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Abstract

Some mathematical and natural objects (a random sequence, a se-
quence of zeros, a perfect crystal, a gas) are intuitively trivial, while
others (e.g. the human body, the digits of π) contain internal evidence
of a nontrivial causal history.

We formalize this distinction by defining an object’s “logical depth”
as the time required by a standard universal Turing machine to gen-
erate it from an input that is algorithmically random (i.e. Martin-Löf
random). This definition of depth is shown to be reasonably machine-
independent, as well as obeying a slow-growth law: deep objects cannot
be quickly produced from shallow ones by any deterministic process,
nor with much probability by a probabilistic process, but can be pro-
duced slowly.

Next we apply depth to the physical problem of “self-organization,”
inquiring in particular under what conditions (e.g. noise, irreversibility,
spatial and other symmetries of the initial conditions and equations of
motion) statistical-mechanical model systems can imitate computers
well enough to undergo unbounded increase of depth in the limit of
infinite space and time.

1 Introduction

Persons of Turing’s genius do not shy away from asking big questions, and
hoping to see, in advance of the eventual slow progress of science, the es-
sential outlines of the answers. “What is intelligence?” is one such question
that clearly fascinated Turing. “How do complicated structures arise in na-
ture?” is another. On this latter question, seeds planted by Turing have
begun to mature to an extent that I think would please him.
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Two outgrowths of computability theory, viz. algorithmic information
theory and computational complexity theory, have made it possible to for-
malize satisfactorily the seemingly vague intuitive notion of complexity.
Meanwhile, advances in equilibrium and nonequilibrium statistical mechan-
ics have shed considerable light on the conditions, hinted at in Turing’s work
on morphogenesis [42], required for a simple, initially homogeneous medium
to organize itself into structures capable of holding and processing infor-
mation in the manner of a computer. We begin by showing how universal
Turing machines can be used to formalize intuitive notions of complexity,
returning in section 5 to the question of self-organization in physics.

The ability of the universal Turing machine to simulate any known al-
gorithmic process, and the belief (commonly called Church’s thesis but in-
dependently proposed by Turing) that all algorithmic processes can be so
simulated, has prompted and justified the use of universal Turing machines
to define absolute properties of mathematical objects, beginning with the
distinction drawn by Turing [41] between between computable and uncom-
putable real numbers.

Church’s thesis has been found to hold to a considerable extent for the
efficiency, as well as the possibility, of computation. A large variety of
computational models (roughly, those with at most polynomially growing
parallelism) can be simulated by universal Turing machine in polynomial
time, linear space, and with an additive constant increase in program size.
This stronger Church’s thesis has prompted the definition, on the one hand,
of robust dynamic complexity classes such as P and PSPACE, and on the
other hand of a nearly machine-independent algorithmic theory of informa-
tion and randomness.

The dynamic complexity class P , for example, consists of those 0/1-
valued functions of a binary string argument computable in time (i.e. number
of machine cycles) bounded by a polynomial in the length of the argument,
and includes the same functions regardless of whether the computations
are performed by single-tape Turing machines, multi-tape Turing machines,
cellular automata, or a wide variety of other models. The class PSPACE is
defined analogously, but with the bound on space (i.e. number of squares of
tape) instead of time. Diagonal constructions similar to that used to prove
the existence of uncomputable functions can be used to define provably hard-
to-compute functions, requiring for example exponential time and space to
compute. A major open question of dynamic complexity theory is the P =
PSPACE question: it is widely conjectured, but not known, that P is a
proper subset of PSPACE, i.e. that there exist functions computable in
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polynomial space but requiring more than polynomial time.
Algorithmic information theory [24], [40], [48] uses a standard universal

Turing machine to define the Kolmogorov complexity or information content
of a string x as the length of its minimal program x∗, the shortest binary
input which causes the standard machine to produce exactly x as output.
A string is said to be compressible by k bits if its minimal program is ≥ k
bits shorter than the string itself. A simple counting argument shows that
at most a fraction 2−k of strings of length ≤ n bits can have this property.
This fact justifies calling strings that are incompressible, or nearly so, algo-
rithmically random. Like the majority of strings one might generate by coin
tossing, such strings lack internal redundancy that could be exploited to en-
code them concisely, using the given universal Turing machine as decoding
apparatus. Because of the ability of universal Turing machines to simu-
late one another, the property of algorithmic randomness is approximately
machine-independent: a string that is incompressible on one machine can-
not be compressed, on another machine, by more than the fixed number of
bits required to program the first machine to simulate the second.

The relation between universal computer programs and their outputs has
long been regarded [40] as a formal analog of the relation between theory
and observation in science, with the minimal-sized program representing the
most economical, and therefore a priori most plausible, explanation of its
output. This analogy draws its authority from the ability of universal com-
puters to execute all formal deductive processes and their presumed ability
to simulate all processes of physical causation. Accepting this analogy, one
is then led to accept the execution of the minimal program as representing
its output’s most plausible causal history, and a logically “deep” or com-
plex object would then be one whose most plausible origin, via an effective
process, entails a lengthy computation. Just as the plausibility a scientific
theory depends on the economy of its assumptions, not on the length of
the deductive path connecting them with observed phenomena, so a slow
execution time is not evidence against the plausibility of a program; rather,
if there are no comparably concise programs to compute the same output
quickly, it is evidence of the nontriviality of that output.

A more careful definition of depth should not depend only on the mini-
mal program, but should take fair account of all programs that compute the
given output, for example giving two k + 1 bit programs the same weight
as one k-bit program. This is analogous in science to the explanation of a
phenomenon by appeal to an ensemble of possible causes, individually un-
likely but collectively plausible, as in the kinetic theory of gases. Several
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nearly-equivalent definitions of depth are considered in section 3; the one
finally advocated defines an object’s “s-significant depth” as the least time
required to compute it by a program that is itself compressible by no more
than s bits. This formalizes the notion that any hypothesis of the object’s
more rapid origin suffers from s bits of redundancy. Such redundancy fairly
measures the “ad-hocness” of a hypothesis, the extent to which it contains
unexplained, a-priori-unlikely internal correlations that could be explained
by deriving the original hypothesis from a more concise, non-redundant hy-
pothesis.

The notion of logical depth developed in the present paper was first de-
scribed in [12], and at greater length in [5] and [6]; similar notions have been
independently introduced by Adleman [1] (“potential”), Levin and V’jugin
[28] (“incomplete sequence”), Levin [29] (“hitting time”), and Koppel [25]
(“sophistication”). See also Wolfram’s work on “computational irreducibil-
ity” [45] and Hartmanis’ work on time- and space-bounded algorithmic in-
formation [22].

We propose depth as a formal measure of value. From the earliest days
of information theory it has been appreciated that information per se is not
a good measure of message value. For example, a typical sequence of coin
tosses has high information content but little value; an ephemeris, giving the
positions of the moon and planets every day for a hundred years, has no more
information than the equations of motion and initial conditions from which it
was calculated, but saves its owner the effort of recalculating these positions.
The value of a message thus appears to reside not in its information (its
absolutely unpredictable parts), nor in its obvious redundancy (verbatim
repetitions, unequal digit frequencies), but rather in what might be called
its buried redundancy—parts predictable only with difficulty, things the
receiver could in principle have figured out without being told, but only at
considerable cost in money, time, or computation. In other words, the value
of a message is the amount of mathematical or other work plausibly done
by its originator, which its receiver is saved from having to repeat.

