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busy expressions at a program point, p,VBE(p) =Used(p) [ (notModi�ed(p) \ (Tp02succ pVBE(p0)))is mechanically reformatted into a proposition in themodal mu-calculus [37] that states the very-business ofan expression, e, at a program point:isVBE(e) = �Z: isUsed(e) _ (:isModi�ed(e) ^2Z)When the latter is model checked on a program'scontrol-ow graph (which is the simplest possible safea.i.of the program), one obtains exactly the informa-tion calculated by the iterative d.f.a. The other classicd.f.a. s decode similarly, and two of them (live variablesanalysis and reaching de�nitions) are found to be un-sound. This surprising development is explained andrepaired in a simple way.In the process of developing the above results, weobserve that (i) model checking can be applied to anya.i. , not just a control-ow graph; and (ii) an iteratived.f.a. can be de�ned by any modal-mucalculus formula,not just a bit-vector-based one. These facts becomeobvious because we use trace-based abstract interpre-tation [55, 53], an operational-semantics-based versionof abstract intepretation that represents a program'sa.i.as a computation tree of traces [44]. (As notedabove, a program's simplest a.i. -based computationtree is its control ow graph; of course, there are manymore interesting abstract computation trees.) Usingtrace-based a.i. s, we can explain simply the crucialand often-misunderstood concept of collecting seman-tics; we note that there exist multiple versions of col-lecting semantics for a given a.i. , and we employmodalmu-calculus formulas to extract particular instances ofcollecting semantics. From here, it is easy to see howiterative d.f.a. s compute representations of collectingsemantics de�ned by modal mu-calculus formulas.The developments in this paper should make clearthat the classic d.f.a. s merely scratch the surface as tothe forms of iterative static analysis one can perform|the combination of the abstract interpretation designspace and the modal mu-calculus de�nes the design



space for iterative static analyses. Also apparent isthe growing intersection of terminology and techniquesfrom d.f.a. , a.i. , and model checking.2 Related ResearchThe bodies of research literature on data ow analysis[3, 4, 30, 46], abstract interpretation [1, 16, 19, 21, 29,32], and model checking [7, 10, 12, 26, 42] are huge.Appearing less frequently are papers that demonstratethe interaction of these areas: The groundbreaking pa-pers of Cousot and Cousot [15, 16, 17, 18] provided anexplanation of how one computes a d.f.a.with a least-�xed point calculation on a owchart interpreted oversets of abstract values [16].Donzeau-Gouge [25] and Nielson [47, 48, 49, 50] buildupon Cousot and Cousot's work by using denotational-semantics-style de�nitions as the calculational enginefor ow analysis. Nielson [47, 48] states proofs whysuch de�nitions calculate correct ow analyses, butsuch proofs are less frequent in the subsequent liter-ature than one would hope.Because of the state-space explosion problem inmodel checking, several researchers have explored ab-stract interpretations of large �nite-state transitionsystems: Clark, Grumberg, and Long utilize abstrac-tions based on modulo-n arithmetic to model checkhardware problems [11], and Bensalem, et al. [6] statesafety conditions under which such abstractions can beemployed. Dams applies these results in a more gen-eral theory of abstract interpretation of reactive sys-tems [22, 23, 24], and Bruns employs an a.i. -like ab-straction on the labels of a labelled transition system[8]. Levi gives a formalization of this and more gen-eral abstractions [41]. Cleaveland, Iyer, and Yankele-vich abstract upon a \democratic" transition system(cf. Larsen [40]). The latter is also an example of areduction of a state transition system, where states (ortransitions) are collapsed without loss of the system'sproperties [38].The crucial connection between model checking anddata-ow analysis was made by Ste�en [60, 61], whoencoded ow analyses in recursive Hennessy-Milnerlogic [7, 39, 63] (which is usually called \modal mu-calculus" as well) and model checked propositions onDFA-models of programs. For example, the statement,while x=0 do x:= y+1, is depicted as a graph whereprogram phrases label the arcs:exit:x = 0x=0x:=y+1Next, the phrases on the arcs are \abstracted" into gen-

