to rank
recent tweets. TREC 2011 Microblog track [2] defines
tweet search as a real-time adhoc task where the users are

1http://www.twitter.com/
2http://blog.twitter.com/2012/03/twitter-turns-six.html

interested in most recent and relevant information. In the
spite of Web search, tweet search aims to find temporally
relevant information, monitor content and follow current
events and people activities [3].

Prior works addressing tweet search integrate a variety
of textual features, microblogging features and social
network features [4], [5]. These works consider that tweet
relevance depends, on the one hand, from the importance
of corresponding authors in the social network and, on the
other hand, from the content quality such as URLs, men-
tions and hashtags. We investigate in this paper different
motivations behind tweet search, namely topical, temporal
and social motivations. We propose an integrated Bayesian
network model that considers:
● the number of query terms in the tweet as an indicator

of topical overlap between the query and the tweet;
● the social importance of the related microblogger as

an indicator of tweet credibility;
● the topic activity periods which corresponds to the

joint events in the real world.
In particular, we estimate the tweet relevance based on the
microblogger influence and the time magnitude. The influ-
ence score is computed by applying PageRank algorithm
on the social network of retweet and mentions. The time
magnitude is estimated from the set of tweets in the same
period that contains similar query terms.

This paper is organized as follows. Section2 presents
an overview of related work. Section3 introduces the
Bayesian network model for tweet search. Section4 fo-
cuses on query evaluation process and the computation of
conditional probabilities. Section5 discusses experiments
conducted on TREC 2011 Microblog dataset. Finally,
section6 concludes the paper and outlines future work.

II. RELATED WORK

The first work that investigated microblogging services
by Java et al. [6], has focused on the microblogging prac-
tices and the social network structure. Recently, Teevan
et al. [3] showed in their systematic overview of search
behavior, that tweet search emerges as a new information
retrieval task that differs from typical Web search. Several
retrieval approaches have been proposed for tweet search
task. We summarize below some of representative works.

The first categories of approaches combine different
relevance indicators computed separately. Chen et al. [7]
propose to combine variety of features such as the author-
ity of the microblogger computed by applying PageRank



algorithm on the follower networkU-PageRank; the pop-
ularity of microblogger involved in the discussion topic
or threadPop(T ); the similarity between the query and
the tweetsim(q, t); the time decay between the query
and the tweet(q.timestamp−t.timestamp). In the same
approach, Nagmoti et al. [4] propose a linear combination
of social network based measures and information quality
indicators. Social network factors are computed based on
the number of published tweets (TweetRank) as well as
the number of followers (FollowerRank). The information
quality is evaluated based on the tweet length (Length-
Rank) and outgoing hyperlinks (URLRank).

The second categories of approaches investigates a
machine learning algorithm in order to combine the rel-
evance features. Duan et al. [5] propose a learning to
rank approach that uses three types of features. Content
relevance features evaluate the tweet text (BM25 score,
Similarity of contents, Length). Twitter specific features
evaluate tweet quality (URL, Retweets, hashtags, replies).
Account authority features evaluate the tweet author. The
main score in this category (Popularity Score) is computed
by applying PageRank algorithm on the social network of
retweets. Metzler and Cai [8] propose a learning to rank
approach that considers the textual similarity to the query
(text score), the time difference between the query and
the tweet (tdiff ), the hashtag existence (has hashtag), the
URL presence (has url), the percentage of words out of
vocabulary (OOV) and the tweet length (length).

The third category of approaches uses a language based
model to combine tweet relevance features. Efron et al. [9]
propose to integrate the topical relevancePr(Q∣D) with

both query and tweet temporal profileslog(
ˆmTQ

mTD

). The
first factormTQ

is computed as the timestamps mean of
retrieved tweets by the queryQ. This score highlights new
tweets if the query tends toward retrieving new documents.
mTD

is computed as the time-stamps mean of tweets
retrieved by the pseudo-query of tweetD. This score
highlights the temporal coherence between the query and
candidate relevant tweets.