Of course, the receiver of a message does not know exactly how it orig-
inated; it might even have been produced by coin tossing. However, the
receiver of an obviously non-random message, such as the first million bits
of π, would reject this “null” hypothesis, on the grounds that it entails
nearly a million bits worth of ad-hoc assumptions, and would favor an al-
ternative hypothesis that the message originated from some mechanism for
computing pi. The plausible work involved in creating a message, then, is
the amount of work required to derive it from a hypothetical cause involving
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no unnecessary, ad-hoc assumptions. It is this notion of the message value
that depth attempts to formalize.

Depth may be contrasted with other ways of attributing dynamic com-
plexity to finite objects, for example by regarding them as inputs of a uni-
versal computer rather than as outputs. An object would be complex in this
sense if it caused the computer to embark on a long (but terminating) com-
putation. Such objects might be called “ambitious” because they describe
a lengthy computation that may never have been done. A deep object, on
the other hand, contains internal evidence that a lengthy computation has
already been done. When considering moderate levels of ambition, e.g. ex-
ponential rather than busy-beaver in the size of the objects being considered,
it is best to define ambition strictly, as the actual run time of a string when
executed as a program. In this case, of course, ambition is not very robust,
since a slight change can convert a slow-running program into a fast-running
one, or vice versa. In particular, a deep object need not be ambitious. At
high levels of ambition, the notion can be given more robustness and interest
(cf. [18]), by defining an ambitious string more broadly as one which is very
slow-running itself or from which a very slow-running program can easily
be computed. In this case, as string’s ambition measures the amount of in-
formation it contains about the halting problem, i.e. about how to compute
very large numbers; and, as will be seen later, deep objects are necessarily
ambitious but not conversely.

Another kind of complexity associated with an object would be the dif-
ficulty, given the object, of finding a plausible hypothesis to explain it. Ob-
jects having this kind of complexity might be called “cryptic”: to find a
plausible origin for the object is like solving a cryptogram. A desirable (but
mathematically unproven) property for small-key cryptosystems is that en-
cryption should be easy, but breaking the system (e.g. inferring the key from
a sufficient quantity of intercepted ciphertext) should be hard. If satisfactory
small-key cryptosystems indeed exist, then typical cryptograms generated
from shallow plaintexts are shallow (because they can be generated quickly
from shallow input information) but cryptic (because even when the cryp-
togram contains sufficient information to uniquely determine the plaintext
and key, the job of doing so is computationally infeasible).

One might argue that a message’s usefulness is a better measure of value
than its mathematical replacement cost, but usefulness is probably too an-
thropocentric a concept to formalize mathematically.

Related ideas appear in the fiction of Borges [10], e.g. in the story “Pierre
Menard, Author of the Quixote” about a man who with great effort recon-
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structs several chapters of Don Quixote without errors and without consult-
ing the original, from an intimate knowledge of the book’s historical and
literary context. Another story, “The Library of Babel” describes a library
whose shelves contain, in seemingly random order, all possible 410-page
books on a 25-letter alphabet, and the librarians’ attempts to discern which
of the books were meaningful.

The tradeoff between conciseness of representation and ease of decoding
is illustrated in an extreme form by the information required to solve the
halting problem. One standard representation of this information is as an
infinite binary sequence K0 (the characteristic sequence of the halting set)
whose i’th bit is 0 or 1 according to whether the i’th program halts. This
sequence is clearly redundant, because many instances of the halting problem
are easily solvable or reducible to other instances. Indeed, K0 is far more
redundant than this superficial evidence might indicate. Barzdin [2] showed
that this information can be compressed to the logarithm of its original bulk,
but no concisely encoded representation of it can be decoded in recursivley
bounded time.

The most elegantly concise representation of the halting problem is
Chaitin’s irrational number Ω [11], defined as the halting probability of
a universal computer programmed by coin tossing (the computer starts in
a standard state, and whenever it tries to read a bit of its program, a coin
is tossed to supply that bit). Such a randomly programmed computation is
like the old notion of a monkey accidentally typing the works of Shakespeare,
but now the monkey sits at a computer keyboard instead of a typewriter.
The result is still trivial with high probability, but any nontrivial computa-
tion also has a finite probability of being performed, inversely proportional
to the exponential of the length of its program. The essential features of Ω
[11][3] are

i) The first n bits of Ω suffice to decide approximately the first 2n cases
of the halting problem (more precisely, to decide the fate of all computa-
tions using ≤ n coin tosses), but there is no faster way of extracting this
information than to recursively enumerate halting programs until enough
have been found to account for all but 2−n of the total halting probability
Ω, a job which requires at least as much time as running the slowest n bit
program.

ii) Ω is algorithmically random: like a typical coin toss sequence, its
first n bits cannot be encoded in less than n − O(1) bits. [This algorith-
mic randomness may seem contradictory to, but in fact is a consequence of,
Ω’s compact encoding of the halting problem. Knowledge of Ωn (i.e. the
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first n bits of Ω) is sufficient to decide the halting of all programs shorter
than n bits, and therefore to determine which n-bit strings are compresible
and which are not, and therefore to find and print out the lexicographically
first incompressible n-bit string x. If Ωn itself were significantly compress-
ible, then the algorithm just described could be combined with the com-
pressed representation of Ωn to yield a < n bit program to produce x, a
supposedly incompressible n-bit string. This contradiction proves the O(1)-
incompressibility of Ω.]

iii) although it solves unsolvable problems, Ω does not speed up the solu-
tion of solvable problems any more than a random coin-toss sequence would.
[This uselessness follows from its algorithmic randomness. Any special abil-
ity of Ω to speed up the computation of a computable function would set
it apart from random sequences in general, and this atypicality could be
exploited to encode Ω more concisely, contradicting its randomness].

In summary, we may say that the Ω contains the same information as
K0, but in such a compressed form that as to be random and useless. Ω is
a shallow representation of the deep object K0.

Descending from the realm of the halting problem to more mundane
levels of complexity (e.g. polynomial versus exponential), one is tempted
to invoke depth as a measure of complexity for physical objects, but one
must proceed cautiously. The applicability of any idea from computational
complexity to physics depends on what has been called a “physical Church’s
thesis,” the belief that physical processess can be simulated with acceptable
accuracy and efficiency by digital computations. Turing was quite aware of
this question, and based his informal justification of his model of compu-
tation largely on physical considerations. Granting some form of physical
Church’s thesis, a nontrivial application of depth to physical systems appears
to depend on unproven conjectures at the low end of complexity theory, such
as P 6= PSPACE. These questions are considered in the last section of the
paper.

2 Preliminaries, Algorithmic Information

As usual, a natural number x will be identified with the x’th binary string in
lexicographic order (Λ,0,1,00,01,10,11,000...), and a set X of natural num-
bers will be identified with its characteristic sequence, and with the real
number between 0 and 1 having that sequence as its dyadic expansion. The
length of a string x will be denoted |x|, the n’th bit of an infinite sequence
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X will be noted X(n), and the initial n bits of X will be denoted Xn.
Concatenation of strings p and q will be denoted pq.

We define the information content (and later the depth) of finite strings
using a universal Turing machine U similar to that described by Chaitin [11].
A universal Turing machine may be viewed as a partial recursive function
of two arguments. It is universal in the sense that by varying one argument
(“program”) any partial recursive function of the other argument (“data”)
can be obtained. In the usual machine formats, program, data and output
are all finite strings, or, equivalently, natural numbers. However, it is not
possible to take a uniformly weighted average over a countably infinite set.
numbers. Since we wish to average uniformly over programs, we adopt a
format [16] [27] [11] in which the program is in effect an infinite binary se-
quence, but data and output are finite strings. Chaitin’s universal machine
has two tapes: a read-only one-way tape containing the infinite program;
and an ordinary two-way read/write tape, which is used for data input, in-
termediate work, and output, all of which are finite strings. Our machine
differs from Chaitin’s in having some additional auxiliary storage (e.g. an-
other read/write tape) which is needed only to improve the time efficiency
of simulations.