and kill-style sets, producing a DFA-model:fmod(x); used(y)g fused(x)gfused(x)g exitFinally, this model is checked with a formula inHennessy-Milner logic. A proposition that states thatvariable x is live at a node in the DFA-model goes asfollows [61]:isLive(x) = �Z: hfused(x)gitt _ h�fmod(x)giZ(Read h�i� as \there exists a transition labelled by amember of � to a next state such that � holds." Aswe see later, �Z creates recursive propositions; read ttas \true" and �S as the complement of set S.) Themodel checker validates or refutes the proposition at allthe nodes of the DFA-model; in doing so, it calculateslive-variables analysis.The current paper should be viewed as an exposition,a simpli�cation, and a clari�cation of Ste�en's originalproposal: We use trace-based abstract interpretations,rather than DFA-models, and we use Kozen's mu-calculus, rather than recursive Hennessy-Milner logic.This gives a simple starting point from which intuitiveformulations of the classic d.f.a. s arise simply. Exten-sions, such as labelling the transitions in a program'scomputation tree (as seen in the DFA-models) and thenlabelling the mu-calculus modalities, can be added tothe framework, extending the range of application.3 Trace-Based Abstract InterpretationFor brevity, we focus upon owchart programs; morecomplex programs are discussed in the paper's conclu-sion. Figure 1 shows a owchart program, its concretesemantics (concrete interpretation|c.i. for short), ex-pressed as a set of state transition rules, and a sampleconcrete computation tree (concrete tree) of the pro-gram with the input of 4. The concrete computationtree is an execution trace, where program states ap-pear as nodes. In the example, a program state is anelement of Val�ProgramPoint and is written as n ` p.(For simplicity, we let the statements in the exampleprogram be exactly the program points.) Of course, nis the value of variable x.The fundamental concept of trace-based abstract in-terpretation is that an abstract interpretation (a.i. ) isan execution of the program by transition rules thatuse property \tokens" instead of run-time values. Theresult is an abstract computation tree (abstract tree),where multiple possible execution traces are presentedby nondeterministic branching in the abstract tree.



entry exitx:=x div2x:=succ x�even xtt Concrete semantics transitions:Val = Nat2n ` even x! 2n ` x := x div22n+ 1 ` even x ! 2n+ 1 ` exit2n ` x := x div2! n ` x := succ x2n+ 1 ` x := x div2! n ` x := succ xn ` x := succ x ! n+ 1 ` even x Concrete computation tree:2 ` x := succ x4 ` x := x div23 ` exit4 ` even x3 ` even xFigure 1: Flowchart and concrete interpretationFor the example in Figure 1, one de�nes an even-oddanalysis by by replacing the domain de�nition Val =Nat by AbsVal = fe; og (e for \even", o for \odd")1and rewriting the state transition rules accordingly, byapplying the obvious homomorphism criterion [11, 16,53, 58]. (To be more speci�c, one can de�ne a function,� : Val! AbsVal, which maps concrete values to theirmost precise abstractions. Here, �(2n) = e and �(2n+1) = o. The homomorphism property is: if (v ` p) !(v0 ` p0) is a concrete transition, then there must existan abstract transition, (�(v) ` p) ! (a0 ` p0), suchthat �(v0) v a0. Note: �(v0) = a0 is preferred, but theformer is safe, nonetheless.2)Figure 2 shows the abstract semantics and an ab-stract tree for the program in Figure 1. Since the even-odd properties lose precision, nondeterminism appearsas branching in the abstract computation tree. Also,the tree is in�nite, but in this particular case, the treeis regular tree [14], because a node repeats in everyin�nite path. Widening [16] or memoization [53] canforce an abstract computation tree to be regular; weignore this topic here because a trace-based a.i.witha �nite-cardinality AbsVal set must generate regulartrees. Note that a regular tree is of course a �nite-state transition system.The abstract computation trees generated by ourtraced-based abstract interpretation are \maximallypolyvariant" [5] or \maximally relational" [33] anal-yses in the sense that distinct states are never1It is traditional to partially order the elements of AbsVal,typically because a join operation is needed to force termina-tion of the analysis. In the example, we can use a discrete par-tial ordering upon AbsVal, because it has �nite cardinality|termination is assured. As a general rule, �ner partial orderingson AbsVal lend themselves to more precise analyses.2If AbsVal is nondiscretely partially ordered, a monotonicitypropertymust be enforced: if (a1 ` p)! (a2 ` p0) is an abstracttransition, and a1 v a01, then there must exist a transition (a01 `p)! (a02 ` p0), such that a2 v a02.