Besides the previously cited approaches that mainly
investigate tweet properties, query-oriented approaches
have addressed the problem of tweet shortness, vocabulary
variation and term ambiguity. To tackle this problem,
Bandyopadhyay et al. [10] propose to expand the query
based on the title of Web search results. In the same
approach, Li et al. [11] propose to extract the words with a
strong connection to the topic in order to expand the query.
Term similarly is estimated in this case based on the term
association network and the term resistance network.

We propose in this work an integrated approach for
tweet search that combines within a Bayesian network
model different sources of evidence, namely the topical,
the social and the temporal evidence. In particular, the rele-
vance of a tweet is estimated based on its topical similarity
to the query, the influence of corresponding microblogger
and the time magnitude of the tweet. Our approach differs
from related work in at least three respects :

● We model the tweet relevance within a integrated
framework that support influenceable sources of evi-
dences unlike previous work computing one or more
scores for each source of evidence then combine them
using a learning to rank approach [4].

● We model microbloggers using a weighted social
network of retweets and mentions. Meanwhile, previ-
ous works model microblogger using a binary social
network based only on followerships [7], retweets [5]
or mentions. We compute a PageRank-like algorithm
on the social network of retweets and mentions in
order to identify active influencers in the network.

● We estimate the time magnitude of the tweet from the
occurrence of query term configuration in temporal
neighborhood unlike previous work [9] analyzing all
tweet distributions regardless to the importance of
each group of terms present in the query.

III. A B AYESIAN NETWORK MODEL FOR TWEET

SEARCH

Tweet search is a particular information retrieval task
driven by a variety of topical, social and temporal moti-
vations. To perform this task, it is necessary to consider
the sources of evidence behind these motivations. In fact,
involved sources of evidence are mutually dependent.
With this in mind, we propose to model tweet search
using Bayesian network models that incorporate different
sources of evidence into an integrated framework. This
family of models supports the dependency between the
integrated features. In addition, such Bayesian networks
model ensures the retrieval process even though some data
is unavailable such as a protected microblogger profile
or when only a part of data is available. In this section,
we first introduce some definitions and notations then we
describe the proposed Bayesian network model topology.

A. Definitions and notations

Bayesian networks:A Bayesian network is a graph-
ical model that represents random variables and condi-
tional dependencies between them. Bayesian networks
are modeled by a directed and acyclic graphG(X,E),
where the set of nodesX correspond to random variables
and the set edgesE = X × X represent conditional
dependencies between them. LetXi be a random vari-
able andPa(Xi) the set of its parent nodes. The joint
probability for all variables in the network is computed as
P (X1,X2, . . . ,Xn) = ∏n

i=1 P (Xi∣Pa(Xi)).
Term: Each termki in the index is associated to a

random variableki ∈ {0,1}. The event of“observing term
ki” is notedki = 1 or shortlyki. ki = 0 denotes“the term
ki is not observed”. This event is noted alsōki. We notice
that the same notationki is used to represent the term
ki as well as the corresponding random variable and the
network node. Letp be the number of index terms. It exists
2p possible combinations between terms, called term con-
figurations. For instance, an index of2 terms (k1 andk2)
presents4 possible configurations represented by the set
{(k1, k2), (k1, k̄2), (k̄1, k2), (k̄1, k̄2)}. Each configuration



may represent a tweet or a query. A term configuration
is noted k⃗. on(ki, k⃗) associates to eachki, the value of
corresponding random variable in⃗k. on(ki, k⃗) = 1 if term
ki is positively instantiated in⃗k. c(k⃗) represents the set
of positively instantiated terms in⃗k.