We consider only terminating computations, during which, of course,
only a finite portion of the program tape can be read. Therefore, the ma-
chine’s behavior can still be described by a partial recursive function of two
string arguments U(p, w), if we use the first argument to represent that
portion of the program that is actually read in the course of a particular
computation. The expression U(p, w) = x will be used to indicate that the U
machine, started with any infinite sequence beginning with p on its program
tape and the finite string w on its data tape, performs a halting computation
which reads exactly the initial portion p of the program, and leaves output
data x on the data tape at the end of the computation. In all other cases
(reading less than p, more than p, or failing to halt), the function U(p, w)
is undefined. Wherever U(p, w) is defined we say that p is a self-delimiting
program to compute x from w, and we use T (p, w) to represent the time
(machine cycles) of the computation. Often we will consider computations
without input data; in that case we abbreviate U(p,Λ) and T (p,Λ) as U(p)
and T (p) respectively.

The self-delimiting convention for the program tape forces the domain
of U and T , for each data input w, to be a prefix set, that is, a set of strings
no member of which is the extension of any other member. Any prefix set
S obeys the Kraft inequality
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∑

p∈S

2−|p| ≤ 1. (1)

Besides being self-delimiting with regard to its program tape, the U
machine must be efficiently universal in the sense of being able to simulate
any other machine of its kind (Turing machines with self-delimiting program
tape) with at most an additive constant constant increase in program size
and a linear increase in execution time.

Without loss of generality we assume that there exists for the U machine
a constant prefix r which has the effect of stacking an instruction to restart
the computation when it would otherwise end. This gives the machine the
ability to concatenate programs to run consecutively: if U(p, w) = x and
U(q, x) = y, then U(rpq, w) = y. Moreover, this concatenation should be
efficient in the sense that T (rpq, w) should exceed T (p, w) + T (q, x) by at
most O(1). This efficiency of running concatenated programs can be realized
with the help of the auxiliary storage to stack the restart instructions.

Sometimes we will generalize U to have access to an “oracle” A, i.e. an
infinite look-up table which the machine can consult in the course of its
computation. The oracle may be thought of as an arbitrary 0/1-valued
function A(x) which the machine can cause to be evaluated by writing the
argument x on a special tape and entering a special state of the finite control
unit. In the next machine cycle the oracle responds by sending back the value
A(x). The time required to evaluate the function is thus linear in the length
of its argument. In particular we consider the case in which the information
in the oracle is random, each location of the look-up table having been filled
by an independent coin toss. Such a random oracle is a function whose
values are reproducible, but otherwise unpredictable and uncorrelated.

The following paragraph gives a more formal definition of the functions
U and T , which may be skipped by the casual reader.

Let {ϕA
i (p, w) : i = 0, 1, 2...} be an acceptable Gödel numbering of A-

partial recursive functions of two arguments and {ΦA
i (p, w)} an associated

Blum complexity measure, henceforth referred to as time. An index j is
called self-delimiting iff, for all oracles A and all values w of the second
argument, the set { x : ϕA

j (x,w) is defined } is a prefix set. A self-delimiting
index has efficient concatenation if there exists a string r such that for all
oracles A and all strings w, x, y, p, and q, if ϕA

j (p, w) = x and ϕA
j (q, x) = y,

then ϕA
j (rpq, w) = y and ΦA

j (rpq, w) = ΦA
j (p, w) + ΦA

j (q, x) + O(1). A self-
delimiting index u with efficient concatenation is called efficiently universal
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iff, for every self-delimiting index j with efficient concantenation, there exists
a simulation program s and a linear polynomial L such that for all oracles
A and all strings p and w,

ϕA
u (sp, w) = ϕA

j (p, w)

and
ΦA

u (sp, w) ≤ L(ΦA
j (p, w))

. The functions UA(p, w) and TA(p, w) are defined respectively as ϕA
u (p, w)

and ΦA
u (p, w), where u is an efficiently universal index.

We now present some definitions and review some elementary facts about
algorithmic information.

For any string x, the minimal program, denoted x∗, is min{p : U(p) = x},
the least self-delimiting program to compute x. For any two strings x and w,
the minimal program of x relative to w, denoted (x/w)∗, is defined similarly
as min{p : U(p, w) = x}.

By contrast to its minimal program, any string x also has a print pro-
gram, of length |x|+ O(log |x|), which simply transcribes the string x from
a verbatim description of x contained within the program. The print pro-
gram is logarithmically longer than x because, being self-delimiting, it must
indicate the length as well as the contents of x. Because it makes no effort
to exploit redundancies to achieve efficient coding, the print program can
be made to run quickly (e.g. linear time in |x|, in the present formalism).

Extra information w may help, but cannot significantly hinder, the com-
putation of x, since a finite subprogram would suffice to tell U to simply
erase w before proceeding. Therefore, a relative minimal program (x/w)∗

may be much shorter than the corresponding absolute minimal program x∗,
but can only be longer by O(1), independent of x and w.

A string is compressible by s bits if its minimal program is shorter by at
least s bits than the string itself, i.e. if |x∗| ≤ |x| − s. Similarly, a string x is
said to be compressible by s bits relative to a string w if |(x/w)∗| ≤ |x| − s.

Regardless of how compressible a string x may be, its minimal program
x∗ is compressible by at most an additive constant depending on the uni-
versal computer but independent of x. [If (x∗)∗ were much smaller than
x∗, then the role of x∗ as minimal program for x would be undercut by a
program of the form “execute the result of executing (x∗)∗.”] Similarly, a
relative minimal program (x/w)∗ is compressible relative to w by at most a
constant number of bits independent of x or w.
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The algorithmic probability of a string x, denoted P (x), is defined as∑{2−|p| : U(p) = x}. This is the probability that the U machine, with a
random program chosen by coin tossing and an initially blank data tape,
will halt with output x. The time-bounded algorithmic probability, Pt(x),
is defined similarly, except that the sum is taken only over programs which
halt within time t. We use P (x/w) and Pt(x/w) to denote the analogous
algorithmic probabilities of one string x relative to another w, i.e. for com-
putations that begin with w on the data tape and halt with x on the data
tape.

The algorithmic entropy H(x) is defined as the least integer greater than
− log2 P (x), and the conditional entropy H(x/w) is defined similarly as the
least integer greater than − log2 P (x/w).

Among the most important properties of the algorithmic entropy is its
equality, to within O(1), with the size of the minimal program:

∃c∀x∀wH(x/w) ≤ |(x/w)∗| ≤ H(x/w) + c. (2)

The first part of the relation, viz. that algorithmic entropy should be no
greater than minimal program size, is obvious, because of the minimal pro-
gram’s own contribution to the algorithmic probability. The second half of
the relation is less obvious (cf. [16],[11], and Lemma 2). The approximate
equality of algorithmic entropy and minimal program size means that there
are few near-minimal programs for any given input/output pair (x/w), and
that every string gets an O(1) fraction of its algorithmic probability from
its minimal program.