joined. An implemention of such an a.i. is oftenmore monovariant|e.g., states with the same programpoints are combined|nonetheless, the trace-based a.i.gives the correct starting point for re�nements, imple-mentations, and correctness proofs.To be useful, a program's abstract computation treemust safely simulate the concrete computation treethat it represents. Of the many ways of stating this,we use the criterion from concurrency theory [44]. Lett be a computation tree, let root(t) be its root node,and let ti, for i 2 0::n, be t's immediate subtrees. Wewrite t �! ti to denote that there exists a state transi-tion, root(t) ! root(ti). Read \t �! ti" as saying, \tmakes a transition and becomes ti." A program's con-crete computation tree, tC , is simulated by an abstracttree, tA, i� the binary relation, tC safeTree tA, holdstrue: t safeTree t0 i� root(t) safeState root(t0);and, for every transition, t �! ti;there exists a transition, t0 �! t0j ;such that ti safeTree t0jFor the example in the Figures, we de�ne (n `p) safeState (a ` p) i� n safeV al a, and we de�ne2n safeV al e and 2n + 1 safeV al o.3 The intent ofsafeTree is that every computation path in tC is mir-rored by one in tA|the abstract tree contains transi-tions that may happen.A technical issue is that the de�nition of safeTree �ConcreteTree � AbstractTree is recursive, and thelargest such relation satisfying the recursion is desired[2, 20, 45, 54].Of course, the proof of safe simulation can be per-formed directly upon the concrete and abstract seman-tics rules rather than upon speci�c pairs of computa-tion trees: Indeed, the homormorphismproperty stated3If one begins with the function, � : Val ! AbsVal, then theproper de�nition for safeV al is c safeV al a i� �(c) v a.



Abstract semantics transitions:AbsVal= fe; oge ` even x! e ` x := x div2o ` even x! o ` exitv ` x := x div2! e ` x := succ xv ` x := x div2! o ` x := succ x;for all v 2 AbsVale ` x := succ x! o ` even xo ` x := succ x ! e ` even x Abstract computation tree:e ` even xe ` x := x div2o ` x := succ x e ` x := succ xo ` even xo ` exite ` even x...Figure 2: Abstract interpretation of owchartearlier implies the safety result [53] for pairs of corre-sponding trees generated by the concrete and abstractsemantics.The above relates to the traditional, Galois connec-tion framework [18, 19, 43, 47, 54]4 in the followingway: If AbsVal is a complete lattice and safeV alis both U-closed (c safeV al a1 and a1 v a2 implyc safeV al a2) and G-closed (c0 safeV al uA, whereA = fa0 j c0 safeV al a0g), then one obtains theGalois connection, (�:P(Val) ! AbsVal; :AbsVal !P(Val)) by de�ning (a) = fc j c safeV al ag and�(S) = tc2Sfufa j c safeV al agg.5There is a dual to safe simulation, called live sim-ulation, where a program's abstract tree is simulatedby its concrete tree, that is, the abstract tree containsonly those transitions that must happen in the con-crete tree. (Such transitions are sometimes called con-servative transitions [13].) Live simulations are usefulwhen liveness properties must be proved from an a.i.Since classical data-ow analysis concerns itself withsafe simulations, we study only safe simulations in thispaper.4 Collecting SemanticsAn a.i. is not a d.f.a. , but the a.i. 's collecting se-mantics turns out to be the information calculatedby a d.f.a. A collecting semantics is information ex-tracted from the nodes and paths of a computationtree. The classic, \�rst-order" [48] collecting seman-tics extracts the states from a computation tree: For4Recall that a Galois connection is a pair of monotone func-tions, (f :P ! Q;g:Q! P ), for complete lattices P and Q, suchthat f �g v idQ and idP v g�f . The intuition is that f(p) iden-ti�es p's most precise representative within Q (and similarly forg(q)).5If one begins with � : Val ! AbsVal, then �(c) = ufa jc safeV al ag and �(S) = tf�(c) j c 2 Sg.