Tweet: By analogy to the basic Bayesian network
model, tweetsare equivalent to documents. Each tweet
tj is associated to a random variabletj ∈ {0,1}. The
event tj = 1 of “observing tweettj” is noted tj . The
complementary eventtj = 0 is noted t̄j . A tweet tj is
represented by a set of termstj = k1, ..., ki, ..., kn with ki
is a random variable indicating either termki is present in
the tweettj or not. In addition, we propose to associate to
each tweettj three other random variablestkj , tsj andtoj .
First variabletkj models the event of observingtj given an
implicit knowledge of term occurrence in the tweet. The
random variabletsj models the event of observingtj given
an implicit knowledge of microblogger social influence.
Finally, the random variabletoj models the event of
observing tweettj given an implicit knowledge of the time
magnitude of tweet. These probabilities decompose the
event of observing the tweet into three evidences: topical
evidence, social evidence and temporal evidence.

Microblogger: Each microblogger is represented by
a nodeuf in the Bayesian network. A random variable
uf ∈ {0,1} is associated to each microblogger.uf = 1,
shortly written asuf , denotes“microblogger uf is ob-
served”. uf = 0, noted ūf , denotes“microblogger uf is
not observed”.

Period: A periodoe corresponds a time window with
a duration∆t. Each period covers a temporal interval
defined by[θoe −

∆t
2
, θoe +

∆t
2
], with the period timestamp

θoe corresponds to the center of the temporal interval.
Successive periods can not be parallel or overlapped
θoe − θoe−1 >= ∆t. A random variableoe ∈ {0,1} is
associated to each period.oe = 1, notedoe, denotes“the
period oe is selected”. oe = 0, noted ōe, denotes“the
period oe is not selected”.

B. Belief network topology

We describe in figure 1 the topology of our Bayesian
network model for tweet search. This model is inspired
from work of Pinheiro et al. [12] that proposes to integrate
topical and hyperlink-based authority evidences into a
Bayesian belief network. Unlike inference Bayesian net-
works, where the query node represents the network root,
terms as considered as network nodes in belief networks.
Thus, query and tweets are modeled in two separated
layers, allowing so to integrate additional sources of
evidence in each layer. The Bayesian network model for
tweet search is comprised of 3 connected networks:

1) Tweet network:The Bayesian network model rep-
resents each query termki with a node. The set of these
nodes constitute the term layerK. A user query is modeled
by a node corresponding random variableq ∈ {0,1}. It
exists a directed edge(ki, q) from the query node to parent
term ki if only on(ki, q) = 1. A tweet tj is represented
at first time by three nodestkj , tsj and toj . Respectively,

q

k1 k2 k3 K

o1 o2 O u1 u2 S

tk1 tk2 tk3 TK to1 to2 to3 TO ts1 ts2 ts3 TS

t1 t2 t3 T

Figure 1: Belief network model for tweet search

these nodes belong to the topical evidence layerTK, the
social evidence layerSO and the temporal evidence layer
TS. tkj , tsj and toj are connected to a another nodetj .
For x ∈ {k, s, o}, it exists an edge(txj , tj) from txj to
tj . The set of nodestj constitutes the tweet layerT . We
notice thattkj is the only tweet node connected directly to
term nodes. Thus, an edge(ki, tkj) connectstkj to each
included termki if on(ki, tj) = 1.

2) Microblogger network: Each microbloggeruf is
represented by a node. These nodes constitute the social
layerS. Microbloggers nodes are connected to correspon-
dent tweet nodes in the social evidence layerTS. An edge
(uf , tsj) is defined between a microbloggeruf and a tweet
nodetsj if the tweettj is published byuf . We notice that
tweet tv and a respective retweettw are represented by
two independent nodes. In this case, retweet nodetw is
connected to the retweeting microblogger instead of the
original author of tweettv. In addition, microbloggers are
connected to term nodes in layerK. An edge(ki, oe) con-
nects a microbloggeruf to each termki appeared in one of
his tweet at least{ki ∈K, (uf , tsj) ∈ E ∧ on(ki, tj) = 1}.

3) Period network: Each periodoe is represented by
a node. Period nodes constitute the temporal layerO.
Periods are connected to nodes from tweet temporal layer
TO and term layerK. An edge (oe, toj) connects a
period oe to a tweet nodetoj if tj is published in the
respective time window∣θtj − θoe ∣ ≤

∆t
2

. Once periods are
not overlapped, a tweet is connected to one only period.
Besides, a nodeoe is connected to each term nodeki
observed in the respective period{ki ∈ K,on(ki, tj) =
1 ∧ ∣θtj − θoe ∣ ≤

∆t
2
}.