Finite strings, such as minimal programs, which are incompressible or
nearly so are called algorithmically random. The definition of randomness
for finite strings is necessarily a little vague because of the ±O(1) machine-
dependence of H(x) and, in the case of strings other than self-delimiting
programs, because of the question of how to count the information encoded
in the string’s length, as opposed to its bit sequence. Roughly speaking,
an n-bit self-delimiting program is considered random (and therefore not
ad-hoc as a hypothesis) iff its information content is about n bits, i.e. iff
it is incompressible; while an externally delimited n-bit string is considered
random iff its information content is about n+H(n) bits, enough to specify
both its length and its contents.

For infinite binary sequences (which may be viewed also as real numbers
in the unit interval, or as characteristic sequences of sets of natural num-
bers) randomness can be defined sharply: a sequence X is incompressible, or
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algorithmically random, if there is an O(1) bound to the compressibility of
its initial segments Xn. This class of infinite sequences was first character-
ized by Martin-Löf [31]; several equivalent definitions have since been given
[27],[12]. Intuitively, an infinite sequence is random if it is typical in every
way of sequences that might be produced by tossing a fair coin; in other
words, if it belongs to no informally definable set of measure zero. Algo-
rithmically random sequences constitute a larger class, including sequences
such as Ω [11] which can be specified by ineffective definitions. Henceforth,
the term “random” will be used in the narrow informal sense, and “incom-
pressible”, or “algorithmically random”, in the broader, exact sense.

We proceed with a few other useful definitions.
The busy beaver function B(n) is the greatest number computable by a

self-delimiting program of n bits or fewer.
The halting set K is { x : ϕx(x) converges }. This is the standard

representation of the halting problem.
The self-delimiting halting set K0 is the (prefix) set of all self-delimiting

programs for the U machine that halt: { p : U(p) converges }.
K and K0 are readily computed from one another (e.g. by regarding the

self-delimiting programs as a subset of ordinary programs, the first 2n bits
of K0 can be recovered from the first 2n+O(1) bits of K; by encoding each
n-bit ordinary program as a self-delimiting program of length n + O(log n),
the first 2n bits of K can be recovered from the first 2n+O(log n) bits of K0.)

The halting probability Ω is defined as
∑ { 2−|p| : U(p) converges }, the

probability that the U machine would halt on an infinite input supplied by
coin tossing. Ω is thus a real number between 0 and 1.

The first 2n bits of K0 can be computed from the first n bits of Ω,
by enumerating halting programs until enough have halted to account for
all but 2−n of the total halting probability. The time required for this
decoding (between B(n−O(1)) and B(n + H(n) + O(1)) grows faster than
any computable function of n. Although K0 is only slowly computable from
Ω, the first n bits of Ω can be rapidly computed from the first 2n+H(n)+O(1)

bits of K0, by asking about the halting of programs of the form “enumerate
halting programs until (if ever) their cumulative weight exceeds q, then
halt”, where q is an n-bit rational number.

In the following, we will often be dealing with a prefix set S of strings
having some common property, e.g. the set of all self-delimiting programs to
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compute x in time t. Two useful lemmas relate the measure of such a set

µ[S] =
∑

p∈S

2−|p|

to the compressibility of its individual members.

Lemma 1: If S is a prefix set of strings whose total measure µ[S] =∑
x∈S 2−|x| is at least 2−m, and y is an arbitrary string (or the empty string),

then at least some members of S must not be compressible by more than m
bits relative to y : ∀y∃x∈S |(x/y)∗| ≥ |x| −m.

Proof : Suppose on the contrary that for some S and y, µ[S] ≥ 2−m and
|(x/y)∗| < |x| − m for all x ∈ S. Then the set {(x/y)∗ : x ∈ S}, also a
prefix set, would have measure greater than 1, because each of its members
is more than m bits shorter than the corresponding member of S. But the
Kraft inequality forbids any prefix set from having measure greater than 1;
the lemma follows.

Lemma 2: If a prefix set S of strings, having total measure µ(S) =∑
x∈S 2−|x| less than 2−m, is computable by a self-delimiting program of

s bits; then every member of S is compressible by at least m−s−O(1) bits.

Proof Sketch: This lemma can be proved using, for each S, a special-
purpose self-delimiting computer CS designed to compress each member of
S by exactly m bits, in other words, to produce each output in S in response
to some m-bit-shorter input which is not the prefix or extension of any other
input. This special computer is then simulated by the general purpose U
machine, at the cost of expanding all its programs by a constant amount
(equal to the number of bits required to describe S and m), to obtain the
desired result.

The existence of CS is guaranteed by a more general result [11] (the-
orem 3.2) proving the existence of a special purpose computer C satisfy-
ing any consistent, recursively-enumerable list of requirements of the form
< x(k), n(k) > (k = 0, 1, 2...), where the k’th requirement < x(k), n(k) >
asks that a self-delimiting program of length n(k) be “assigned” to the out-
put string x(k). The special purpose computer may be thought of more
abstractly as a partial recursive function whose range is {x(k)} and whose
domain is a prefix set. The requirements are called consistent if they obey
the Kraft inequality

∑
k 2−n(k) ≤ 1, and the computer is said to satisfy
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them if there are precisely as many programs of length n with output x as
there are pairs < x, n > in the list of requirements. In [11] it is shown in
more detail how a straightforward “greedy” allocation rule, which attempts
to satisfy each requirement in order of recursive enumeration by the first
available string of the requested length that is not the prefix or extension of
any previously allocated string, works so well that it only fails if the list of
requirements would violate the Kraft inequality.

In the present application, the requirements are for uniform compression
of each member of the set S, i.e. n(k) = |x(k)| −m. If S is computable by
a self-delimiting program of s bits, then the feasible degree of compression
m can be computed from the same program that computes S. Thus the U
simulating the special purpose CS machine requires an additional program
length of s bits; and each member of S is compressible by k− s−O(1) bits.

3 Depth of Finite Strings

We begin by considering finite objects (e.g. strings or natural numbers),
where the intuitive motivation for depth is clearer, even though mathemati-
cally sharper (polynomially or recursively invariant) results can be obtained
with infinite sequences.

We consider several candidates for the best definition of depth:

Tentative Definition 0.1: A string’s depth might be defined as the exe-
cution time of its minimal program.

The difficulty with this definition arises in cases where the minimal pro-
gram is only a few bits smaller than some much faster program, such as a
print program, to compute the same output x. In this case, slight changes
in x may induce arbitrarily large changes in the run time of the minimal
program, by changing which of the two competing programs is minimal.
Analogous instability manifests itself in translating programs from one uni-
versal machine to another. This instability emphasizes the essential role
of the quantity of buried redundancy, not as a measure of depth, but as a
certifier of depth. In terms of the philosophy-of-science metaphor, an object
whose minimal program is only a few bits smaller than its print program is
like an observation that points to a nontrivial hypothesis, but with only a
low level of statistical confidence.
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To adequately characterize a finite string’s depth one must therefore
consider the amount of buried redundancy as well as the depth its burial. A
string’s depth at significance level s might thus be defined as that amount
of time complexity which is attested by s bits worth of buried redundancy.
This characterization of depth may be formalized in several ways.

Tentative Definition 0.2: A string’s depth at significance level s be de-
fined as the time required to compute the string by a program no more than
s bits larger than the minimal program.

This proposed definition solves the stability problem, but is unsatisfac-
tory in the way it treats multiple programs of the same length. Intuitively,
2k distinct (n + k)-bit programs that compute same output ought to be ac-
corded the same weight as one n-bit program; but, by the present definition,
they would be given no more weight than one (n+k)-bit program. Multiple
programs can be fairly taken into account by the next definition.