tree, t, its �rst-order collecting semantics has formcollt : ProgramPoint! P(Val) and is de�nedcollt(p) = fv j v ` p is a state in tgIn Figure 1, colltC (even x) = f3; 4g, and in Figure 2,colltA(even x) = fe; og|one can extract a collectingsemantics from concrete as well as abstract trees.Constant-propagation and type-inference analysescalculate answers that are �rst-order collecting seman-tics.A more interesting collecting semantics is \secondorder" or path based: It extracts paths from the com-putation tree. The set of paths that go into a programpoint, p, is de�nedfcollt(p) =fr j r is a path in t from root(t) to some v ` pgand the set of paths that emanate from p isbcollt(p) = fr j r is a maximal path in tsuch that root(r) = v ` pgWe will see that several classic d.f.a. s compute rep-resentations of path-based collecting semantics. Thetwo collecting semantics are named fcoll and bcoll be-cause they underlie the information one obtains fromforwards and backwards iterative ow analyses, respec-tively.The above forms of collecting semantics are \prim-itive" in the sense that no judgement about the ex-tracted information is made. In practice, the informa-tion one desires froma data ow analysis is a judgementwhether some property holds true of the input valuesto a program point or of the paths owing into/out ofa program point.To include such judgements, Cousot and Cousot [19]suggest that a computation tree's collecting semantics



can be a set of properties expressed in a logic, L. Giventree, t, and proposition, � 2 L, we write t j= � if �holds true of t. Next, we de�ne the collecting seman-tics of the entire tree, t, to be collt = f� j t j= �g. Asbefore, collecting semantics exist for both concrete andabstract computation trees, and we assume for simplic-ity that the same L can be used with both concrete andabstract trees. (But it need not be|see [8, 41].)For an a.i. to be of use, we require a weak consistencyproperty of the safety relation, safeTree , and L:tC safeTree tA ) ( for all � 2 L; tA j= �) tC j= �)That is, any property possesed by an abstract tree, tA,must also hold for a corresponding concrete tree, tC .By tightening the two implications in the above formulainto logical equivalences, we obtain weak completenessand strong completeness, respectively. The former isstudied in [19]; the latter is employed to justify cor-rectness of reductions of state spaces in concurrencytheory [13, 22, 38].5 De�ning Collecting Semantics withthe Modal Mu-CalculusThe logic we use in this paper to de�ne a collectingsemantics is the modal mu-calculus [37] extended withreverse modalities [59, 60]. (The latter, promoted bySte�en, lets us express properties about paths that owinto a state.) Figure 3 gives the syntax and semanticswe use. A judgement takes the form s j=t �, where t is atree, s is a state in t, and � is a proposition about states. (Note the slight di�erence in notation from t j= �in the previous section.6) Primitive properties, q, are\�rst-order" properties about state, e.g., \variable x'svalue at state s is positive" (written s j=t (x > 0)). Weassume that t contains states that are detailed enoughthat s j=t q can be decided. The modalities are theusual ones and are used to de�ne \second-order" prop-erties, e.g., \there exists a path starting from s suchthat variable x has a positive value in two transitions"(s j=t 33(x > 0)), and \all immediate predecessorsto s have x with a positive value" (s j=t�2 (x > 0)).Finally, the least �xed-point operator, �, de�nes prop-erties that hold true at some point �nitely far into the6The modi�cation of the judgements, t j= �, into s j=t �,is due to the awkwardness in de�ning precisely t j=�2 �, whichrequires knowledge of all trees, t0, that contain t as a child sub-tree so that one can verify t0 j= �. This implies that the �rstargument, t, of t j= � must be restricted to range over exactlyall subtrees of some initial computation tree, t0. But it is tra-ditional to use the states, s, within t0 instead of the subtrees,thus giving us the notation, s j=t �. Indeed, propositions � arecommonly called \state formulas," anyway!