IV. T WEET RANKING

A. Query evaluation

The relevance of a tweettj with respect to a queryq
submitted atθq is computed by the probabilityP (tj ∣q, θq).



Ignoring the query date, this probability is estimated by:

P (tj ∣q) =
P (tj ∧ q)
P (q)

(1)

P (q) have a constant value for all the tweets.P (tj ∣q) is
then approximated withP (tj ∣q) ∝ P (tj ∧ q). Based on
the topology of the Bayesian network for tweet search, the
probabilityP (tj ∣q) is developed as follows:

P (tj ∣q)∝∑
k⃗

P (q∣k⃗)P (tj ∣k⃗)P (k⃗) (2)

k⃗ is a term configuration. To simplify the computation of
probability P (tj ∣q), only instantiated terms in the query
are considered in the configuration⃗k.

In fact, the probabilityP (tj ∣k⃗) depends on3 sources of
evidence: topical evidence, social evidence and temporal
evidence. This probabilityP (tj ∣k⃗) is rewritten as follows:

P (tj ∣k⃗) = P (tkj ∣k⃗)P (tsj ∣k⃗)P (toj ∣k⃗) (3)

By substitutingP (tj ∣k⃗) in formula 2, tweet relevance is
estimated as:

P (tj ∣q)∝∑
k⃗

P (q∣k⃗)P (tkj ∣k⃗)P (tsj ∣k⃗)P (toj ∣k⃗)P (k⃗)

(4)
In order to respect the temporal constraint in tweet

search, we filter all the tweets with corresponding dateθtj
is posterior to query dateθq. We set relevance probability
to P (tj ∣q) = 0 for each tweettj whereθtj > θq.

B. Computing conditional probabilities

1) Probability P (k⃗) : The probability P (k⃗) corre-
sponds to the likelihood of observing the term config-
uration k⃗. We assume that all the configurations are
independent and have an equal probability to be observed.
Let n be the queryq length which corresponds also to the
number of terms represented in the configurationk⃗, the
probabilityP (k⃗) is estimated as:

P (k⃗) =
1

2n
(5)

2) Probability P (q∣k⃗) : The probability P (q∣k⃗) of
generating the queryq from a term the configuration
k⃗ weights the different term configurations. First, we
propose to weight each termki according to its appearance
in the collectionwki

= dfki

N
with dfki

is the number of
tweets containingki and N is the number of posterior
tweets to the queryq. According to the set of positively
instantiated terms in the configurationc(k⃗), the probability
P (q∣k⃗) is computed using the Noisy-Or operator:

P (q∣k⃗) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

1− ∏
ki∈c(k⃗)∧q

wki

1− ∏
ki∈q

wki

, if c(k⃗) ≠ ∅

0, otherwise

(6)

Thus, configurations with significant rare terms in the
collection are highlighted in contrast of configurations that
present commonly used terms.

3) Probability P (tj ∣k⃗) : The probabilityP (tj ∣k⃗) that
tweet tj is generated by the configuration⃗k measures the
topical similarity between the tweet and the configuration.
This probability could be estimated based on the term
frequency tfki,tj . However, terms have less chance to
be repeated once tweet length is limited. Therefore, we
propose to weight each termki as following:

wki,tj =
⎧⎪⎪
⎨
⎪⎪⎩

tfki,tj
−β

tfki,tj

, if on(ki, tj) = 1

0, otherwise
(7)

tfki,tj is the frequency ofki in tweet tj . β = 1

1+n
.

wki,tj map high frequencies into a small interval. We
note that small value ofβ reduces the weight of frequent
terms. Accordingly, we give less importance to term
frequency rather than term presence in the case of long
queries. With the value ofβ is dynamically configured in
function of the query lengthn, term repetition would be
less effective for short queries and vice versa.