Tentative Definition 0.3: A string’s depth at signicifcance level s depth
might be defined as the time t required for the string’s time-bounded al-
gorithmic probability Pt(x) to rise to within a factor 2−s of its asymptotic
time-unbounded value P (x).

This formalizes the notion that for the string to have originated by an
effective process of t steps or fewer is less plausible than for the first s tosses
of a fair coin all to come up heads.

It is not known whether there exist strings that are deep according to
def 0.2 but not def 0.3, in other words, strings having no small fast programs,
even though they have enough large fast programs to contribute a signifi-
cant fraction of their algorithmic probability. Such strings might be called
deterministically deep but probabilistically shallow, because their chance
of being produced quickly in a probabilistic computation (e.g. one where
the input bits of U are supplied by coin tossing) is significant compared to
their chance of being produced slowly. The question of whether such strings
exist is probably hard to answer because it does not relativize uniformly.
Deterministic and probabilistic depths are not very different relative to a
random coin-toss oracle A (this can be shown by a proof similar to that [4]
of the equality of random-oracle-relativized deterministic and probabilistic
polynomial time complexity classes); but they can be very different relative
to an oracle B deliberately designed to hide information from determin-
istic computations (this parallels Hunt’s proof [23] that deterministic and
probabilistic polynomial time are unequal relative to such an oracle).
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Although def 0.3 satisfactorily captures the informal notion of depth, we
propose a slightly stronger definition for the technical reason that it appears
to yield a stronger slow growth property (Theorem 1 below).

Definition 1 (Depth of Finite Strings): Let x and w be strings and s
a significance parameter. A string’s depth at significance level s, denoted
Ds(x), will be defined as min{T (p) : (|p| − |p∗| < s)∧ (U(p) = x)}, the least
time required to compute it by a s-incompressible program. At any given
significance level, a string will be called t-deep if its depth exceeds t, and
t-shallow otherwise.

The difference between this definition and the previous one is rather sub-
tle philosophically and not very great quantitatively. Philosophically, def. 1
says that each individual hypothesis for the rapid origin of x is implausible
at the 2−s confidence level, whereas the previous definition 0.3 requires only
that a weighted average of all such hypotheses be implausible. The follow-
ing lemma shows that the difference betwen def. 1 and def. 0.3 is also small
quantitatively.

Lemma 3.: There exist constants c1 and c2 such that for any string x, if
programs running in time ≤ t contribute a fraction between 2−s and 2−s+1

of the string’s total algorithmic probability, then x has depth at most t
at significance level s + c1 and depth at least t at significance level s −
min{H(s),H(t)} − c2.

Proof : The first part follows easily from the fact that any k-compressible
self-delimiting program p is associated with a unique, k−O(1) bits shorter,
program of the form “execute the result of executing p∗”. Therefore there
exists a constant c1 such that if all t-fast programs for x were s + c1-
compressible, the associated shorter programs would contribute more than
the total algorithmic probability of x. The second part of the lemma follows
because, roughly, if fast programs contribute only a small fraction of the al-
gorithmic probability of x, then the property of being a fast program for x is
so unusual that no program having that property can be random. More pre-
cisely, the t-fast programs for x constitute a finite prefix set, a superset S of
which can be computed by a program of size H(x)+min{H(t),H(s)}+O(1)
bits. (Given x∗ and either t∗ or s∗, begin enumerating all self-delimiting pro-
grams that compute x, in order of increasing running time, and quit when
either the running time exceeds t or the accumulated measure of programs
so far enumerated exceeds 2−(H(x)−s)). Therefore there exists a constant c2

such that, by Lemma 1, every member of S, and thus every t-fast program
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for x, is compressible by at least s−min{H(s), H(t)} −O(1) bits.

The ability of universal machines to simulate one another efficiently im-
plies a corresponding degree of machine-independence for depth: for any
two efficiently universal machines of the sort considered here, there exists
a constant c and a linear polynomial L such that for any t, strings whose
(s+c)-significant depth is at least L(t) on one machine will have s-significant
depth at least t on the other.

Depth of one string relative to another may be defined analogously to
definition 1 above, and represents the plausible time required to produce
one string, x, from another, w.

Definition 1.1 (Relative Depth of Finite Strings): For any two strings
w and x, the depth of x relative to w at significance level s, denoted Ds(x/w),
will be defined as min{T (p, w) : (|p|−|(p/w)∗| < s)∧(U(p, w) = x)}, the least
time required to compute x from w by a program that is s-incompressible
relative to w.

Depth of a string relative to its length is a particularly useful notion,
allowing us, as it were, to consider the triviality or nontriviality of the “con-
tent” of a string (i.e. its bit sequence), independent of its “form” (length).
For example, although the infinite sequence 000... is intuitively trivial, its
initial segment 0n is deep whenever n is deep. However, 0n is always shallow
relative to n, as is, with high probability, a random string of lenth n.

In order to adequately represent the intuitive notion of stored mathe-
matical work, it is necessary that depth obey a “slow growth” law, i.e. that
fast deterministic processes be unable to transform a shallow object into a
deep one, and that fast probabilistic processes be able to do so only with
low probability.

Theorem 1 (Slow Growth Law): Given any data string x and two sig-
nificance parameters s2 > s1, a random program generated by coin toss-
ing has probability less than 2−(s2−s1)+O(1) of transforming x into an ex-
cessively deep output, i.e. one whose s2-significant depth exceeds the s1-
significant depth of x plus the run time of the transforming program plus
O(1). More precisely, there exist positive constants c1, c2 such that for all
strings x, and all pairs of significance parameters s2 > s1, the prefix set
{q : Ds2(U(q, x)) > Ds1(x)+T (q, x)+c1} has measure less than 2−(s2−s1)+c2 .

Proof : Let p be a s1-incompressible program which computes x in time
Ds1(x), and let r be the restart prefix mentioned in the definition of the U
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machine. Let Q be the prefix set {q : Ds2(U(q, x)) > T (q, x)+Ds1(x)+ c1},
where the constant c1 is sufficient to cover the time overhead of concatena-
tion. For all q ∈ Q, the program rpq by definition computes some deep result
U(q, x) in less time than that result’s own s2-significant depth, and so rpq
must be compressible by s2 bits. The sum of the algorithmic probabilities
of strings of the form rpq, where q ∈ Q, is therefore

∑

q∈Q

P (rpq) <
∑

q∈Q

2−|rpq|+s2 = 2−|r|−|p|+s2µ(Q). (3)

On the other hand, since the self-delimiting program p can be recovered
from any string of the form rpq (by deleting r and executing the remainder
pq until halting occurs, by which time exactly p will have been read), the
algorithmic probability of p is at least as great (within a constant factor)
as the sum of the algorithmic probabilities of the strings {rpq : q ∈ Q}
considered above:

P (p) > µ(Q) · 2−|r|−|p|+s2−O(1).

Recalling the fact that minimal program size is equal within a constant
factor to the − log of algorithmic probability, and the s1-incompressibility
of p, we have P (p) < 2−(|p|−s1+O(1)), and therefore finally

µ(Q) < 2−(s2−s1)+O(1),

which was to be demonstrated.

An analogous theorem (with analogous proof) also holds for the improb-
ability of rapid growth of depth relative to an arbitrary fixed string w:

Theorem 1.1 (Relative Slow Growth Law): Given data strings x and
w and two significance parameters s2 > s1, a random program generated by
coin tossing has probability less than 2−(s2−s1)+O(1) of transforming x into an
excessively deep output, one whose s2-significant depth relative to w exceeds
the s1-significant depth of x relative to w plus the run time of the transform-
ing program plus O(1). More precisely, there exist positive constants c1, c2

such that for all strings x and w, and all pairs of significance parameters
s2 > s1, the prefix set {q : Ds2(U(q, x)/w) > Ds1(x/w) + T (q, x) + c1} has
measure less than 2−(s2−s1)+c2 .