future (or past), e.g., \at some state now or in thepast, x was positive" (s j=t �Z:(x > 0)_ �3 Z), andthe greatest �xed-point operator, �, de�nes propertiesthat hold true inde�nitely, even in�nitely, e.g., \fromnow on, x is always positive" (s j=t �Z:(x > 0) ^2Z).The semantics of � and � in Figure 3 are simplerthan usual because we work with trees that have a �-nite number of distinct states. For an in�nite-statetree with �nite branching, we must employ the usualde�nitions: Let [[�]] 2 Env ! P(StateInTree t) and� 2 Env = Identi�er! P(StateInTree t):[[q]]� = fs j q holds at sg� � �[[2�]]� = fs j for all s ! s0; s0 2 [[�]]�g� � �[[�Z:�]]� =Si�0 Si; where � S0 = ;Si+1 = [[�]]([Z 7! Si]�)[[�Z:�]]� =Ti�0 Si; where � S0 = StateSi+1 = [[�]]([Z 7! Si]�)[[Z]]� = �(Z)When the computation tree is �nite-state, the abovesimpli�es to the de�nitions in the Figure.The usual application of the modal mu-calculus is tomodel checking, that is, the mechanical veri�cation ofa judgement, s j=t �. Here, we use model checking tocompute a collecting semantics for an abstract tree.Here are two small examples based on Figure 2. Saythat improved code can be generated for a statementwhen its input is an even number. Therefore, we de-sire a collecting semantics that tells us which state-ments receive only even-valued inputs. The propertyto be model checked is �rst order and trivial, namely,isEven(x). If a model check upon the tree, tA, in Fig-ure 2 decides that (a ` p0) j=tA isEven(x) holds truefor every occurrence of a appearing with program pointp0 in tA, then p0's code can be improved. (Note: thestory gets even simpler if we reformat the tree in Figure2 with its program points merged, that is, we drawfe; og ` even xfeg ` x := x div2fe; og ` x := succ xfog ` exitbefore we perform the model check. This graph de�nesthe \meet over all paths" solution [34, 48].) The modelcheck computes that the statement x:= x div2 has thedesired property.



s 2 StateInTree t � 2 Proposition q 2 PrimitiveProposition Z 2 Identi�er� ::= q j :q j �1 ^ �2 j �1 _ �2 j 2� j �2 � j 3� j �3 � j �Z:� j �Z:� j Zs j=t q is givens 6j=t q i� not s j=t qs j=t �1 ^ �2 i� s j=t �1 and s j=t �2s j=t �1 _ �2 i� s j=t �1 or s j=t �2s j=t 2� i� for all s0 such that s! s0; s0 j=t �s j=t�2 � i� for all s0 such that s0 ! s; s0 j=t �s j=t 3� i� there exists s0 such that s! s0 and s0 j=t �s j=t�3 � i� there exists s0 such that s0 ! s and s0 j=t �s j=t �Z:� i� there exists i � 0 such that s j=t �i; where � �0 = false�i+1 = [�i=Z]�s j=t �Z:� i� for all i � 0; s j=t �i; where � �0 = true�i+1 = [�i=Z]�Figure 3: Mu-calculus syntax and semanticsFor a second example, say that we wish to deallocatevariable cells from the storage vector when they areno longer referenced in the future. The property thatvariable x is no longer referenced in future states isencoded �Z: :Used(x) ^ 2Z. This is a second-orderproperty and requires a nontrivial model check. Forthe tree in Figure 2, the analysis discovers that theproperty holds only at the state, o ` exit.Recall that we require weak consistency of the modalmu-calculus: A property that holds true for a stateof the abstract tree must also hold true for the corre-sponding state of the corresponding concrete tree. Un-fortunately, the 3 and �3modalities are problematic forsafe simulations: Consider again the abstract tree inFigure 2; it is a safe simulation of every concrete inter-pretation that executes with an even-numbered input.In particular, it is a safe simulation of the program'sconcrete tree with input 2:2 ` even x1 ` x := succ x2 ` x := x div2because every transition in the above concrete tree ismirrored by a transition in the abstract tree. Now, con-sider a model check of the property that the program\may terminate": �Z: isExit_3Z. This property holds