The probabilityP (tj ∣k⃗) is finally computed as:

P (tj ∣k⃗) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
ki∈c(tj)∧c(k⃗)

wki,tj

∑
k⃗

∑
ki∈c(tj)∧c(k⃗)

wki,tj

, if c(tj) ∧ c(k⃗) ≠ ∅

δ, otherwise

(8)

δ is a default probability.
4) Probability P (tsj ∣k⃗) : The probabilityP (tsj ∣k⃗) of

observing the tweettj having the social influence of
corresponding microblogger and term configurationk⃗ is
estimated as follows:

P (tsj ∣k⃗) = P (tsj ∣uf)P (uf ∣k⃗) + P (tsj ∣ūf)P (ūf ∣k⃗) (9)

The probabilityP (tsj ∣ūf) of observing the tweet while
corresponding microbloggeruf is not observed, is equal
to 0. The probabilityP (tsj ∣k⃗) is therefore transformed to:

P (tsj ∣k⃗) = P (tsj ∣uf)P (uf ∣k⃗) (10)

Assuming that the two events of observing microblogger
uf and configuration⃗k are independent, we write:

P (tsj ∣k⃗) = P (tsj ∣uf)P (uf) (11)

First, the probabilityP (tsj ∣uf) of observing tweettj
having the microbloggeruf weights the tweets of each
microblogger. This probability is computed equally for set
of tweetsτ(uf) published by microbloggeruf .

P (tsj ∣uf) =
1

∣τ(uf)∣
(12)

The prior probabilityP (uf) of observing microblogger
uf is related to his position in the social network. A
microblogger would have more chance to be observed
if he receives many retweets to his published tweets.
This expresses the microblogger influence on the social
network. On another hand, mentions express the authority
of the microblogger as replies reflect the attention that
other microbloggers give to his tweets. Mentions express
also microbloggers motivation about an introduced topic.



Accordingly, we consider in the social network both
retweet and mentions association.

The social network of microbloggers is modeled by a
mulitgraphG = (U,E) where the set of nodesU repre-
sents instantiated microbloggers in the Bayesian network
and the set of edgesE = U ×U denotes the set of relation-
ships between them.R andM are respectively the set of
retweeting associations and mentioning associations with
E = R∪M . A microbloggerui is included in the network
if he published one or more tweets containing at least one
term of the query. A retweet relationship(ui, uj) ∈ R

is defined from microbloggerui to microbloggeruj if
ui retweets a tweet fromuj . A mentioning relationship
(ui, uj) ∈ M is defined from the microbloggerui to the
microbloggeruj if ui mentionsuj in at least one of his
tweets. These relationships are weighted as follows:

wi,j =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

∣ρout(ui)∧ρin(uj)∣

∣ρout(ui)∣
, if (ui, uj) ∈ R

∣σout(uj)∧σin(uj)∣

∣σout(ui)∣
, otherwise

(13)

ρin(ui) andρout(uj) are respectively the set of incoming
retweets and the set of outgoing retweets of microblogger
ui. σin(ui) andσout(uj) are respectively the set of tweets
whereui has been mentioned and the set of tweets where
ui has mentioned another microblogger.

The social importance of the microbloggerP (uf) is es-
timated by computing a weighted PageRank algorithm on
the social network of retweets and mentions. An influence
score is attributed to each microblogger as follows:

Infp(ui) =
d

∣U ∣
+ (1 − d) ∑

uj ∶e(uj ,ui)∈E

wi,j

Infp−1(uj)
O(uj)

(14)
p is the number of the current iteration.O(uj) is the
number of outgoing relationships fromuj . d ∈ [0,1] is the
PageRank random surfer parameter.w(j, i) is computed
according the edge type as defined in formula 13. At each
iteration the influence scoreInfp(ui) is normalized by
the sum of all microblogger scores.