Examples of Shallow Objects:
The trivial string 000... has already been mentioned. It is shallow in

the sense that there exists a low-order polynomial L (linear for the machine
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model we are using) and a significance parameter s such that for all n,
Ds(0n/n) < L(n). Here s represents the size and L(n) the running time of a
fixed program that for any n computes 0n from n. Similarly, there exist s and
L such that for all n and k, a random string x of length n produced by coin
tossing satisfies Ds+k(x/n) < L(n) with probability greater than 1−2−k. In
this case the shallowness of x is shown by a fast near-incompressible program
that simply copies x verbatim off the program tape, using the data n to
decide when to stop. This shallowness of random sequences applies not only
to those generated by coin tossing, but to ineffectively definable sequences
such as the halting probability Ω, whose algorithmic randomness implies
that there is a significance level s at which Ds(Ωn/n) increases only linearly
with n. As emphasized in the introduction, Ω’s concentrated information
about the halting problem does not make it deep, because the information
is encoded so concisely as to appear random.

Examples of Very Deep Objects:
Very deep strings can be constructed by diagonalization, for example,

by programs of the form

“Find all n-bit strings whose algorithmic probability, from computations
halting within time T (a large number), is greater than 2−n, and print the
first string not in this set.”

This program runs very slowly, using time about T ·2T to evaluate the al-
gorithmic probabilities by explicitly simulating all T -bit coin toss sequences,
but eventually it outputs a specific string χ(n, T ) guaranteed to have T -fast
algorithmic probability less than 2−n, even though the string’s relatively
concise description via the above algorithm guarantees a slow algorithmic
probability of at least 2−H(n)−H(T )+O(1). We can then invoke Lemma 3 (re-
lating depth to the rise time of algorithmic probability) to conclude that
χ(n, T ) has depth at least T at significance level

n−H(T )−min{H(n−H(n)−H(T )),H(T )} −O(1),

which (taking into account that in non-vacuous cases H(T ) < n) is at least
n−H(T )−O(log n).

Because the halting set K has the ability to speed up any slow com-
putation, deep objects such as the diagonal strings considered above are
rapidly computable from K. Therefore, by the slow growth law, the halting
set must be deep itself. More precisely, by arguments similar to those used
in Barzdin’s paper [2] on the compressibility of the halting problem, it can
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be shown that for any c < n, the initial 2n bits of K have depth between
B(n− c−O(log n) and B(n− c + O(log n)) at significance level 2c.

It is not hard to see that the busy beaver function provides an approxi-
mate upper bound on the depth of finite strings. Given a string x, its length
n, and a value of the significance parameter s, all of which can be encoded
in a self-delimiting program of size n − s + O(log n), one can compute the
depth Ds(x), which must therefore be less than B(n− s + O(log n)) by the
definition of the busy beaver function.

Very deep objects, because they contain information about their own
depth, are necessarily ambitious in the broad sense (cf. introduction) of
containing information about how to compute large numbers. On the other
hand, ambitious objects need not be deep. For example, Ω is ambitious but
shallow.

On the Efficient Generation of Depth The diagonal method mentioned
above for calculating deep strings suffers from exponential overhead, taking
more than 2T time to generate an object of depth T . One naturally wonders
whether there are ways of generating depth with an efficiency more closely
approaching the maximum allowed by the slow growth law: depth T in time
T .

One way of doing so would be simply to generate a string of length T ,
say a string of T zeros. Time O(T ) is clearly both necessary and sufficient to
generate this string, but it would be more satisfying to find an example of an
efficiently generated object deeper than its own bulk. Only then would the
object contain evidence of being the visible part of a larger invisible whole.

Unfortunately it appears that nontrivial and efficient production of depth
may depend on plausible but unproven assumptions at the low end of com-
plexity theory. Motivated by the finding that many open questions of com-
plexity theory can be easily shown to have the answers one would like them
to have in the relativized context of a random oracle (e.g. PA 6= NPA 6=
PSPACEA), Bennett and Gill [4] informally conjectured that pseudoran-
dom functions that “behave like” random oracles exist absolutely, and there-
fore that all “natural” mathematical statements (such as P 6= NP ) true
relative to a random oracle should be true absolutely. Their attempt to
formalize the latter idea (by defining a broad class of statements to which
it was supposed to apply) was unsuccessful, [26], but the former idea has
been formalized quite successfully in the notion of a cryptographically strong
pseudorandom function (CSPSRF) [9] [47] [21] [30]. A CSPSRF is a 0/1-
valued polynomial time computable function G of two variables with the
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property that, if the first variable (s, “the seed”) is chosen randomly from
among strings of a given length, the resulting function of the second variable
Gs(x) cannot be distinguished from a random oracle A(x) in time polyno-
mial in the length of the seed. “Cannot be distinguished” means that there
is no probabilistic or deterministic test by which an adversary, ignorant of
the seed s, but knowing the algorithm for G and having the ability to eval-
uate Gs(x) for arbitrary x, could distinguish the pseudorandom oracle Gs

from a truly random oracle A, except with low probability, or by using time
more than polynomial in the length of the seed. Exponential time of course
would be sufficient to distinguish the two oracles with certainty, by searching
exhaustively for a seed which exactly reproduced the behavior of one oracle
(the pseudorandom one) but not the other.

Below we show how a random oracle, and hence a cryptographically
strong pseudorandom function, would permit deep strings to be generated
efficiently.

Given a 0/1-valued random oracle A it is routine to construct a random
function ξA(x) which maps strings randomly onto strings of the same length.
The statistical structure of such random length-preserving functions is well
known and facilitates the construction, from a standard starting string such
as 0n, of the deep objects considered below.

Let ξk
A(0n) denote the k’th forward image of 0n, where k < 2n/2, under

the length-preserving function derived from random oracle A. This string,
the target of a chain of k pointers through the random structure of the ξ
function, is readily computed if enough time (O(k · n2) in our model) is
allowed to evaluate the ξ function k times; but, for typical random oracles,
if less time is allowed, the probability of finding the correct target is only
O(1/2n), representing pure luck. This statement is true for typical oracles;
for a small minority of oracles, of measure O(k2/2n), the chain of pointers
starting from 0n would begin to cycle in fewer than k iterations, permitting
the target to be found more quickly. Returning to the case of a typical oracle,
Lemma 3, relating depth to the time-dependence of algorithmic probability,
can be used to show that the target string ξk

A(0n) has, at significance level
n−O(log n)), depth proportional to the time O(k ·n2) actually used by the
straightforward algorithm for computing it.

This result holds, with high probability, in the relativized world contain-
ing a random oracle. If one assumes the existence of CSPSRF, then a similar
result holds in the real world: using a pseudorandom length-preserving func-
tion ξGs derived from a CSPSRF with seed s randomly chosen among strings
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of length n, one obtains target strings of the form ξk
Gs

(0n) which can be gen-
erated in polynomial time in k ·n, but with high probability (in the choice of
the seed s) have depth exceeding a smaller polynomial in k · n. If this were
not the case, the pseudorandom Gs could be distinguished from a random A
in polynomial time by demonstrating a greater fast algorithmic probability
of the target string in the former case.