true of the root state of the tree in Figure 2 becausethere does indeed exist a path that leads to an exitstatement. But the same property fails to hold for thecorresponding root state of the concrete tree just seenabove. The upshot is that the diamond modalities vio-late the weak consistency property. Fortunately, weakconsistency|indeed, weak completeness|holds for thebox mu-calculus, that is, the modal mu-calculus withonly box-modalities [6]. If we negate the above propo-sition: :(�Z: isExit _ 3Z) = �Z: :isExit ^ 2Z, weobtain the \must loop" property, which is appropriateto model check on the abstract tree. Of course, thisproperty cannot be validated on (the root of) the tree,hence we cannot conclude that all corresponding con-crete trees must loop. (Indeed, almost all of them donot.)For the record, a dual result holds: The diamondmu-calculus is weakly complete for live simulations [6].6 Why a Data-Flow Analysis is a ModelCheckAn iterative data-ow analysis (d.f.a. ) operates ona program's control-ow graph. But a control-owgraph is a program's simplest possible safe simula-tion: In the case of Figure 1, de�ne AbsVal to be justf�g, and translate each concrete state-transition rule,v ` p ! v0 ` p0, into the abstract state-transitionrule, � ` p ! � ` p0. With this abstract semantics,the program's abstract computation tree is exactly its



control-ow graph, e.g.:� ` even x� ` x := succ x� ` x := x div2 � ` exitOf course, more interesting a.i. s can be used to per-form a d.f.a.|even-odd analysis is but one simpleexample|but the classical d.f.a. s use control owgraphs.A usual iterative d.f.a. is de�ned by a set of owequations, one equation per program point (that is,one equation per state in the control-ow graph). Abit-vector-based d.f.a.uses ow equations with set-theoretic operations; a standard example is very busyexpressions analysis, which calculates for each programpoint the set of expressions that must be referencedsometime in the future. The ow equation for programpoint, p, reads as follows [35]:VBE(p) =Used(p) [ (notModi�ed(p) \ (Tp02succ pVBE(p0)))That is, the set of very-busy expressions at the entry toprogram point p consists of the expressions used (refer-enced) within statement p unioned with those expres-sions that are not modi�ed within p by reassignmentand are very busy at all of p's successor program points.The set of simultaneous ow equations for the statesof the control-ow graph are solved with a greatest�xed-point calculation (that is, the initial approxima-tion to VBE(p) is de�ned as the set of all expressions,and subsequent iterations cut the set down to size).But the obvious relationship between the set-theoreticoperations in the above equation and the propositionalconnectives gives us this modal-mu calculus formula:isVBE(e) = �Z: isUsed(e) _ (:isModi�ed(e) ^2Z)That is, an expression, e, is very busy at a state if it isused at the state or it is not modi�ed at the state andfor all successor states it is very busy. A model checkof isVBE(e) for all the states of the control-ow graphyields the same information about e as does the itera-tive d.f.a. (This is proved by induction on the greatest-�xed point de�nition of the ow equations and the def-inition of the mu-calculus proposition.)

7 Why Some Flow Analyses are Un-soundFigure 4 shows four canonical iterative d.f.a. s and theirencodings as modal mu-calculus formulas [3, 35, 29].The encodings are straightforward: Simple unionand intersection translate into disjunction and conjunc-tion, respectively; \big" unions and intersections on thepredecessor and successor states translate into diamondand box modalities, respectively; a forwards analysisuses overlined modalities (because it calculates infor-mation about histories) and a backwards analysis usesunlined modalities (because it calculates informationabout futures); and the least and greatest �xed-pointsolutions of the equations are stated explicitly by the�- and �-operators.Since the de�nitions calculate information as it ap-pears upon entry to a program point, an encoding of aforwards analysis uses its modality operator as its out-ermost operator, whereas a backwards analysis embedsthe modality operator within its formula.The four examples in the Figure are perhaps themost famous examples of ow analyses and are meantto portray the four combinations one achieves by vary-ing overlined and unlined modalities (that is, forwardsand backward ow) with least and greatest �xed points.(For example, available-expressions analysis uses over-lined modality and greatest-�xed point.) Yet an-other variation is with diamond and box modalities(union- and intersection-based ow). (E.g., available-expressions analysis uses box modality.) The result-ing eight combinations give the ow analysis \cube"of Cousot and Cousot [16], but in practice, diamondmodalities appear only with least-�xed point opera-tors and box modalities appear only with greatest-�xedpoint operators, because the initial approximations forleast-�xed point equations are \false" (empty sets) andthe initial approximations for greatest-�xed point equa-tions are \true" (universe sets) (cf. Figure 3). Butadditional variations of the primitive propositions andpropositional operators in the equations are obvious|examples appeared in the previous sections.In Figure 4 lies a problem: Recall that only thebox-mu-calculus is consistent with safe simulations (ofwhich a control-ow graph is one), and the analysesfor live variables and reaching de�nitions use diamondmodalities, which are consistent with live simulations(of which the control-ow graph is not). This impliesthat the two analyses are unsound. The problem is notdeep but it is nonetheless signi�cant: Figure 5 displaysa owchart program that computes upon variables xand y. A concrete computation tree for the programwith inputs of (4; 4) also appears, and �nally there isan abstract tree that results from an even-odd a.i. that