In the case where the access to all tweets is guaranteed,
the probability of observing a microblogger is equal to
his influence scoreP (uf) = Infp(uf). Otherwise, this
probability is computed proportionally to the percentage
of the available tweet sampleλ:

P (uf) = λInfp(uf) + (1 − λ)Pdefault(uf) (15)

Pdefault(uf) is the default probability of observing the
microbloggeruf

5) Probability P (toj ∣k⃗) : The probabilityP (toj ∣k⃗) of
observing the tweettj knowing the tweet periodoe and
the term configuration⃗k is estimated as follows:

P (toj ∣k⃗) = P (toj ∣oe)P (oe∣k⃗) + P (toj ∣ōe)P (ōe∣k⃗) (16)

The probabilityP (toj ∣ōe) of observing the tweet outside
the respective period is equal to0. Thus, P (toj ∣k⃗) is
written as:

P (toj ∣k⃗) = P (toj ∣oe)P (oe∣k⃗) (17)

The probabilityP (toj ∣oe) of observing the tweettj ,
knowing periodoe, weights the different tweets published
in oe. We note that the visibility of a tweet increases
with the number of received retweets. Consequently, this
probability is computed proportionally to the number of
retweets generated bytj in the same period.

P (toj ∣oe) =
1 + ∣ρoe(tj)∣
∣τ(oe)∣

(18)

ρoe(tj) is the set of corresponding retweets oftj in the
same periodoe. τ(oe) is the set of tweets published inoe.

The probabilityP (oe∣k⃗) of selecting periodoe, having
the configurationk⃗, weights the different periods. We
estimate this probability based on two factors. First, we
consider the time decay between periodoe and query
dateθq. In fact, recent tweets are more likely to interest
microblog users. Second, we consider the percentage of
tweets published inoe and containing the configuration⃗k.
This highlights active period of the configuration⃗k that
concurs with a real world event. Periods are weighted as
following:

woe,k⃗
=
log(θq − θoe)
log(θq − θos)

×
dfk⃗,oe

dfk⃗
(19)

θq, θoe and θos are respectively the timestamps of the
query q, the periodoe and the periodos when the oldest
tweet containing the term configurationk⃗ is published with
θos ≤ θoe ≤ θq. dfk⃗,oe is the number of tweets published in
oe and containing the configuration⃗k. dfk⃗ is the number
of tweets with the term configuration⃗k.

The probabilityP (oe∣k⃗) is computed as:

P (oe∣k⃗) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

w
oe,k⃗

∑
k⃗

w
oe,k⃗

, if dfk⃗,oe > 0

γ, otherwise
(20)

γ is a default probability.
In case where only a sample of tweets is available,

P (oe∣k⃗) is estimated by:

P (oe∣k⃗) = λP (oe∣k⃗) + (1 − λ)Pdefault(oe) (21)

λ is the percentage of tweet sample.Pdefault(oe) is the
default probability of observing the periodoe.

V. EXPERIMENTAL EVALUATION

We conduct a series of experiments on TREC 2011
Microblog dataset in order to study the effectiveness of
our model. We focus in this study on the query level and
we analyze the impact of each integrated feature.

A. Experimental setup

Tweet and query dataset:These experiments are
carried out on thetweets2011dataset distributed by TREC
2011 Microblog Track [2]. The dataset includes about 16
million tweets published over16 days. Table I presents
general statistics about the collection. We observe that
0.07% of tweets in the collection are retweets. Mentioning
tweet represent0.45% of total tweets. We notice that this
dataset is built based on Twitter API which provides a



representative sample of1% of the tweet stream [13].
Other tweets published in the same period are not included
in the collection.

Tweets 16141812 Microbloggers 5356432
Retweets 1128179 Network nodes 5495081
Mentions 7193656 Network retweets 1061989
Terms 7781775 Network mentions 9503013

Table I: Dataset statistics

We extracted the social network from the tweets in
the dataset. About5.3 million microbloggers are found.
We notice that the number of network nodes exceed the
number of microbloggers inside the collection as presented
in table I. This is explained by the fact that some retweets
and mentions point to other users outside the collection.
Each microblogger in the network is involved in about
0.19 retweet associations and1.73 mention associations.