Another sort of deep object definable with the help of the ξ function are
preimages of 0n, i.e. members of the set {x : ξ(x) = 0n}. The number of
preimages is binomially distributed, approaching a Poisson distribution for
large n, so that a given string (such as 0n) has no preimages approximately
1/e of the time, one preimage 1/e of the time, and m preimages e−1/m! of
the time. Preimages of 0n, when they exist, are deep because for random
ξ they cannot be found except by exhaustive search. In the terminology of
NP problems, a preimage is “witness” for membership of 0n in the range of
ξA, a set which, relative to a random oracle A belongs to NPA − PA.

Remarks on the Transitivity of Depth
The slow growth law says that deep objects cannot quicky be produced

from shallow ones. It is natural to wonder whether this property can be
extended to a transitive law for relative shallowness; in other words, if x is
shallow relative to w, and y is shallow relative to x, does it follow that y is
shallow relative to w?

The answer is no, as can be seen from the following example: Let w
be a random string (produced e.g. by coin tossing), x be the empty string,
and y be the bitwise exclusive-or of w with some deep string d. Then y is
also random and shallow, and so shallow relative to x, as x is relative to w;
however y is deep relative to w, since d can easily be regenerated from y and
w. Therefore simple transitivity does not hold.

A more cumulative sort of transitivity can be shown to hold: for all
w, x, and y, if x is shallow relative to w, and y is shallow relative to the
ordered pair < w, x >, then y is indeed shallow relative to w, at least
within logarithmic error terms in the significance parameter such as those
in Lemma 3. In particular, cumulative transitivity holds when w is empty:
if x is shallow and y is shallow relative to x, then y is shallow.

Scalar Measures of Depth
One may well wonder whether, by defining some sort of weighted average

run time, a string’s depth might be expressed by a single number, unqualified
by a significance parameter. This may be done, at the cost of imposing a
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somewhat arbitrary rate of exchange between the two conceptually very
different quantities run time and program size. Proceeding from tentative
def. 0.3 above, one might try to define a string’s average depth as the average
run time of all computations contributing to its algorithmic probability,
but this average diverges because it is dominated by programs that waste
arbitrarily much time. To make the average depth of x depend chiefly on the
fastest programs of any given size that compute x, one can use the “harmonic
mean,” or reciprocal mean reciprocal, run time in place of a straight average.
The reciprocal mean reciprocal depth of a string x may thus be defined as

Drmr(x) =
∑{2−|p| : (U(p) = x)}∑{(2−|p|/T (p)) : (U(p) = x)} . (4)

In this definition, the various computations that produce x act like par-
allel resistors, the fast computations in effect short-circuiting the slow ones.
[The ratio of rmr depth to algorithmic probability, called “hitting”time,
was introduced by Levin [29] to measure the difficulty of solving NP-type
problems by an optimal search algorithm; related ideas are explored in [1]].
Due to the short-circuiting of slower programs, no matter how small, by the
print program, rmr depth doesn’t allow strings to have depth more than
exponential in their length; however, it does provide a simple quantitative
measure of a string’s nontriviality. Among efficiently universal machines, it
is machine-independent to within a polynomial depending on the machines.

The denominator of the above formula for rmr depth is like the numer-
ator, except that it penalizes each program according to the logarithm of
its run time. By using a more slowly growing penalty function, the inverse
busy beaver function, one obtains another unparameterized depth measure
which may be more suitable for very deep objects.

Dbb(x) = min{s + k : Ds(x) < B(k)}. (5)

This depth measure is closely related to the quantity called sophistication
by Koppel [25].

4 Depth of Infinite Sequences

In attempting to extend the notion of depth from finite strings to infinite
sequences, one encounters a familiar phenomenon: the definitions become
sharper (e.g. recursively invariant), but their intuitive meaning is less clear,
because of distinctions (e.g. between infintely-often and almost-everywhere
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properties) that do not exist in the finite case. We present a few definitions
and results concerning depth of infinite objects.

An infinite sequence X is called strongly deep if at every significance level
s, and for every recursive function f , all but finitely many initial segments
Xn have depth exceeding f(n).

It is necessary to require the initial segments to be deep almost every-
where rather than infinitely often, because even the most trivial sequence has
infinitely many deep initial segments Xn (viz. the segments whose lengths
n are deep numbers).

It is not difficult to show that the property of strong depth is invariant
under truth-table equivalence [38] (this is the same as Turing equivalence in
recursively bounded time, or via a total recursive operator), and that the
same notion would result if the initial segments were required to be deep
in the sense of receiving less than 2−s of their algorithmic probability from
f(n)-fast programs. The characteristic sequence of the halting set K is an
example of a strongly deep sequence.

A weaker definition of depth, also invariant under truth-table equiva-
lence, is perhaps more analogous to that adopted for finite strings:

An infinite sequence X is weakly deep if it is not computable in recur-
sively bounded time from any algorithmically random infinite sequence.

As remarked above, computablility in recursively bounded time is equiv-
alent to two other properties, viz. truth-table reducibility and reducibility
via a total recursive operator. These equivalences are not hard to demon-
strate. We will call this reducibility by the traditional name of truth-table
reducibility, even though the other two characterizations may be more intu-
itive.

By contrast to the situation with truth-table reducibility, Gacs has re-
cently shown [20] that every sequence is computable from (i.e. Turing re-
ducible to) an algorithmically random sequence if no bound is imposed on
the time. This is the infinite analog of far more obvious fact that every finite
string is computable from an algorithmically random string (e.g. its minimal
program).

Every strongly deep sequence is weakly deep, but by intermittently
padding K with large blocks of zeros, one can construct a weakly deep se-
quence with infinitely many shallow initial segments.

Truth table reducibility to an algorithmically random sequence is equiva-
lent to the property studied by Levin et. al. of being random with respect to
some recursive measure. Levin calls sequences with this property “proper”
[48] or “complete” [28][29] sequences (we would call them strongly shallow),
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and views them as more realistic and interesting than other sequences be-
cause they are the typical outcomes of probabilistic or deterministic effective
processes operating in recursively bounded time. Deep sequences, requiring
more than recursively bounded time to generate, and especially ineffectively
defined sequences such as K or Ω, he regards as unnatural or pathologi-
cal by comparison. We take a somewhat opposing view, regarding objects
of recursively unbounded depth as perhaps useful analogs for the less deep
objects that may be found in nature.

V’jugin [44] has shown that weakly deep sequences arise with finite prob-
ability when a universal Turing machine (with one-way input and output
tapes, so that it can act as a transducer of infinite sequences) is given an
infinite coin toss sequence for input. These sequences are necessarily pro-
duced very slowly: the time to output the n’th digit being bounded by no
recursive function, and the output sequence contains evidence of this slow-
ness. Because they are produced with finite probability, V’jugin sequences
can contain only finite information about the halting problem. This con-
trasts with the finite case, where deep strings necessarily contain information
about K. It is not known whether all strongly deep strings contain infinite
information about K.

5 Depth and Complexity in Physics

Here we argue that logical depth is a suitable measure of subjective com-
plexity for physical as well as mathematical objects, and consider the effect
of irreversibility, noise, and spatial symmetries of the equations of motion
and initial conditions on the asymptotic depth-generating abilities of model
systems. Many of the ideas mentioned here are treated at greater length in
[36] and [8], and [7].

“Self-organization” suggests a spontaneous increase of complexity occur-
ing in a system with simple, generic (e.g. spatially homogeneous) initial con-
ditions. The increase of complexity attending a computation, by contrast,
is less remarkable because it occurs in response to special initial conditions.
This distinction has been highlighted recently by the discovery of models
(e.g. classical hard spheres moving in an appropriate periodic array of ob-
stacles [13][33]) which are computationally universal on a subset of initial
conditions, but behave in a quite trivial manner for more general initial
conditions.