Available Expressions:AE(p) = Tp02pred p((AE(p0) \ notModi�ed(p0)) [Gen(p0))isAvail(e) = �Z: �2 ((Z ^ :isModi�ed(e)) _ isGen(e))Live Variables:LV(p) = Used(p) [ (notModi�ed(p) \ (Sp02succ p LV(p0)))isLive(x) = �Z: isUsed(x) _ (:isModi�ed(x) ^ (3Z))Very Busy Expressions:VBE(p) = Used(p) [ (notModi�ed(p) \ (Tp02succ p0 VBE(p0))isVBE(e) = �Z: isUsed(e) _ (:isModi�ed(e) ^2Z)Reaching De�nitions:RD(p) = Sp02pred p((RD(p0) \ notModi�ed(p0)) [De�ned(p0))isReaching(d) = �Z: �3 ((Z ^ :isModi�ed(d)) _ isDe�ned(d))Figure 4: Four classic ow analyses�x:= yx=2 exittty:=1 Concrete tree:(4; 4) ` y := 1(4; 1) ` x = 2(4; 1) ` exit Abstract tree:(e; o) ` x := y(o; o) ` x = 2(o; o) ` exit(e; e) ` y := 1(e; o) ` x = 2(e; o) ` exitFigure 5: Live Variables Analysis is Unsoundis a safe simulation of the c.i. It is easy to verify ofthe abstract tree, at the test statement x=2, that y islive. But this property is not true at the test statementof the corresponding concrete tree. Therefore, any ver-i�cation or code improvement based on the positiveliveness of y at the test in the abstract tree is incor-rect.Of course, data-ow practitioners are well aware ofthe above problem, and disaster does not arise in prac-tice, because live variables analysis is used \dually"|itis used to detect dead variables. That is,isDead(x) = :(isLive(x))= �Z: :isUsed(x) ^ (isModi�ed(x) _2Z)which is proper to model check upon a safe simula-tion. We are fortunate that we can use a live variablesanalysis to detect dead variables; this works only be-cause s j=t :� i� s 6j=t � (this is a classical logic), hences j=t isDead(x) i� s 6j=t :(isLive(x)) i� s 6j= isLive(x).But we might not be so fortunate in general.A similar story can be told for reaching-de�nitions
analysis and other iterative d.f.a. s that implicitly en-code diamondmodalities. Obviously, errors might arisewhen complex iterative d.f.a. s are encoded with dis-regard to their modalities. For this reason, specify-ing a d.f.a.as a modal-mu calculus proposition pro-vides a valuable safety check of the soundness of thed.f.a. Indeed, Ste�en and his collegues at Passau havebuilt tools that prototype d.f.a. s as formulas in recur-sive Hennessy-Milner logic [36, 62].8 Extensions, Connections, and Con-clusionsWith simple machinery, we have exposed that the clas-sic iterative ow analyses are model checks of a pro-gram's trace-based a.i.We also noted that some of theclassic d.f.a. s are unsound, and we explained how ad.f.a. can be analyzed for soundness and repaired, ifnecessary.Even if a d.f.a. is not automatically synthesized by