Real-time ad-hoc task:The real-time ad-hoc task of
TREC2011 Microblog includes49 time stamped queries.
In contrast of other TREC tasks where results are ranked
by score, real-time search task ranks results by the inverse
chronological order.p@30 precision is reported as the
official measure. It evaluates the ability of a system to
return relevant tweets in the top30 results. The Mean
Average PrecisionMAP is also referenced as a non official
measure.

Tweet filtering and model parameters:In these ex-
periments, we do not integrate any future data or exter-
nal resource. Only tweet in English are included in the
result set. In addition, retweets are removed once they
are presumed irrelevant in this track. We propose also
to remove all replies from the final result as discussion
tweets would be irrelevant for this task. We notice that the
filtering process is applied after the final ranking of tweets.
The model parameters are set to:∆t = 1day; δ = 10−n;
λ = 0.1; Pdefault(uf) = 0.5; d = 0.15; γ = ∆t

θq−θos
;

Pdefault(oe) = 0.5.

B. Evaluating retrieval effectiveness

We compare our Bayesian Network model for Tweet
SearchBNTS to some models from TREC Microblog
track:

● isiFDL (1st): Learn to Rank model based onMRF
model [8].

● DFReeKLIM (2nd): Kullback-Leibler based model
[14].

● KAUSTRerank(17th): Learn to Rank model that
considers user authority [15]. Basic run is noted
KAUSTBase.

● gust(20th): Language model that considers the query
temporal profile [9].

● Disjunctive:Official track baseline (Boolean model).

Table II presents a comparison ofp@30 and MAP with
different thresholds on the result set size (cutoff). First,
we note that the threshold choice impacts the retrieval
effectiveness. In fact, time-ranked result set presents low
error risk if only some few tweets are included.

BNTS presents an improvement of33% compared to
TREC p@30 median and an improvement of24% com-
pared to MAP median. A difference of about−25%
is noted compared to1st model isiFDL. Considering
the social-based modelsKAUSTBaseand KAUSTRerank,
BNTSshows inferior results, expect forKAUSTBase MAP.
We notice that this model integrates URL-based feature.
Compared to time-based modelgust, BNTSpresents higher
p@30 values with the threshold set to30. Thegustmodel
shows however higherp@30 with a cutoff at300, and vice
versa forMAP values. Consideringp@30 for full result
set (1000 tweets), our model presents an improvement of
37% compared to theDisjunctivebaseline. We note also an
improvement of17% compared to the2nd ranked model
DFReeKLIM.

Cutoff p@30 MAP

isiFDL * 30 0.4551 (−25%) 0.2439 (−27%)

DFReeKLIM * 30 0.4401 (−22%) 0.2811 (−37%)

BNTS 30 0.3422 0.1774

Median * 0.2575 (+33%) 0.1426 (+24%)

gust * 30 0.3218 (+6%) 0.1812 (−2%)

KAUSTRerank * 50 0.3456 (−9%) 0.2390 (−17%)

KAUSTBase * 50 0.3347 (−7%) 0.1902 (+5%)

BNTS 50 0.3129 0.1990

gust 300 0.3220 (−31%) 0.1970 (12%)

BNTS 300 0.2231 0.2201

BNTS 1000 0.1844 0.1929
DFReeKLIM * 1000 0.1136 (+62%) 0.1651 (+17%)

Disjunctive * 1000 0.0986 (+87%) 0.1411 (+37%)

Table II: Comparison of p@30 andMAP (* official result)

Analyzing BNTS difference from p@30 median per
topic in figure 2, we note an improvement on37 topics
out of 49. Highest negative difference concerns topic18

which includes only one relevant tweet. Positive difference
is noted for instance in topic1 (“BBC World Service staff
cuts”) which is characterized by a high number of tweet
containing query terms (82581).
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Figure 2: BNTS difference from p@30 median per topic

C. Feature based analysis

In order to study the impact of each relevance feature
separately, we evaluate in these experiments different
configurations of our model. The next results are computed
with a threshold of1000 tweets for each result set.