An important question, which would have interested Turing, is whether
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self-organization is an asymptotically qualitative phenomenon like phase
transitions. In other words, are there physically reasonable models in which
complexity, appropriately defined, not only increases, but increases without
bound in the limit of infinite space and time? A positive answer to this ques-
tion would not explain the natural history of our particular finite world, but
would suggest that its quantitative complexity can legitimately be viewed
as an approximation to a well-defined qualitative property of infinite sys-
tems. On the other hand, a negative answer would suggest that our world
should be compared to chemical reaction-diffusion systems (e.g. Belousov-
Zhabotinsky), which self-organize on a macroscopic, but still finite scale, or
to hydrodynamic systems (e.g Benard) which self-organize on a scale de-
termined by their boundary conditions. A thorough understanding of the
physical prerequisites for qualitative self-organization may shed some light
on the difficult issue of the extent to which our world’s observed complexity
is conditioned by the posterior existence of sentient observers.

The suitability of logical depth as a measure of physical complexity de-
pends on the assumed ability (“physical Church’s thesis”) of Turing ma-
chines to simulate physical processes, and to do so with reasonable efficiency.
Digital machines cannot of course integrate a continuous system’s equations
of motion exactly, and even the notion of computability is not very robust
in continuous systems (e.g. a computable, differentiable function can have
a non-computable derivative [34]) but for realistic physical systems, subject
throughout their time development to finite perturbations (e.g. electromag-
netic and gravitational) from an uncontrolled environment, it is plausible
that a finite-precision digital calculation can approximate the motion to
within the errors induced by these perturbations. Empirically, many sys-
tems have been found amenable to “master equation” treatments in which
the dynamics is approximated as a sequence of stochastic transitions among
coarse-grained microstates [43]. Presumably, many mundane hydrodynamic
and chemical systems could be efficiently simulated by discrete stochastic
models using this approach, if the mesh size were made fine enough and the
number of states per site large enough.

To see how might depth be used to measure physical complexity, consider
an infinite hard shere gas at equilibrium. The intuitive triviality of this
system can be formalized by observing that the coarse-grained state of a
typical region in the gas (say a specification, at p digits precision, of the
positions and velocities of all the particles in a region of diameter l) has
depth bounded by a small polynomial (in lp). Since the gas is at equilibrium,
its depth does not increase with time. Now consider the same gas with a
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nonequilibrium initial condition, e.g. a periodic modulation of the density.
The depth of a local region within the gas would now increase with time,
representing the duration of the plausible evolution connecting the present
configuration with the significantly nonrandom initial condition.

Now let the evolution of the gas be subject to noise. The regional depth
would increase for a while as before, but eventually the significance param-
eter characterizing this depth would fall to near zero, as the noise gradu-
ally obliterated the region’s correlation with the system’s nonrandom initial
condition. Thus, in the realistic presence of noise, the hard sphere gas with
nonequilibrium initial condition is not self-organizing.

We do not attempt to survey the vast range of mathematical models
used in physics, within which computationally complex or self-organizing
behavior might be sought, but instead concentrate somewhat arbitrarily on
cellular automata, in the broad sense of discrete lattice models with finitely
many states per site, which evolve according to a spatially homogeneous
local transition rule that may be deterministic or stochastic, reversible or
irreversible, and synchronous (discrete time) or asynchronous (continuous
time, master equation). Such models (cf. the recent review by Wolfram
[46]) cover the range from evidently computer-like (e.g. deterministic cel-
lular automata) to evidently material-like (e.g. Ising models) with many
gradations in between.

In general it appears that reversibility, noise, asynchrony, and spatial
reflection-symmetry of the dynamical law hinder computation, whereas their
opposite properties facilitate it. Generic values of model parameters (e.g. cou-
pling constants, transition probabilities) and generic initial conditions also
tend to hinder computation, whereas special parameters and special initial
conditions facilitate it. A further variable is the complexity of the (finite)
rule, in particular the number of states per site. Complex rules, of course,
give more scope for nontrivial behavior, but are less physically realistic.

Various tradeoffs are possible, and not all the favorable properties need
be present at once to obtain nontrivial computation. The billiard ball cel-
lular automaton of Margolus [33], for example, though simple, reversible,
and reflection-symmetric, is computationally universal. The 3-dimensional
error-correcting automaton of Gacs and Reif [19], on the other hand, is com-
putationally universal in the presence of generic noise, but is irreversible and
lacks reflection symmetry. Gacs’ one-dimensional automaton [17] has similar
qualitative properties, but is also enormously complex.

More of the favorable properties need to be invoked to obtain “self-
organization,” i.e. nontrivial computation from a spatially homogeneous
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initial condition. In [8] we described a rather artifical system (a cellular
automaton which is stochastic but noiseless, in the sense that it has the
power to make purely deterministic as well as random decisions) which un-
dergoes this sort of self-organization. It does so by allowing the nucleation
and growth of domains, within each of which a depth-producing computa-
tion begins. When two domains collide, one conquers the other, and uses
the conquered territory to continue its own depth-producing computation (a
computation constrained to finite space, of course, cannot continue for more
than exponential time without repeating itself). To achieve the same sort of
self-organization in a truly noisy system appears more difficult, partly be-
cause of the conflict between the need to encourage fluctuations that break
the system’s translational symmetry, while suppressing fluctuations that in-
troduce errors in the computation.

Irreversibility seems to facilitate complex behavior by giving noisy sys-
tems the generic ability to correct errors. Only a limited sort of error-
correction is possible in microscopically reversible systems such as the canon-
ical kinetic Ising model. Minority fluctuations in a low-temperature ferro-
magnetic Ising phase in zero field may be viewed as errors, and they are
corrected spontaneously because of their potential energy cost. This error
correcting ability would be lost in nonzero field, which breaks the symmetry
between the two ferromagnetic phases, and even in zero field it gives the Ising
system the ability to remember only one bit of information. This limitation
of reversible systems is recognized in the Gibbs phase rule, which implies
that under generic conditions of the external fields, a thermodynamic sys-
tem will have a unique stable phase, all others being metastable. Irreversible
noisy systems escape this law [7], being able to store information reliably,
and perform reliable computations [19], even when the noise is biased so as
to break all symmetries.

Even in reversible systems, it is not clear why the Gibbs phase rule en-
forces as much simplicity as it does, since one can design discrete Ising-type
systems whose stable phase (ground state) at zero temperature simulates
an aperiodic tiling [37] of the plane, and can even get the aperiodic ground
state to incorporate (at low density) the space-time history of a Turing ma-
chine computation. Even more remarkably, one can get the structure of the
ground state to diagonalize away from all recursive sequences [32]. These
phenomena have been investigated from a physical viewpoint by Radin and
Miekisz [35]; it is not known whether they persist at finite temperature, or
in the presence of generic perturbations of the interaction energies.

Instead of inquiring, as earlier, into the asymptotic time-dependence of
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depth in infinite systems, we can ask how much depth can be generated
by a discrete system of size n, given unlimited time. The answer depends
on open questions in computational complexity theory. Assuming the ex-
istence of cryptographically strong pseudorandom functions which require
only polynomial time and space to compute, such a system, if it is capable
of universal computation, can generate states exponentially deep in n; the
production of greater depth (except accidentally, with low probability) is
forbidden by the system’s Poincaré recurrence. On the other hand, if the
dismal state of affairs P = PSPACE holds, only polynomially deep states
can be produced.
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