generating an abstract computation tree and doing amodel check, the methodology proves valuable for spec-i�cation and validation of the d.f.a.algorithm that is infact implemented.There are a variety of extensions to the frameworkpresented in this paper. First, one might decomposean execution state, � ` p, into its components. Ifp is considered to be an \active" statement|a store-transfer function|rather than an \inactive" programpoint, then it makes good sense to label the transitionsin a computation tree by the transfer functions, p, thattransform stores, �, into �0; this results in transitions ofthe form, � p! �0, like those found in labelled transitionsystems [44] and suggests that the appropriate logic formodel checking the resulting computation trees is re-cursive Hennessy-Milner logic [7]. Indeed, this is theframework Ste�en used to present his original results[59, 60, 61].In the present paper, we used unlabelled transitionsystems and Kozen's mu-calculus to provide a sim-plest possible starting point, to clarify the basic importof Ste�en's results, to tighten the tie between modelchecking and the classic data-ow analyses, and to �lla small gap in the literature on the subject.Although the present paper focussed solely onowchart programs with simplistic transition seman-tics, one can apply trace-based abstract interpretationto derivations constructed with a big-step (natural) se-mantics and also with a Plotkin-style small-step struc-tural operational semantics [52].Trace-based abstract interpretation of big-step se-mantics generates derivation trees that derive abstractproperties rather than run-time values; the novelty isthe necessity for in�nite derivations, which are disal-lowed under the usual inductive interpretation. There-fore, a coinductive interpretation of the big-step rulesmust be undertaken. The concepts of coinductive big-step semantics were laid down by Cousot and Cousot[20], applied by Schmidt [54] and re�ned in subsequentwork [53]. In a related line of work, Gouranton andLe M�etayer extract execution path information frombig-step derivation trees and use it to derive standardd.f.a. s [28]; general frameworks for doing this are pre-sented in Gouranton's thesis [27].At this time, there is no precedent for analyzingdirectly big-step derivation trees by means of modelchecking, but Gouranton and Le M�etayer's e�orts[27, 28] imply that this should be a matter of routineformulation.Trace-based a.i. of small-step semantics is developedin detail by Schmidt [55], where abstraction on thesource language's syntax (in this case, a �-calculus vari-ant) is needed to ensure construction of a �nite-stateabstract computation tree. Model checking the result-

ing trees proceeds exactly like the examples seen in thepresent paper, and indeed, the concurrency theory lit-erature abounds with similar examples.Of course, both big-step and small-step structuraloperational semantics can be used to express the se-mantics of higher-order languages, and an outstandingquestion is whether any of the varieties of control-ow(closure) analyses [31, 51, 56, 57] can be encoded ele-gantly as model checks upon appropriate abstract com-putation trees.Finally, it is worthwhile to consider why ow analysisand model checking are so intimately related: The rea-son why a d.f.a. can be implemented by a model checkis because the usual \engine" that implements modelchecking is just a �xed-point calculation algorithm [26].Not surprisingly, the dual is achievable: The canonicalmodel checking algorithm can be encoded as a set ofow equations [9]. Indeed, even the tableaus gener-ated from a tableau-based model checker [12] can beencoded as abstract computation trees where the datapart, a, of a state, a ` p, is abstracted to a mu-calculusproposition.These connections suggest that the machinery andmethods of ow analysis, abstract interpretation, andmodel checking are growing together. Researchers canpro�tably use techniques from one area to improve re-sults in the others. Recent interest in model checkingabstractions of �nite- and in�nite-state models is yetanother indication of the growing overlap. These areaswill thrive if they draw from one another to advancetheir respective causes.9 AcknowledgementsBernhard Ste�en, Carolyn Talcott, and Mitchell Wandstudied drafts of this and a related paper and made manyuseful suggestions. Also, Stephen Brookes, Edmund Clarke,Olivier Danvy, Peter Mosses, and Colin Stirling are thankedfor hosting me during my sabbatical year journeys.References[1] S. Abramsky and C. Hankin, editors. Abstract in-terpretation of declarative languages. Ellis Horwood,Chichester, 1987.[2] P. Aczel. Non-Well-Founded Sets. Lecture Notes 14,Center for Study of Language and Information, Stan-ford, CA, 1988.[3] A. Aho, R. Sethi, and J. Ullman. Compilers: Princi-ples, Techniques, and Tools. Addison Wesley, 1986.[4] A. Aho and J. Ullman. Principles of Compiler Design.Addison Wesley, 1977.[5] A. Banerjee. A modular, polyvariant, type-based clo-sure analysis. In Proc. 2d International Conference onFunctional Programming: ICFP'97, 1997.
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