1) Topical relevance:We compare the topical config-
uration of our modelBNTS.K’ to 2 baselines. The first
baselineBoolean Frequency BFcomputes a relevance as
the number of present terms in the tweet. The second
baselineTerm Frequency TFconsiders the term frequency.
We note that only the topical evidence is activated in our
model: P (q∣k⃗) = 1, P (tsj ∣k⃗) = 1 and P (toj ∣k⃗) = 1.
Figure 3 presentsBNTS.K’ MAP difference per topic.
BF model shows higher precision thanTF model. Term
presence is therefore more significant for tweet search in
contrast of long document retrieval. Main improvement of
BNTS.k’compared toTF model, and at the same time main
decrease compared toBF model, is observed for topic17
“White Stripes breakup”. This is explained by the fact
that all relevant tweets of this topic present the full name
of the related music band“White Stripes”. On the other
hand, commonly used term“White” is highly repeated in
irrelevant tweets.

BF TF BNTS.K’

MAP 0.1449 0.1432 0.1474
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Figure 3: BNTS.K’ difference fromBF & TF MAP per
topic

2) Social relevance:We compare the topical configura-
tion of our modelBNTS.K, P (tsj ∣k⃗) = P (toj ∣k⃗) = 1, to the
social configurationBNTS.KSwhere the temporal feature
is desactivatedP (toj ∣k⃗) = 1. Figure 4 presentsMAP
difference ofBNTS.KSmodel fromBNTS.Kmodel. The

BNTS.K BNTS.KS
MAP 0.1579 0.1642
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Figure 4: BNTS.KO difference from BNTS.KMAP per
topic

overall improvement ofBNTS.KSapprove the significance
of the social context for tweet ranking. An important
positive change is noted for instance in the topic9 “Toyota

Recall”. In this case, relevant tweets are produced by
network influencers such as@tunkuv(editor) and@tjmarx
(filmmaker).

3) Temporal relevance:We compare the topical con-
figuration of our modelBNTS.K to the temporal con-
figuration BNTS.KOwhere the social feature is deacti-
vated P (tsj ∣k⃗) = 1. Figure 5 presentsMAP difference
of BNTS.KSmodel fromBNTS.Kmodel. Considering all
queries,BNTS.KOmodel shows an improvement of17%
compared toBNTS.K. We conclude that the temporal
distribution is an indicator of tweet relevance. Main im-
provement ofBNTS.KOconfiguration is observed for topic
4 “Mexico drug war”.

BNTS.K BNTS.KS
MAP 0.1579 0.1909
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Figure 5: BNTS.KO difference from BNTS.KMAP per
topic

Analyzing the related distribution of tweets over the
time in figure 6, we observe that relevant tweets are mainly
concentrated in the5th day before the query. Similar
distribution is presented by tweets containing“Mexico
drug” or “drug war” with some decay. Meanwhile, the
distribution of all tweets or tweets containing only the term
“Mexico” is regular. This confirms our choice to study the
temporal distribution per term configuration instead of the
global distribution of tweets which may be impacted by
commonly used terms.
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Figure 6: Temporal distribution of tweets (topic4)

VI. CONCLUSION

We proposed in this paper a social model for tweet
search that integrates, within a Bayesian network model,
the topical relevance of tweets, the social relevance of
microbloggers and the temporal relevance of tweet period.
In particular, the topical relevance score highlights tweets



presenting all terms of the query rather that some repeated
ones. The social score underlines tweets published by
influencer microbloggers. Finally, the temporal score em-
phasizes tweets published in activity periods of the query
topics. Experiments conducted on TREC 2011 Microblog
dataset shows that the integration of the different sources
of evidence enhances the quality of tweet search.

In future work, we plan to automatically detect the
query profile and adjust the score of integrated features
according to the sensibility of the query to the social and
temporal contexts. In addition, we plan to represent hash-
tags and URLs entities in the Bayesian network model.
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